

APPENDIX A BACKGROUND DOCUMENTS

- **A-1** Fruitland-Winona Block Servicing Strategy Terms of Reference
- **A-2** Figure 2-1 / Map B.7.4-4 Block Servicing Strategy Area Delineation
- **A-3** Glen Schnarr BSS#3 Concept Plan
- **A-4** SCUBESS Figure 1.1 Limits and Bounding Streets Parcels
- A-5 HCA Regulated Features Identification Map
- **A-6** SCUBESS Table 5.2 Conceptual SWM Pond Characteristics
- **A-7** SCUBESS Figure 3.1 Existing Drainage Area Plan
- **A-8** SCUBESS Comparison of Flood Flow Estimates Table 5.2

APPENDIX A-1
Fruitland-Winona Block Servicing Strategy Terms of Reference

Terms of Reference for:

Fruitland-Winona Block Servicing Strategy

October 15, 2013 - FINAL

Introduction

The Fruitland-Winona Secondary Plan area is characterized by a relatively flat topography which requires specific grading and detailed servicing provisions to adequately service the future development area so development proceeds in a coordinated and comprehensive manner. The purpose of this study is to develop a Block Servicing Strategy (BSS) for areas identified in the Fruitland-Winona Secondary Plan – Block Servicing Strategy Area Delineation is shown in **Appendix A**.

The Fruitland-Winona Block Servicing Strategy shall be carried out in accordance with the Fruitland-Winona Secondary Plan policies in Section 13.2.19. Review Section 13.2.19 of the Fruitland-Winona Secondary Plan when developing work plan. This Terms of Reference provides an overview of the requirements of the Block Servicing Strategy.

There are three (3) blocks included in the Fruitland-Winona Secondary Plan which require a Block Servicing Strategy:

Block 1: Generally located by Barton Street to the north, Highway 8 to the south, Fruitland Road to the west and east of Jones Road to Stoney Creek numbered watercourse 6.

Block 2: Generally located by Barton Street to the north, Highway 8 to the south, watercourse 6 at the west, and Glover Road to the east.

Block 3: Generally located north of Barton Street, Highway 8 to the south, McNeilly Road at the west and east of Lewis Road.

The Fruitland-Winona Subwatershed Studies shall form the basis of all Block Servicing Strategies. It shall conform to the vision, objectives and policies of the approved Fruitland-Winona Secondary Plan and shall identify the land use designations, densities and natural heritage features, including Vegetation Protection Zones and Restoration Areas, in accordance with the Secondary Plan. Where it can be achieved, the Block Servicing Strategy shall comply with the Fruitland-Winona Secondary Plan Urban Design Guidelines.

The Block Servicing Strategy shall have regard for existing development in accordance with the Fruitland-Winona Secondary Plan by reflecting the general scale and character of the established development pattern in the surrounding area by taking into

consideration lot frontages and areas, building height, coverage, mass, setbacks, privacy and overview. All development within the lands identified as the "Servicing Strategies Area" as identified in the Fruitland-Winona Secondary Plan – Block Servicing Strategy Area Delineation shall conform to the Block Servicing Strategies.

The Block Servicing Strategy will be used in assessing priorities among proposals for development. The preliminary grading plan, layout of local roads, sanitary sewers, storm sewers and stormwater management facilities, watermains shall be defined, together with the phasing of servicing proposed to ensure development is achieved in an efficient and systematic manner within each block area.

The Block Servicing Strategy shall follow the Municipal Class Environmental Assessment Planning process for Phases 1 and 2. A public consultation plan shall be developed including the number of meetings to be held with the public and stakeholders.

Key Tasks & Deliverables

This study is intended to outline the concepts for the servicing of the Fruitland-Winona lands located south of Barton Street, east of Fruitland Road, west of Fifty Road, and north of Highway No. 8.

The Block Servicing Strategy shall include an integration of a Functional Stormwater Management and Environmental Management Plan, and a Functional Servicing Plan forming one comprehensive document. The Environmental Management Plan shall build on the findings of the final sub-watershed study for SCUBE watercourses.

The Block Servicing Strategy shall include the following tasks:

- 1. Functional Stormwater Management and Environmental Management Plan; and a
- 2. Functional Servicing Plan

1. Functional Stormwater Management and Environmental Management Plan

The Functional Stormwater Management and Environmental Management Plan is intended to build upon the baseline information contained in the subwatershed study and shall be implemented in

support of the secondary plan. This study shall address any gaps identified in the subwatershed plan related to servicing, stormwater management and natural heritage features (meander belt assessment). The level of study would focus on integrating servicing and stormwater management to a greater level of detail than is normally achieved through the subwatershed study.

Stormwater management facilities shall comply with the City's Criteria and Guidelines for Stormwater Infrastructure Design and Policies, the Fruitland-Winona Sub-watershed Studies and the Block Servicing Strategy. In addition, stormwater management facilities:

- shall be located and designed to maintain ecological functions of the Natural Heritage features;
- shall be located adjacent to the Barton Street Pedestrian Promenade and other Open Space Designations where possible;
- shall be designed along the Barton Street Pedestrian Promenade; and,
- shall be designed to provide visual attraction and passive recreation where possible.

The principle objectives and tasks required for a Functional Stormwater Management and Environmental Management Plan include but not limited to:

- a. Review final sub-watershed study for SCUBE watercourses. Rerunning of the models from the sub-watershed study using the proposed level of impervious coverage and stormwater controls to confirm the existing targets are sufficiently robust to control the increased impervious arrears without causing an increase in downstream flooding and erosion and water quality compliance in accordance with MOE guidelines.
- b. Establish basic sub-watershed conditions (peak flows, runoff volumes, and erosion threshold assessment)
- c. Determine the preliminary design of the stormwater management systems including the stormwater management design at each location.
- d. Functional stormwater management pond design (approximate size and configuration)
- e. Capacity assessment of the receiving system for the proposed storm outlet
- f. Identify drainage constraints relating to existing and postdevelopment flows
- g. Screen various stormwater management strategies and techniques and evaluate a reasonable range of alternatives.

- h. Recommend stormwater management solutions based on sound evaluations of the natural, social and economic environments of various feasible alternatives.
- i. Prepare general drainage plans, outlining both the major and minor systems along with detailed flow limits at critical points.
- j. Identify opportunities to integrate passive recreation opportunities with stormwater management strategy.
- k. Identify opportunities for Phasing of construction of stormwater facilities.
- 1. Functional design of proposed realignment of watercourses.

The Functional Stormwater Management and Environmental Management Plan shall have regard to ecological, hydrological, air drainage and road geometry assessments.

Ecological Assessment

The components of the ecological studies shall include:

- a. Meander Belt Width Assessments for all watercourses;
- b.The identification and consideration of all areas regulated by the Conservation Authority's Development, Interference with Wetlands; Alterations to Shorelines and Watercourses Regulation or its successor; and,
- c. Scoped EIS including evaluation of natural areas (Core Areas).
- d.Topographic survey of the lands including the staked limit of wetlands and top of bank of watercourses.
- e.Determination of top of stable slope of watercourses
- f. Determine limits of buffers to watercourses and wetlands based on HCA/City criteria
- g. Hydraulic study of watercourses and determination/verification of flood plain limits.
- h.Geotechnical assessment to determine stable slope of the watercourse.

Hydrological Assessment

The stormwater management finding/recommendations from the SCUBE sub-watershed study shall be reviewed and incorporated in the Block Servicing Strategy. In addition, the hydrological investigation shall include:

- a. Water balance study.
- b. Groundwater levels and flow path.
- c. Significant recharge and discharge zones.
- d. An assessment of the impacts of development on the functions of b & c above.

- e. The foundation drain flow rate based on groundwater and severe wet weather conditions.
- f. Recommendation for an appropriate sump pump design.
- g. A contingency plan to ensure that an appropriate mitigation strategy can be implemented where:
 - An aquifer is breached during construction;
 - Groundwater is encountered during construction;
 - Continuous running of sump pump occurs; and,
 - Negative impacts occur on the water supply and sewage disposal system or any surface and groundwater related infrastructure.

Air Drainage Analysis

The Air Drainage Analysis Brief shall include:

- a. A review of the existing conditions, including air photos, topography, thermal conditions, climate and air movement down the Niagara Escarpment and towards Lake Ontario, to evaluate the effects of the proposed Secondary Plan land use on the existing microclimate and airflow; and,
- b. Where appropriate, propose a road layout and development patterns that maximize air drainage in a north/south alignment to minimize potential negative impacts on the tender fruit area to the south.

Road Geometry

The Block Servicing Strategy shall include the development of a transportation network for local roads in consideration of the existing and proposed collector roadways identified in the Secondary Plan.

The following shall apply to new road crossings:

- Where possible, road crossings shall avoid significant and/or sensitive natural features;
- Where it is not possible for road crossings to avoid significant and/or sensitive natural features, road crossings may be located in previously disturbed watercourse reaches or in locations where the disturbance or removal of riparian vegetation can be minimized. All watercourses will need to recognize inputs from meander belt analyses, flood plain analyses and fisheries at a minimum;
- New roadway culverts and bridges shall have sufficient conveyance capacity to pass 100 year event to avoid adverse backwater effects. In addition, under Hurricane Hazel event the maximum flooding depth on road shall be in accordance with MNR's technical guidelines;

- Where new roadway culverts and bridges cannot meet the requirements set out above, Regulatory flooding depths on roadways shall be based on the standards within the Ontario Ministry of Natural Resources Natural Hazards Technical Guides, latest version or its successor guideline; and,
- If a minor realignment of the stream channel is necessary to achieve the desired crossing configuration, the new channel should be established using natural channel design principles.

2. Functional Servicing Plan

The Functional Servicing Plan is intended to identify the manner in which water, sanitary and storm servicing is to be provided for. The plan generally includes, but is not limited to

- a. Defining the sanitary and storm drainage area boundaries and confirming capacity of the outlets
- b. Finalizing the land-use plan through the establishment of local and collector road locations
- c. Functional design of all existing collector roadways within the Block
- d. Location and preliminary sizing of sanitary sewers
- e. Location and preliminary sizing of storm sewers
- f. Location and preliminary sizing of watermains
- g. Preliminary grading plan based on the proposed road pattern
- h. Location and functional design of stormwater management facilities
- i. Location and preliminary sizing of hydraulic structures (i.e. Bridges and culverts)
- j. Preliminary channel grading plans and supporting analyses
- k. Watermain Analysis of Block Plan using City-wide WaterCad Model.
- I. Proposed phasing scheme

Notes:

The findings and solutions identified in the individual drainage and flooding assessments shall be integrated into the Block Servicing Strategies and subsequent Draft Plan of Subdivision.

Block 1

- Include functional design for Jones Road
- Determine the floodplains for:

- Along Watercourse 5.0, immediately downstream of Fruitland Road (between sections 2221 and 2150);
 and
- Along Watercourse 5.0, halfway between Highway No. 8 and Barton Street (between sections 1693.967 and 1537.457)
- Through the Schedule C Class Environmental Assessment process, determine the alignment for the north/south (new Fruitland Road) road between highway No. 8 and Barton Street.
- Local flooding issue remediation required:
 - Local flooding at 688 Barton Street (private property drainage issue).
 - Local flooding at 728 Barton Street (private property drainage).
- Specific natural heritage requirements for the Block Servicing Strategy:
 - Ecological Land Classification and Vegetation Surveys
 Update SCUBE West Subwatershed Study
 Phase 1 & 2.
 - Fisheries and Watercourse Assessments on Watercourses 5, 6 & 7
 - Re-alignment of watercourse 5 may require additional studies.
 - Re-alignment and re-construction of Watercourse 5.0 upstream of Barton Street would identify design measures to avoid/mitigate the potential negative effects of the proposed stream relocation on existing natural heritage features and functions; avoid/mitigate the potential negative impacts to wetlands 1 and 4.
 - Define limits of natural heritage feature boundaries.
 - Review the widths of the preliminary vegetation protection zone (VPZ) that have been established within the Subwatershed Study.
 - Drainage and infrastructure improvement works:
 - Identification of design measures to avoid/mitigate the potential negative effects of the proposed channel improvements on existing natural heritage features and functions.

Block 2

- Include functional design for Glover Road
- Determine the floodplains along Watercourse 6.0, downstream of Highway No. 8 (between sections 2232.182 and 1785.033).

- Local flooding issue remediation required:
 - Local flooding at 808 Barton Street.
- Specific natural heritage requirements for the Block Servicing Strategy:
 - Ecological Land Classification and Vegetation Surveys
 - Update SCUBE West Subwatershed Study Phase 1 & 2.
 - Define limits of natural heritage feature boundaries.
 - Review the widths of the preliminary vegetation protection zone (VPZ) that have been established within the Subwatershed Study.
 - Drainage and infrastructure improvement works:
 - Identification of design measures to avoid/mitigate the potential negative effects of the proposed channel improvements on existing natural heritage features and functions.

Block 3

- Include functional design of McNeilly Road and Lewis Road
- Local flooding issue remediation required:
 - Local flooding at 1028 Barton Street (groundwater issue).
- Specific natural heritage requirements for the Block Servicing Strategy;
 - Ecological Land Classification and Vegetation Surveys
 - Update SCUBE East Subwatershed Study Phase 1 & 2.
 - Define limits of natural heritage feature boundaries.
 - Review the widths of the preliminary vegetation protection zone (VPZ) that have been established within the Subwatershed Study.
 - Drainage and infrastructure improvement works:
 - Identification of design measures to avoid/mitigate the potential negative effects of the proposed channel improvements on existing natural heritage features and functions.

Appendices

Appendix 'A'

Fruitland-Winona Secondary Plan – Block Servicing Strategy Area Delineation

APPENDIX A-2
Figure 2-1 / Map B.7.4-4 Block Servicing Strategy Area
Delineation

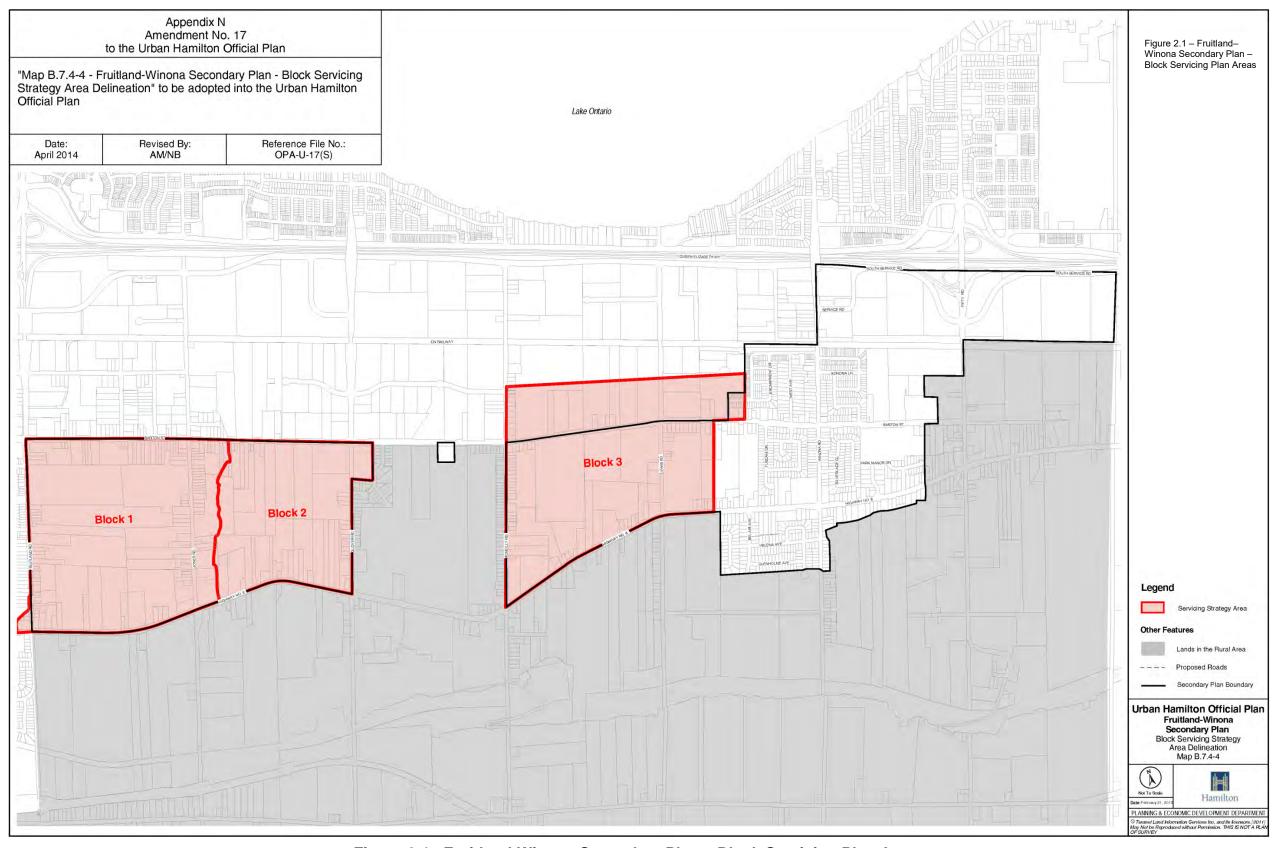
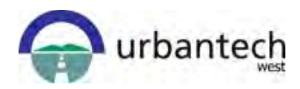
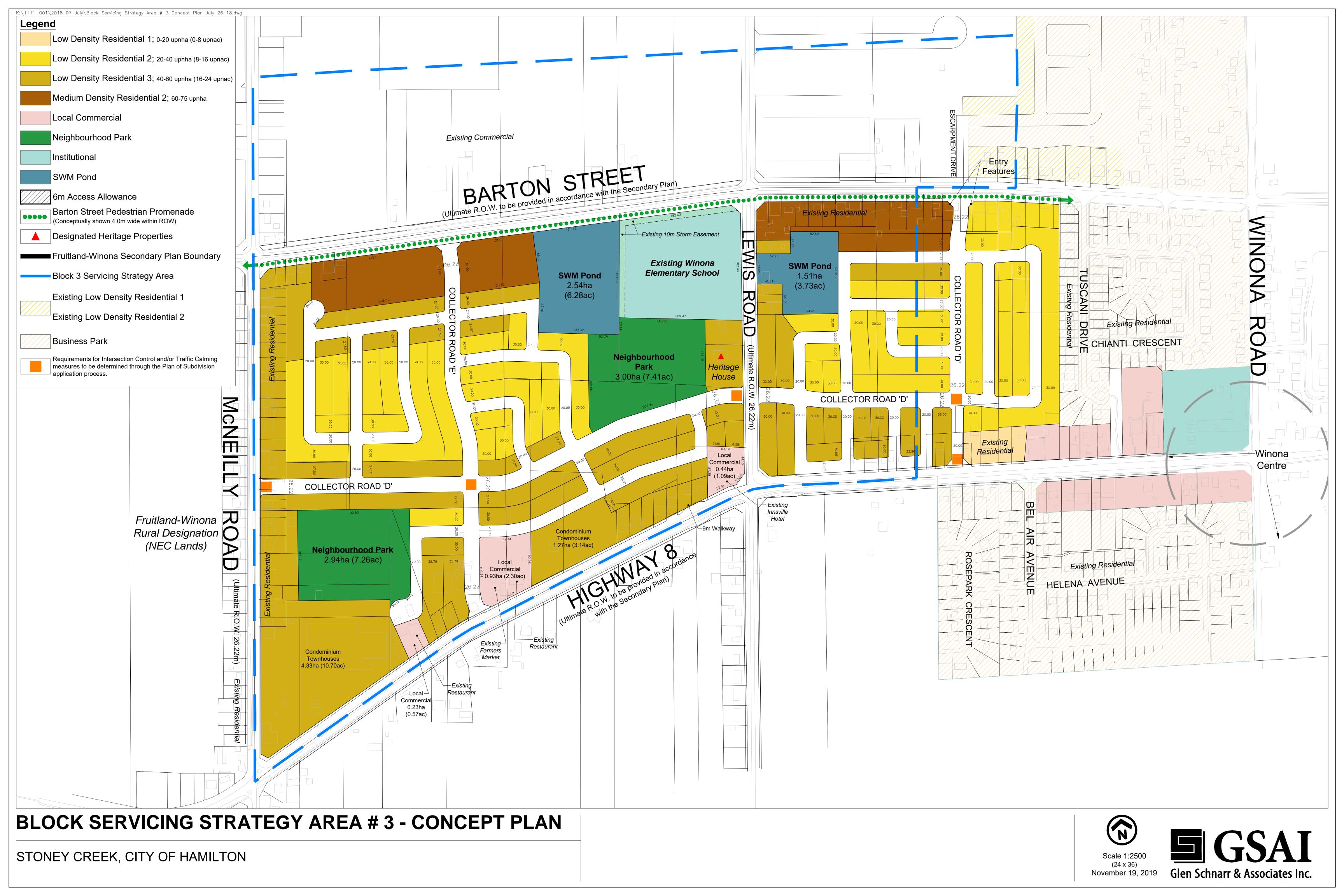
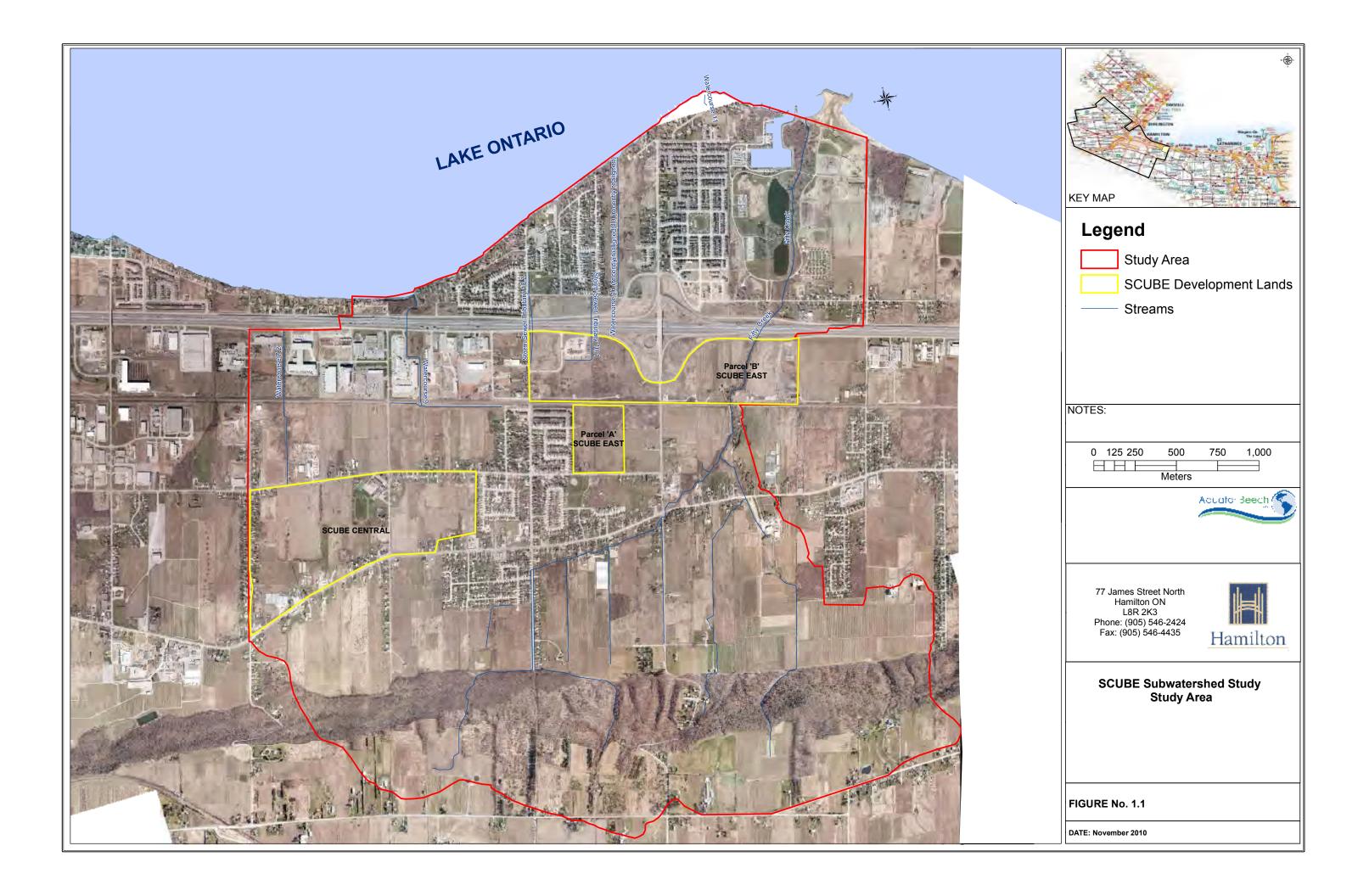




Figure 2-1 –Fruitland-Winona Secondary Plan – Block Servicing Plan Areas



APPENDIX A-3 Glen Schnarr BSS#3 – Concept Plan

APPENDIX A-4 SCUBESS Figure 1.1 – Limits and Bounding Streets Parcels

APPENDIX A-5 HCA Regulated Features Identification Map

APPENDIX A-6 SCUBESS – Table 5.2 – Conceptual SWM Pond Characteristics

TABLE 5.2: Conceptual Stormwater Management Pond Characteristics SCUBE Subwatershed - East and West

					Extended Detention for Flood (Quantity) Ctonrol																	
						Extended Detention for Erosion Control										1		1				
Water Qu		ater Quality (Control (Level	Erosion Control			2-Year Control			100-Year Control				l	l !							
Pond # or	Estimated Drainage Area		Assumed %		Perament Pool Storage for Water Quality		Extended Detention for Water Quality		Release Rate		Storage Volume		Release Rate		Storage Volume		Release Rate		Volume	Total Storage Volume *	Conceptual Pond Footprint Area **	Pond # or
Catchment	(ha)	Landuse	Impervious	(m³/ha)	(m ³)	(m³/ha)	(m ³)	(m^3/s)	(L/s/ha)	(m ³)	(m³/ha)	(m ³ /s)	(L/s/ha)	(m ³)	(m³/ha)	(m^3/s)	(L/s/ha)	(m ³)	(m³/ha)	(m ³)	(ha)	Catchment
	SCU	BE East																				
12-1	11.8	employment	80%	105	1,239	40	472	0.013	1.1	2,401	203	0.087	7.4	3,430	291	0.333	28.3	7,730	655	8,969	1.2	12-1
12-2	14.5	employment	80%	105	1,523	40	580	0.016	1.1	2,947	203	0.107	7.4	4,210	290	0.410	28.3	9,490	654	11,013	1.4	12-2
9-1	14.7	residential	50%	65	956	40	588													1,544	0.6	9-1
9-2	54.0	residential	50%	65	3,510	40	2,160	0.035	0.6	7,952	147	0.231	4.3	11,360	210	0.942	17.4	30,550	566	34,060	2.8	9-2
9-3	23.1	residential	50%	65	1,502	40	924	0.015	0.6	3,409	148	0.099	4.3	4,870	211	0.403	17.4	13,090	567	14,592	1.6	9-3
9-4	16.2	employment	80%	105	1,701	40	648	0.023	1.4	3,171	196	0.151	9.3	4,530	280	0.582	35.9	9,980	616	11,681	1.4	9-4
9-5	24.8	employment	80%	105	2,604	40	992													3,596	0.9	9-5
10-1	16.4	employment	80%	105	1.722	40	656					0.208	12.7	3,580	218	0.798	48.7	8,040	490	9.762	1.2	10-1
10-2	9.6	employment	80%	105	1.008	40	384					0.128	13.3	2,050	214	0.490	51.1	4,600	479	5,608	0.9	10-2
10-3	9.3	employment	80%	105	977	40	372					0.127	13.7	1,940	209	0.489	52.6	4,360	469	5,337	0.9	10-3
7-2-1	10.3	employment	80%	105	1,082	40	412	0.027	2.7	1,659	161	0.182	17.7	2,370	230	0.707	68.6	4,890	475	5,972	1.0	7-2-1
7-2-2	4.8	employment	80%																			7-2-2
7-2-3	4.3	employment	80%]	Catchment a	reas may be less	than minimum re	commended	for a SWM Po	ond, and othe	r traditional s	ource contro	methods ma	ay be necessa	ary instead. U	nit storage a	nd release ra	tes from SW	M Pond catcl	hment #7-2-1 would ap	ply.	7-2-3
7-2-4	2.4	employment	80%	<u> </u>																		7-2-4
SCUBE West																						
1	39.8	residential	50%	65	2,587	40	1,592	0.025	0.6	4,011	101	0.166	4.2	5,730	144	1.143	28.7	16,830	423	19,417	1.9	1
2	24.5	residential	52%	65	1,593	40	980	0.024	1.0	2,625	107	0.159	6.5	3,750	153	0.997	40.7	11,180	456	12,773	1.5	2
3	26.4	residential	48%	65	1,716	40	1,056	0.026	1.0	2,611	99	0.171	6.5	3,730	141	1.071	40.6	11,500	436	13,216	1.5	3
4	26.5	residential	52%	65	1,723	40	1,060	0.037	1.4	2,800	106	0.248	9.4	4,000	151	1.477	55.7	11,850	447	13,573	1.6	4
5	21.1	residential	50%	65	1,372	40	844	0.013	0.6	2,198	104	0.084	4.0	3,140	149	0.564	26.7	9,330	442	10,702	1.3	5

^{*} Note - Total volume includes permanent pool storage plus the higher of extended detertion storage for water quality or flood control.

** Note - Actual footprint areas will depend on physical constraints including grading / storm sewer inverts / outlet (creek) elevations, etc. For conceptual purposes, the pond footprint areas were estimated assuming a 3.1 length to width flowpath, max. water depth of 2.5m for flood control ponds, 1.5m for ponds with water quality control only, and included allowances for sideslopes, etc.

APPENDIX A-7 SCUBESS – Figure 3.1 – Existing Drainage Area Plan

SCUBE

Subwatershed Study - Phase 1

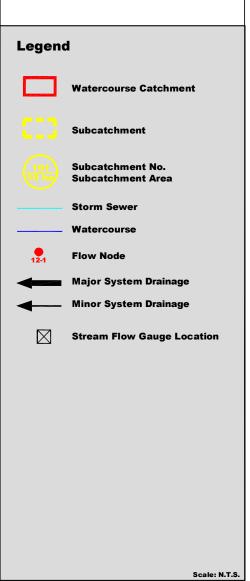


Figure 3.1

Existing Drainage Pattern

APPENDIX A-8 SCUBESS – Comparison of Flood Flow Estimates - Table 5.2

Table 5.2: Comparison of Flood Flow Estimates

Location	Landuse Scenario	Drainage Area*	% Impervious	Design Flows (cms)								
		(ha)		2-year	5-year	10-year	20-year	50-year	100-year	Regional		
Watercourse 9												
	Existing	128.2	17%	0.8	1.1	1.3	1.6	1.9	2.2	10.1		
Storm Outfall (9-1)	Future uncontrolled	146.7	20%	1.0	1.4	1.8	2.3	3.1	4.0	12.3		
	Existing	322.4	10%	1.2	1.8	2.4	3.0	4.1	5.1	20.2		
CN Railway (node 9-2)	Future uncontrolled	340.9	33%	1.7	2.8	3.8	4.9	6.7	8.4	29.8		
	Existing	357.3	16%	1.5	2.1	2.6	3.2	4.2	5.2	23.3		
QEW (node 9-3)	Future uncontrolled	375.8	37%	1.9	3.0	4.0	5.2	7.2	9.0	32.7		
	Existing	371.2	16%	1.5	2.2	2.7	3.4	4.6	5.7	24.6		
Lake Ontario (node 9-4)	Future uncontrolled	389.7	37%	2.0	3.1	4.2	5.4	7.4	9.3	34.0		

APPENDIX B GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATIONS

- **B-1** Preliminary Geotechnical Investigation (AME, 2009)
- **B-2** Hydrogeological Investigations Fruitland-Winona BSS#3 (Landtek Limited, February 2020)
- **B-3** Figure 1a Excerpt from Toronto's Wet Weather Flow Management Guidelines

APPENDIX B-1 Preliminary Geotechnical Investigation (AME, 2009)

PRELIMINARY GEOTECHNICAL INVESTIGATION BARTON STREET PROPERTIES BARTON STREET AND FIFTY ROAD STONEY CREEK HAMILTON, ONTARIO.

Prepared for:

1312773 Ontario Inc.

Prepared by:

AME - Materials Engineering

DECEMBER 2009

PROJECT NO. 40236.210

TABLE OF CONTENTS

1.0	INT	RODUCTION	1						
2.0	SITE DESCRIPTION								
3.0	FIE	_D WORK	2						
4.0	LAE	ORATORY TESTS	3						
5.0	SUE	SOIL & GROUNDWATER CONDITIONS	3						
	5.1	Topsoil	4						
	5.2	Earth Fill / Disturbed Native Soils	4						
	5.3	Glacial Till	5						
6.0	GRO	DUNDWATER CONDITIONS	6						
7.0	DIS	CUSSION AND RECOMMENDATIONS	7						
	7.1	Pavement Design	7						
	7.2	Excavation and Groundwater Control							
	7.3	Bedding For Sewers and Watermains	11						
	7.4	Reuse of Excavated Soil and Bedrock as Compacted Fill	12						
		7.4.1 Topsoil / Unsuitable Fill Materials	12						
		7.4.2 Earth Fill / Disturbed Native Soils	12						
		7.4.3 Glacial Till	13						
		7.4.4 Shale	13						
		7.4.5 General	15						
	7.5	General Site Re-grading	16						
	7.6	Engineered Fill	16						
	7.7	House Foundation Design	18						
	7.8	Lateral Earth Pressure	19						
	7.9	Soil Corrosivity	19						
	7.10	Environmental Considerations	21						
B.O	GEN	ERAL COMMENTS	22						
9.0	CLO	SURE	22						

APPENDIX 1

Site Location Plan

Drawing No. 1A

Borehole Location Plan Drawing Nos. 1B

APPENDIX 2

Log of Boreholes

Drawing Nos. 2-1 to 2-12

APPENDIX 3

Laboratory Testing

Grain Size Analysis (Figure No. 3-1)

Standard Proctor (Figure No. 3-2)

Certificate of Analysis Corrosivity Package (Enclosure No. 3-3)

Certificate of Analysis Ontario. Reg. 153 (Enclosure No. 3-4)

APPENDIX 4

Drainage and Backfill Details

ANSI - AWWA Corrosivity Rating System

1.0 INTRODUCTION

On behalf of 1312773 Ontario Inc. AME - Materials Engineering has been authorized to conduct a preliminary geotechnical investigation of the Barton Street Properties located on the southeast corner of Barton Street and McNeilly Road, in the City of Hamilton (Stoney Creek), Ontario. A Site Location Plan is provided as Drawing No. 1A – Appendix 1.

It is our understanding that the proposed site development plan comprises residential lots with local roads.

The purpose of this investigation was to characterize the underlying soil and groundwater conditions, to determine the relevant geotechnical properties of encountered soils for the design and construction of the project and to provide recommendations on the geotechnical aspects of the construction of municipal services, roads and houses.

2.0 SITE DESCRIPTION

The proposed residential development site, Barton Street Properties located on the southeast corner of Barton Street and McNeilly Road, in the Community of Stoney Creek, City of Hamilton, Ontario. The site is irregular in shape and is currently used for agriculture purposes. The Site consists of three (3) parcels of lands and each parcel is approximately rectangular in shape. The total area of all the three parcels is approximately 21 hectares (52 acres).

The Site is bounded by Barton Street to the north, McNeilly Road to the west, and scattered residential dwellings and vacant lands to the south and east. Developed residential lands are located west of McNeilly Road.

The existing Site terrain is generally flat to gently rolling. The existing ground surface slopes very gently from the south to the north. At the time of our visit the Site was covered a thin blanket of snow. Scattered weed and tree lines were also visible in the properties.

The Site is located within a lowland bordering Lake Ontario, in the physiographic region of Southern Ontario known as the Iroquois Plain. The Site soils (Halton Till)

have largely been developed upon red clay derived from the underlying Queenston Formation. The Queenston Formation is dominantly red, hematitic, fissile and micaceous, calcareous shale. Reduction zones have a green colouration occur parallel and discordant to bedding. Thin layers of hard siltstone, sandstone, mudstone and limy bands often exist locally in the shale

3.0 FIELD WORK

The fieldwork for this project was performed on December 17, 2009, and consisted of twelve (12) exploratory boreholes. The boreholes were drilled to approximate depths of 3.9 to 6.6 m below existing grade. The borehole locations are shown on the Borehole Location Plan, Drawing No. 1B - Appendix 1. The ground surface elevations of borehole locations were inferred from the topographic plan supplied by the client (Drawing No. 30435 by A.T. McLaren Limited).

The boreholes were advanced to the sampling depths by means of continuous flight solid stem augers. Standard Penetration Tests (SPT's) were carried out at frequent intervals of depth. Representative samples of the Site soils were obtained using the SPT split barrel samplers. The results of SPT's in terms of 'N'-values have been used to infer the consistency of cohesive soils and relative density of non-cohesive soils in this report.

All soil samples were examined in the field and carefully preserved for further examination in the laboratory. Groundwater level observations were made in all boreholes during and upon completion of drilling operations. In addition, three (3) piezometers were installed in Borehole Nos. 1, 4 and 9 for subsequent water level monitoring. Examination of the soil samples obtained in the boreholes by visual and olfactory methods did not detect contamination of the site soils at the locations investigated.

The fieldwork was performed under the full-time supervision of experienced geotechnical personnel from AME.

4.0 LABORATORY TESTS

The soil samples recovered by the split barrel sampler were sealed in air tight plastic bags, labeled and transported to AME's geotechnical laboratory for detailed examination and testing. The soil samples were visually examined in the laboratory for the final classification of soil types. The moisture content of all soil samples obtained in the boreholes was determined by oven drying in the laboratory.

The natural moisture content data, soil description and Standard Penetration Test N-values are presented on the Borehole Logs, Figure Nos. 2-1 through 2-12 – Appendix 2. One soil sample (BH3 / SS3) was subjected to hydrometer grain size analysis and one bulk soil sample was submitted for Standard Proctor testing in the laboratory. The laboratory test results are presented in Appendix 3 as Figures 3-1 and 3-2, and are discussed in the following sections.

One selected soil sample (BH8 / SS4) was submitted for pH, Sulphide, Redox Potential and Resistivity tests in order to identify potential corrosion problems with regard to underground utilities. One selected soil sample (BH2 / SS2) was submitted for the determination of selected general and inorganic parameters for comparison to the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act of Ontario", March 2004. The test results are discussed in the ensuing sections of this report. Certificate of Analyses provided by the analytical chemistry testing laboratory are contained in Appendix 3 as Enclosure Nos. 3-3 and 3-4.

5.0 SUBSOIL & GROUNDWATER CONDITIONS

Subsurface conditions, encountered at the borehole locations, are shown on Borehole Logs, Figure Nos. 2-1 to 2-12 – Appendix 2, and a brief description of the subsoil units are given in the following subsections. The boreholes were advanced to depths ranging from approximately 3.9 m to 6.6 m below existing grade.

It should be noted that the boundaries of soil types indicated on the borehole logs are inferred from non-continuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design, and therefore, should not be construed as the exact plane of

geological change.

The subsurface stratigraphy as revealed in the boreholes generally comprises surficial topsoil underlain by earth fill / disturbed native soil and which in turn is underlain by native glacial till and / or bedrock. A brief description of these materials is presented below.

5.1 TOPSOIL

Topsoil was encountered at the ground surface in all of the boreholes except Boreholes 10 and 12. The thickness of the topsoil at the borehole locations ranged from 50 mm and 300 mm, and averaged 115 mm.

It should be noted that the topsoil measurements were carried out at the borehole locations only and may vary between boreholes. Therefore, thicker topsoil than that found in the boreholes may occur in places. This renders it difficult to estimate the quantity of topsoil to be stripped. In order to prevent over-stripping, diligent control of the stripping operation will be required. A more detailed analysis (involving test pits) should be carried out to more accurately quantify the amount of topsoil to be removed for construction.

5.2 EARTH FILL / DISTURBED NATIVE SOILS

Earth fill or disturbed native soil was encountered either just below the topsoil or at the ground surface in the case of Borehole 10 and 12. The earth fill / disturbed native soils consists of brown sandy silt to clayey silt with trace gravel. The sandy silty to clayey silt was noted to be disturbed / weathered, likely due to previous crop cultivation and / or repeated seasonal freeze-thaw cycles. The composition of the soil is similar to that of the underlying undisturbed glacial till but contains traces of organic inclusions (rootlets) and possibly intermixed topsoil. In some of the boreholes, the earth fill / disturbed native soil had pockets of black sand.

The earth fill / disturbed native soil extended depths ranging from 0.3 to 0.8 m below existing grade. The thickness of the layer varied from 0.2 m to 0.6 m, with an average thickness of approximately 0.4 m.

Standard Penetration Resistance in the earth fill / disturbed native soils had 'N'-values ranging from 2 to 9 blows per 300 mm, indicating a material of soft to stiff consistency. The sandy silt to clayey silt is moist to wet, with moisture contents determined on the soil samples ranging from 18% to 34%.

5.3 GLACIAL TILL

Underlying the earth fill / disturbed native soil, each of the borehole encountered glacial till which extended to the vertical limit of investigation. The glacial till consists predominantly of a clayey silt matrix with embedded sand, gravel and occasional thin lenses of sandy silt. Cobbles and boulders are probably present but would not be representatively sampled with the equipment used in this investigation. The glacial till contains weathered shale fragments which became more numerous with increasing depth. The glacial till was moist and generally brown to grey changing to red at greater depth.

Standard Penetration Resistance in the cohesive clayey silt till had 'N'-values ranging 15 to greater than 50 blows per 300 mm, indicating a stiff to hard consistency (compact to very dense if cohesionless sandy silt). The moisture content of samples of the glacial till ranged from 4% to 21%, and averaged 12%.

A hydrometer grain size analysis was carried out on a representative sample of the clayey silt till obtained in Borehole 3 below a depth of 1.5 m (Sample SS3) and the grain size distribution curve determined is presented on Figure No. 3-1 – Appendix 3.

In order to assess the compaction characteristics of the glacial till, a Standard Proctor test was performed on a bulk sample of material which determined a maximum dry density of 1910 kg / $\rm m^3$ at an optimum moisture content of 14.1%. The Standard Proctor curve for the sample tested in presented on Figure No. 3-2 – Appendix 3.

All of the boreholes were either terminated in the glacial till or upon reaching practical auger refusal in probable bedrock.

6.0 GROUNDWATER CONDITIONS

Groundwater observations were made both during and upon completion of drilling of boreholes, and subsequently in the standpipe piezometers installed in Boreholes 1, 4 and 9. Groundwater observations made on December 17, 2009 and water level measurements made in the standpipe piezometers are summarized in Table I below.

Table 1 - Summary of Groundwater Observations

Borehole No.	December 17, 2009*	December 18, 2009	December 22, 2009
BH 1	Dry to 4.45 m	Dry to 4.45 m	1.60 m
BH 2	Dry to 4.17 m	N/A	N/A
BH 3	Dry to 4.24 m	N/A	N/A
BH 4	0.10 m	0.10 m	0.50 m
BH 5	Dry to 6.15 m	N/A	N/A
BH 6	Dry to 5.03 m	N/A	N/A
BH 7	Dry to 3.84 m	N/A	N/A
BH 8	Dry to 4.60 m	N/A	N/A
BH 9	Dry to 5.03 m	Dry to 5.03 m	Dry to 5.03 m
BH 10	4.40 m	N/A	N/A
BH 11	Dry to 5.03 m	N/A	N/A
BH 12	Dry to 6.55 m	N/A	N/A

Groundwater observations were made both during and upon completion of drilling of boreholes, and subsequently in the standpipe piezometers installed in Boreholes 1, 4 and 9. In general the fine-grained glacial till deposits beneath this Site have low permeability and preclude the free flow of groundwater. Glacial till deposits typically contain preferentially permeable cohesionless sand lenses which can be in a wet state and contain stored water. It is likely that a sand lens was penetrated

in Borehole 4 which contained sufficient water to fill the boring.

Complete characterization of the groundwater regime beneath the Site would require monitoring over a period of several months because of the fine grained nature of the glacial till soils and their low hydraulic conductivity. It should be noted that groundwater levels are subject to seasonal fluctuations.

7.0 DISCUSSION AND RECOMMENDATIONS

The following discussion and recommendations are based on the factual data obtained from this investigation and are intended for use by the client's design engineers only.

Contractors bidding on this project or conducting work associated with this project should make their own interpretation of the factual data and / or carry out their own investigations.

This investigation has revealed that the site is covered by a surface layer of topsoil which is underlain by a layer of earth fill / disturbed native soil, which in turn is underlain by a thick stratum of glacial till. On the basis of our fieldwork, laboratory tests and other pertinent information supplied by the client, the following comments and recommendations are made.

7.1 PAVEMENT DESIGN

Based on the existing topography of the subject site, assumed proposed grades and the data collected during the field investigation, it is anticipated that the subgrade material for the subdivision roads will generally comprise clayey silt till or similar compacted fill. Given the frost susceptibility and drainage characteristics of the subgrade soils, and the City of Hamilton's minimum requirements for rural residential roads, the following pavement structure designs are recommended:

Pavement Structure Layer	Compaction Requirements	Minimum Component Thickness	
		Rural Local Road	Rural Minor Collector Road
Surface Course HM-3 Asphaltic Concrete	OPSS 310	40 mm	50 mm
Binder Course HL-8 Asphaltic Concrete	OPSS 310	50 mm	90 mm
Granular Base: Granular A (OPSS 1010)	100% SPMDD*	150 mm	150 mm
Granular Subbase: Granular B (OPSS 1010)	100% SPMDD*	350 mm	400 mm

^{*}Denotes Standard Proctor Maximum Dry Density, ASTM-D698

The granular pavement structure materials should be placed in lifts that are 150 mm thick or less and be compacted to a minimum of 100% and 98% for granular base and subbase, respectively. Asphaltic concrete materials should be rolled and compacted as per OPSS 310. The granular and asphaltic concrete pavement materials and their placement should conform to OPSS 310, 501, 1010 and 150, and the pertinent Municipality specifications. Further, it is recommended that the Municipality's specifications should be referred to for use of higher grades of asphalt cement for asphaltic concrete where applicable, particularly in the areas of expected heavy truck traffic.

The above pavement structure designs meet the minimum requirements for The City of Hamilton. If alternative pavement designs are desired, AME should be contacted and approval obtained from the City of Hamilton. Other road types, parking lots, etc. should be constructed in accordance with The City of Hamilton's standards.

The subgrade must be compacted to 98% of SPMDD for at least the upper 1000 mm and 95% of SPMDD below this level.

The long-term performance of the proposed pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. In addition, the need for adequate drainage cannot be over-emphasized. The finished pavement surface and underlying

subgrade should be free of depressions and should be crowned and sloped (at a crossfall of 3% for both the pavement surface and the subgrade) to provide effective drainage. Surface water should not be allowed to pond adjacent to the outside edges of pavement areas. Sub-drains or drainage ditches must be provided to facilitate effective and assured drainage of the pavement structures as required to intercept excess subsurface moisture and minimize subgrade softening. The invert of sub-drains and ditches should maintained at least 0.3 m and 0.5 m below subgrade level, respectively

Additional comments on the construction of pavement areas are as follows;

- As part of the subgrade preparation, proposed pavement areas should be stripped of topsoil, unsuitable fill and other obvious objectionable material. Fill required to raise the grades to design elevations should be free of organic material and at a moisture content which will permit compaction to the specified densities. The subgrade should be properly shaped, crowned, and then proof-rolled. Soft or spongy subgrade areas should be subexcavated and properly replaced with suitable approved backfill compacted to 98% SPMDD.
- The most severe loading conditions on pavement areas and the subgrade may occur during construction during wet and un-drained conditions. Consequently, special provisions such as restricted lanes, half-loads during paving etc., may be required, especially if construction is carried out during unfavorable weather.
- For fine-grained soils, as encountered at the site, the degree of compaction specification alone cannot ensure distress free subgrade. Proof-rolling must be carried out and witnessed by AME personnel for final recommendations of sub-base thicknesses.

7.2 EXCAVATION AND GROUNDWATER CONTROL

Based on the field results, temporary shallow excavations for sewers, trenches, basements and utilities are not expected to pose any difficulty. Excavation of the soils and completely weathered shale bedrock at this site can be carried out with

heavy hydraulic backhoes. It is likely that heavy backhoes with ripping teeth can also excavate the upper bedrock zones that are moderately to highly weathered. However, provision must be made to use hydraulic rock breakers or other suitable percussion equipment to break up the sound, unweathered shale bedrock and hard interbeds where necessary. It should be noted that the contact between the weathered bedrock and sound bedrock is not well defined and Contractors must make their own assessment of the degree of difficulty in excavating these materials. The ability to excavate the bedrock without blasting depends on the type of equipment and excavation methods used. Therefore, contractors undertaking the project should carry out their own test pits to determine their ability to excavate bedrock without blasting.

All excavations must be carried out in accordance with Occupational Health and Safety Act (OHSA). With respect to OHSA, the undisturbed, native very stiff/dense glacial till are classified as Type 2 soils and the undisturbed, native hard/very dense glacial till are classified as Type 1 soils. Any previously excavated soil (earth fill) and undisturbed, native stiff soils are classified as Type 3 soils.

Temporary excavation side-slopes in Type 3 soil should not exceed 1.0 horizontal to 1.0 vertical. Excavations in Type 1 and Type 2 soils may be cut with vertical side-walls within the lower 1.2 m height of excavation and 1.0 horizontal to 1.0 vertical above this height.

For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. Locally, where very loose or soft soil is encountered at shallow depths or within zones of persistent seepage, it will be necessary to flatten the side slopes as necessary to achieve stable conditions. Excavation side-slopes should not be unduly left exposed to inclement weather.

Where workers must enter excavations extending deeper than 1.2 m below grade, the excavation side-walls must be suitably sloped and / or braced in accordance with the Occupational Health and Safety Act and Regulation for Construction Projects.

The borings suggest that for the anticipated excavation depths there will be no significant ground water seepage into excavations. Only limited seepage is anticipated within the undisturbed, native glacial till soils. It is anticipated that

adequate control of any ground water seepage can likely be achieved by pumping from properly filtered sumps in the base of the excavation. Surface water should be directed away from the open excavations.

It should be noted that the till is non-sorted sediment and therefore may contain boulders. Provisions must be made in the excavation contract for the removal of possible boulders.

7.3 BEDDING FOR SEWERS AND WATERMAINS

Suitably prepared engineered fill, undisturbed, native stiff to hard / compact to very dense soils and bedrock at the site and will provide adequate support for watermains, sewer pipes, manholes, catchbasins and other related structures. Based on the anticipated site grades, the sewer pipes and watermains will likely be supported on the very stiff to hard clayey silt till or very dense sandy silt till or bedrock.

The type of bedding depends mainly on the quality of the subgrade immediately below the invert levels and particularly on the shear strength of the subgrade.

Normal Class 'B' bedding is recommended for the underground utilities. Granular 'A' or 19 mm Crusher Run Limestone can be used as bedding material. The bedding material should be compacted to 95% Standard Proctor Maximum Dry Density. Bedding details should follow the applicable governing design detail (i.e. City of Hamilton, OPSD). Trenches dug for these purposes should not be unduly left exposed to inclement weather. Lateral pipe to bedrock clearances (particularly for deep sanitary sewer construction) should be strictly adhered to and / or compressible materials provided where necessary in trenches that are excavated in the shale in order to avoid potential problems due to swelling of the shale bedrock.

Pipe bedding and backfill for flexible pipes should be undertaken in accordance with OPSD 802.010, 802.013, 802.014, 802.020, 802.023 and 802.024. Pipe embedment and cover for rigid pipes should be undertaken in accordance with OPSD 802.030, 802.031, 802.032, 802.033, 802.034, 802.050, 802.051, 802.052, 802.053 and 802.054.

If unsuitable bedding conditions occur, careful preparation and strengthening of the trench bases prior to sewer installation will be required. The subgrade may be strengthened by placing a thick mat consisting of 50 mm crusher-run limestone. Field conditions will determine the depth of stone required. Geotextiles and/or geogrids may be helpful and these options should be reviewed by AME on a case by case basis.

Sand cover material should be placed as backfill to at least 300 mm above the top of pipe. Placement of additional granular material (thickness dictated by the type of compaction equipment) as required or use of smaller compaction equipment for the first few lifts of native material above the pipe will probably be necessary to prevent damage to the pipe during the trench backfill compaction.

7.4 REUSE OF EXCAVATED SOIL AND BEDROCK AS COMPACTED FILL

7.4.1 Topsoil / Unsuitable Fill Materials

Topsoil and / or unsuitable fill should not be left in place or utilized in any area requiring structural integrity of founding material such as houses, roads, sidewalks, structural berms, etc.

AME should be contacted to review all proposed topsoil and/or unsuitable fill usage strategies.

7.4.2 Earth Fill / Disturbed Native Soils

As noted previously, the existing earth fill / disturbed native soils typically contain trace amounts of organics and possibly included topsoil, and exhibit a high in-situ moisture content. Consequently, these materials may not be favourable for re-use as engineered fill or backfill in settlement sensitive areas, such as trench backfill beneath floor slabs and pavement structures. Therefore, it is recommended that the selection of and sorting of the existing earth fill / native disturbed soils be supervised by the Geotechnical Engineer. Alternatively, these materials may be placed in the rear of lots, landscaped areas and outside the building envelopes building lots provided it is placed a minimum of 0.5 m above the footing elevation.

7.4.3 Glacial Till

On-site excavated native glacial till materials are considered suitable for reuse as backfill or engineered fill material, provided any topsoil, organic or otherwise unsuitable materials are excluded from the backfill, the moisture content is controlled within 2% of its optimum water content as determined by Standard Proctor test, and the materials are effectively compacted with heavy vibratory padtype rollers. The compactors must be of sufficient size and energy to break down the lumps of till material and to knead the soil into a homogeneous mass as water and compactive effort is applied. If the equipment does not have sufficient energy to break down the till lumps, there is a tendency to bridging and post construction settlements. In situ testing may fail to identify this type of deficiency adequately because the zones of influence of testing equipment is small enough that the density of the till lumps can be erroneously measured instead of the fill mass density.

Reference to the Standard Proctor test shows that the optimum moisture content of the clayey silt till is approximately 14.1%. Measured in-situ moisture contents within the clayey silt till ranged from approximately 4% to 21%, and averaged approximately 12%, which is generally within 2% of the material's optimum moisture content. However, thorough vertical mixing of the excavated clayey silt till will be required to provide a material that can be adequately compacted throughout. During warm weather, drying of the glacial till may become acute; therefore, the lift thickness for compaction and the moisture content of the soils must be properly controlled during the backfilling. Provision for water application must be made as necessary to achieve the specified backfill compaction density.

7.4.4 Shale

On-site excavated shale bedrock will require a higher degree of mechanical effort to produce an acceptable material for re-use as backfill or engineered fill material. The excavation of the shale bedrock will require heavy hydraulic backhoes and / or bulldozers equipped with ripping teeth. Earth scrapers, if equipped with ripping teeth, could be considered for excavating the weathered shale. Alternative extraction methodologies, such as hydraulic rock breakers or blasting, should be

considered if the shale becomes excessively hard or stronger interbeds are encountered.

The moisture content of the shale is normally well below its optimum value. Both the glacial till and shale bedrock tend to break-up into relatively large clods/blocks/lumps when excavated. In order for pavement structures which are constructed over service trenches backfilled with these materials to perform satisfactorily, and to construct certifiable engineered fill pads, it is essential that the materials are placed as a homogeneous amorphous mass with a minimum volume of voids. To accomplish this, the construction operations must be carefully controlled and the construction equipment employed be suitable for the type of work in order that:

- 1. The excavated material is thoroughly mixed; and
- 2. Any structure (clods/blocks/lumps) exhibited by the excavated material is destroyed and the glacial till / shale are thoroughly pulverized.

In this regard, construction procedures should be adopted during all phases of the construction including excavation, stockpiling, placement and compaction to maximize break-up and mixing of the excavated material. Excavated shale must be broken down into fragments smaller than 150 mm maximum dimension. All lumps/blocks/clods and / or shale fragments larger than 150 mm in any dimension must be broken down / pulverized before deposition in the trench. Any materials larger than 150 mm must be wasted. This is especially important around manholes and catchbasins.

Selective / local excavation at the centre of the trench and / or knocking down the sides of the excavation shall not be permitted. The trench must be wide enough to accommodate the full width of compaction equipment. A bulldozer shall be used for spreading of the backfill. Use of a front-end loader or backhoe shall not be permitted for this operation.

A bulldozer must be used in the trench to spread the engineered fill or trench backfill in lifts not exceeding 200 mm in thickness and each lift shall be compacted using heavy, self-propelled vibratory pad-foot rollers. Material should be spread and compacted in a continuous operation from manhole to manhole to avoid

segregation of the material on the fill slopes at the ends of each section. Provision of continuous water application must be made in order to reduce the inter-particle friction and to reduce the voids in the compacted material. Application of water and turning (mixing) of the shale material upon excavation and stockpiling will likely be required to produce a material that can be adequately compacted.

It is recommended that the shale be mixed with the excavated glacial till in order to obtain a better overall material gradation which would minimize the void content. Furthermore, a compaction trial strip of the reworked shale material is recommended prior to conducting full scale trench backfilling or engineered fill placement in order to determine the most efficient and practical methodology.

Shale must not be placed and compacted when frozen because breakdown then requires a much greater degree of compactive effort. If the shale is placed in a frozen condition and not thoroughly broken-up / pulverized, breakdown of the shale would continue due to natural processes when the material thaws, resulting in possible excessive fill settlement.

7.4.5 General

If on-site excavated soils become excessively wetter than optimum moisture contents, the soils should be dried sufficiently in order to achieve the specified degree of compaction. If construction is carried out in inclement weather, there is a likelihood that some amount of road sub-base supplement will be required (i.e. some sub-excavation followed by granular replacement).

It is recommended that service trenches be backfilled with native on-site materials such that at least 95% of Standard Proctor Maximum Dry Density (SPMDD) is obtained in the lower zone of the trench and 98% of SPMDD for the upper 1000 mm. However, prior to building the roads, the subgrade should be thoroughly proof-rolled and recompacted to 98% of SPMDD to ensure uniformity in subgrade strength and support. This phase of the work should be scheduled for drier months. Lift thicknesses shall not exceed 200 mm in a loose state unless approved by AME and should be compacted using a heavy, vibratory pad-type rollers.

As an alternative, if suitable on-site native material is not available, the upper part of the subgrade could be improved by placing imported granular material.

In areas of narrow trenches or confined spaces such as around manholes, catchbasins, etc., imported sand or OPSS Granular 'B' should be used and compacted to the specified amount.

The soils bulking factor estimated for the average cut and fill conditions at this site should be approximately 10% for the on-site native materials. The bulking factor for excavation and subsequent disposal off site would be approximately 15% for the above material. It should be noted that the type of excavation processes may greatly affect the bulking factor of the material. The bulking factor of the shale depends on the degree of weathering and breakdown. In general, bulking factors of 10 to 15% (average of ~12.5%) can be used for the upper highly weathered shale and 15 to 25% (average of ~20%) for the sound, unweathered shale. A shrinkage factor estimate of 15% can be used for the reuse of topsoil fill.

7.5 GENERAL SITE RE-GRADING

Based on the anticipated proposed grades and the existing topography at the subject site, it is anticipated that some cut and fill operation will be required for general site re-grading. Due to the variation in the composition of the on-site native materials, it is recommended that additional Standard Proctor Density tests be performed when the construction work begins and the ground is broken. AME should be contacted in order to verify and evaluate the proposed soil types for general site re-grading.

7.6 ENGINEERED FILL

Placement of excavated site soils may be used to raise grades of the proposed lands to the desired elevations. The following recommendations regarding the construction of engineered fill should be adhered to during construction:

 All of the topsoil, any excessively organic materials and the existing earth fill/disturbed native soils must be removed to expose the underlying

undisturbed, native glacial till subgrade. The exposed subgrade soils must be inspected and proof-rolled prior to any engineered fill placement.

- Engineered fill operations should be monitored and compaction testing should be performed on a full-time basis by a qualified technicians supervised by the Geotechnical Consultant.
- The boundaries of the engineered fill must be clearly and accurately laid out in the field by qualified surveyors prior to the commencement of engineered fill construction. The top of the engineered fill should extend a minimum of 2.5 m beyond the building envelope. Where the depth of engineered fill exceeds 1.5m, this horizontal distance of 2.5 m beyond the perimeter of the building should be increased by at least 1.0 m for each 1.0 m depth of fill. The edges of the engineered fill should be sloped at a maximum of 3H:1V in order to avoid weakening of the engineered fill edges due to slope movement.
- Due to the potential detrimental effects of differential settlement between the
 engineered fill and the native soils, any lots where footings are to be placed
 partly on engineered fill and partly on native soils should be reinforced with
 15 M steel bars (two in the footings and two near the top of wall as a
 minimum).
- Soils or bedrock derive materials used as engineered fill should be free of organic and/or other unsuitable material. The engineered fill must be placed in lifts not exceeding 200 mm in thickness and compacted to 98% Standard Proctor Maximum Dry Density (SPMDD).
- Imported fill must not be used unless documentation is produced verifying that the material is suitable for residential/parkland usage (as per MOE document "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act, March 2004").
- If fill is required adjacent to sloping cuts or hill sides (> 3:1, horizontal to vertical), it is imperative that the fill is placed in stepped planes benched in order to avoid a plane of weakness.
- The engineered fill operations should take place under favourable climatic

conditions. If the work is carried out in months where freezing temperatures may occur, all frost affected material must be removed prior to the placement of frost-free fill.

- When engineered fill is left over the winter, a minimum of 1.2 m of earth cover must be provided as frost protection.
- If unusual soil conditions become apparent during construction, due to subsurface groundwater influences, our office should be contacted in order to assess the conditions and recommend appropriate remedial measures.
- The footing and underground services subgrade must be inspected by the Geotechnical Consultant that supervised the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and /or disturbance by the footing excavation. Foundations placed in the engineered fill should be nominally reinforced with steel bars.

7.7 HOUSE FOUNDATION DESIGN

The existing topsoil and earth fill / native disturbed soil are considered to be unsuitable of the support of building foundations. The underlying undisturbed, native stiff to hard / compact to very dense glacial till soils (below the topsoil and earth fill / disturbed native soils) throughout the site are considered suitable for the support of house foundation on conventional spread footings. Conventional spread footings founded in the undisturbed, native stiff to hard / compact to very dense soils or on certified engineered fill may be designed using a net geotechnical bearing resistance at Serviceability Limit States (SLS) of 150 kPa and a factored geotechnical bearing resistance at Ultimate Limit States (ULS) of 225 kPa (vertical, centric).

The geotechnical bearing resistance values stated above are for vertical loads (no inclination) and no eccentricity. The total and differential settlements of spread footing foundations designed in accordance with the above recommendations should not exceed tolerable limits of 25 mm and 19 mm, respectively.

The soil bearing resistance of the founding soils for all footings should be verified by the Geotechnical Engineer prior to the placing the foundation concrete.

All exterior footings and footings in unheated areas should be provided by at least 1.2 metres of soil cover or equivalent artificial thermal insulation for frost protection purposes. Exposed soil foundation subgrades should be protected against freezing and surface water should be kept away from the foundation subgrade areas to prevent softening. If unstable subgrade conditions develop the Geotechnical Consultant should be contacted in order to assess the conditions and make appropriate recommendations.

7.8 LATERAL EARTH PRESSURE

The basement walls of the house structures should be designed to withstand lateral earth pressure, P, acting against the wall. It is good construction practice to provide a perimeter filter fabric encased tile drainage system along with free-draining granular backfill material to relieve such structures of hydrostatic or excess pore water pressures. Details of perimeter drainage are presented in Appendix C. On the basis of effective drainage of the basement wall backfill, the following equation can be used to estimate lateral earth pressure at any depth:

	Р	=	$K (\gamma h + q)$
where,	K	=	Coefficient of Earth Pressure, assume 0.50
	γ	=	Unit Weight of Soil, assume 21 kN/m ³
	h	=	Height at any point along the wall in metres
	q	=	Any surcharge load in kPa

This equation assumes that free-draining backfill and positive drainage is provided to ensure that there is no hydrostatic pressure acting in conjunction with the earth pressure.

7.9 SOIL CORROSIVITY

One selected soil sample (Borehole 8, Sample SS4) was submitted for pH, Sulphide, Redox Potential and Resistivity tests in order to determine their corrosive

characteristics of the soils. The test results are tabulated below and the Certificate of Analysis provided AGAT Laboratories is contained in Appendix 3 as Enclosure No. 3-3:

Soil Corrosivity Testing Results

SOIL CHARACTERISTICS	Borehole No. 8, Sample No. 4
рН	8.14
Resistivity (ohm-cm)	3260
Redox Potential (mV)	244
Sulphide	< 0.001
Moisture Content (%)	13.4

The above tests are considered in evaluating the corrosivity of the soil. For each of these tests, the results are categorized and points are assigned according to their contribution to corrosivity as tabulated below:

ANSI - AWWA Rating for Corrosivity

SOIL CHARACTERISTICS	Borehole No. 8, Sample No. SS4
рН	0
Resistivity (ohm-cm)	0
Redox Potential (mV)	0
Sulphide	2.0
Moisture Content (%)	1
TOTAL POINTS	3.5*

^{*}Note: A value less than 10 is considered non-corrosive.

Based on the ANSI – AWWA rating system, it is concluded that the soils would be considered non-corrosive for the subject site. The criteria for the soils test evaluation is presented in Appendix 4. This data should be reviewed by the pipe manufacturer to ensure proper construction methodology and appropriate protection. All watermain construction and material specifications should follow the standards and regulations as per OPSS and The City of Hamilton specifications.

7.10 ENVIRONMENTAL CONSIDERATIONS

One selected soil sample (Borehole 2, Sample SS2) was submitted to AGAT Laboratories in Mississauga, Ontario, an accredited environmental laboratory, for the determination of selected general and inorganic parameters for comparison to the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act of Ontario", March 2004. The Certificate of Analysis provided by the analytical chemistry testing laboratory is contained in Appendix 4 as Enclosure No. 3-4.

Land use at the Site is proposed to be residential. It is not known at this time if there will be use of the ground water. For the purpose of this current assessment, the results of the analytical chemistry testing have been compared to the Site Condition Standard set out in Table 2: Full Depth Generic Condition Standards in a Potable Ground Water Condition. With the exception of Electrical Conductivity (EC), the results of the analytical chemistry testing found the soil sample to have chemical concentrations less than the generic criteria in Table 2 - Residential / Parkland / Institutional Property Use [T2 (RPI)]. The EC parameter is a somewhat less critical non-health related parameter related to the fertility of soil and is associated with road salt, commonly used to de-ice roads and parking lots.

Based on the chemical nature of the soil, there is no impediment against the proposed land use. Further, the results of the analytical chemistry testing indicate that there is no impediment to re-disposition of the soil from the Site to a site accepting fill of this quality (i.e. vegetative growth in the soil not required).

8.0 GENERAL COMMENTS

During construction, frequent inspections by geotechnical personnel from AME should be carried out, to examine and approve fill material, granular base course and asphaltic concrete for pavements, to examine foundation grades for houses and sewers, and to verify the placement of fill, compaction of subgrade, base/sub-base course and asphalt concrete by insitu density testing, using nuclear gauges.

Finally, it is essential that construction be regarded as an extension of the design phases in the sense that design assumptions are confirmed or revised to conform to actual field conditions as revealed by excavation. This report is based on borehole information from only a few locations at the site. If, during construction, excavations reveal different subsoil conditions, it should be brought to our attention so that we can assess their effects on the construction.

9.0 CLOSURE

The 'Limitations of Report' attached form an integral part of this report.

100100930

TO VINCE OF ONT A

We trust this report provides sufficient information for your present requirements in accordance with our Terms of Reference.

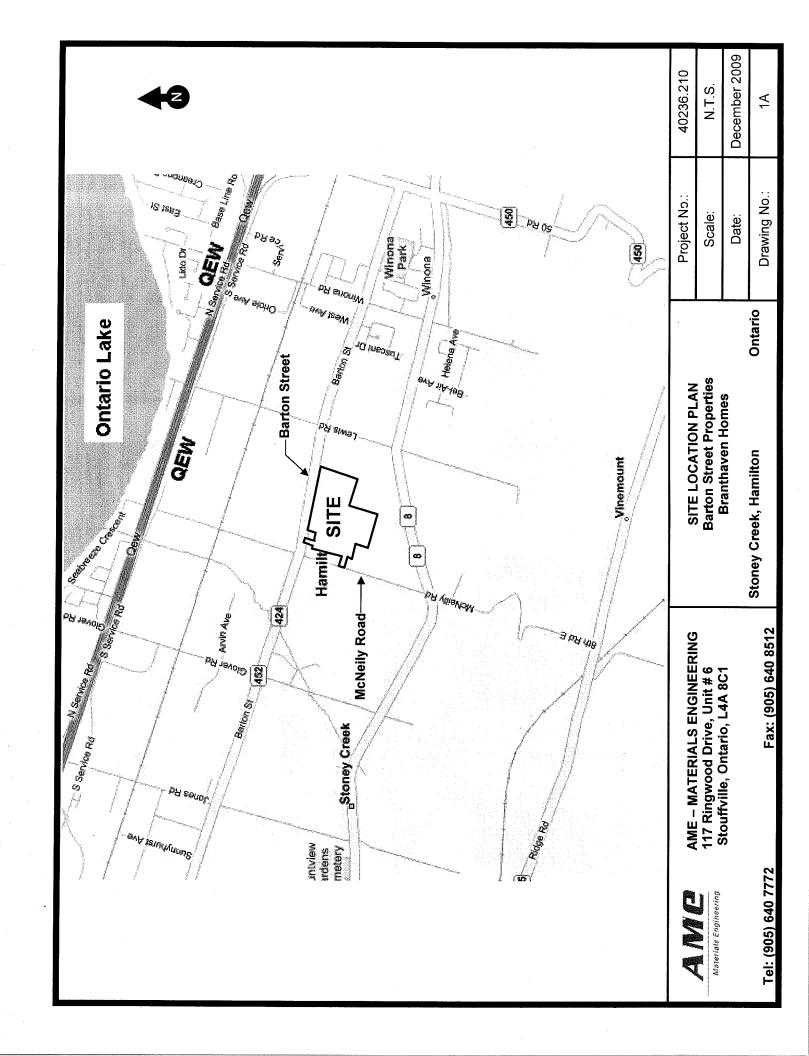
Yours very truly,

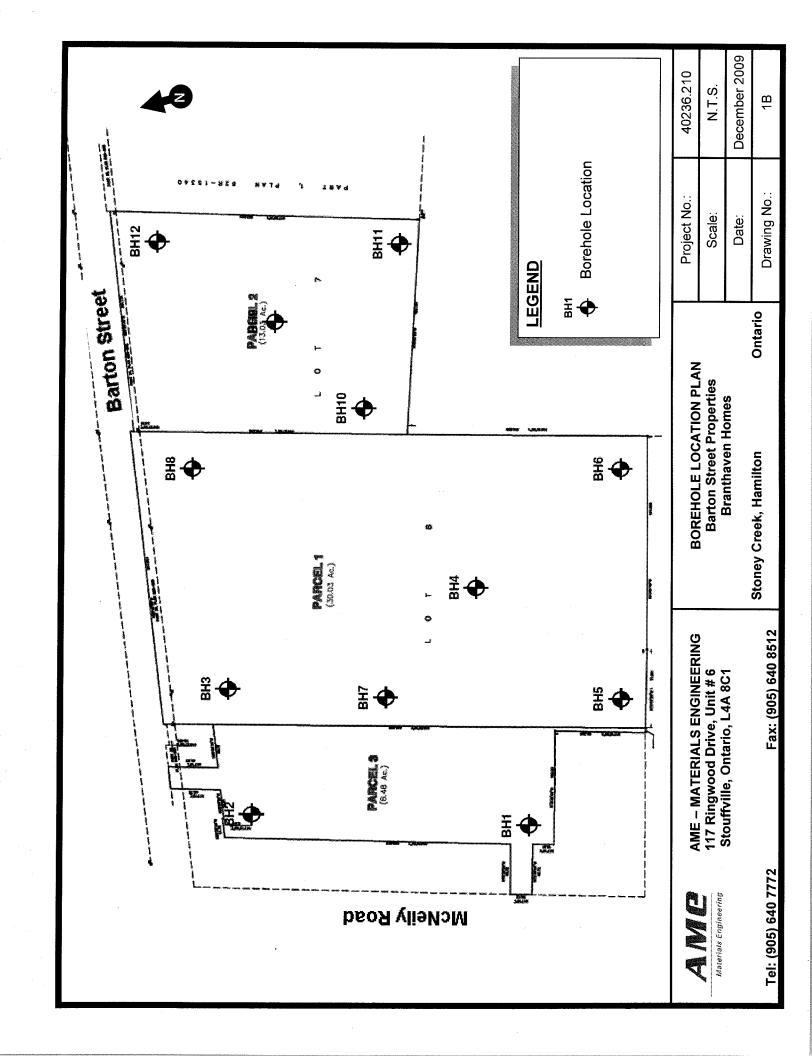
AME MATERIALS ENGINEERING

Prepared by:

Lutfur Selim, P.Eng. Project Engineer Reviewed by:

Larry MacArthur, P.Eng. Senior Geotechnical Engineer


APPENDIX 1


Site Location Plan
Drawing No. 1A

Borehole Location Plan
Drawing No. 1B

APPENDIX 2

Log of Boreholes Figure Nos. 2-1 to 2-12

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. Barton Street and McNeilly Road, Stoney Creek, Ontario Location: Split Spoon Sample Combustible Vapour Reading Date Drilled: 11/17/09 Auger Sample 88 Natural Moisture Content X SPT (N) Value Atterberg Limits 0 Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at Ф % Strain at Failure Datum: Geodetic Shelby Tube Ø Shear Strength by Shear Strength by Vane Test
Standard Penetration Total Combustible Vapours (ppm) Test N Value Natural 25 50 ELEV. Unit SOIL DESCRIPTION Weight kN/m³ Shear Strength m 91.10 ~120 mm Topsoil. 90.98 FILL: brown clayey silt, traces of gravel and rootlets, black sand pocket, moist. 90.64 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to red, hard, moist.increasing red weathered shale pieces with depth. 86.65 Refusal at 4.45m on probable bedrock End of borehole at 4.45 m

Notes:

40236.210 - BARTON ST PROPERTIES - BRANTHAVEN GPJ AME

OG OF BOREHOLE OLD

Water Level (m)	Depth to Cave (m)
Dry	None
Dry -	
1.60	
	Level (m) Dry Dry

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. Barton Street and McNeilly Road, Stoney Creek, Ontario Location: Split Spoon Sample Combustible Vapour Reading 11/17/09 Date Drilled: Auger Sample 38 Natural Moisture Content X SPT (N) Value 0 Atterberg Limits Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at Ф Geodetic \square % Strain at Failure Datum: Shelby Tube Shear Strength by Shear Strength by Penetrometer Test Vane Test Total Combustible Vapours (ppm) Natural 25 50 75 ELEV. Unit SOIL DESCRIPTION Weight kN/m³ m 89.50 ~200 mm Topsoil. 89.30 FILL: brown sandy silt to clayey silt, traces of gravel and rootlets, moist. 88.74 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey to red, hard, moist.increasing red weathered shale fragments with depth.colour changes to grey ...colour changes to red 85.33 Refusal at 4.17m on probable bedrock End of borehole at 4.17 m

Notes:

40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT

OG OF BOREHOLE OLD

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	Dry	None

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties 2-3 Figure No. Location: Barton Street and McNeilly Road, Stoney Creek, Ontario Solit Spoon Sample Ø Combustible Vapour Reading 11/17/09 Date Drilled: 8 Natural Moisture Content X Auger Sample SPT (N) Value Atterberg Limits 0 Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at Ф % Strain at Failure Geodetic Shelby Tube \square Datum: Shear Strength by Shear Strength by Vane Test Total Combustible Vapours (ppm) Standard Penetration Test N Value Natural 50 ELEV. 25 50 75

Natural Moisture Content %
Atterberg Limits (% Dry Weight) ξ Unit SOIL DESCRIPTION Weight kN/m3 m Strength 88 70 ~80 mm Topsoil. 88.62 FILL: brown sandy silt to clayey silt, traces of gravel and rootlets, moist. 88.24 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown, hard, moist. 225 × 86.57 SANDY SILT TILL: traces of gravel and weathered shale fragments, grey, very dense, moist. 86.19 PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT 1/4/10 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, red, hard, moist.increasing red weathered shale fragments with depth. 84.46 Refusal at 4.24m on probable bedrock End of borehole at 4.24 m

Notes:

BARTON ST

BOREHOLE OLD

-0G OF

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	Dry	None

Materials Engineering 40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties 2-4 Figure No. Barton Street and McNeilly Road, Stoney Creek, Ontario \mathbb{Z} Split Spoon Sample Combustible Vapour Reading Date Drilled: 11/17/09 X Auger Sample 888 Natural Moisture Content SPT (N) Value Atterberg Limits 0 Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus % Strain at Failure Geodetic \square Datum: Shelby Tube Shear Strength by Shear Strength by ŧ Penetrometer Test Vane Test Standard Penetration Test N Value Total Combustible Vapours (ppm) Natural ELEV. 50 Unit SOIL DESCRIPTION Weight kN/m³ m Shear Strength 91.10 ~130 mm Topsoil. 90.991.00 FILL: brown clayey silt, traces of sand, gravel and rootlets, moist to very moist. 90.64 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey to red, very stiff to hard, moist. 31colour changes to grey.increasing red weathered shale fragments with depth. 86.50 Refusal at 4.6m on probable bedrock End of borehole at 4.60 m

Notes:

40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT

OG OF BOREHOLE OLD

Sheet No. _1_ of _1_

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	0.10	None
12/18/2009	0.10	
12/22/2009	0.50	

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. Location: Barton Street and McNeilly Road, Stoney Creek, Ontario Split Spoon Sample Combustible Vapour Reading 11/17/09 Date Drilled: X Auger Sample 燹 Natural Moisture Content SPT (N) Value Atterberg Limits Ф Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus % Strain at Failure Geodetic Datum: Shelby Tube \Box Shear Strength by Shear Strength by Penetrometer Test Vane Test Total Combustible Vapours (ppm) Natural 25 75 ELEV. G K L Unit SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m Shear Strength 91.20 ~50 mm Topsoil. 91.15 FILL: brown clayey silt, traces of gravel and rootlets, black sand pocket, wet. 90.74 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey to red, very stiff to hard, moist.very stiff and grey. 26hard ...colour changes to red 85.05 End of borehole at 6.15 m

Notes:

ON.GDT 1/4/10

OG OF BOREHOLE OLD 40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	Dry	None

Date/Time

12/17/2009

(m)

Dry

(m)

None

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties 2-6 Figure No. Barton Street and McNeilly Road, Stoney Creek, Ontario Location: Split Spoon Sample Ø Combustible Vapour Reading Date Drilled: 11/17/09 × X Auger Sample Natural Moisture Content SPT (N) Value **-**O • Atterberg Limits Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus Datum: Geodetic Shelby Tube \square % Strain at Failure Shear Strength by Shear Strength by Vane Test
Standard Penetration otal Combustible Vapours (ppm) Natural 50 75 25 ELEV. Unit ·MBO-SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ m 91.40 ~200 mm Topsoil. 91.20 FILL: brown clayey silt, traces of gravel and rootlets, wet. 90.79 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey to red, very stiff, moist. 30colour changes to grey. 30 × . Xhard 86.37 End of borehole at 5.03 m Water Level Depth to Cave

Sheet No. 1 of 1

Notes:

OG OF BOREHOLE OLD 40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT 1/4/10

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. Location: Barton Street and McNeilly Road, Stoney Creek, Ontario **2** Split Spoon Sample Combustible Vapour Reading 11/17/09 Date Drilled: X Auger Sample 88 Natural Moisture Content SPT (N) Value Atterberg Limits Ð • Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at **⊕** % Strain at Failure \square Geodetic Datum: Shelby Tube Shear Strength by Shear Strength by ŧ Penetrometer Test Vane Test Total Combustible Vapours (ppm) Standard Penetration Test N Value Natural ELEV. 50 SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ Shear Strength 90.30 ~120 mm Topsoil. 90.18 FILL: brown clayey silt, traces of gravel and rootlets, very moist. 89.69 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey, stiff to very stiff, moist.hard 40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT 1/4/10 X 86.46 Refusal at 3.84m on probable bedrock End of borehole at 3.84 m

Notes:

OG OF BOREHOLE OLD

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	Dry	None

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. Barton Street and McNeilly Road, Stoney Creek, Ontario Location: \boxtimes Split Spoon Sample Combustible Vapour Reading 11/17/09 Date Drilled: × Auger Sample 8 Natural Moisture Content SPT (N) Value Atterberg Limits 0 • Drill Type: Solid Stem Auger Dynamic Cone Test Undrained Triaxial at Ф % Strain at Failure Geodetic Datum: Shelby Tube Shear Strength by Shear Strength by Vane Test Penetrometer Test Total Combustible Vapours (pp Natural ELEV. 50 Ğ K SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m³ Shear Strength 88.60 150 ~50 mm Topsoil. 88.55 FILL: brown clayey silt, traces of gravel and rootlets, wet. 87.99 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey to red, very stiff, moist. 80/150mmhardred shale fragments increasing with depth. 84.00 End of borehole at 4.60 m

Notes:

40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT 1/4/10

OG OF BOREHOLE OLD

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	Dry	None

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. Barton Street and McNeilly Road, Stoney Creek, Ontario Location: **Z** Split Spoon Sample Combustible Vapour Reading 11/17/09 Date Drilled: X Auger Sample * Natural Moisture Content SPT (N) Value Atterberg Limits 0 • Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus % Strain at Failure \square Geodetic Datum: Shelby Tube Shear Strength by Shear Strength by Penetrometer Test Vane Test Total Combustible Vapours (ppr Natural ELEV. 50 Natural Moisture Content % Atterberg Limits (% Dry Weight) SOIL DESCRIPTION Weight kN/m³ m Shear Strength 89.10 ~120 mm Topsoil. 88.98 FILL: brown clayey silt, traces of sand, 88.80 gravel and rootlets, wet. CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey, very stiff, moist.hard 40236.210 - BARTON ST PROPERTIES - BRANTHAVEN GPJ AME_ON GDT 1/4/10colour changes to grey. 84.07 End of borehole at 5.03 m

Notes:

OG OF BOREHOLE OLD

	Date/Time	Water Level (m)	Depth to Cave (m)
-	12/17/2009	Dry	None
	12/18/2009	Dry	
	12/22/2009	Dry	

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. 2-10 Barton Street and McNeilly Road, Stoney Creek, Ontario Location: 2 Split Spoon Sample Combustible Vapour Reading Date Drilled: 11/17/09 X Auger Sample 88 Natural Moisture Content SPT (N) Value Atterberg Limits Ð Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at Ф % Strain at Failure \square Geodetic Datum: Shelby Tube Shear Strength by Shear Strength by Penetrometer Test Vane Test Total Combustible Vapours (ppm Natural ELEV. 50 Unit Weight kN/m³ Ğ L SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) m Shear Strength 89.80 FILL: brown clayey silt, traces of gravel and rootlets, wet. × 89.19 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey to red, very stiff, moist.hardcolour changes to redweathered red shale fragments increasing with depth 85.40 Refusal at 5.66m on probable bedrock End of borehole at 5.66 m

LOG OF BOREHOLE OLD 40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT 1/4/10

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	4.40	None

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. 2-11 Barton Street and McNeilly Road, Stoney Creek, Ontario Location: Ø Split Spoon Sample Combustible Vapour Reading 11/17/09 Date Drilled: × \otimes Natural Moisture Content Auger Sample Atterberg Limits 0 SPT (N) Value Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus % Strain at Failure Geodetic Shelby Tube \square Datum: Shear Strength by Shear Strength by Penetrometer Test Vane Test Total Combustible Vapours (pp Natural 50 ELEV. Unit Weight kN/m³ Natural Moisture Content % Atterberg Limits (% Dry Weight) SOIL DESCRIPTION m 89.60 11.41 ~300 mm Topsoil. <u> 44.34</u> 89.30 FILL: brown clayey silt, traces of gravel and rootlets, very moist. CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey, very stiff, moist.hardcolour changes to grey 47 • End of borehole at 5.03 m

Notes:

40236,210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT

LOG OF BOREHOLE OLD

Date/Time	Water Level (m)	Depth to Cave (m)
12/17/2009	Dry	None

40236.210 Project No.: Project Name: Preliminary Geotechnical Investigation for Barton Street Properties Figure No. 2-12 Barton Street and McNeilly Road, Stoney Creek, Ontario Location: Split Spoon Sample \square Combustible Vapour Reading 11/18/09 Date Drilled: × ▧ Auger Sample Natural Moisture Content 0 SPT (N) Value Atterberg Limits • Solid Stem Auger Drill Type: Dynamic Cone Test Undrained Triaxial at \oplus % Strain at Failure \square Geodetic Shelby Tube Datum: Shear Strength by Shear Strength by Penetrometer Test Vane Test Total Combustible Vapours (ppm) Natural ELEV. ĕ SOIL DESCRIPTION Natural Moisture Content % Atterberg Limits (% Dry Weight) Weight kN/m3 m 87.60 FILL: brown clayey silt, some sand, traces of gravel and rootlets, very moist. 87.07 CLAYEY SILT TILL: some sand, traces of gravel and weathered shale fragments, brown to grey, very stiff, moist. Xhardcolour changes to grey 81.05 End of borehole at 6.55 m

Notes:

LOG OF BOREHOLE OLD 40236.210 - BARTON ST PROPERTIES - BRANTHAVEN.GPJ AME_ON.GDT

Date/Time	Water Level (m)	Depth to Cave (m)
12/18/2009	Dry	None

APPENDIX 3

Laboratory Testing

Hydrometer Grain Size Analysis (Figure 3-1)

Standard Proctor (Figure 3-2)

Corrosivity Test Results (Enclosure No. 3-3)

Metals and Inorganics Test Results (Enclosure No. 3-4)

Particle Size Distribution Report

GRAIN SIZE - mm.							
0/ 12"	% Gr	% Gravel % Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	3.5	2.7	4.8	10.6	49.7	28.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
19 mm	100.0		
16 mm	100.0		
13.2 mm	100.0		
9.5 mm	99.4		
4.75 mm	96.5		
2.00 mm	93.8		
0.850 mm	92.2		
0.425 mm	89.0		
0.250 mm	87.4		
0.106 mm	81.7		
0.075 mm	78.4		
0.0384 mm.	69.0		
0.0280 mm.	64.2	- 4	
0.0182 mm.	59.5		
0.0109 mm.	53.1		
0.0080 mm.	47.5		
0.0058 mm.	42.7		
0.0030 mm.	33.1		
0.0011 mm.	23.3		

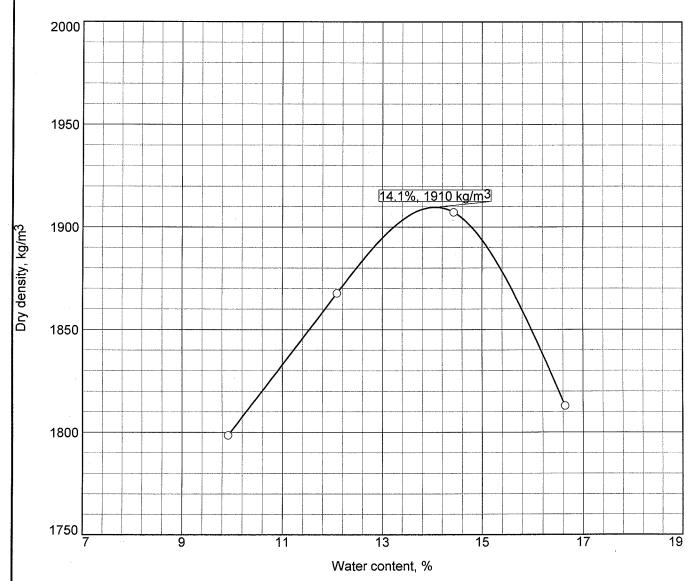
Soil Description Reddish brown Clayey Silt, some Sand, trace Gravel							
PL=	Atterberg Limits LL=	PI=					
D ₉₀ = 0.5394 D ₅₀ = 0.0092 D ₁₀ =	Coefficients D ₈₅ = 0.1597 D ₃₀ = 0.0023 C _u =	D ₆₀ = 0.0192 D ₁₅ = C _c =					
USCS=	Classification AASHT	O=					
<u>Remarks</u>							

(no specification provided)

Location: Barton Street, BH3 SS3, Sampled by G.S. on December 17, 2009 **Sample Number:** E6437

Date:

Client: Branthaven Development


Project: Barton Street, Stoney Creek, Hamilton

Project No: 40236.210

Figure

3-1

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classification		Nat.	C C	at.	11	Pl	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	FI	#4	No.200	

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 1910 kg/m ³	Reddish brown Clayey Silt
Optimum moisture = 14.1 %	
Project No. 40236.210 Client: Branthaven Development	Remarks:
Project: Barton Street, Stoney Creek, Hamilton	
O Loc.: Barton Street, Bulk Sample, Sampled by G.S. on December 17, 2009	
AME	

Materials Engineering

Figure

3-2

TOT Laboratories

CLIENT NAME: AME MATERIALS ENGINEERING

Certificate of Analysis

PROJECT NO: 40236.210

AGAT WORK ORDER: 09T376812

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Selim Lutfur

SAMPLE TYPE: Soil DATE REPORTED: Dec 29, 2009 **Corrosivity Package** DATE RECEIVED: Dec 18, 2009 BH8, SS4 1617602 <0.001 170 0.307 12.5 8.14 3260 0.002 **RDL** 0.001 2.0 ₹ Z g/s 0.7 mS/cm ohm.cm 6/6H 'n ₹ DATE SAMPLED: Dec 17, 2009 Electrical Conductivity (2:1) Parameter Redox Potential (2:1) Resistivity (2:1) Sulphate (2:1) Chloride (2:1) Sulphide* pH (2:1)

G / S - Guideline / Standard: Refers to T2(RPI) RDL - Reported Detection Limit; Comments:

* Analysis was performed at AGAT's Mining Division.

1617602

EC,pH,Chloride and Sulphate were determined on the extract obtained from the 2:1 extraction procedure (2 parts DI water: 1 part soil).

Enclosure 3-3

Certified By:

Elizabeth Rolakunstra

CLIENT NAME: AME MATERIALS ENGINEERING

TOTAL Traboratories

Certificate of Analysis

PROJECT NO: 40236.210

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

http://www.agatlabs.com

ATTENTION TO: Selim Lutfur

AGAT WORK ORDER: 09T376812

SAMPLE TYPE: Soil DATE REPORTED: Dec 29, 2009 O. Reg. 153 Metals & Inorganics in Soil DATE RECEIVED: Dec 18, 2009 <0.40 0.015 27.9 0.408 1.12 13,3 28.7 **40**× 9.5 0.011 0.4 0.4 0.4 750 40 200 150 20 20 5. 9 4.1 9 œ 6/6rl 6/6rl 6/6rl 6/6n DATE SAMPLED: Dec 17, 2009 Sodium Adsorption Ratio (2:1) Boron (Hot Water Extractable) Electrical Conductivity (2:1) pH, 2:1 CaCl2 Extraction Parameter Chromium, Hexavalent Cyanide, Free **Jolybdenum** ead Vanadium Chromium Beryllium Sadmium Selenium Antimony Silver Thallium Mercury **Arsenic** Cobalt Copper Barium Nickel

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T2(RPI) Comments: 1617601

EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

1 3 Findingure

Certified By:

Elizabeth Rolamstia

TTT Taboratories

Guideline Violation

AGAT WORK ORDER: 09T376812 PROJECT NO: 40236.210

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Selim Lutfur

GUIDEVALUE

RESULT

0.7

Electrical Conductivity (2:1) **PARAMETER**

O. Reg. 153 Metals & Inorganics in Soil **ANALYSIS PACKAGE**

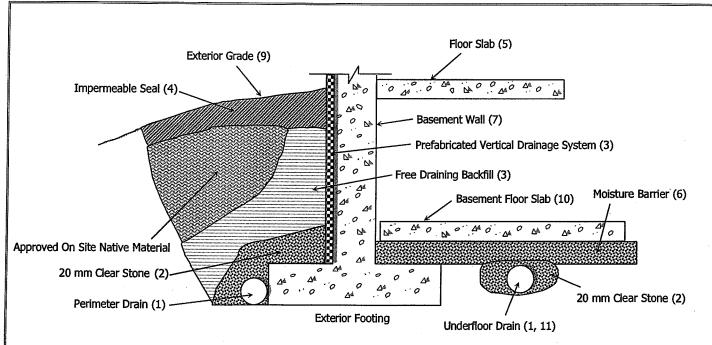
GUIDELINE T2(RPI)

CLIENT NAME: AME MATERIALS ENGINEERING SAMPLE TITLE

BH2, SS2

SAMPLEID 1617601

APPENDIX 4


Drainage and Backfill Details

Soil-Test Evaluation
ANSI / AWWA Corrosivity Rating System

Drainage and Backfill Details

Notes

- 1. Perimeter and underfloor drains (if required) shall consist of 100mm (4") diameter weeping tile or equivalent perforated pipe leading to a positive sump or outlet. Invert to be a minimum of 150mm (6") below underside of floor slab. Perimeter floor drains are not required for dwellings without basements.
- 2. 20 mm Clear Stone 150mm (6") top and side of drain, surrounded by approved filter fabric (Terrafix 270R or equivalent). If drain is not on footing, place 100mm (4 inches) of clear stone below the drain. Filter fabric around the clear stone may be omitted if the drain pipe is wrapped with approved filter fabric.
- 3. Free Draining backfill OPSS Granular B or equivalent compacted to the specified density. Do not use heavy compaction equipment within 450mm (18") of the wall. Use hand controlled light compaction equipment within 1.8m (6') of wall. Free draining backfill is not required if a prefabricated vertical drainage system (such as Miradrain 6000) is installed on the exterior of the basement wall.
- 4. Impermeable backfill seal (min. 600 mm) relatively impervious compacted clay, silty clay or equivalent. If on-site native backfill is free draining, seal may be omitted.
- 5. Do not backfill until wall is supported by basement and floor slabs or adequate bracing.
- 6. Moisture barrier to be at least 200mm (8") of compacted 20mm (3/4") clear stone or equivalent free draining material.
- 7. Basement wall to be damp-proofed.
- 9. Exterior grade to slope away from building.
- 10. Basement floor slab should not be structurally connected to the wall or footing.
- 11. Underfloor drain invert to be at least 300mm (12") below underside of floor slab. Drainage tile placed in parallel rows at 1.83 m center to centre one way. Place drain on 100mm (4") of 20 mm (3/4") clear stone with 150mm (6") of clear stone on top and sides. Do not connect the underfloor drains to perimeter drains. Underfloor drains shall be connected to the sanitary sewer system.

DRAINAGE AND BACKFILL RECOMMENDATIONS

(Not to Scale)

SOIL-TEST EVALUATION

ANSI / AWWA Corrosivity Rating System

	Soil Characteristics	Points
1	Resistivity (ohm-cm)	
	<700	10
	700 to 1000	8
	1000 to 1200	5
	1200 to 1500	2
	1500 to 2000	1
	>2000	0
2	рН	
•	0 to 2	5
	2 to 4	3
	4 to 6.5	0
	6.5 to 7.5	0+
-	7.5 to 8.5	0
1914	>8.5	3
3	Redox Potential	·
	> + 100 mV	0
	+ 50 to + 100 mV	3.5
	0 to + 50 mV	4
	Negative	. 5
4	Sulphides	
	Positive	3.5
•	Trace	2
	Negative	0
5	Moisture	
	Poor Drainage, continuously wet	2
	Fair Drainage, generally moist	1
	Good Drainage, generally dry	0

^{*} Ten points = corrosive to gray or ductile cast iron pipe; protection is indicated

⁺ If sulphides are present and low or negative redox potential results are obtained, three points shall be given for this range.

APPENDIX B-2
Hydrogeological Investigations Fruitland-Winona BSS#3
(Landtek Limited, February 2020)

LANDTEK LIMITED

Consulting Engineers

Phone: 905-383-3733
Fax: 905-383-8433
engineering@landteklimited.com
www.landteklimited.com

Hydrogeological Investigations Fruitland-Winona BSS #3 Winona, Ontario

Prepared for:

Block 3 Landowners Group. 720 Oval Court Burlington, Ontario L7L 6A9

> File: 18270 February19, 2020

Table of Contents

1.0 INTRODUCTION	1
1.1 Background	
1.2 Work Scope and Report Organization	1
2.0 METHODOLOGY	3
2.1 Desktop Study	3
2.1.1 Previous Investigations	3
2.2 Site Inspection to Assess Hydrogeological Features	4
2.3 Field Investigation	4
2.3.1 Drilling and Well Installation	4
3.0 FINDINGS	
3.1 Topography, Drainage and Hydrology	8
3.2 Regional Physiography	8
3.3 Climate	8
3.4 Regional Geology	
3.5 Regional Hydrogeology	
3.6 MECP Water Well Records and Groundwater Resources	
3.7 Results of Subsurface Investigation	
3.10 Estimated Hydraulic Conductivity	
3.10.1 Hydraulic Conductivity Tests	
3.11 Groundwater Quality	
3.12 Site Inspection to Assess Hydrogeologic Features	
4.0 WATER TAKING EVALUATION & IMPACT ASSESSMENT	
4.1 Estimating Construction Dewatering Rate	
4.1.1 Dewatering Calculations	
4.1.2 Short Term Dewatering Volume	
4.1.4 Dewatering Procedure	
4.1.5 Water Management and Discharge Plan	
4.2 Assessment of Potential Impacts and Water Management	
4.2.1 Impact to Existing Groundwater Users	31
4.2.2 Impact to Surface Water and Natural Functions of the Ecosystem	
4.2.3 Contaminants Impacts	
4.2.4 Geotechnical Impacts	
5.0 PROPOSED MONITORING PLAN	
5.1 Construction Monitoring	
5.2 Management of Dewatering Abstraction	
5.2.1 Monitoring, Trigger Levels and Management Responses	33
5.2.2 Contingency Responses	
5.2.3 Settlement Monitoring	
6.0 PROPOSED MITIGATION PLAN	35
7.0 SITE DEVELOPMENT, HYDROGEOLOGY and WATER BALANCE	36
7.1 Site Development Concept	36
7.2 Principal Hydrogeologic Features and Functions	
7.3 Water Balance	38
7.4 Mitigating Measures to Maintain Hydrogeological Functions	
7.4.1 Maintenance of Groundwater Recharge	
7.4.2 Maintenance of Groundwater Transmission Pathways	39

Calculations

Appendix K – Water Balance

1.0 INTRODUCTION

1.1 Background

Landtek Limited (Landtek) is pleased to submit a combined Hydrogeologic Investigation report for the proposed Block Servicing Strategy Area # 3. The site is located in the community of Winona in the City of Hamilton, south of Barton Street and east of McNeilly Road, as shown on Figure 1.

The site is irregular in shape and consists of seven (7) participating landowners. The total area of is approximately 105.70 hectares. It is currently in a general area bounded by the north limit of the row of buildings abutting Barton Street to the north, residential dwellings along McNeilly Road to the west, undeveloped land east of Winona Elementary School and west of Tuscani Drive to the east, Pettit Street to the northeast, and commercial and residential properties to the south along Highway 8.

The site is proposed to be developed primarily for community use with residential, commercial, institutional, park, and community services. The site is to be serviced by municipal water and sanitary sewer services from the City of Hamilton. The existing site diagram is as shown on Figure 2; and the proposed development site plan is shown in Figure 3, as provided by Glen Schnarr & Associates Inc.

The purpose of this study was to provide geological and hydrogeological baseline data of the proposed development site to support the Stoney Creek Urban Boundary Expansion (SCUBE) Block 3 Servicing Study (BSS) for the SCUBE Central area. The Hydrogeological Investigation is to evaluate the current conditions of the site, delineate possible post-development effects, and suggest mitigation measures to minimize the effects to the shallow groundwater system post-development. Specifically, the report provides the following:

- A description of the hydrogeologic setting of the property and a summary of the existing soil and groundwater conditions at the site.
- Identification of hydrogeologic features such as zones of significant groundwater recharge and discharge.
- Assessment of the requirement for groundwater control during construction.
- Requirements and design measures which can be used to maintain groundwater function at the site.
- A water budget for the site based on the current site development plan and recommendations for mitigation measures in order to maintain groundwater infiltration and aquifer recharge in the area.

1.2 Work Scope and Report Organization

The work program presented herein was divided into three components: 1) a desktop study to characterize the physical setting and based on available information, establish identify the Ministry of the Environment and Climate Change (MOECC) wells within 500 m radius of the Site; 2) review of meteorological data to assess the local climate and to use the information for water balance calculations, if required; and, 3) a field investigation involving drilling/well installation, hydraulic conductivity testing, and based on available information, assess water balance groundwater conditions.

The report is organized as outlined on the following page.

Page 1

File: 18270

Section 1 contains a brief introduction to the project and the scope of work undertaken by Landtek.

Section 2 outlines the methodologies followed during completion of the desktop study and the field investigation.

Section 3 summarizes the findings of the investigation. It includes:

- a description of the physical setting
- the results of the field investigation

Section 4 provides an assessment of construction dewatering requirements and potential impacts.

Sections 5 and 6 provide recommendation for implementation of a monitoring program and mitigation measures, respectively if warranted.

Section 7 provides assessment of site development, hydrogeology, and water balance.

Section 8 provides summary and conclusions.

Section 9 provides closure.

Section 10 provides references.

Section 11 provides limitations.

2.0 METHODOLOGY

2.1 Desktop Study

A review of published works was done of available geologic and hydrogeologic information for the site including topographic and geologic maps.

Climate data for the period of 1981 to 2010 was obtained from Environment Canada publications and from the Hamilton A station (Hamilton Airport) to assess the local climate and to use the information for water balance calculations.

The MOE water well database for the local area was also accessed and the individual well records were obtained for wells that are located in the Study Area. The Study Area is defined, as an area extending 500 m outward from the edge of the excavation for the proposed basement parking levels

2.1.1 Previous Investigations

Previous studies conducted with pertinence to this hydrogeological study include a 2009 Geotechnical Investigation conducted by AME Materials Engineering (AME, 2009) and the SCUBE Subwatershed Study completed by Aquafor Beech Ltd. in 2012.

2009 Geotechnical Investigation (AME Materials Engineering)

A total of twelve (12) exploratory boreholes were drilled during this investigation to depths of 3.9 to 6.6 meters below ground surface (mbgs). The stratigraphy encountered during this investigation consisted of earth fill/disturbed native soil underlain by native glacial till followed by bedrock. The disturbed native soil was documented to consist of brown sandy silt to clayey silt with trace gravel averaging 0.4 m thick. The glacial till is described as consisting predominantly of clayey silt with trace sand and gravel. The till contains fragments of weathered shale which become more numerous with increasing depth.

All of the boreholes were either terminated in the glacial till or upon reaching practical auger refusal on probable bedrock.

SCUBE Subwatershed Study (Aquafor Beech Ltd., 2012)

A subwatershed study was completed in 2012 for The City of Hamilton on the Stoney Creek Urban Boundary Expansion Area (SCUBE), in preparation of the Fruitland-Winona Secondary Plan in support of future urban development. The existing environmental resources within the study area were defined in order to identify key features and functions, to establish baseline conditions for the assessment of potential impacts from future urban development, and to identify development constraints and potential future opportunities (Aquafor Beech Ltd., 2012).

A review of boreholes advanced in 2009 indicates a relatively low groundwater recharge potential and relatively shallow potentiometric surface (<5 m below ground surface) in the area. In particular, it is noted that the silt till and several meters of the underlying shale bedrock are noted as being dry in the 2009 borehole logs. This observation suggests that the overall recharge potential across the SCUBE area is very low.

Page 3

File: 18270

2.2 Site Inspection to Assess Hydrogeological Features

Access was granted by the City of Hamilton and Multi-Area Development properties located adjacent to the site, to the east and south, respectively, in order to complete borehole drilling and monitoring well installations for the purposes of this study. These adjoining properties are indicated on Figure 3 and are considered part of the study site.

Detailed site inspections were conducted on November 18, 2016 and August 7, 2018 to assess the presence of features which may be significant from a hydrogeologic view point. In particular, the site was inspected to assess the following:

- The presence of closed drainage features, depressions, or sandy areas which may allow for ponding and significant or enhanced infiltration of water;
- Assessment of the presence of phreatophytic vegetation which may indicate seasonally high groundwater levels and/or groundwater discharge and seepage; and
- Identification of any zones of visible seepage or groundwater discharge.

A focus of the site assessment was to walk along the drainage features deemed regulated watercourses by the Hamilton Conservation Authority (HCA). At the time of the assessment, all of the watercourses were dry but vegetation and erosion indicated they are intermittent (seasonal) watercourses. The presence of cattails, willows, and common reeds in the meandering watercourse in the eastern portion of the site suggests a seasonally wet environment and can also be indicative of a shallow groundwater environment. All other primary vegetation on site (sumac, oak, grey dogwood, hawthorn, maple) are not necessarily indicative of a wet environment.

There was no indication of groundwater discharge or visible seepage areas on the site. All surface water runoff is directed to the watercourses and ditches lining the agricultural fields.

An area in the western portion of the site contains an abandoned vineyard, with numerous rows of abandoned grapevines.

Most areas planned for development are currently used as agricultural fields with access from two driveways along Barton Street. There is evidence of a historic concrete/foundation slab near the northeast corner of the site.

2.3 Field Investigation

2.3.1 Drilling and Well Installation

The first phase of the subsurface drilling investigation at the site was conducted from December 5 to 12, 2016, and from January 23 to 27, 2017. A total of fourteen (14) boreholes were drilled at twelve (12) locations, which were subsequently installed with monitoring wells. The second phase of the subsurface drilling investigation was conducted from August 9 to 15, 2018. A total of eight (8) boreholes were drilled at seven (7) locations, which were subsequently installed with monitoring wells.

The boreholes were advanced using a continuous flight power auger track-mounted drill rig equipped with conventional soil sampling and testing tools. The drilling was conducted by

Page 4

File: 18270

Determination Drilling of Hamilton, Ontario and was under the full-time supervision of a member of Landtek staff who logged the borings and examined the samples as they were obtained. The results of the drilling are recorded in detail on the accompanying borehole logs, located in Appendix B of this document. The monitoring wells locations are shown on Figure 4 in Appendix A.

The monitoring wells were constructed with 50 mm inner diameter, Schedule 40 machine slotted PVC screens equipped with a bottom cap, and machine threaded riser pipe. The screen length and slot size are 1.5 m or 3.0 m, and 0.10-inch, respectively.

The annular space between the PVC riser pipes and each borehole wall was backfilled to at least 0.3 m above the top of the screen with silica sand (No. 2). A bentonite seal was placed immediately above the sand pack to a height just below grade. Each monitoring well was finished with a monumental protective steel casing, which was cemented in-place.

A.J. Clarke & Associates Ltd. conducted a survey on February 10, 2017 to determine the ground surface elevation, top of well pipe elevation, and accurate Universal Transverse Mercator (UTM) co-ordinates of the installed wells. Landtek conducted an additional elevation survey August 29, 2018 to tie-in the additional boreholes location, completed during the phase 2 drilling, to the survey conducted by A.J. Clarke and Associates ltd. Details of the monitoring wells, including survey data, and screened intervals are summarized below in Table 1 below.

Table 1: Well Construction Details

Monitoring Well ID	Easting (NAD83)	Northing (NAD83)	Ground Surface Elevation (masl)	Pipe stick up (m)	Well Depth (mbgs)	Screened Interval (m)	Screened Material
MW1	608226.2	4784919.7	95.04	0.86	5.99	3.0-6.1	Clayey Silt Till
MW2	608212.8	4784987.0	93.54	0.75	4.61	1.5-4.6	Clayey Silt Till
MW3	608237.9	4785070.9	92.74	0.68	4.58	1.5-4.6	Clayey Silt Till
MW4	608141.9	4785325.9	91.39	0.79	6.23	3.0–6.1	Shale (Upper Weathered Shale)
MW5	608289.8	4785210.5	91.04	0.84	15.10	12.2–15.2	Contact (Till and Upper Weathered Shale)
MW6-S	608307.6	4785049.7	92.19	0.92	6.14	1.5 –6.1	Clayey Silt Till
MW6-D	608305.1	4785050.5	92.22	0.91	18.34	15.2–18.3	Shale (competent)
MW7	608382.9	4785334.4	89.87	0.65	30.5	24.4–30.5	Shale (competent)
MW8	608249.3	4785464.4	89.57	0.83	4.59	1.5–4.6	Shale (Upper Weathered Shale)

Page 6 File: 18270

Table 1: Well Construction Details Continued

Monitoring Well ID	Easting (NAD83)	Northing (NAD83)	Ground Surface Elevation (masl)	Pipe stick up (m)	Well Depth (mbgs)	Screened Interval (m)	Screened Material
MW9	608537.1	4785266.6	89.56	0.96	17.72	13.7 – 16.8	Shale (Upper Weathered Shale)
MW10-S	608626.5	4785430.5	88.15	0.89	7.51	4.6 – 7.6	Clayey Silt Till
MW10-D	608621.6	4785431.1	88.19	0.99	20.05	18.9 – 21.9	Shale (competent)
MW11	608644.1	4785312.9	89.18	0.97	16.91	16.5 – 19.5	Shale (competent)
MW12	608715.9	4785187.8	90.12	1.01	5.53	2.1 – 5.2	Shale (Upper Weathered Shale)
MW13	607857.4	4784775.8	98.50	0.73	7.60	4.6 - 7.6	Shale
MW14	608062.6	4785233.1	99.65	0.72	7.60	4.6 - 7.6	Shale
MW15	608231.9	4785310.3	90.72	0.81	7.60	4.6 - 7.6	Shale
MW16	608453.6	4785467.8	88.55	0.80	13.7	10.7 – 13.7	Clayey Silt Till and Shale
MW17S	608455.6	4785193.0	90.59	0.79	12.20	10.7 – 12.2	Clayey Silt Till
MW17D	608455.6	4785193.0	90.59	0.75	20.0	18.5 – 20.0	Clayey Silt Till and Shale
MW18	608610.1	4785017.5	92.02	0.78	7.60	4.6 – 7.6	Shale
MW19	609102.6	4785291.1	100.99	0.90	7.60	4.6 - 7.6.5	Shale

masl = meters above sea level

m = meters

mbgs = meters below ground surface

Well Development: Each of the installed monitoring wells (MW1 through MW19) was developed to remove any sediment that may have been introduced during installation and to improve the hydraulic properties of the formation against which the wells were screened. Development employed waterra tubings with foot valves and or electric well pump. Each well was pumped until a visible decrease in turbidity was observed.

Groundwater Sampling: On September 24, 2018, samples of ground water were collected from monitoring wells MW13, MW14, MW15, MW16, MW17S, MW17D, MW18, and MW7. All collected samples were stored in coolers with freezer packs after collection and during transport to the ALS Environmental Analytical Laboratory in Mississauga, Ontario for potability analysis. ALS is accredited by the *Canadian Associations for Laboratory Accreditation Inc.* (CALA).

2.3.2 Hydraulic Conductivity Tests

Hydraulic Conductivity Testing: Eighteen of all the twenty two all the installed monitoring wells were stress tested to provide estimates of the hydraulic conductivity for the zones against which the screens for the wells were set.

Rising head tests were conducted by Landtek on February 1, 2017 for monitoring wells MW1, MW2, MW3, MW4, MW5, MW6D, MW7, MW8, MW9, MW10D, MW11, and MW12. The tests involved the extraction of a known volume to displace the water level and manual recording of recovery at pre-determined intervals to at least 90% level recovery.

The hydraulic conductivity of the screened material over the screened interval of the monitoring well was interpreted from the results using the Hvorslev formula as follows:

 $K = r^2 \ln(L/R)/2 L T_0$

Page 7 File: 18270

Where:

K =hydraulic conductivity

r =radius of the well (standpipe)

L =length of test interval

R =borehole radius

T_o =time for recovery to within 37% of static water level

Rising head tests were conducted by Landtek on September 12, 2018 for monitoring wells MW14, MW16, MW17S, MW17D, MW18, and MW19. The tests involved the extraction of a known volume to displace the water level. A datalogger programed at 0.5 second intervals was used to record the water level response during the tests.

The rising head test data MW14, MW16, MW17S, MW17D, MW18, and MW19 were analyzed using AqteSolve Professional Version 4.5 software package developed by Glenn M. Duffield of HydroSOLVE Inc. applying the Hyorslev analysis solutions, depending on hydrogeology.

3.0 FINDINGS

3.1 Topography, Drainage and Hydrology

The site is predominantly flat-lying with elevations increasing gradually towards the Niagara Escarpment to the south. The site ranges in elevation from approximately 88 meters above sea level (masl) in the north to 95 masl in the south of the site. A total of four (4) regulated watercourses cross the site, flowing generally south to north, directing runoff from the Niagara Escarpment to Lake Ontario (HCA, 2016). Additional manmade ditches are present throughout the site intended for local runoff from the agricultural fields. Local ponded water is intermittently present throughout the site during times of increased precipitation. The regulated areas based on Hamilton Conservation Authority Area map is as shown on Figure 5 in Appendix A

3.2 Regional Physiography

The site is located within a physiographic region known as the Haldimand Clay Plain which occupies the area from the Niagara Escarpment to Lake Erie. A glacial lake covered this area and, as a result, at some locations stratified clay and/or silt overlies fine grained till and there are also intermixed layers of till and stratified fine grained sediments. The overburden thickness increases southward from the Niagara Escarpment (City of Hamilton, 2010).

3.3 Climate

The climate in the study area is largely influenced by Lake Ontario. The general climate data presented below in Table 2 was obtained from Environment Canada publications and from the Environment Canada online database. Average climate data was taken from Hamilton A station Airport (Hamilton Airport) for the period of 1981 to 2010.

Table 2. 1981 to 2010 Climate Normals for Hamilton A Station (as averages)

<u> 1 abie 2. 1961</u>	to 2010 Climate North	iais ioi hailiiloli A c	Station (as averages	
	Daily Average Temperature (°C)	Average Rainfall (mm)	Average Snowfall (cm)	Average Precipitation (mm)
January	-5.5	29.7	40.8	64.0
February	-4.6	28.2	35.1	57.8
March	-0.1	42.6	26.5	68.4
April	6.7	71.3	8.4	79.1
May	12.8	78.7	0.5	79.4
June	18.3	84.9	0.0	84.9
July	20.9	100.7	0.0	100.7
August	20.0	79.2	0.0	79.2
September	15.8	81.9	0.0	81.9
October	9.3	76.5	0.7	77.4
November	3.7	74.4	11.0	84.3
December	-2.3	43.8	33.5	73.0
Year	7.9	791.7	156.5	929.8

3.4 Regional Geology

The City of Hamilton is underlain by clastic and carbonate sedimentary rocks of Late Ordovician to Middle Silurian age, which make up parts of three major depositional sequences (Johnson et al., 1992). The oldest bedrock unit outcropping in the area, the Queenston Formation, is predominantly dark red, fissile, hematitic, calcareous shale (Liberty et al., 1976).

Page 8

File: 18270

The Queenston Formation is found north of the Niagara Escarpment and consists in many places of up to 4 feet (1.2 m) of very weathered bedrock (red clay) which grades downward into typical brick-red shale. The Queenston shale is overlain by Halton Till in the area of the site.

The Late Wisconsinan Halton Till is a clay to clayey silt till and is exposed in the form of a till plain from Lake Ontario southward to the Niagara Escarpment. It is the youngest glacial unit in the region and has been found to be relatively thick (up to 30 m) in the buried bedrock valley between Grimsby and Grimsby Beach. The basal part of the till is red, relatively coarser textured, and consists almost entirely of Queenston shale. Proglacial Lake Iroquois clay, silt and sand is mapped as overlying the Queenston shale in the southern portion of the site. The lake terrace is mainly underlain by Queenston shale and Halton Till although a sheet of predominantly fine sand was deposited along the shoreline and is relatively thicker (up to 4.5 m) in the vicinity of Grimsby (Feenstra, 1975).

The existing surficial geology mapping of the site shows bedrock outcropping at surface in a general east-west direction throughout the centre of the site. The northern portion of the site is mapped as clay to silt-textured till (Halton Till) and the southern portion is mapped as coarse textured sand and gravel deposits.

3.5 Regional Hydrogeology

Regional hydrogeology conditions were assessed on the basis of local water well records and existing geologic reports.

The hydrostratigraphy (i.e. the vertical sequence and horizontal extent of aquifers and aquitards) in the overburden and shallow bedrock generally follows the geologic layering. Till formations in the overburden act as aquitards while the sandier units generally behave as aquifers. Shale generally acts as an aquitard with an upper weathered bedrock aquifer layer (City of Hamilton, 2010).

The Halton till has low infiltration potential due to the composition of the clay and density of the till. The groundwater recharge potential is classified as "moderate" to "low". The coarser grained Proglacial Lake Iroquois deposits near the base of the escarpment represent a zone of high groundwater recharge potential and function as a potential contributor of baseflow to stream reaches to the north (Aquafor Beech Ltd., 2012).

3.6 MECP Water Well Records and Groundwater Resources

The site is located in the Hamilton Source Protection Area (SPA) and is classified as a located in highly vulnerable aquifer area with a Score of 6 by the Ministry of the Environment, Conservation and Park (MECP). The site location is, however, not in a wellhead protection area, is not in an intake protection zone, and is not classified as a significant groundwater recharge area. The source water protection details for the site were referenced from the MECP website on Source Water Protection for the Province of Ontario (MECP, 2019).

The MECP Water Well Information System (WWIS) is a publically available database which contains information such as groundwater well location, well construction details, static water level, geologic units encountered with depth, general water quality observations, water use, date of construction, and screened interval

The MECP records for wells located within approximately 500 meters of the site were reviewed to assess the general nature and use of the groundwater resource in the area and to characterize local hydrogeologic conditions.

Well Construction

Wells terminated in bedrock	13
Wells terminated in overburden	3
No data	
Total	
Well Uses	
Domestic	7
Public	
Monitoring	
Unknown	1
Well Depth	
Less than 15 m	11
Between 15 and 30 m	4
Greater than 30 m	
No Data	
• INO Dala	

The locations of all the MECP 17 wells are plotted on Figure 6 in Appendix A, and the MECP well records included in Appendix D of this report.

Based on the well records, it is evident that there are 7 domestic water wells completed in bedrock within 500 m of the site. However, the Site is situated within the City of Hamilton in an area serviced by the City water supply systems.

3.7 Results of Subsurface Investigation

The borehole information is generally consistent with the geological data, and the predominant soils comprise of an overburden of clayey silt till overlying shale bedrock.

In general, overburden was found on site ranging in thickness from approximately 0.9 m to 18.9 m. The composition of the overburden ranged from silty sand in the south to clayey silt till in the north. The overburden was found overlying Queenston Shale. The detailed stratigraphy encountered in each borehole is described in detail in the borehole logs. Note that not all of the stratigraphic units were present in all boreholes. For example, fill material was only encountered in boreholes BH11 and BH12, advanced on the City of Hamilton property.

The ground conditions encountered by the boreholes are discussed further in the following sections.

Disturbed Surficial Soil

Surficial organic soils were encountered in all boreholes drilled within the disturbed agricultural lands. These organic soils typically consisted of dark brown, silty clay, moist to wet, organic filled material.

Fill

Clayey silt fill was encountered in boreholes BH11 and BH12, located in the City of Hamilton property in the eastern portion of the site. The fill extended to approximately 1.2 m in both boreholes and generally consisted of moist, brown, clayey silt with trace coarse sand and gravel.

Halton Till

Grey to brown clayey silt till was encountered in every borehole, except BH12 (fill material overlay bedrock). The till contained trace amounts of sand, fine gravel, and shale fragments and was found to be very stiff to hard. The till was found in varying thicknesses across the site ranging from approximately 0.9 m to 18.9 m.

No water bearing zones were found in the till in the northern portion of the site, and minor water bearing lenses were observed in the south where the till was overlain by the coarser silty sand deposits.

During drilling activities, the till was found to be so hard that advancement by augering had to be replaced by triconing, which is typically reserved for advancing through bedrock.

Silty Sand/Sandy Silt

Medium grained, brown, silty sand was encountered at surface in boreholes BH1, BH3, BH6-D, BH6-S, and BH13. Slightly finer grained sandy silt was encountered in borehole location BH2. These six borehole locations are located in the Multi-Area Development property in the southern portion of the site where the pre-existing OGS maps show surficial coarse-textured glaciolacustrine deposits. These deposits ranged in thickness from approximately 1 m to 2.5 m and were found to overly the Halton Till.

Queenston Shale

The red, Queenston shale was encountered as weathered and unweathered in composition. The weathered shale was typically observed as being incorporated into the overlying overburden unit as red clay, whereas the unweathered shale was competent and was observed to have a hard, blocky texture.

The bedrock was encountered at varying depths across the site, ranging from 0.9 m in borehole BH4 to 18.9 m in borehole BH17D. The Higher bedrock elevations were observed in BH4 (0.9 m), BH8 (2.7 m), and BH12 (1.2 m). These boreholes are located in the northwest and eastern portions of the study site.

Geologic Cross Sections

Geologic cross sections were prepared using the information obtained from the drilling programs. These cross sections can be found in Figures 7 and 8 (A-A', and B-B', respectively). A plan view map showing the locations of each cross section is indicated in Figure 4.

The geologic information collected from the borehole drilling indicates some similarities with the pre-existing OGS mapping of the area, but differences were observed in the bedrock elevations found across the site in comparison to the existing maps. In comparing the OGS

surficial geology map, high bedrock elevations were observed in the northwest and eastern portions of the site, but decreases throughout the centre of the site to measured depths of approximately 18.9 m below surface. The low bedrock elevations extend from the south of the site, north to borehole location BH5, and trends in a northeast direction towards boreholes BH9, BH11 and BH17D.

Evidence of the low bedrock elevation extending to the southwest is observed in MOE well record 7122670 which logs overburden extending to depths >28 m. This well did not encounter bedrock at the final depth of drilling.

It should be noted that not all boreholes were advanced into the bedrock, so the bedrock elevations shown in the cross sections are interpreted throughout some areas.

3.7.1 Grain Size Analyses/Atterberg Limits

A total of five (5) overburden soil samples were submitted to Landtek's soil laboratory for grain size analysis using sieve and hydrometer methods (ASTM D422). The 4 samples were chosen based on the range of grain sizes encountered during drilling. Results indicate the soil types across the site range from clayey silt to silt to sand. The results of the grain size analyses are provided in Appendix E and Atterberg Limits are provided in Appendix F. The soils are classified as silty clay.

Soil samples were collected from BH13, BH14, BH15, BH16, and BH17 at depths ranging from 0.7 to 21.2 mbgs. These results are summarized below as follows:

BH13 @ 0.7-1.2 m bgs

Classified the soil as <u>Silty Clay</u> with 1.9% gravel, 30.6% sand, 41.4% silt and 26.1% clay

BH14 @ 0.7-1.2 m bgs

Classified the soil as Silty Clay with 2.0% gravel, 28.2% sand, 43.5% silt and 36.3% clay

BH15 @ 0.7-1.2 m bgs

Classified the soil as Silty Clay with 1.8% gravel, 11.6% sand, 50.2% silt and 36.4% clay

BH16 @ 0.7-1.2 m bgs

Classified the soil as <u>Silt Clay-Silt</u> with 0.5% gravel, 16.9% sand, 43.2% silt and 39.4% clay

BH17 @ 0.7-1.2 m bgs

Classified the soil as Silty Clay with 1.7% gravel, 32.5% sand, 43.0% silt and 22.8% clay

3.8 Groundwater Monitoring

Water levels are measured manually in all 14 installed monitoring wells during the first phase of drilling using a Solinst Water Level Tape. Data loggers (Solinst Model 3001 LT Levelogger Junior Edge and Solinst Model 3001 LT Barologger Edge) were installed in 8 monitoring wells completed to obtain a continuous (hourly) record of groundwater levels and temperature fluctuations. Pressure data was corrected to barometric pressures recorded at the site. The 8 monitoring wells installed with Data loggers include MW1, MW2, MW4, MW5, MW7, MW10-D, MW11, and MW12. These selected monitoring wells are screened in the clayey silt till, upper weathered shale, and the deep shale.

Depth to groundwater, in all installed 14 monitoring wells, were obtained manually by Landtek staff during field events from January 2017 to August 2018. Field monitoring events were completed in order to capture the natural seasonal variability in groundwater levels at the site.

Water levels are measured manually in all 8 installed monitoring wells during the second phase of drilling using a Solinst Water Level Tape. Data loggers (Solinst Model 3001 LT Levelogger Junior Edge and Solinst Model 3001 LT Barologger Edge) were installed in 4 monitoring wells to obtain a continuous (hourly) record of groundwater levels and temperature fluctuations. Pressure data was corrected to barometric pressures recorded at the site. The 4 monitoring wells installed with Data loggers include MW13, MW16, MW18, and MW19. These selected monitoring wells are screened in the upper weathered shale.

Manual groundwater elevation measurements collected during the program are provided below in Table 4. Groundwater level elevations collected on October 15, 2018 are plotted in Figures 9 and 10 which depict the groundwater elevations and groundwater flow directions within the clayey silt till as well as the shale across the site, respectively. Depths to groundwater across the site were found to range from -0.07 mbgs (MW12 on April 27, 2017) to 11.57 mbgs (MW17-S on August 29, 2018).

Overall, the site has a relatively shallow potentiometric surface in both the overburden till and the buried shale.

Nineteen months of groundwater elevations were collected in order to present seasonal trends and variations in groundwater levels in hydrograph format. Hydrographs of groundwater elevations within each well are presented and discussed below.

It should be noted that the groundwater levels for the site will likely fluctuate seasonally depending on the amount of precipitation and surface runoff.

The groundwater monitoring data are presented below in Table 3.

Table 3. Monthly Groundwater Monitoring Data

	Torking Groundwater	Ground	Jan. 26	, 2017	Feb. 1,	, 2017	Feb. 22, 2017	
MW ID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	2.38	92.66	2.52	92.52	2.03	93.01
MW2	Clayey Silt Till	93.54	0.81	92.73	1.02	92.52	0.78	92.76
MW3	Clayey Silt Till	92.74	4.42	88.32	4.36	88.38	3.02	89.72
MW4	Shale (Upper Weathered Shale)	91.39	1.56	89.83	1.79	89.60	1.27	90.12
MW5	Contact (Till and Upper Weathered Shale)	91.04	0.45	90.60	1.55	89.50	1.30	89.75
MW6-S	Clayey Silt Till	92.19	dry	dry	dry	dry	4.48	87.71
MW6-D	Shale (competent)	92.22	1.72	90.51	1.69	90.54	1.68	90.55
MW7	Shale (competent)	89.87	2.72	87.15	2.72	87.15	2.60	87.27
MW8	Shale (Upper Weathered Shale)	89.57	0.18	89.39	0.37	89.20	0.04	89.53
MW9	Shale (Upper Weathered Shale)	89.56	-	-	2.01	87.55	2.06	87.50
MW10-	Clayey Silt Till	88.15	-	-	dry	dry	7.24	80.91
MW10-	Shale (competent)	88.19	-	-	3.07	85.12	2.59	85.60
MW11	Shale (competent)	89.18	-	-	3.91	85.27	2.81	86.37

Page 14 File: 18270

MW12	Shale (Upper Weathered Shale)	90.12	-	-	0.74	89.38	0.30	89.82
	vveatnered Shale)							

Table 3. Monthly Groundwater Monitoring Data Continued

		Ground	Mar. 20	, 2017	Apr. 27	, 2017	Jun. 06, 2017	
MW ID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	1.31	93.73	0.69	94.35	1.10	93.94
MW2	Clayey Silt Till	93.54	0.95	92.59	0.75	92.79	1.00	92.54
MW3	Clayey Silt Till	92.74	1.06	91.68	0.34	92.40	0.84	91.90
MW4	Shale (Upper Weathered Shale)	91.39	1.19	90.20	1.13	90.26	1.52	89.87
MW5	Contact (Till and Upper Weathered Shale)	91.04	1.36	89.68	1.28	89.76	1.52	89.52
MW6-S	Clayey Silt Till	92.19	0.61	91.58	0.51	91.68	1.88	90.31
MW6-D	Shale (competent)	92.22	1.61	90.61	1.41	90.81	1.38	90.84
MW7	Shale (competent)	89.87	2.59	87.28	2.45	87.42	2.46	87.41
MW8	Shale (Upper Weathered Shale)	89.57	0.07	89.50	-0.03	89.60	0.24	89.33
MW9	Shale (Upper Weathered Shale)	89.56	1.93	87.63	1.70	87.86	1.77	87.79
MW10-S	Clayey Silt Till	88.15	6.63	MW1	Clayey	95.04	3.91	84.24
MW10-D	Shale (competent)	88.19	1.85	MW2	Clayey	93.54	2.27	85.92
MW11	Shale (competent)	89.18	1.69	86.49	1.42	86.76	1.49	86.69
MW12	Shale (Upper Weathered Shale)	90.12	0.19	89.93	-0.07	90.19	0.45	89.67

		Ground	Jun. 28	, 2017	Jul. 31	, 2017	Sep. 09, 2017	
MW ID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	1.59	93.45	1.83	93.21	1.84	93.20
MW2	Clayey Silt Till	93.54	1.14	92.40	1.26	92.28	1.25	92.29
MW3	Clayey Silt Till	92.74	1.37	91.37	1.67	91.07	1.64	91.10
MW4	Shale (Upper Weathered Shale)	91.39	1.83	89.56	1.97	89.42	1.96	89.43
MW5	Contact (Till and Upper Weathered Shale)	91.04	1.74	89.30	1.75	89.29	1.75	89.29
MW6-S	Clayey Silt Till	92.19	1.08	91.11	1.15	91.04	1.14	91.05
MW6-D	Shale (competent)	92.22	1.46	90.76	1.47	90.75	1.46	90.76
MW7	Shale (competent)	89.87	2.61	87.26	2.64	87.23	2.62	87.25
MW8	Shale (Upper Weathered Shale)	89.57	0.46	89.11	0.55	89.02	0.48	89.09
MW9	Shale (Upper Weathered Shale)	89.56	1.99	87.57	2.11	87.45	2.12	87.44
MW10-S	Clayey Silt Till	88.15	3.17	84.98	2.49	85.66	2.47	85.68
MW10-D	Shale (competent)	88.19	2.40	85.79	2.47	85.72	2.36	85.83
MW11	Shale (competent)	89.18	1.78	86.40	1.89	86.29	1.90	86.28
MW12	Shale (Upper Weathered Shale)	90.12	0.83	89.29	1.03	89.09	0.99	89.13

		Ground	Oct. 21	, 2017	Nov. 13	3, 2017	Dec. 12, 2017	
MWID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	2.29	92.75	2.25	92.79	1.65	93.39
MW2	Clayey Silt Till	93.54	1.82	91.72	1.79	91.75	1.28	92.26
MW3	Clayey Silt Till	92.74	2.13	90.61	2.09	90.65	1.83	90.91
MW4	Shale (Upper Weathered Shale)	91.39	2.25	89.14	2.22	89.17	1.84	89.55
MW5	Contact (Till and Upper Weathered Shale)	91.04	2.04	89.00	2.02	89.02	1.67	89.37
MW6-S	Clayey Silt Till	92.19	1.50	90.69	1.45	90.74	1.02	91.17
MW6-D	Shale (competent)	92.22	1.43	90.79	1.39	90.83	1.22	91.00
MW7	Shale (competent)	89.87	2.66	87.21	2.63	87.24	2.45	87.42
MW8	Shale (Upper Weathered Shale)	89.57	0.81	88.76	0.78	88.79	0.42	89.15
MW9	Shale (Upper Weathered Shale)	89.56	2.15	87.41	2.14	87.42	1.90	87.66
MW10-S	Clayey Silt Till	88.15	1.88	86.27	1.85	86.30	1.89	86.26
MW10-D	Shale (competent)	88.19	2.21	85.98	2.20	85.99	1.98	86.21
MW11	Shale (competent)	89.18	1.92	86.26	1.89	86.29	1.66	86.52
MW12	Shale (Upper Weathered Shale)	90.12	1.25	88.87	0.99	89.13	0.99	89.13

	ionthly Groundwater	Ground	Jan. 15		Feb. 28	, 2018	Apr. 25	, 2018
MW ID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	Frozen	NA	1.62	93.42	0.73	94.31
MW2	Clayey Silt Till	93.54	0.81	92.73	0.76	92.78	0.77	92.77
MW3	Clayey Silt Till	92.74	Frozen	NA	1.80	90.94	0.32	92.42
MW4	Shale (Upper Weathered Shale)	91.39	Frozen	NA	1.77	89.62	0.21	91.18
MW5	Contact (Till and Upper Weathered Shale)	91.04	1.29	89.75	1.26	89.78	1.18	89.86
MW6-S	Clayey Silt Till	92.19	Frozen	NA	0.89	91.30	0.45	91.74
MW6-D	Shale (competent)	92.22	Frozen	NA	1.17	91.05	1.09	91.13
MW7	Shale (competent)	89.87	2.17	87.70	1.98	87.89	1.82	88.05
MW8	Shale (Upper Weathered Shale)	89.57	0.08	89.49	0.20	89.37	-0.07	89.64
MW9	Shale (Upper Weathered Shale)	89.56	1.86	87.70	1.64	87.92	1.62	87.94
MW10-S	Clayey Silt Till	88.15	1.94	86.21	1.72	86.43	2.04	86.11
MW10-D	Shale (competent)	88.19	1.88	86.31	1.55	86.64	1.91	86.28
MW11	Shale (competent)	89.18	1.55	86.63	1.50	86.68	1.39	87.79
MW12	Shale (Upper Weathered Shale)	90.12	Frozen	NA	0.75	89.37	0.29	89.83

	onthly Groundwater	Ground	May. 22		Jul. 3,	2018	Jul. 26	, 2018
MWID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	0.78	94.26	0.86	94.18	0.96	94.08
MW2	Clayey Silt Till	93.54	0.91	92.63	1.30	92.24	1.02	92.52
MW3	Clayey Silt Till	92.74	0.73	92.01	1.67	91.07	1.02	91.72
MW4	Shale (Upper Weathered Shale)	91.39	1.52	89.87	2.10	89.29	1.62	89.77
MW5	Contact (Till and Upper Weathered Shale)	91.04	1.33	89.71	2.60	88.44	1.49	89.55
MW6-S	Clayey Silt Till	92.19	0.59	91.6	1.24	90.95	1.06	91.13
MW6-D	Shale (competent)	92.22	1.21	91.01	1.42	90.8	1.38	90.84
MW7	Shale (competent)	89.87	1.90	87.97	2.52	87.85	2.12	87.75
MW8	Shale (Upper Weathered Shale)	89.57	0.48	89.09	0.67	88.90	0.71	88.86
MW9	Shale (Upper Weathered Shale)	89.56	1.70	87.86	2.17	87.39	1.87	87.69
MW10-S	Clayey Silt Till	88.15	2.24	85.91	1.34	86.81	2.48	85.67
MW10-D	Shale (competent)	88.19	2.42	85.77	2.24	85.95	2.56	85.63
MW11	Shale (competent)	89.18	1.59	87.59	2.00	87.18	1.74	87.44
MW12	Shale (Upper Weathered Shale)	90.12	0.70	89.42	1.17	88.95	0.97	89.15

	iontiny Groundwater	Ground	Aug. 29		Sep 12	, 2018	Sep 24	, 2018
MW ID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	0.80	-	-	-	-	-
MW2	Clayey Silt Till	93.54	0.94	-	-	-	-	-
MW3	Clayey Silt Till	92.74	0.96	-	-	-	-	-
MW4	Shale (Upper Weathered Shale)	91.39	1.59	-	-	-	-	-
MW5	Contact (Till and Upper Weathered Shale)	91.04	1.43	-	-	-	-	-
MW6-S	Clayey Silt Till	92.19	0.96	-	-	-	-	-
MW6-D	Shale (competent)	92.22	1.29	-	-	-	-	-
MW7	Shale (competent)	89.87	2.05	-	-	-	-	-
MW8	Shale (Upper Weathered Shale)	89.57	0.63	-	-	-	-	-
MW9	Shale (Upper Weathered Shale)	89.56	1.76	-	-	-	-	-
MW10-S	Clayey Silt Till	88.15	2.35	-	-	-	-	-
MW10-D	Shale (competent)	88.19	2.42	-	-	-	-	-
MW11	Shale (competent)	89.18	1.70	-	-	-	-	-
MW12	Shale (Upper Weathered Shale)	90.12	0.87	-	-	-	-	-
MW13	Shale (Upper Weathered Shale	98.50	1.50	97.0	1.50	97.0	1.64	96.86
MW14	Shale (Upper Weathered Shale	99.65	2.40	97.25	2.57	97.08	2.70	96.95

MW15	Shale (Upper Weathered Shale	90.72	1.32	89.40	-	NA	1.69	89.03
MW16	Clayey Silt Till and Shale (Weathered	88.55	0.69	87.86	0.71	87.84	0.73	87.82
MW17S	Clayey Silt Till	90.59	<mark>11.57</mark>	79.02	10.48	80.11	9.8 <mark>1</mark>	80.78
MW17D	Clayey Silt Till and Shale (Weathered	90.59	2.82	87.77	2.87	87.72	2.91	87.68
MW18	Shale (Upper Weathered Shale	92.02	3.13	88.89	3.48	88.54	3.70	88.32
MW19	Shale (Upper Weathered Shale	100.99	3.12	97.87	3.40	97.59	3.46	97.53

Table 3. Monthly Groundwater Monitoring Data Continued									
		Ground	Oct. 15	, 2018	Nov. 16	, 2018	Dec. 12	., 2018	
MW ID	Screened Material	Elevation	WL	WL	WL	WL	WL	WL	
		(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)	
MW1	Clayey Silt Till	95.04	2.61	92.43	2.47	95.57	2.59	92.45	
MW2	Clayey Silt Till	93.54	1.97	91.57	1.91	91.63	2.04	91.50	
MW3	Clayey Silt Till	92.74	2.30	90.44	2.2	90.54	2.23	90.51	
MW4	Shale (Upper Weathered Shale)	91.39	2.65	88.74	2.48	88.91	3.57	87.82	
MW5	Contact (Till and Upper Weathered Shale)	91.04	2.37	88.67	2.25	88.79	2.38	88.66	
MW6-S	Clayey Silt Till	92.19	1.96	90.23	1.85	90.34	1.89	90.30	
MW6-D	Shale (competent)	92.22	1.58	90.64	1.40	90.82	1.53	90.69	
MW7	Shale (competent)	89.87	2.75	87.12	2.68	87.19	2.75	87.12	
MW8	Shale (Upper Weathered Shale)	89.57	1.23	88.34	1.17	88.40	1.28	88.29	
MW9	Shale (Upper Weathered Shale)	89.56	2.37	87.19	2.29	87.27	2.41	87.15	
MW10-S	Clayey Silt Till	88.15	1.65	86.50	1.52	86.63	1.60	86.55	
MW10-D	Shale (competent)	88.19	2.42	85.77	2.38	85.81	2.42	85.77	
MW11	Shale (competent)	89.18	2.29	86.89	2.22	86.96	2.30	86.88	
MW12	Shale (Upper Weathered Shale)	90.12	1.76	89.11	1.91	88.21	1.76	88.36	
MW13	Shale (Upper Weathered Shale	98.50	1.76	96.72	-	-	-	-	
MW14	Shale (Upper Weathered Shale	99.65	2.86	96.79	-	-	-	-	
MW15	Shale (Upper Weathered Shale	90.72	1.88	88.84	-	-	-	•	
MW16	Clayey Silt Till and Shale (Weathered	88.55	0.93	87.62	-	-	-	ı	
MW17S	Clayey Silt Till	90.59	9.93	80.66	-	-	-	-	
MW17D	Clayey Silt Till and Shale (Weathered	90.59	3.04	87.55	-	-	-	-	
MW18	Shale (Upper Weathered Shale	92.02	3.77	88.25	-	-	-	-	
MW19	Shale (Upper Weathered Shale	100.99	3.59	97.40	-	-	-	-	

Table 5. IV	lonthly Groundwater	Monitoring	Data Co	ntinuea				
		Ground	Jan 24	, 2019	Feb 21	, 2019	Mar 27	, 2019
MW ID	Screened Material	Elevation	WL	WL	WL	WL	WL	WL
		(masl)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)
MW1	Clayey Silt Till	95.04	2.51	92.53	2.36	92.68	1.05	93.99
MW2	Clayey Silt Till	93.54	1.95	91.59	1.72	91.82	0.93	92.61
MW3	Clayey Silt Till	92.74	2.14	90.60	2.03	90.71	0.49	92.25
MW4	Shale (Upper Weathered Shale)	91.39	2.51	88.88	2.41	88.98	1.25	90.14
MW5	Contact (Till and Upper Weathered Shale)	91.04	2.36	88.68	2.21	88.83	1.21	89.83
MW6-S	Clayey Silt Till	92.19	1.39	90.80	1.72	90.47	0.37	91.82
MW6-D	Shale (competent)	92.22	1.78	90.44	1.32	90.90	1.13	91.09
MW7	Shale (competent)	89.87	2.67	87.20	2.60	87.27	1.23	88.64
MW8	Shale (Upper Weathered Shale)	89.57	1.18	88.39	1.19	88.38	0.06	89.51
MW9	Shale (Upper Weathered Shale)	89.56	2.25	87.34	2.15	87.41	1.69	87.87
MW10-S	Clayey Silt Till	88.15	1.39	86.76	1.43	86.72	1.20	86.95
MW10-D	Shale (competent)	88.19	2.30	85.89	1.33	86.86	1.72	86.47
MW11	Shale (competent)	89.18	2.23	86.95	2.13	87.05	1.49	87.69
MW12	Shale (Upper Weathered Shale)	90.12	1.64	88.48	1.46	88.66	0.59	89.53
MW13	Shale (Upper Weathered Shale	98.50	0.67	97.83	1.60	96.90	0.93	97.57
MW14	Shale (Upper Weathered Shale	99.65	-	-	-	-	-	-
MW15	Shale (Upper Weathered Shale	90.72	1.71	89.01	1.62	89.10	0.69	90.03
MW16	Clayey Silt Till and Shale (Weathered	88.55	0.72	87.83	0.87	87.68	0.70	87.85
MW17S	Clayey Silt Till	90.59	9.79	80.80	9.36	81.23	2.71	87.88
MW17D	Clayey Silt Till and Shale (Weathered	90.59	2.87	87.72	2.78	87.81	2.46	88.13
MW18	Shale (Upper Weathered Shale	92.02	3.65	88.37	3.58	88.44	1.89	90.13
MW19	Shale (Upper Weathered Shale	100.99	3.42	97.57	3.37	97.62	1.55	99.44

		Ground	Apr 18	2019	May 22, 2019		Jun 27	, 2019
MW ID	Screened Material	Elevation (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW1	Clayey Silt Till	95.04	0.97	94.07	1.05	93.99	0.68	94.36
MW2	Clayey Silt Till	93.54	0.76	92.78	0.85	92.69	0.27	93.27
MW3	Clayey Silt Till	92.74	0.36	92.38	0.43	92.31	0.33	92.41
MW4	Shale (Upper Weathered Shale)	91.39	1.08	90.31	1.18	90.21	0.82	90.57
MW5	Contact (Till and Upper Weathered Shale)	91.04	1.05	89.99	1.13	89.91	0.69	90.35
MW6-S	Clayey Silt Till	92.19	0.23	91.96	0.30	91.89	-0.02	92.21
MW6-D	Shale (competent)	92.22	1.03	91.19	1.12	91.10	0.88	91.34

MW7	Shale (competent)	89.87	1.09	88.78	1.16	88.71	0.87	89.00
MW8	Shale (Upper Weathered Shale)	89.57	-0.05	89.62	0.24	89.33	-0.57	90.14
MW9	Shale (Upper Weathered Shale)	89.56	1.55	88.01	1.62	87.94	0.93	88.63
MW10-S	Clayey Silt Till	88.15	0.99	87.16	1.73	86.42	0.12	88.03
MW10-D	Shale (competent)	88.19	1.55	86.64	0.94	87.25	0.98	87.21
MW11	Shale (competent)	89.18	1.40	87.78	1.47	87.71	0.68	88.50
MW12	Shale (Upper Weathered Shale)	90.12	0.48	89.64	0.54	89.58	-0.25	90.37
MW13	Shale (Upper Weathered Shale	98.50	0.75	97.75	0.82	97.68	0.49	98.01
MW14	Shale (Upper Weathered Shale	99.65	-	-	-	-	-	-
MW15	Shale (Upper Weathered Shale	90.72	0.56	90.16	0.62	90.10	0.11	90.61
MW16	Clayey Silt Till and Shale (Weathered	88.55	0.61	87.94	0.70	87.85	0.10	88.45
MW17S	Clayey Silt Till	90.59	2.60	87.99	2.68	87.91	1.30	89.29
MW17D	Clayey Silt Till and Shale (Weathered	90.59	2.42	88.17	2.47	88.12	1.87	88.72
MW18	Shale (Upper Weathered Shale	92.02	1.76	90.26	1.81	90.21	1.65	90.37
MW19	Shale (Upper Weathered Shale	100.99	1.42	99.57	1.54	99.45	1.64	99.35

Notes:

WL = groundwater level

mbgs = meters below ground surface

9.79 – groundwater level appears not to have recovered

masl = meters above sea level

MW14 = Outside Property Boundary - Client requested that Monitoring should stop in November 2018.

Data loggers (Solinst Model 3001 LT Levelogger Junior Edge and Solinst Model 3001 LT Barologger Edge) were installed in February 2017 in eight monitoring wells (MW1, MW2, MW4, MW5, MW7, MW10D, MW11, and MW12) to obtain a continuous (hourly) record of groundwater levels and temperature fluctuations in order to determine seasonal groundwater level fluctuations across the Site. The hydrographs data are usually downloaded periodically and corrected for barometric pressures influences recorded at the Site.

Data from installed data logger in MW5 for December 2017 to September 2018 could not be retrieved as the logger was found to be damaged and not connecting when an attempt was made to download the data.

Hydrographs of groundwater elevations for the period of late February 2017 to early September, 2018, obtained using data loggers, and manual groundwater elevation readings are provided on Figures 1 to 8 in Appendix D.

Figures 1, 2, 3, 4, 5, 6, 7, and 8 for MW1, MW2, MW4, MW5, MW7, MW10D, MW11, and MW12, respectively, show the groundwater levels elevations readings generally increased from February to May 2017, then decreased to October 2017, with the exception of Figure 5 with lowest level in August, 2017. The groundwater levels readings then increased from August 2017 to February 2018. Figure 4 for MW5 shows the groundwater levels readings slightly increased

from February to May 2017, then decreased to October 2017, and increased to December 2017 when the data logger installed in this monitoring well was damaged and and could not be downloaded. The changes in groundwater shallow wells monitoring wells completed from 5.2 to 7.6 mbgs appear to be more pronounced than in the deeper wells from 22.0 to 30.5 mbgs.

The lowest depth to groundwater below ground surface collected on Site was in MW12 on April 27, 2017 (approximately -0.07 mbgs [90.19 masl]), and the highest depth to groundwater below ground surface was in MW17S on August 29, 2018 (approximately 11.57 mbgs [79.09 masl]). It should be noted that the groundwater level in MW12 on February 27, 2017 was slightly above (-0.07 mbgs) ground but contained in the monitoring well riser pipe.

Fluctuations in the groundwater elevations on Site are interpreted to be directly affected by seasonal variations in precipitation and climatic trends.

3.9 Hydraulic Gradients and Flow

Groundwater flows from the shallow to deeper aquifers as leakage across the aquitards. The direction of vertical flow depends on the relative heads in the different aquifers. Leakage rates vary locally depending on the magnitude of the vertical gradients and on the thickness and hydraulic conductivity of the confining units (City of Hamilton, 2010).

The groundwater flow regime for the Site was determined by using the groundwater elevations recorded in monitoring wells MW1, MW3, and MW10 for the overburden; and MW6D, MW10D and MW11 for the bedrock. The water table contours lines were completed by using triangulation with linear interpolation. The horizontal hydraulic gradients within the overburden and shale aquifers were estimated from the October 15, 2018 groundwater elevation data. The horizontal hydraulic gradient within the overburden clayey silt till was estimated to be 0.015 m/m and the flow interpreted to be in a north-westerly direction. The horizontal hydraulic gradient within the competent shale across the site was estimated to be 0.011 m/m and the flow interpreted to be in a north-easterly direction. The groundwater contour diagrams, with interpreted groundwater flow directions, for the overburden and bedrock are presented on Figures 9 and 10, respectively.

For the purpose of this discussion, vertical hydraulic gradient was assessed by the difference in groundwater elevations between the shallow and deep nested monitoring wells MW6S and MW6D; MW10S and MW10D; and MW17S and MW17D. The groundwater elevations collected from February 2017 to August 2018 for the set of 3 monitoring nested wells can be referenced from Table 4 above.

A summary of the calculated vertical hydraulic gradients from the groundwater elevation readings is provided on the below in Table 4. A positive head difference represents an upward hydraulic gradient and a negative head difference represents a downward hydraulic

Table 4. Summary of Vertical Hydraulic Gradients

Monitoring	Vertical Hydraulic Gradients					
Location	Jan 26, 2017	Feb 1, 2017	Feb 22, 2017	March 20, 2017		
MW6S (shallow) and MW6D (deep) head difference	NA	NA	0.214+	0.076-		

MW10S (shallow) and MW10 (deep) head difference	NA	NA	0.324+	0.333+
---	----	----	--------	--------

Table 4. Summary of Vertical Hydraulic Gradients Continued

Monitoring		Vertical Hydraulic Gradients						
Location	Apr 27, 2017	Jun 6, 2017	Jun 28, 2017	Jul 31, 2017				
MW6S (shallow) and MW6D (deep) head difference	0.069-	0.038+	0.029-	0.024+				
MW10S (shallow) and MW10 (deep) head difference	0.251+	0.114+	0.054+	0.001+				

Table 4. Summary of Vertical Hydraulic Gradients Continued

Monitoring Monitoring	Vertical Hydraulic Gradients					
Location	Sep 9, 2017	Oct 21, 2017	Nov 13, 2017	Dec 12, 2017		
MW6S (shallow) and MW6D (deep) head difference	0.024-	0.005+	0.005+	0.015-		
MW10S (shallow) and MW10 (deep) head difference	0.008+	0.023-	0.024-	0.006-		

Table 4. Summary of Vertical Hydraulic Gradients Continued

Monitoring	Vertical Hydraulic Gradients					
Location	Jan 15, 2018	Feb 28, 2018	Apr 25, 2018	May 22, 2018		
MW6S (shallow) and MW6D (deep) head difference	NA	0.021-	0.058-	0.034+		
MW10S (shallow) and MW10 (deep) head difference	0.004+	0.118+	0.009+	0.012-		

Table 4. Summary of Vertical Hydraulic Gradients Continued

Table 4. Summary of Vertical Hydraulic Gradients Continued				
Monitoring Location	Vertical Hydraulic Gradients			
	Jul 3, 2018	Jul 26, 2018	Aug 29, 2018	Sep 12, 2018
MW6S (shallow) and MW6D (deep) head difference	0.016-	0.029-	0.030-	NA
MW10S (shallow) and MW10 (deep) head difference	0.060-	0.005-	0.005-	NA
MW17S (shallow) and MW17D (deep) head difference	NA	NA	1.046+	0.911+

Table 4. Summary of Vertical Hydraulic Gradients Continued

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Monitoring Location	Vertical Hydraulic Gradients			
	Sept 24, 2018	Oct 15, 2018	Nov 16, 2018	Dec 12, 2018
MW6S (shallow) and MW6D (deep) head difference	NA	0.034+	0.037+	0.030+
MW10S (shallow) and MW10 (deep) head difference	NA	0.052-	0.060-	0.057-
MW17S (shallow) and MW17D (deep) head difference	0.826+	0.825+	-	-

Table 4. Summary of Vertical Hydraulic Gradients Continued

Table 4. Surfinary of Vertical Hydraulic Gradients Continued				
Monitoring Location	Vertical Hydraulic Gradients			
	Jan 24, 2019	Feb 21, 2019	Mar 27, 2019	Apr 18, 2019
MW6S (shallow) and MW6D (deep) head difference	0.032-	0.033+	0.020-	0.066-
MW10S (shallow) and MW10 (deep) head difference	0.064-	0.007+	0.036-	0.039-
MW17S (shallow) and MW17D (deep) head difference	0.706+	0.671+	0.018+-	0.018+

Table 4. Summary of Vertical Hydraulic Gradients Continued

Table 4. Summary of Vertical Hydraulic Gradients Continued				
Monitoring Location	Vertical Hydraulic Gradients			
	May 22, 2019	Jun 28, 2019		
MW6S (shallow) and MW6D (deep) head difference	0.067-	0.074-		
MW10S (shallow) and MW10 (deep) head difference	0.055+	0.060-		
MW17S (shallow) and MW17D (deep) head difference	0.021+	0.058-		

Vertical hydraulic gradients were observed at the nested well sets during the manual field measurements completed from February 2017 to June 2019 as follows:

MW6S/MW6D

❖ February, June, July, October, and November 2017; May, October, November, December 2018; February and March 2019 (upward indicating a discharge condition).

March, April, June, September, and December 2017; February, April, July and August 2018; and January, April, May and June 2019 (downward indicating a recharge condition).

MW10S/MW10D

- ❖ February to September 2017, January, February 2018; and February and May 2019 (upward indicating a discharge condition)
- October to December 2017; May, July, August, October, November, December 2018; and January, March, April and June 2019 (downward indicating a recharge condition)

MW17S/MW17D

- ❖ August to October 2018; January, March, April and May 2019 (upward indicating a discharge condition)
- June 2019 (downward indicating a recharge condition)

Based on the data obtained at the nested wells MW17S/MW17D, it appears that there is no appears to readings highlighted red has not stabilized at the time they were recorded.

The vertical hydraulic conductivity values at nested wells MW16S/MW16D vary widely from 0.076- (downwards) to 0.214+ (upwards); the vertical hydraulic conductivity values at nested wells MW10S/MW10D vary widely from 0.060- (downwards) to 0.333+ (upwards); while the vertical hydraulic conductivity values at nested wells MW17S/MW17d vary widely from 0.058-(downwards) to 0.826+ (downwards).

The readings obtained at MW17S/MW17D on September 24, 2018, October 15, 2018, January 24, 2019, and February 21, 2019, as shown on Table 3, appears to indicate that groundwater levels have not recovered (stabilized). As a result, the estimated high upwards gradients on these dates should be regarded as inaccurate.

3.10 Estimated Hydraulic Conductivity

3.10.1 Hydraulic Conductivity Tests

The estimated hydraulic conductivity values are provided on the following page in Table 5, and normalized head vs. time curves for each hydraulic conductivity test is provided in Appendix G.

Table 5. Estimated Hydraulic Conductivity Values

Monitoring Well	Hydraulic Conductivity (m/s)	Well Screen Material
MW1	2.4 x 10 ⁻⁸	Clayey Silt Till
MW2	1.9 x 10 ⁻⁸	Clayey Silt Till
MW3	4.3 x 10 ⁻⁹	Clayey Silt Till
MW4	5.3 x 10 ⁻⁶	Shale (Weathered)
MW5	3.1 x 10 ⁻⁷	Contact (Till and Upper Weathered Shale)
MW6-S	Dry – no results	Clayey Silt Till
MW6-D	3.9 x 10 ⁻⁸	Shale (competent)
MW7	2.1 x 10 ⁻⁹	Shale (competent)
MW8	1.6 x 10 ⁻⁵	Shale (Weathered)
MW9	1.8 x 10 ⁻⁷	Shale (Weathered))
MW10-S	Dry – no results	Clayey Silt Till
MW10-D	3.1 x 10 ⁻⁹	Shale (competent)
MW11	1.1 x 10 ⁻⁷	Shale (competent)
MW12	9.6 x 10 ⁻⁶	Shale (Upper Weathered Shale)
MW14	6.8 x 10 ⁻⁶	Shale (Weathered)
MW16	1.4 x 10 ⁻⁶	Clayey Silt Till and Shale (Weathered)
MW17S	2.1 x 10 ⁻⁶	Clayey Silt Till
MW17D	6.8 x 10 ⁻⁶	Shale (Weathered)
MW18	9.6 x 10 ⁻⁶	Shale (Weathered)
MW19	1.3 x 10 ⁻⁵	Shale (Weathered)

Results indicate that the hydraulic conductivity values of the screened clayey silt till (MW1, MW2, MW3, and MW17S) have a range 4.3 x 10⁻⁹ m/s to 2.1 x 10⁻⁶ m/s. This relatively low hydraulic conductivity value is typical of a glacial till. Two additional locations screened in the clayey silt till (MW6-S and MW10-S) were found to be dry after installation. The clayey silt till overburden is of generally lower hydraulic conductivity and could preclude the free flow of water infiltrating from the surface.

The hydraulic conductivity of the upper weathered shale (MW4, MW5, MW8, MW9, MW12, MW14, MW17D, MW18 and MW19), which includes the well installed at the overburden-bedrock contact, spans two orders of magnitude from 1.8 x 10⁻⁷ m/s to 1.6 x 10⁻⁵ m/s. The upper weathered shale is the most permeable geologic unit tested on site.

Lastly, the hydraulic conductivity of the deeper, competent shale (MW6-D, MW7, MW10-D, and MW11) spans 2 orders of magnitude from 1.1 x 10⁻⁷ m/s to 2.1 x 10⁻⁹ m/s. The test results from monitoring well MW7 show it is the least permeable material tested on site. MW7 is also the deepest well installed on site with a depth of 30.5 m. Typical conductivities of shale are less than 10⁻⁹ m/s, as referenced from Table 2.2 in Freeze and Cherry (1979), suggesting that the higher test results obtained from MW11 may indicate a fractured zone within the shale.

3.11 Groundwater Quality

Copies of the laboratory Certificates of Analysis are provided in Appendix H. The analyzed groundwater samples collected from monitoring wells MW1, MW3, MW5, MW6, and MW7 were compared to the following: Ontario Drinking Water Regulation (ODWQS) JAN.1,2018 = [Suite] - ON-DW-STANDARD+GUIDELINES.

The water quality results are provided in Appendix G with the parameters that exceeded the Ontario drinking water standards highlighted. The water quality results indicate that groundwater quality meets the ODWQS, and quidelines with the exception of the following parameters:

colour, Total Dissolved Solids, Colour, Turbidity, Chloride, Hardness, Nitrite, Sulphate, Aluminum, Iron, Manganese, Boron, and Sodium.

E Coli and Total Coliform were identified in the sampled monitoring wells. This could be traced to runoff and recharge of wastes from wild animals

3.12 Site Inspection to Assess Hydrogeologic Features

Significant hydrogeologic features were not identified at the site during the inspection. However, according to the Hamilton Conservation Authority Area Map there are six (6) Regulated Areas in and around the Site. One each is located along Barton Street and McNeilly Road; and four areas at the Site. The Regulated Areas are presented on Figure 5 in Appendix A.

4.0 WATER TAKING EVALUATION & IMPACT ASSESSMENT

The site is proposed to be developed primarily for community use with residential, commercial, institutional, park, and community services. The site is to be serviced by municipal water and sanitary sewer services from the City of Hamilton. The existing site diagram is as shown on Figure 2 in Appendix A; and the proposed development site plan is shown on Figure 3 in Appendix A, as provided by Glen Schnarr & Associates.

The proposed development plan has not been finalized at this time. However, the proposed site development will include Townhouses and Single Detached homes with one-level basements.

This evaluation is based on the following information provided by Branthaven Development Corp:

- 1. All Basements will be one level
- 2. Approximate Townhouse Size: Maximum of 12.95 m x 6.15 m
- 3. Approximate Single Detached Homes: Maximum of 16.9 m x 9.69 m

Based on the results of the subsurface investigation, shallow bedrock generally occurs in the western and eastern areas of the Site at depths as shallow as 0.9 mbgs in BH/MW4.

As a result of the uneven depths to bedrock below ground surface, the excavation for the earthworks and servicing and basements will be completed within the relatively low-permeability upper layer clayey silt, and into the underlying bedrock, depending on the location at the Site.

Maximum Invert Depths of Services

Major utilities (storm and sanitary) are proposed, with servicing branches. It is assumed that the proposed catch basins, sewers and manholes inverts will be located at depths of approximately 4.5 mbgs.

Maximum Basement Foundation Depth

It is assumed that the proposed one level basement will extend to 2.5 mbgs

Groundwater Level

Based on groundwater level monitoring completed at the Site for 30 months, seasonal high groundwater table at the Site was found to be -0.07 mbgs (above ground surface) at MW8 on April 25, 2018.

4.1 Estimating Construction Dewatering Rate

Based on the field observations made during the drilling program and groundwater level monitoring in the completed wells, it is anticipated that groundwater seepage will occur where excavations are made below the groundwater level. If groundwater levels are intercepted within the excavation, adequate pumping must be provided to prevent significant groundwater volumes from accumulating.

To evaluate the potential groundwater control requirements during construction of the proposed underground services and basements, groundwater level was conservatively assumed to be at

Page 26

File: 18270

ground surface i.e. 0.00 mbgs (seasonal highest groundwater depth recorded in April of 2018) for the entire site.

The method suitable for dewatering an area depends on the locations, type, size and depth of the dewatering needs; and the hydrogeological conditions such as stratification, thickness, and hydraulic conductivity of the foundation soils below the water table into which the excavation extends or is underlain. It is assumed that any groundwater dewatering for the Site excavations would likely be completed with standard construction sump pump/well points or equivalent, depending on conditions encountered such as water table elevation and subsurface materials.

The pumps must use appropriate techniques to prevent the pumping of fines and loss of ground during dewatering activities and the flow of water must be appropriately managed so that sediment is not pumped into the proposed discharge point.

Potential dewatering rates were calculated separately for the underground services; and Townhouse and Detached homes to represent different excavation types. For the purposes of this assessment, an open excavation was assumed. The use of trench boxes and conventional shoring could further reduce the amount of groundwater infiltration and would be determined in consultation with the selected subcontractor.

Hydraulic Conductivity Values

The geometric mean of hydraulic conductivity values obtained at four monitoring wells screened across clayey silt across the site was determined to be 4.505 x 10-8 m/s and from eight monitoring wells screened across shallow bedrock across the site was determined to be 5.0865x 10-6 m/s. These values were use in the following calculations

4.1.1 Dewatering Calculations

4.1.1.1 Equations

Underground Services

An estimate of the dewatering rate for the excavation was obtained using the method of dewatering for long narrow trench, partial penetration by a single row of well points for an unconfined aquifer (unconfined conditions) midway between two equidistant and parallel line sources (p.22 of CIRIA, by Somerville, 1986).

The calculation is expressed as:

$$Q = [(0.73 + 0.27 * H-h/H) * x*K (H^2 - h^2)/L]$$

Where: $Q = pumping rate [m^3/s]$

K = hydraulic conductivity [m/s]

H = distance from the static water level to the bottom of the aquifer [m]

h = height of the water table (m) (height of the bottom of excavation above the bottom of the aquifer)

x = length of trench [m]

L= distance to the line source, taken as equal to radius of influence (m), and given

by:

$$L = C (H-h) * \sqrt{K}$$

Where C = 1750 (Source: p. 18 of CIRIA Somerville, 1986)

The following were assumed:

- Depth of Services below ground = 4.50 m
- Target dewatering water level (0.5 m below Sewers inverts) = 4.50 m
 - + 0.50 m = 5.00 m bgs

Townhouses and Detached Homes

The potential groundwater flow rate to the excavation was estimated using the dewatering equation for a fully penetrated well of unconfined aquifer fed by circular source (Powers, et. al., 2007):

$$Q = \pi K (H^2 - h^2) / ln(R_o/r_e)$$

Where: $Q = pumping rate [m^3/s]$

K = hydraulic conductivity [m/s]

H = saturated thickness of the aquifer before dewatering [m] h = saturated thickness of the aquifer after dewatering [m]

R = radius of cone of depression or influence [m]

r_e = equivalent radius [m]

The radius of influence R can be estimated using the following equation:

$$R = Ch^*\sqrt{K}$$

Where: C = is a factor equal to 3000 for radial flow to a pumping well

h = required drawdown [m]

K = hydraulic conductivity [m/s]

Dewatering of a rectangular area can be accomplished by using an equivalent radius (re) to assess drawdown where re is given by the following equation:

$$r_e = \sqrt{(length * width/\pi)}$$

The following were assumed:

- Depth of Basement below ground surface = 2.50 m
- Target dewatering water level (0.5 m below base of excavation/basement floor) = 2.50 m
 + 0.50 m = 3.00 m bgs

4.1.1.2 Results

Storm/Sanitary Sewers

Area with Clayey Silt (overburden thickness greater than 6.0 m)

Using the dewatering equations and trench excavation lengths of 50 m, the maximum total amount required to be pumped for dewatering the excavation associated for the storm/sanitary sewer construction is approximately 3,424 L/day. Applying a safety factor of 1.2, the flow rate for dewatering the assumed excavation will be range approximately 4,109 L/day. These calculations and associated assumptions are provided in Appendix I.

Area with Shallow Bedrock (overburden thickness 0.9 m to 2. 7 m)

Using the dewatering equations and trench excavation length of 50 m, the maximum total amount required to be pumped for dewatering the excavation associated for the storm/sanitary sewer construction is approximately 46,327 L/day. Applying a safety factor of 1.2, the flow rate for dewatering the assumed excavation will be range approximately 55,592 L/day. These calculations and associated assumptions are provided in Appendix I

Townhouse and Detached Building Basement

The plans view of the proposed excavation areas are provided in the Table below.

Construction	Length (m)	Width (m)
Townhouses	12.95	6.15
Detached Homes	16.9	9.69

Areas with Clayey Silt (overburden thickness greater than 3.0 m)

Townhouses

The total amount required to be pumped for dewatering the excavation associated with townhouses basement construction is approximately 909 L/day. Applying a safety factor of 1.2, the flow rate for dewatering the assumed excavation will be approximately 1,091 L/day. These calculations and associated assumptions are provided in Appendix J.

Detached Homes

The total amount required to be pumped for dewatering the excavation associated with the townhouse construction is approximately 1,236 L/day. Applying a safety factor of 1.2, the flow rate for dewatering the assumed excavation will be approximately 1,483 L/day. These calculations and associated assumptions are provided in Appendix J.

Areas with Shallow Bedrock (overburden thickness 0.9 m to 2.7 m)

Townhouses

The total amount required to be pumped for dewatering the excavation associated with Townhouses construction is approximately 38,843 L/day. Applying a safety factor of 1.2, the flow rate for dewatering the assumed excavation will be approximately 46,612 L/day. These calculations and associated assumptions are provided in Appendix J.

Detached Homes

The total amount required to be pumped for dewatering the excavation associated with Townhouses construction is approximately 53,326 L/day. Applying a safety factor of 1.2, the flow rate for dewatering the assumed excavation will be approximately 69,991 L/day. These calculations and associated assumptions are provided in Appendix J.

4.1.2 Short Term Dewatering Volume

Underground Services

It was determined that the excavation dewatering rates for proposed underground services will range from 4,109 L/day to 55,592 L/day for 50 m length of excavation, depending on if excavation is completed in overburden of bedrock.

Underground Parking Levels

It was determined that the excavation dewatering rates for the proposed underground parking levels will range from 1,091 L/day to 79,989 L/day, depending on if excavation is completed in overburden of bedrock.

4.1.3 Long Term Dewatering (Post Construction)

The seasonal high groundwater level at the Site was determined to be above ground (~0.07 m). As a result, long-term dewatering of the Townhouses and Detached Homes will be required at the Site. The dewatering rates will range from 1,364 L/day to 69,991 L/day, depending on if excavation is completed in overburden of bedrock.

Permit to Take Water

The maximum dewatering rate for construction excavation at the site is estimated to be approximately $69,991 \text{ L/day} = \sim 70 \text{ m3/day}$ under normal condition. It should be noted that that normal condition does not include extreme weather events. An Environmental Activity and Sector Registration (EASR) is required for the Site as estimated dewatering volume is more than 50,000 L/day and less than 400,000 L/day.

4.1.4 Dewatering Procedure

Based on the results of the hydraulic conductivity tests, seepage through the overburden and bedrock the Site should be feasible to be handled by a sump/well point dewatering system.

The following general construction practices can be implemented to minimize the volume of water to be extracted:

- Schedule construction outside the spring period when the water table is typically elevated and avoid constructing during period of active precipitation.
- It is recommended that any excavations should be staged or constructed in such a manner to be able to manage dewatering volume conveniently.
- Reduce the length of time during which the open cut remains open.

4.1.5 Water Management and Discharge Plan

Water extracted during construction dewatering is required to be discharged into an approved location which could be storm, sanitary or combined sewers or surface water body near the Site.

As per the ByLaw, in order to issue a discharge approval, information relating to the quality and quantity of the discharge must be provided to City of Hamilton. It is strongly recommended that the applicant provide this information eight to twelve weeks prior to the proposed start of discharge.

It is expected that the rate and total volume of the discharge during dewatering be recorded. This would require that the discharge line be equipped with a flow meter capable of monitoring the discharge rate and a volume totalizer to record the total volume of water discharge. The discharge rate and total daily flow will need to be recorded with the records maintained on site. This can be accommodated by installing a flow meter on the discharge line.

A T-Coupling and valves should be installed downstream of the flow meter, which if necessary can be operated to divert flow for mitigation purposes.

If needed, a weir tank and filter bag can be utilized during dewatering to reduce total suspended solids (TSS) and turbidity prior to discharging of the water into either the City's Sewer Systems or water course.

4.2 Assessment of Potential Impacts and Water Management

4.2.1 Impact to Existing Groundwater Users

A search of the Ontario Ministry of the Environment Water Well Records for an area extending about 500 m outward from the edge of the excavation was completed, identifying no Water wells in the database. As a result, it is not anticipated that there will be any impact to the existing water wells.

4.2.2 Impact to Surface Water and Natural Functions of the Ecosystem

According to the HCA, there are protected areas in and around the site as Shown on Figure 5 in Appendix A. The nearest surface water to the Site Lake Ontario is located approximately 650 m southeast of the site. The groundwater dewatering activities will result in localized depression of the groundwater table, and it is anticipated that there will be impact within the estimated maximum radius of influence of approximately 20 m calculated in Appendix J.

4.2.3 Contaminants Impacts

This occurs when pre-existing ground or groundwater contamination is mobilised and transported where transmission pathways are created.

There are no known sources of contamination at the site. As a result, there is no potential for mobilization of contaminants or creation of transmission pathways during the planned groundwater dewatering activities.

4.2.4 Geotechnical Impacts

Geotechnical impacts occur where the geotechnical properties or state of the ground are changed by groundwater control activities. The most common type of impact in this category is ground settlement, with the corresponding risk of distortion and damage to structures, services and other sensitive infrastructure.

Ground settlement can be caused by two principal mechanisms:

- Increases in effective stress as a result of lowering of groundwater levels, resulting in compression and consolidation of the ground. Such settlements are an unavoidable consequence of lowering of groundwater levels
- Removal of fine particles from the ground (loss of fines) which can occur when poorly controlled sump pumping draws out soil particles with the pumped water. With good

design and implementation, loss of fines (and the associated settlement risk) can be avoided.

The Site is located in a developed area of Stoney Creek. It is anticipated that there will be no impact beyond the radius of influence of approximately 20.0 m calculated in Appendix J.

Dewatering could be handled by pumping from a sump/well point dewatering system. The well sump/point system used for lowering the water table within the excavation must be properly screened and installed to ensure that pumping will not remove sediment from the low permeability overburden aquifer. Removal of significant fines may result in the formation of voids and the loss of ground.

Base on the above, potential geotechnical impacts are anticipated during dewatering at the Site. Surrounding buildings and roads within 20 m of the Site should be monitored by geotechnical instrumentation to determine impact, if any.

The proposed monitoring and mitigation plans are presented in Sections 5 and 6, respectively

5.0 PROPOSED MONITORING PLAN

5.1 Construction Monitoring

Once construction dewatering is initiated it will be difficult to stop pumping or significantly reduce the rate of pumping without disrupting construction activities. It will however be possible to monitor the drawdown response at the construction site and to adjust the pumping rate to optimize drawdown and the associated pumping rate.

5.2 Management of Dewatering Abstraction

5.2.1 Monitoring, Trigger Levels and Management Responses

Abstraction management is critical to ensure target water levels within the construction zone are met, but that over-pumping does not occur.

Target groundwater levels in- and outside excavations will be set individually for each dewatering monitoring well based on location, aquifer and construction requirements, in-line with stated dewatering aims above.

Trigger levels for wells will typically be set 0.5 m above the dewatering target and 1.0 m below the dewatering target to give a 1.5 m target operational zone. These targets may be reviewed and adjusted to decrease size of the operational target zone and increase the factor of safety.

If monitoring indicates that dewatering zone groundwater levels exceed the upper trigger levels (i.e. required drawdown is not being achieved or maintained) management actions are available (in order of preference):

- Adjust automatic pump start and stop water levels;
- Increase pumping rates within the constraints of the system; and/or
- Install additional abstraction capacity (well points, spears or sump pumps).

If monitoring indicates that excavation zone groundwater levels are below the lower trigger levels (i.e. excessive drawdown) management actions available are (in order of preference):

- Adjust automatic pump start and stop water levels: and/or
- Decrease pumping rates; and/or
- Reduce the number of pumps operating.

5.2.2 Contingency Responses

If management responses prove to be insufficient to achieve and maintain the target levels, excavations may be slowed or suspended to enable contingencies to be implemented. Available contingency measures that will be assessed include (in order of preference):

- Construction of additional dewatering wells, spears or sumps;
- Construction of additional drains or groundwater control structures;

Excavation would resume when the required drawdown is able to be reliably obtained.

5.2.3 Settlement Monitoring

Implementation of a settlement monitoring plan is recommended to be completed within a radius of influence of approximately 20.0 m of the Site. Prior to commencing dewatering perform condition surveys of adjacent properties that could potentially be affected by dewatering considering anticipated effects and specific dewatering design.

A typical settlement monitoring system would comprise a series settlement markers sited at various distances beyond and at the site, within the zone of influence of groundwater drawdown. Monitoring points should be surveyed to an accuracy of +/-2 mm. Note that the reference benchmark must be located beyond the extent of the anticipated influence of groundwater drawdown. For very high risk projects, incorporation of piezometer standpipes will allow confirmation of the field groundwater drawdown and will enable calibration of field settlement observation with theoretical assessments.

Alert and Action settlement thresholds should be set, selected though theoretical assessment of anticipated settlements and review of sensitivity of adjacent structures and infrastructure. It is prudent to implement staged groundwater drawdown, providing hold points to allow adequate time to enable observation of the delayed settlement response of the ground.

F

6.0 PROPOSED MITIGATION PLAN

Mitigation would involve the reduction or elimination of the impacts induced by construction dewatering. As noted above, the potential exists for dewatering to cause ground settlement, with the corresponding risk of distortion and damage to structures, services and other sensitive infrastructure. There is also a potential for dewatering to impact the surface water system/Protected areas in and around the Site.

The groundwater dewatering activities will result in localized depression of the groundwater table, and it is anticipated that there will be no impact beyond the radius of influence of 20.0 m.

Geotechnical Impact

As noted above, the potential exists for dewatering to cause ground settlement, with the corresponding risk of distortion and damage to structures, services and other sensitive infrastructure.

Methods to limit adverse dewatering settlement are:

- Settlement associated with loss of fines can be mitigated through appropriate design of the dewatering system to control flow velocity and provide screens and/or filters matched to the grading of the in-situ soils. Entrainment of fines must be monitored during construction; actions could include analysis of Total Suspended Solids (TSS) in discharge water and/or monitoring of accumulation of sediment in sedimentation tanks.
- Drawdown-induced ground settlement is mitigated though pre-construction estimation of groundwater drawdown and settlement coefficients to identify risk prior to drawing the groundwater down, and water level monitoring in monitoring boreholes to check that larger drawdowns than anticipated at distance from the excavation are not occurring.
- Differential settlement is most problematic; this can be reduced by managing the rate of drawdown and understanding where clear changes in soil type occur. Should potentially damaging settlement be indicated, these can be mitigated by installing groundwater cutoffs to stem or restrict groundwater flow and limit drawdown beyond the site.
- Provide sufficient temporary support to excavations to maintain stability, where seeps might otherwise induce progressive collapse of the sides of the excavation.
- During dewatering implement staged drawdowns (where appropriate), and monitor field settlement and water level changes beyond the immediate site, comparing against theoretical settlements and water levels to allow warning of potential dewatering settlement issues.

Impact to Surface Water Bodies/Regulated Areas

As noted above, the potential exists for dewatering impact to surface water and regulated areas close to the Site.

All identified water bodies/regulated areas at and at close proximity to the Site should be monitored pre, during, and post- construction. Should potentially damaging impact be identified, this can be mitigated by installing groundwater cut-offs to stem or restrict groundwater flow and limit drawdown.

7.0 SITE DEVELOPMENT, HYDROGEOLOGY and WATER BALANCE

The following discussion and recommendations are based on the data gathered for the study and are presented for site planning purposes.

7.1 Site Development Concept

The Site is approximately 105.70 ha in size, including existing areas that are not planned for development, and existing residential holdout properties that are planned for development. It was assumed that including the existing areas will have a minor effect on the water balance calculations. The site is proposed to be developed primarily for community use with residential, commercial, institutional, park, and community services, parking areas, and roadways. The Site is to be serviced by municipal water and sanitary sewer services from the City of Hamilton

The following summarizes the currently proposed approximate land coverage areas for the development:

•	Total Area	105.70 ha
•	Green space, SWMP, natural areas	61.93 ha
•	Roadways, walkways, parking	22.15 ha
•	Building roof area	21.62 ha

The above-noted proposed land coverage at the Site is based upon information provided by the Block 3 Landowners Group and the Concept Plan of the Proposed Development presented on Figure 3 in Appendix A of this report; and does not include existing areas that are not planned for development. It includes existing residential holdout properties that are planned for development.

7.2 Principal Hydrogeologic Features and Functions

The results of the study indicate that the site hydrogeologic characteristics can be summarized as follows:

- Generally, the site stratigraphy consists of a surficial layer of disturbed soil (in the areas of the fields actively utilized for agriculture), underlain by clayey silt till (Halton Till) and Queenston red shale.
 - ❖ Slightly coarser medium grained sand was identified overlying the Halton Till in boreholes BH1, BH2, BH3, BH6-S/D, and BH13, which are all located in the southern portion of the site. This southern area has been previously identified in OGS maps as containing coarse grained glaciolacustrine deposits. Although coarse grained sands and gravels were not identified in this area, the medium grained sand was the coarsest overburden material identified on the site.
 - ❖ Shale bedrock was encountered at varying depths across the site, ranging from 0.9 m in borehole BH4 to 18.9 m in borehole BH17D. The distance between BH4 and BH17D is approximately 340 m. In referencing the OGS surficial geology maps for the area, bedrock was anticipated to be found at or immediately below surface across the central portion of the site. Instead, we found a bedrock low, extending to a measured depth of 18.9 mbgs trending in a northeast direction across the centre of the site
- Groundwater flow at the site is controlled by the surficial geology present across the area. The overburden present at surface includes the low permeability clayey silt Halton Till found in the central and northern portions of the site, and the medium

grained silty sand in the southern portion of the site. The low hydraulic conductivity (10⁻⁹ to 10⁻⁸ m/s) of the Halton Till will reduce the amount of groundwater infiltration, recharge, or flow, and as a result, water will tend to flow overland and drain along surface watercourses after rainfall or melt. The recharge rate for a clayey silt till ranges from approximately 100 to 125 mm/year (MOE, 1995). The medium grained silty sand located in the southern portion of the site was found overlying the Halton Till. Silty sand has a typical recharge rate of 150 to 200 mm/year (MOE, 1995).

- The water table present on site in the Halton Till ranges from 93.01 masl in MW1 to 80.91 masl in MW10-S. The groundwater flow within the Till is to the northwest. The water table present within the underlying Queenston shale ranges from 91.18 masl in MW4 to 85.60 masl in MW10-D. The groundwater flow within the shale was to the northeast. The groundwater directions were derived from groundwater level monitoring data recorded at the Site on October 15, 2018.
- Vertical hydraulic gradients were observed at the nested well sets during the manual field measurements completed from February 2017 to June 2019 as follows:
 - MW6S/MW6D: February, June, July, October, and November 2017; May, October, November, December 2018; February and March 2019 (upward indicating a discharge condition); and March, April, June, September, and December 2017; February, April, July and August 2018; and January, April, May and June 2019 (downward indicating a recharge condition).
 - MW10S/MW10D: February to September 2017, January, February 2018; and February and May 2019 (upward indicating a discharge condition); October to December 2017; May, July, August, October, November, December 2018; and January, March, April and June 2019 (downward indicating a recharge condition)
 - ❖ MW17S/MW17D: August to October 2018; January, March, April and May 2019 (upward indicating a discharge condition); and June 2019 (downward indicating a recharge condition).

The vertical hydraulic conductivity values at nested wells MW16S/MW16D vary widely from 0.076- (downwards) to 0.214+ (upwards); the vertical hydraulic conductivity values at nested wells MW10S/MW10D vary widely from 0.060- (downwards) to 0.333+ (upwards); while the vertical hydraulic conductivity values at nested wells MW17S/MW17D vary widely from 0.058- (downwards) to 0.826+ (downwards).

The readings obtained at MW17S/MW17D on September 24, 2018, October 15, 2018, January 24, 2019, and February 21, 2019, as shown on Table 3, appears to indicate that groundwater levels have not recovered (stabilized). As a result, the estimated high upwards gradients on these dates should be regarded as inaccurate.

- The water table present within the glaciolacustrine overburden materials at the site ranges from -0.02 (slightly artesian condition) to 7.24 meters below ground surface (mbgs); and the water table present within the shale bedrock ranges from -0.07 (slightly artesian condition) to 3.91 mbgs. It should be noted that the groundwater levels usually fluctuate seasonally depending on the amount of precipitation and surface runoff; and values will also depend if the water levels has fully recovered before readings were taken.
- During drilling activities, the surficial Halton Till was typically found to be very dense
 and dry. Based on the physical characteristics of the till and the low hydraulic
 conductivities measured, dewatering during construction activities will be minimal
 and may likely only be required for surface runoff and pooling in locations where
 construction extends only into the till. If construction activities are planned to extend
 into the upper weathered bedrock areas found in the northwest and eastern portions

of the site, long term dewatering will likely be required due to the shallow potentiometric surface observed in the shale.

- Once the proposed construction excavation depths have been finalized, a detailed dewatering plan should be prepared and anticipated dewatering flows estimated based.
- The majority of the surficial material on site consists of clayey silt Halton Till and would not be well suited to groundwater recharge due to the relatively low hydraulic conductivity of the glacial soils.
- The topography on the northern portion of the site gently slopes toward the northeast of the site.

The above noted hydrogeological characteristics should be considered in conjunction with the requirement for site development plans and in particular storm water management practices at the site. Further information regarding water balance at the site is presented in the following section.

Based on the above information, the following considerations should be made with respect to maintenance of hydrogeologic functions and hydrogeologic conditions at the site:

• The majority of the site consists of glaciolacustrine clayey silt material overlain by silty sand/sandy silt in the southwest area of the Site. The clayey silt was observed to be overlying shale bedrock. The clayey silt and shale bedrock would not be well suited to groundwater recharge due to the relatively low hydraulic conductivity of the these layers. Engineered infiltration methods, other Best Management Practices and low impact development methods should be implemented accordingly.

7.3 Water Balance

The Site is proposed to be developed primarily for community use with residential, commercial, institutional, park, and community services. The development plan will also consist of parking areas, and access routes. Without mitigation, this will lead to a decrease in infiltration and groundwater recharge.

The surface soils at the Site provide limited water recharge into the shallow groundwater system. This is a result of the relatively impermeable clayey silt soil encountered below surface across the Site. Based on the subsurface investigation completed for the Site, no enhanced zones of groundwater flow or transmission were identified across the Site. However, limited groundwater recharge will occur at the Site due to the coverage of most of the Site area are by buildings, parking areas, and paved access routes.

Notwithstanding the above, one of the objectives during development should be to ensure that the overall volume of groundwater recharge is not significantly impacted. A water balance for the Site was prepared to assess the distribution of precipitation, evapotranspiration, infiltration and runoff for existing (pre-development) conditions as well as post-development conditions. The water balance calculations are detailed in Appendix K.

Evapotranspiration represents the transport of water from the earth back to the atmosphere and is an important component to a water balance calculation. The Thornthwaite method was used to calculate potential evapotranspiration typical for the region. By using equations 8, 9, and 10 in Thornthwaite (1948), the potential evapotranspiration for the region was found to be 609 mm/year. The calculation is included in Appendix K.

As was presented in Table 1, the annual total precipitation was taken from the Hamilton A climate station for the period of 1981 to 2010. Total annual precipitations for the area is 930 mm/year, and mean daily temperature is 7.9 °C.

In summary, the typical shallow groundwater recharge rate for the Site is estimated to be 100 mm/year. This recharge was referenced from the MOE Table 2 and Table 3 approach in the Technical Information Requirements for Land Development Applications (MOE, 1995). The post-development water budget was calculated and is presented in Appendix K.

The water balance (pre and post-development) is summarized from data in Table 6 in Appendix K and comparison of pre and post-development water balance is summarized on the following page in Table 6.

Table 6. Comparison of Pre and Post-Development Water Balance

Development Phase	Precipitation (m³)	Evapotranspiration (m³)	Infiltration (m ³)	Run-Off (m³)
Pre-Development	983,010	545,177	100,710	337,123
Post-Development	983,010	377,154	69,671	536,185

The increase in run-off from 337,123 m³ to 536,185 m³ is the result of developing and installing hard surfaced or impermeable areas across the Site. The post-development impermeable areas also results in the decrease of evapotranspiration and infiltration across the Site.

The above-noted values and associated calculations found in Appendix K are considered to be conservative and are based on the following assumptions:

- No infiltration will occur beneath the internal roads, public walkways, buildings or driveways.
- No evapotranspiration will occur from the internal roads, public walkways, buildings or parking areas.

7.4 Mitigating Measures to Maintain Hydrogeological Functions

7.4.1 Maintenance of Groundwater Recharge

The Site is considered not to have significant amounts of groundwater recharge due to the relatively low-permeable soils encountered beneath the Site; most of the entire surface area coverage by buildings, parking areas, and paved access routes. As a result, infiltration values are expected to decrease from 100,710 m³/year to 69,671 m³/year, based on the water balance calculations outlined in Appendix K. This decrease in infiltration indicates that approximately 15% of the roof runoff from the buildings must be re-directed towards overland flow or infiltration facilities in order to match the pre-development infiltration rates and surface flow to the pond. It is recommended that development planners collaborate with storm water specialists or engineers to be able to maintain pre-development water balance and recharge at the Site through storm water management design techniques. Perhaps Low Impact Development techniques would be applicable for this Site.

7.4.2 Maintenance of Groundwater Transmission Pathways

It is understood that the earthworks and servicing will be completed within the low-permeability silty clay, clayey silt. The overall continuity of the groundwater flow at the Site should be maintained, where practical. Generally, any groundwater transmission pathways encountered can be maintained through the following means:

- The excavation of any underground services or utilities across more permeable layers
 may interrupt the groundwater flow. As good practice, it is recommended that trench
 backfilling operations be carried out with materials that are similar to the materials that
 have been excavated. In particular, if any more permeable sand zones are encountered,
 they must not be truncated by backfilling of the excavation or trench using lower
 permeability materials (such as the clayey silt identified across the subject Site).
- Groundwater flow may occur into the open shallow excavations if more permeable
 pockets of deposits, such as silty sand, are encountered; however, Based on the results
 of the subsurface investigation, groundwater control (such as from wells or well points) is
 anticipated during construction. It is recommended that any excavations should be
 staged or constructed in such a manner to avoid the collection of overland drainage.

8.0 SUMMARY AND CONCLUSIONS

The following summarizes the results of the investigation:

- The Site is characterized by glaciolacustrine material. Silty clayey silt, Silty sand/Sandy silt were encountered across the Site. Beneath the quaternary deposits on the Site is bedrock of the Queenstone Formation.
- Monitoring wells were installed into the overburden clayey silt Halton Till, the upper weathered Queenston shale, and the deeper competent Queenston shale.
- Shale bedrock was encountered at varying depths across the site, ranging from 0.9 m in borehole BH4 to 18.9 m in borehole BH17D. The distance between BH4 and BH17D is approximately 340 m. In referencing the OGS surficial geology maps for the area, bedrock was anticipated to be found at or immediately below surface across the central portion of the site. Instead, we found a bedrock low, extending to a measured depth of 18.9 mbgs trending in a northeast direction across the centre of the site.
- The hydraulic conductivity of the screened clayey silt till (MW1, MW2, and MW3) is relatively consistent, spanning only a single order of magnitude from 4.3 x 10⁻⁹ m/s to 2.4 x 10⁻⁸ m/s, with the exception of MW17S with a value of 2.1 x 10⁻⁶ m/s. This relatively low hydraulic conductivity is typical of a glacial till.
- The hydraulic conductivity of the upper weathered shale (MW4, MW5, MW8, MW9, MW12, MW14, MW17D, MW18, and MW19), which includes the well installed at the overburden-bedrock contact, spans two orders of magnitude from 1.8 x 10⁻⁷ m/s to 1.6 x 10⁻⁵ m/s. The upper weathered shale is the most permeable geologic unit tested on site.
- The hydraulic conductivity of the deeper, competent shale (MW6-D, MW7, MW10-D, and MW11) spans 2 orders of magnitude from 1.1 x 10⁻⁷ m/s to 2.1 x 10⁻⁹ m/s.
- The groundwater flow within the Till is to the northwest; and the groundwater flow within the shale is to the northeast.
- The majority of the surficial material on site consists of clayey silt Halton Till and would not be well suited to groundwater recharge due to the relatively low hydraulic conductivity of the glacial soils.
- If earthworks and servicing is planned for construction within the low-permeability upper clayey silt till, dewatering during construction activities will likely be minimal and may likely only be required for surface runoff and pooling.
- If construction activities are planned to extend into the upper weathered bedrock areas found in the northwest and eastern portions of the site, groundwater transmission pathways may be encountered and interrupted. As good practice, it is recommended that trench backfilling operations be carried out with materials that are similar to the materials that have been excavated. In particular, if any more permeable silty zones are encountered, they must not be truncated by backfilling of the excavation or trench using lower permeability materials (such as the clayey silt identified across the subject site).
- If excavation into the Queenston shale is contemplated, the water level within the shale will locally rise to its potentiometric surface/water table, which has been identified as ranging from -0.07 mbgs to 3.91 mbgs. If excavation into the glaciolacustrine overburden materials at the site is contemplated, water level within
- will locally rise to its potentiometric surface/water table ranges from -0.02 (slightly artesian condition) to 7.24 meters below ground surface (mbgs). The data presented in this report can be used by civil engineers, planners, and builders to make decisions based on residential basement construction and long term dewatering methods.

• Once the proposed construction excavation depths have been finalized and the service excavation depths confirmed, a detailed dewatering plan should be prepared and anticipated dewatering flows estimated.

9.0 CLOSURE

We trust this report is satisfactory for you purposes. If you have any questions regarding our submission, please do not hesitate to contact this office.

Yours truly,

Landtek Limited

Henry Erebor, M.Sc., P.Geo.,

10.0 REFERENCES

- AME Materials Engineering. 2009. Preliminary Geotechnical Investigation, Barton Street Properties, Barton Street and Fifty Road, Stoney Creek Hamilton, Ontario. Prepared for 1312773 Ontario Inc. Project No. 40236.210. December 2009.
- Aquafor Beech Limited. 2012. Stoney Creek Urban Boundary Expansion Area (SCUBE) East Subwatershed Study. Prepared for The City of Hamilton. March 22, 2012. Aquafor report reference 64711.
- Chapman, L.J. and Putnam, D.F. 1984: Physiography of Southern Ontario; Ontario Geological Survey, Map P.2715 (coloured). Scale 1:600 000.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario; Ontario Geological Survey, Miscellaneous Release—Data 228.
- City of Hamilton Public Work Department. 2010. Vulnerability Assessment and Scoring of Wellhead Protection Areas, City of Hamilton, Ontario. Environment and Sustainable Infrastructure Division. Prepared by Earthfx Incorporated, Toronto, Ontario. April 2010.
- Feenstra, B.H. 1975. Quaternary Geology of the Grimsby Area, Southern Ontario; Ontario Div. Mines, Prelim. Map P.993, Geol. Ser., scale 1:50,000. Geology. 1974.
- Freeze, R.A., Cherry, J.A. 1979. Groundwater. Prentice Hall, New Jersey.
- Hamilton Conservation Authority. 2016. Regulated Area Map Tool. Updated July 22, 2016.
- Johnson, M.D., Armstrong, D.K., Sanford, B.V., Telford, P.G., and Rutka, M.A. 1992. Paleozoic and Mesozoic geology of Ontario: in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2, p.907-1010.
- Liberty, B.A., Bond, I.J., and Telford, P.G. 1976. Paleozoic geology of the Hamilton area, southern Ontario: Ontario Geological Survey. Map 2336, scale 1:50 000.
- Ministry of the Environment and Climate Change. 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995. Ontario Ministry of Environment and Energy.
- Ministry of the Environment and Climate Change. 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act.* April 15, 2011. Ontario Regulation 153/04.
- Ministry of the Environment and Climate Change. 2015. Source Protection Plan, Hamilton Region. Drinking Water Source Protection Act for Clean Water. Prepared on behalf of the Halton-Hamilton Source Protection Committee in July 2015, Approved by the Minister of the Environment and Climate Change on August 5, 2015.
- Ministry of the Environment and Climate Change. 2010. Source Water Protection, Interactive Map. http://www.applications.ene.gov.on.ca/swp/en/index.php

Natural Resources Canada. 2012. The Atlas of Canada. Available online at http://atlas.nrcan.gc.ca/auth/english/index.html. Accessed February 2017.

Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.

Ontario Geological Survey. 2016. Quaternary Geology of Ontario, 1:100,000. OGS Earth Application. Last modified Sept. 7, 2016.

Ontario Regulation (O.Reg.) 169/03: Ontario Drinking Water Standards (ODWS). Last amendment: O.Reg. 327/08. http://www.e-laws.gov.on.ca/html/regs/english/elaws regs 030169 e.htm.

Ontario Geological Survey, OGS Earth. Quaternary Geology of Ontario

Ontario Geological Survey, OGS Earth. Bedrock Geology of Ontario

Ontario Geological Survey, OGS Earth. Physiography of Southern Ontario

11.0 LIMITATIONS

The conclusions and recommendations given in this report are based on information determined at the borehole locations. Subsurface and ground water conditions between and beyond the boreholes may be different from those encountered at the borehole locations, and conditions may become apparent during construction that could not be detected or anticipated at the time of the geotechnical investigation. It is recommended practice that Landtek be retained during construction to confirm that the subsurface conditions throughout the site are consistent with the conditions encountered in the boreholes.

The comments made in this report on potential construction problems and possible remedial methods are intended only for the guidance of the designer. The number of boreholes may not be sufficient to determine all the factors that may influence construction methods and costs. For example, the thickness and quality of surficial topsoil or fill layers may vary markedly and unpredictably. Contractors bidding on the project, or undertaking construction on the site should make their own interpretation of the factual borehole information, and establish their own conclusions as to how the subsurface conditions may affect their work.

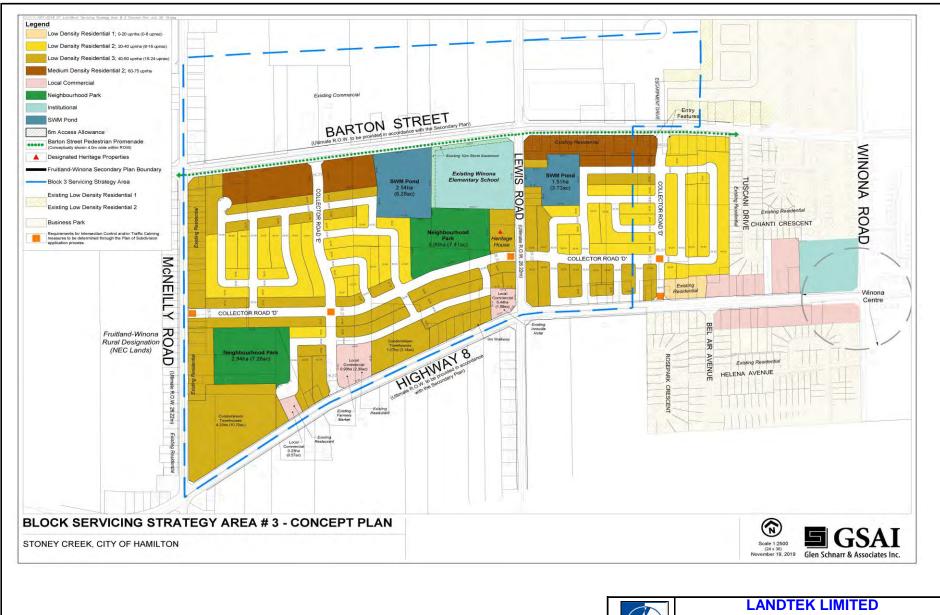
The survey elevations in the report were obtained by Landtek or others, and are strictly for use by Landtek in the preparation of the geotechnical report. The elevations should not be used by any other parties for any other purpose.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Landtek accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

This report does not reflect environmental issues or concerns related to the property unless otherwise stated in the report. The design recommendations given in the report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report. Since all details of the design may not be known, it is recommended that Landtek be retained during the final design stage to verify that the design is consistent with the report recommendations, and that the assumptions made in the report are still valid.

APPENDIX A

FIGURES


File: 18270

	L		K LIMITED
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale:	See Map	Date: November 2018
Project:	Hydrogeological Investigation		
	Fruitland -Winona BSS # 3		
	Stoney Creek, Ontario		
Title:	Figure 1: Site Location		
Project No.	18270		

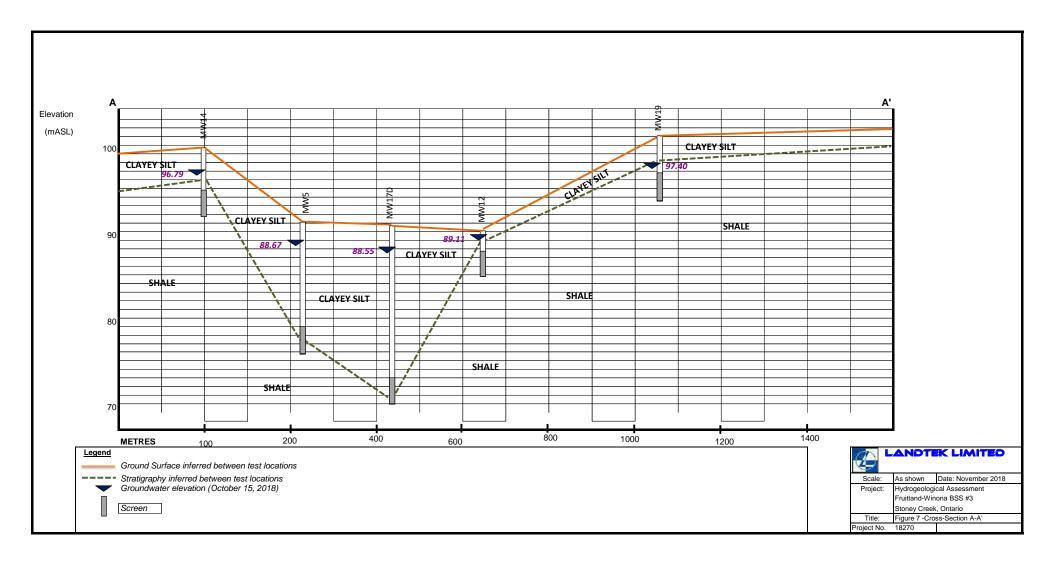
	LANDTEK LIMITED		
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale:	On Plan	Date: November 2018
Project:	Hydrogeological Investigation		
	Fruitland-Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 2: Existing Site Plan		
Project No.	18270		

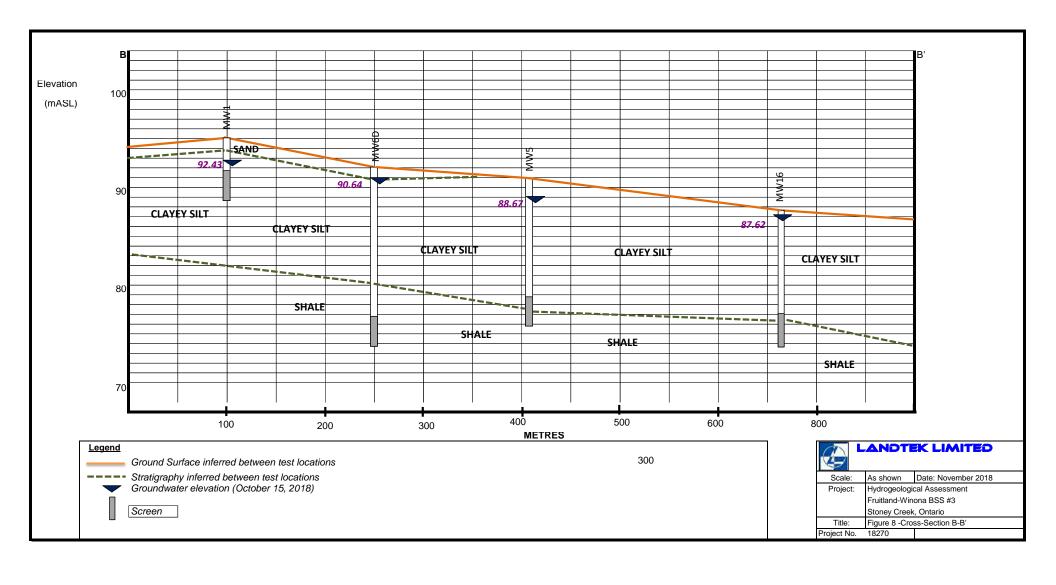
	LANDTEK LIMITED CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale: NA Date: January 2020		
Project:	Hydrogeological Investigation		
	Fruitland -Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 3: Proposed Site Concept Plan		
Project No.	18270		

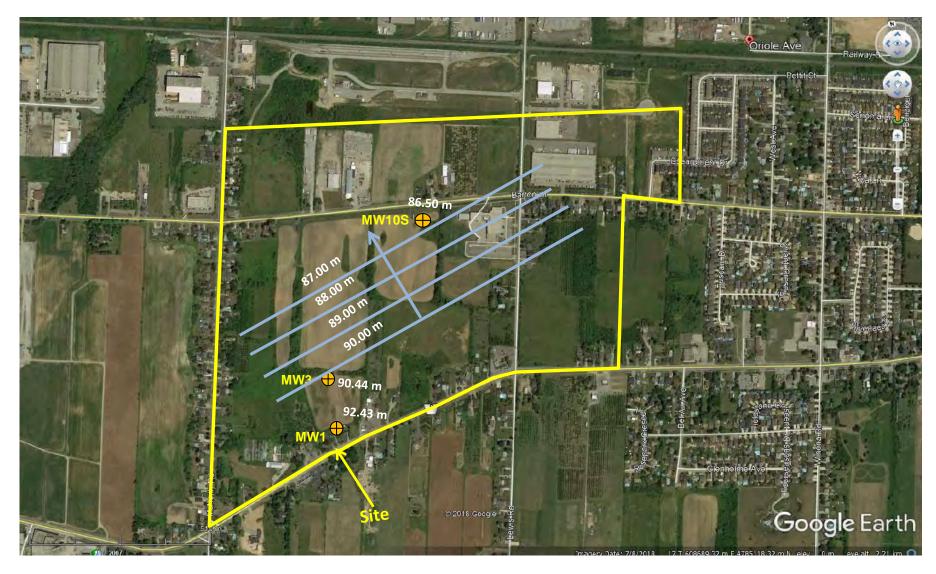
Legend
---- Cross-Sections

	LANDTEK LIMITED		
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale: 1:1096	Date: November 2018	
Project:	Hydrogeological Investigation		
	Fruitland-Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 4: Monitoring Wells Locations Plan		
Project No.	18270		

Legend


	LANDTEK LIMITED		
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale: 1:1096 Date: November 2018		
Project:	Hydrogeological Investigation		
	Fruitland-Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 5: Regulated Areas		
Project No.	18270		




MOE Water Well Locations

Latitude: 43. 19539, Longitude: -79.64408 (UTM Zone: 17, Easting: 610168, Northing: 4783406)

	L	ANDTE	< LIMITED
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale:	See Map	Date: November 2018
Project:	Hydrogeological Investigation		
	Fruitland-Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 6: MOECC Water Wells Locations		
Project No.	18270		

LEGEND

 \bigoplus

Borehole/Monitoring Well

Groundwater Flow Direction

Groundwater Level Contour

88.00 m

Groundwater Elevation

_			
	LANDTE	< LIMITED	
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale: 1:1096	Date: November 2018	
Project:	Hydrogeological Investigation		
	Fruitland-Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 9: Groundwater Contour - Overburden		
Project No.	18270		

LEGEND

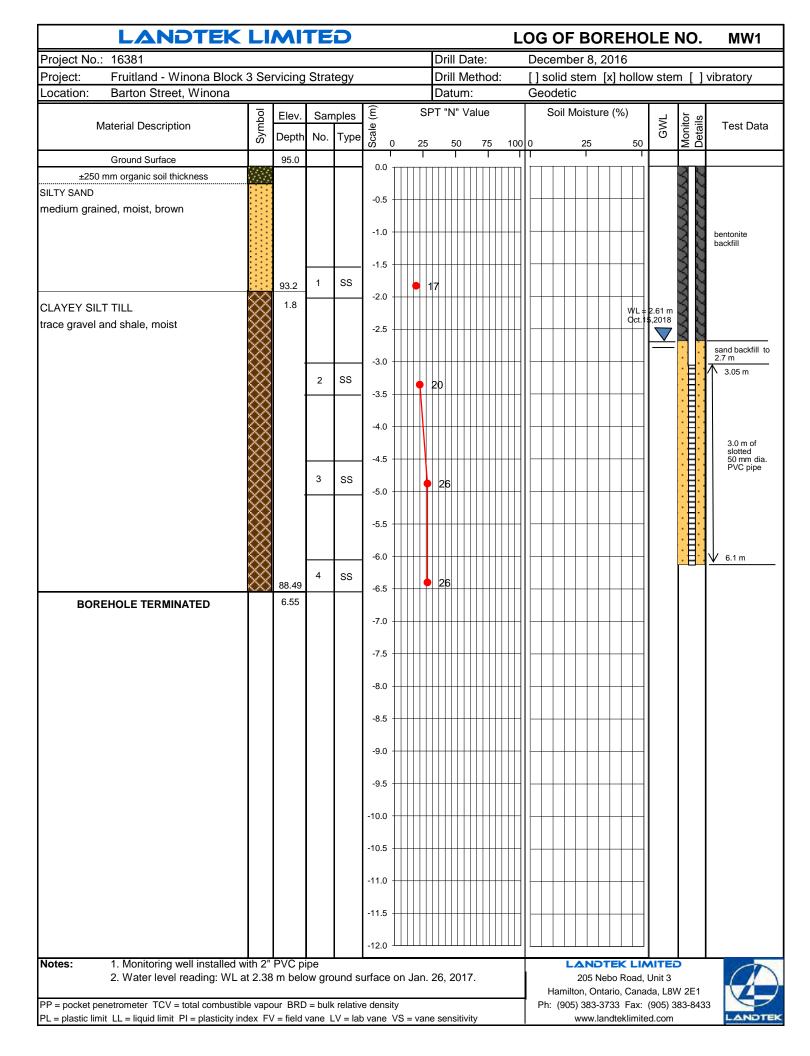
(1)

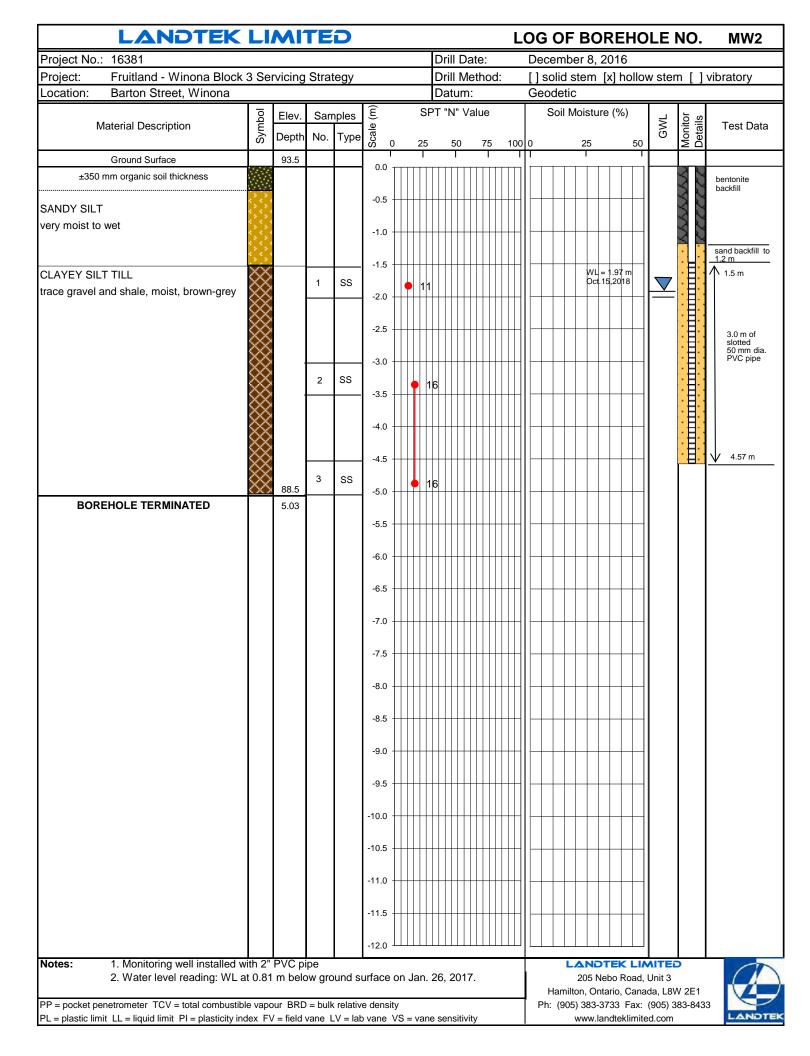
Borehole/Monitoring Well

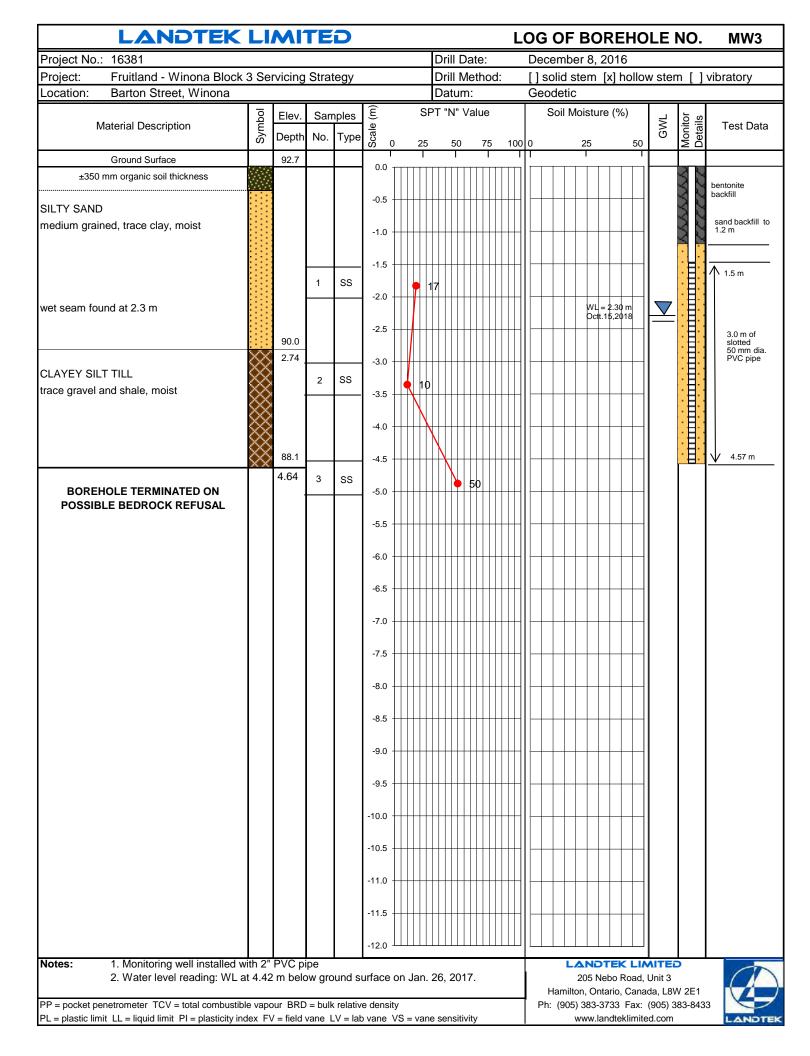
Groundwater Flow Direction

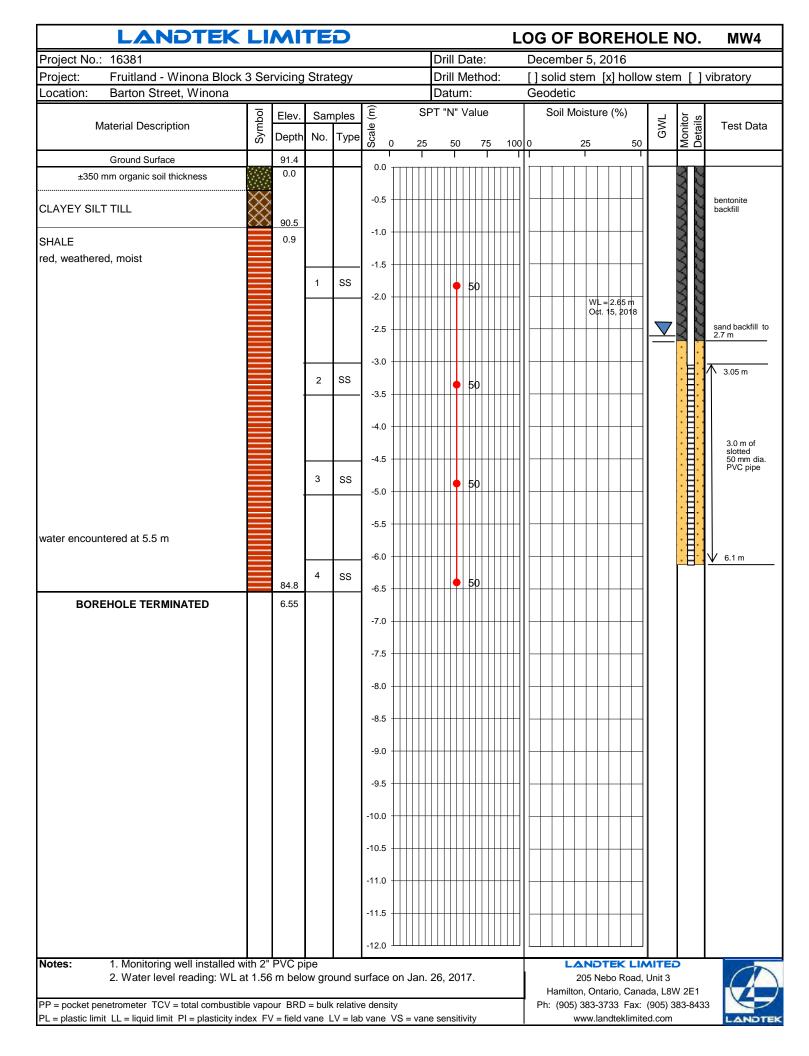
Groundwater Level Contour

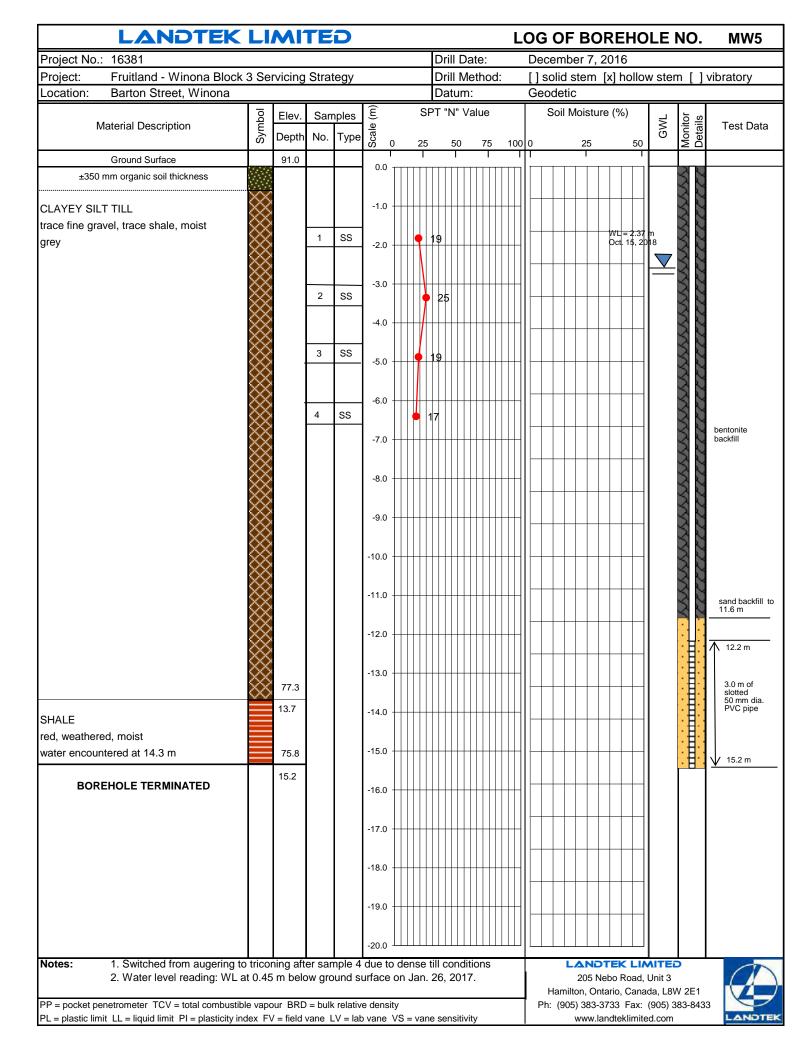
88.00 m

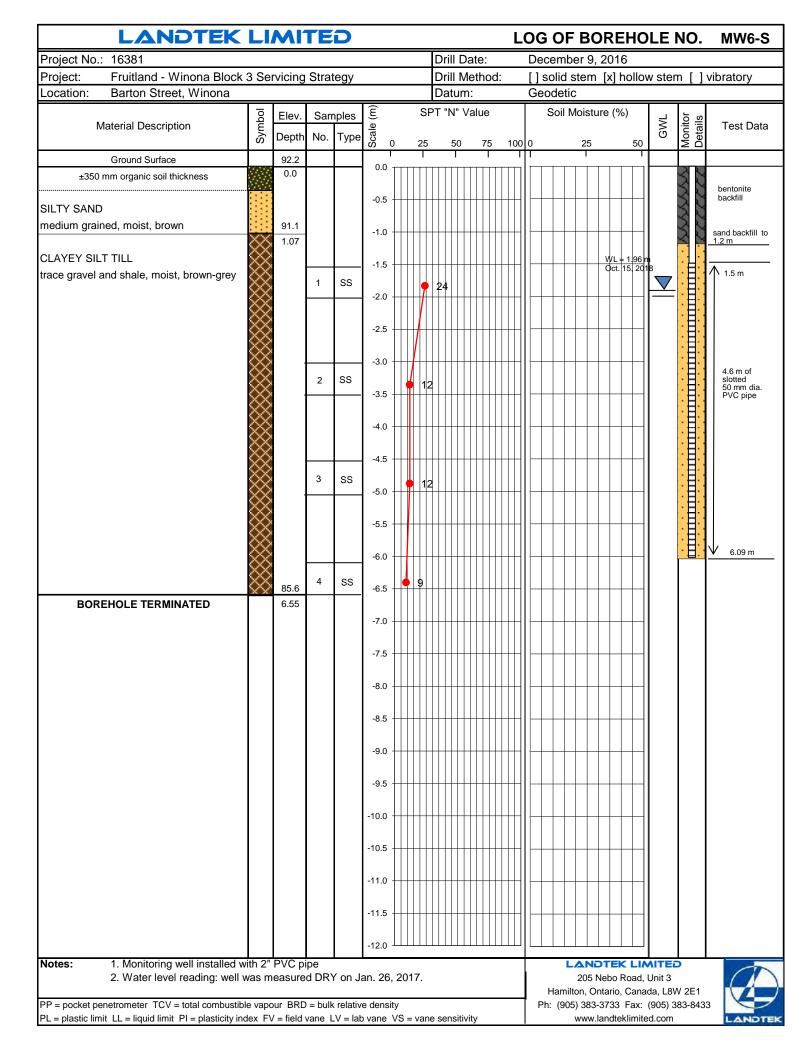

Groundwater Elevation

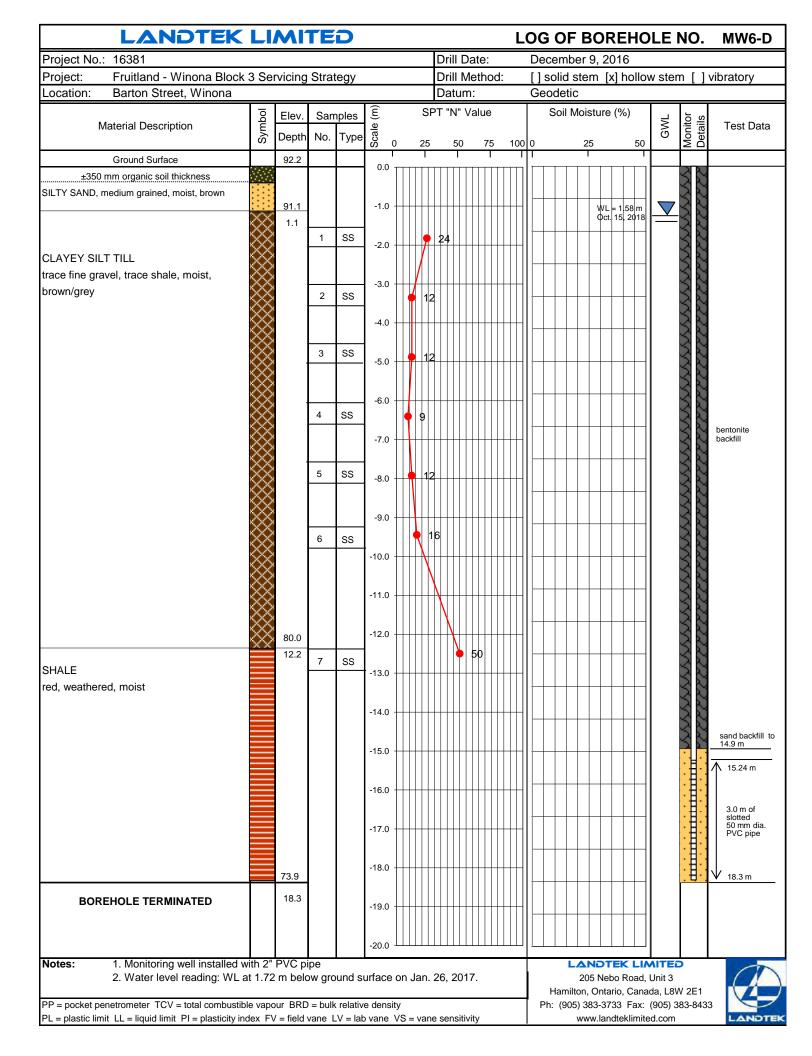

0	LANDTEK LIMITED		
	CONSULTING ENGINEERS		
	205 NEBO ROAD, HAMILTON, ONTARIO, L8W 2E1		
	Scale: 1:1096	Date: November 2018	
Project:	Hydrogeological Investigation		
	Fruitland-Winona BSS #3		
	Stoney Creek, Ontario		
Title:	Figure 10: Groundwater Cor	Figure 10: Groundwater Contour-Bedrock	
Project No.	18270	_	

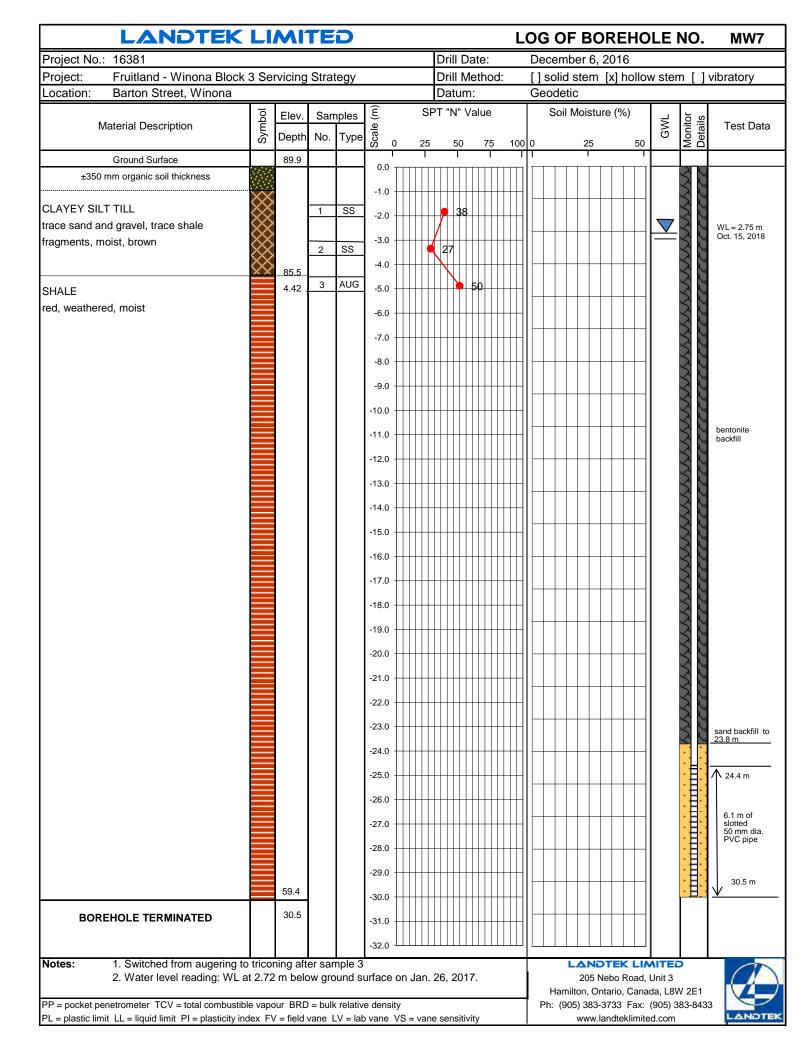

APPENDIX B MONITORING WELL LOGS

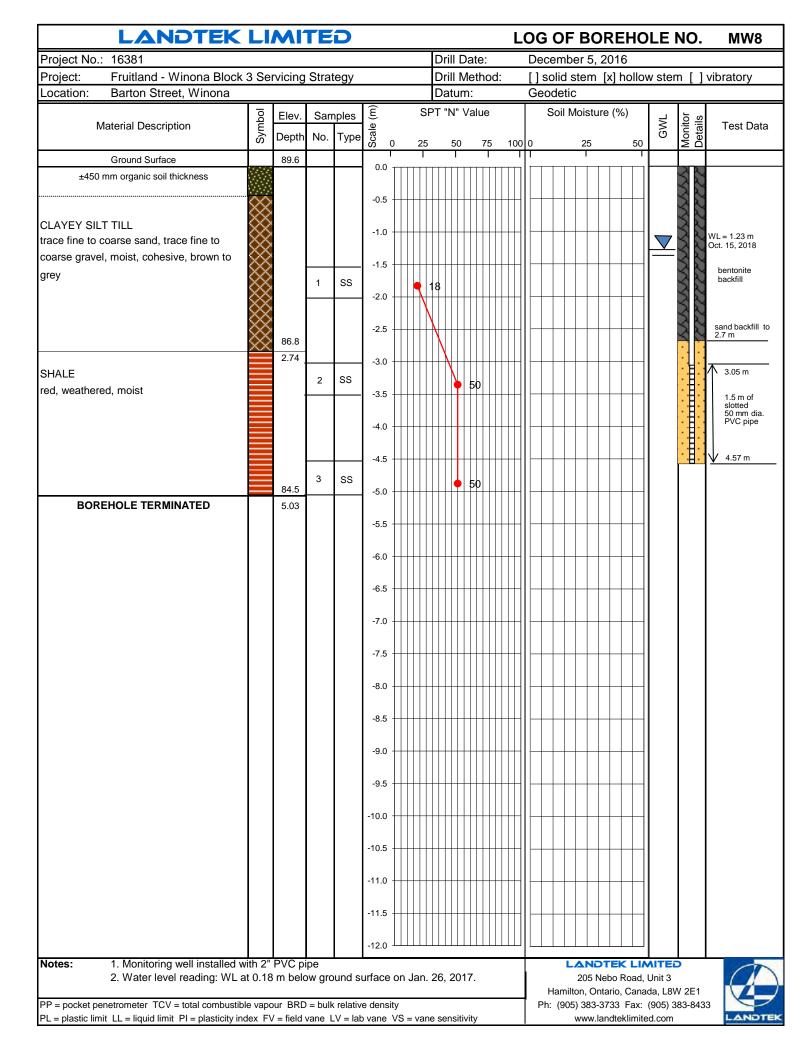


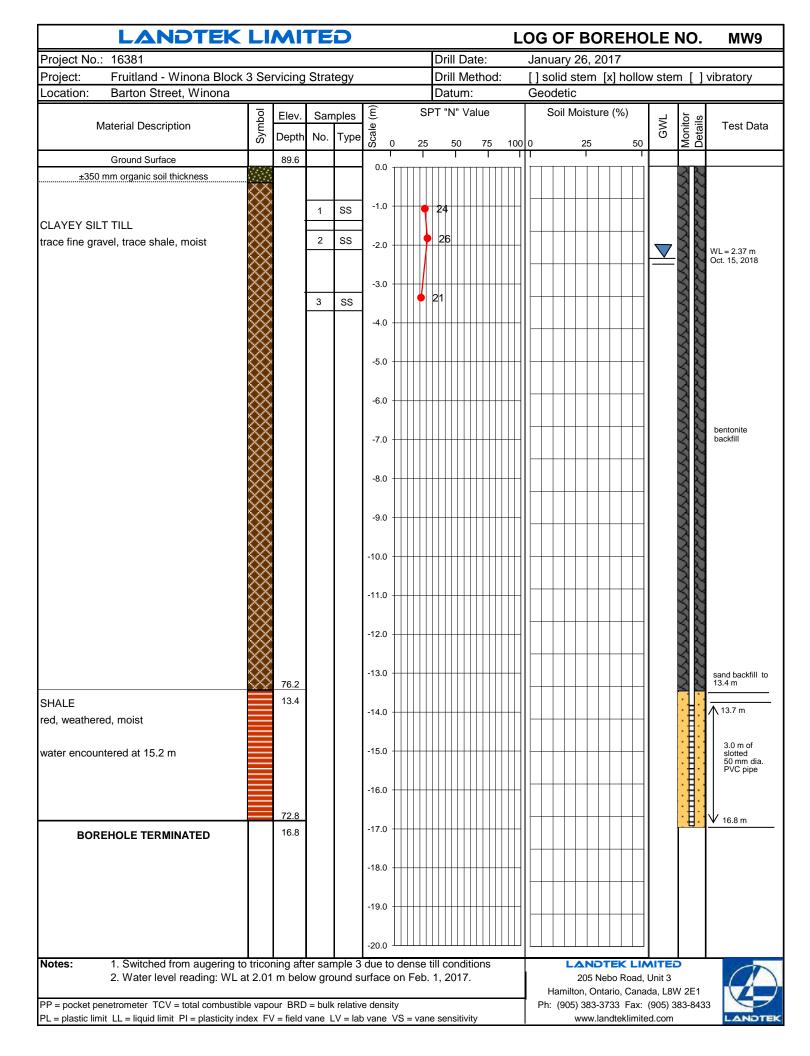

File: 18270

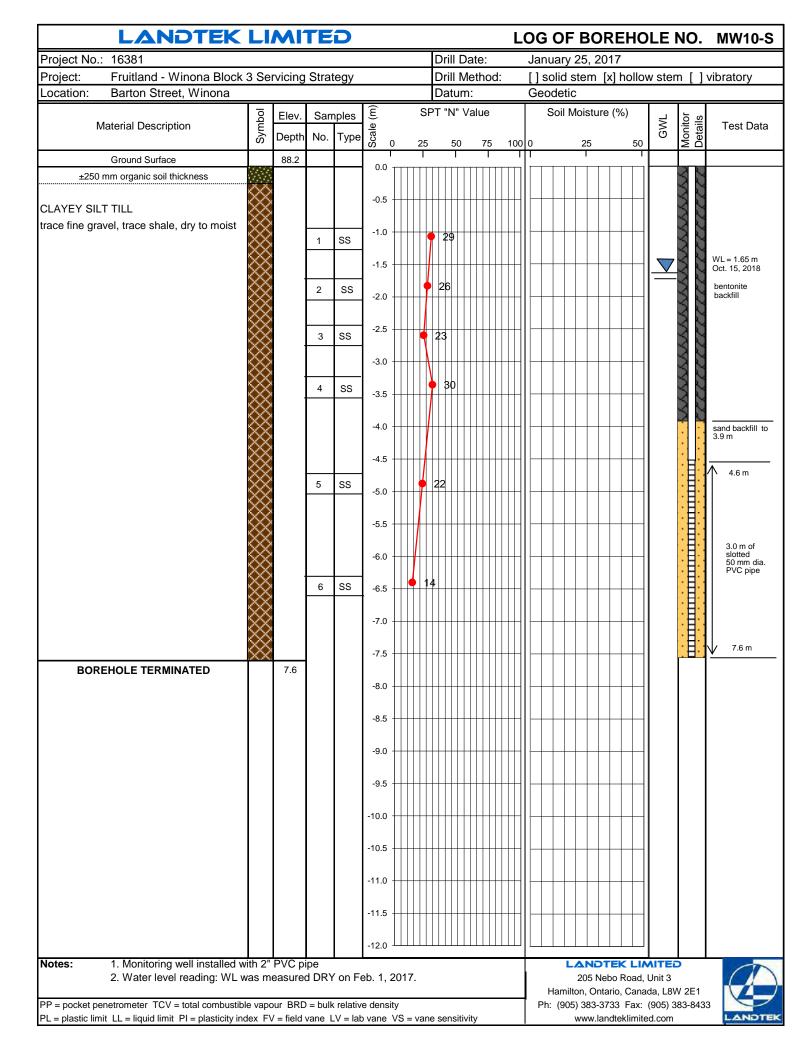


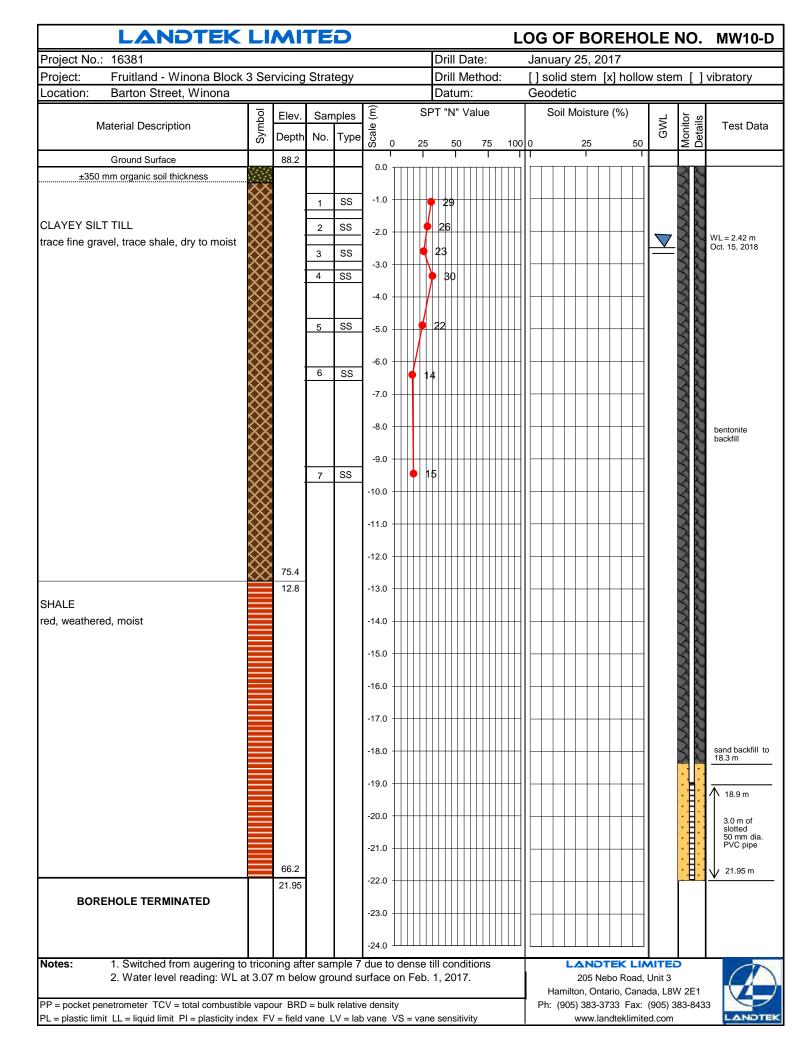


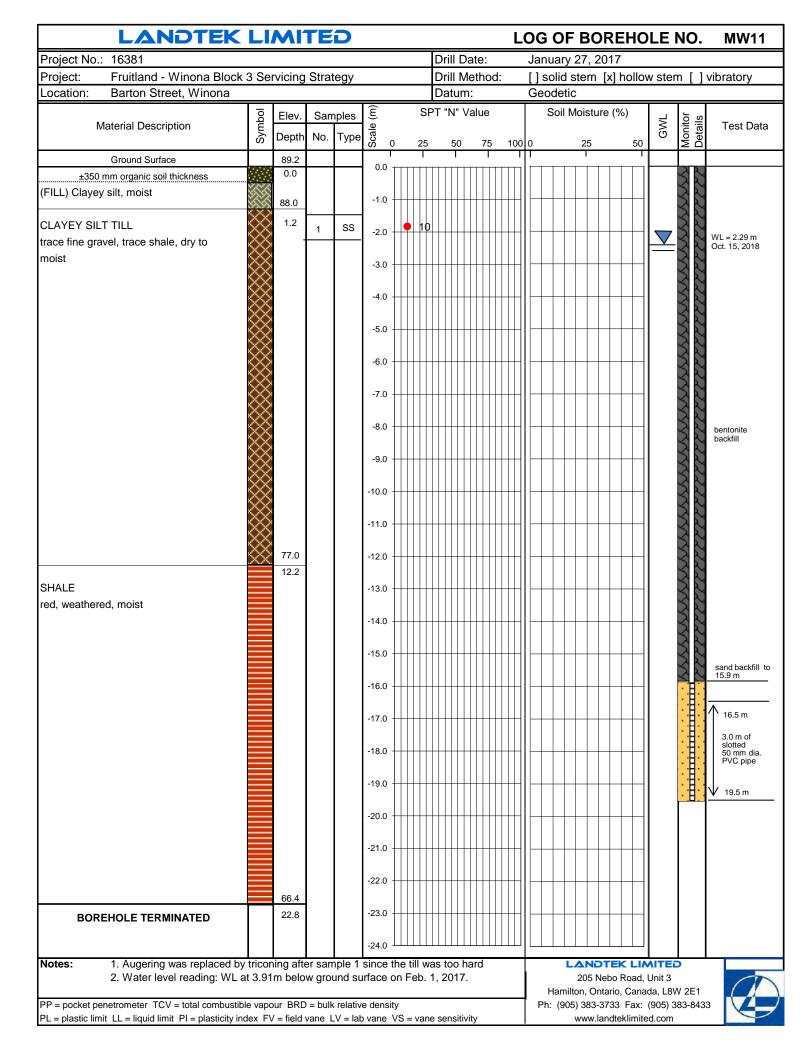


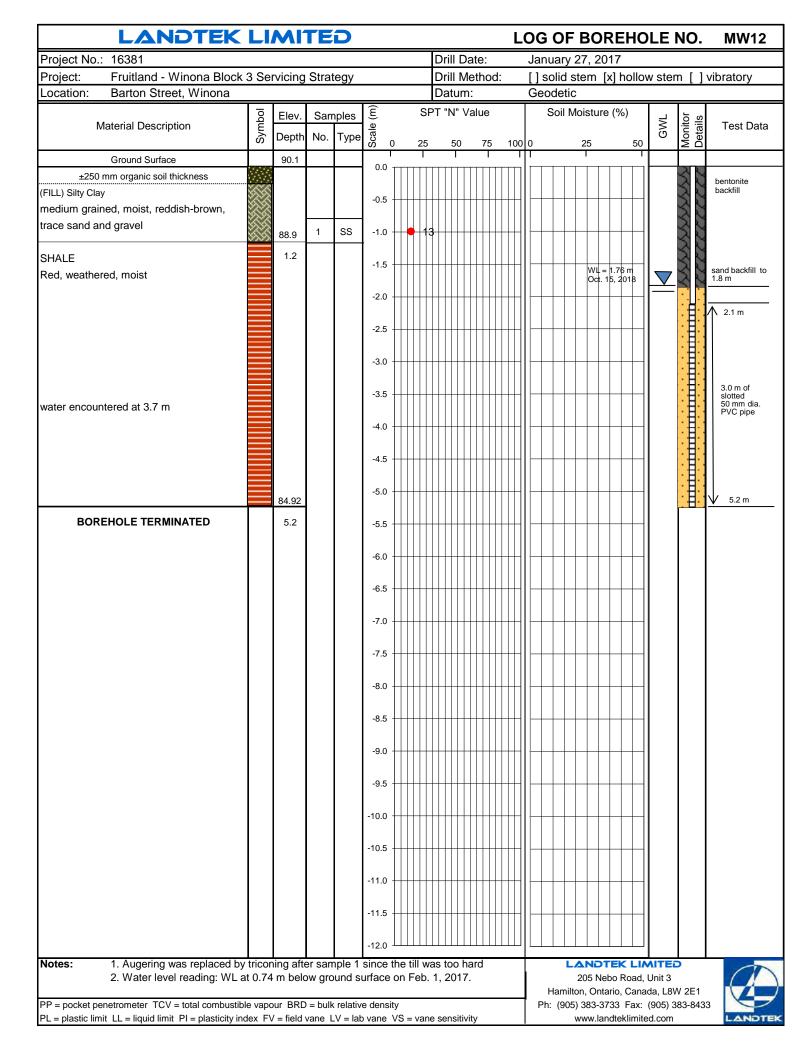


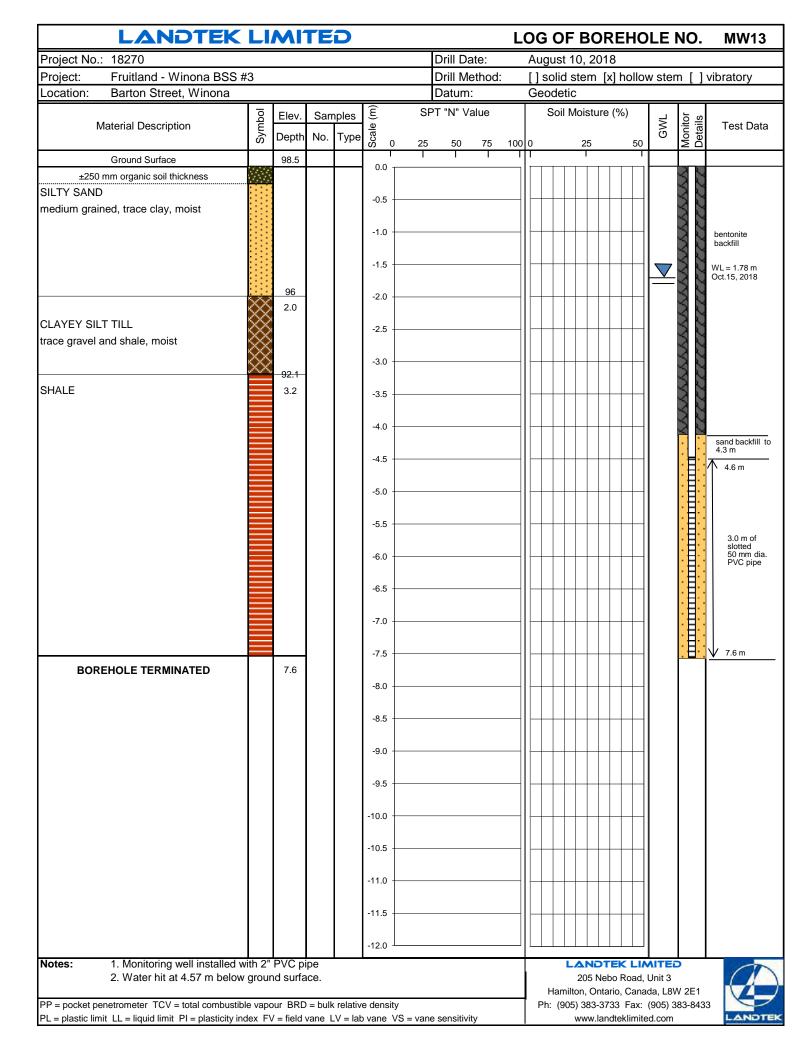


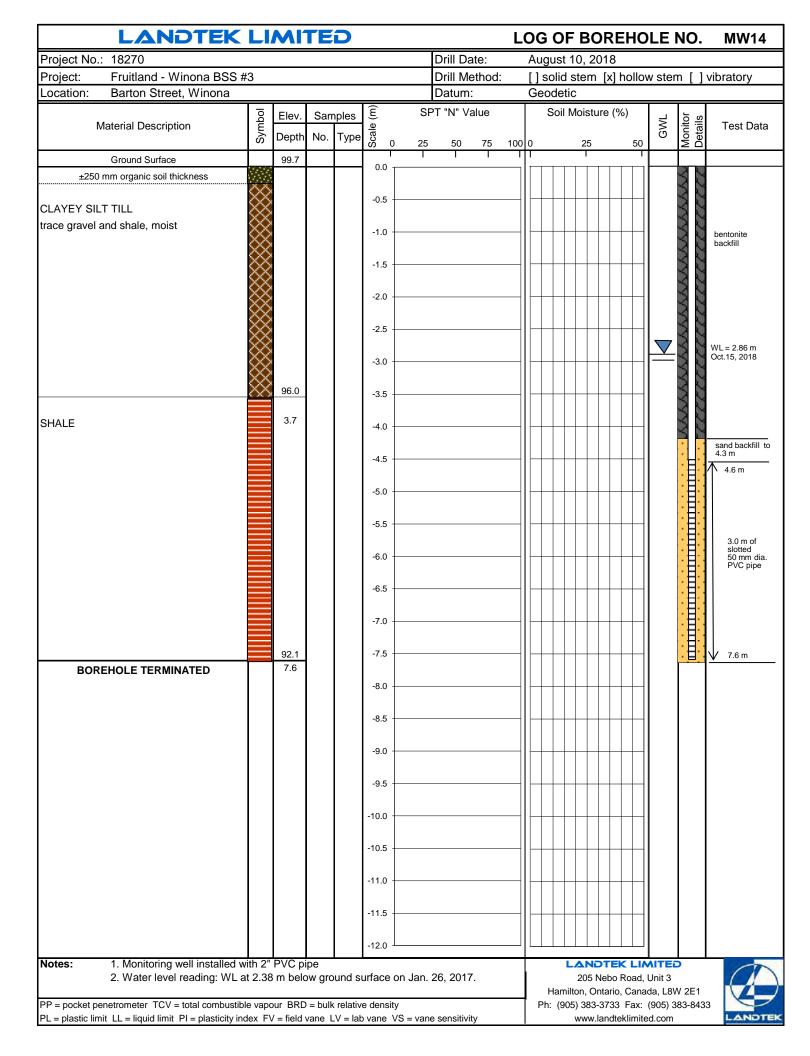


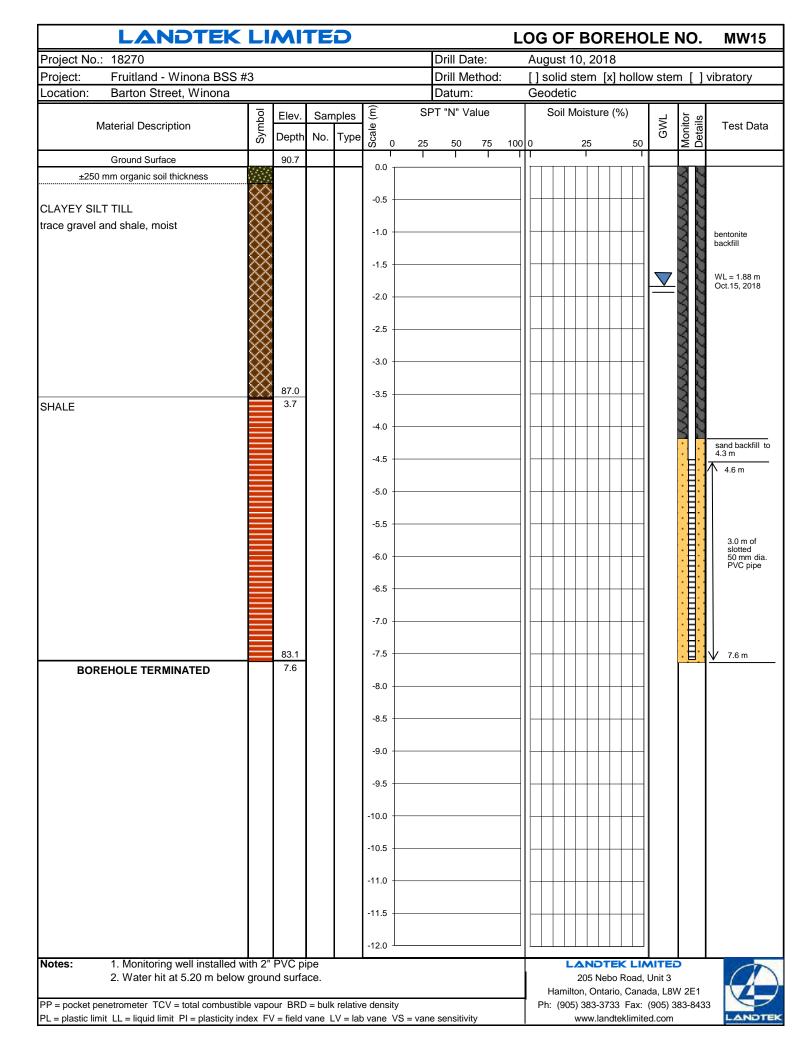


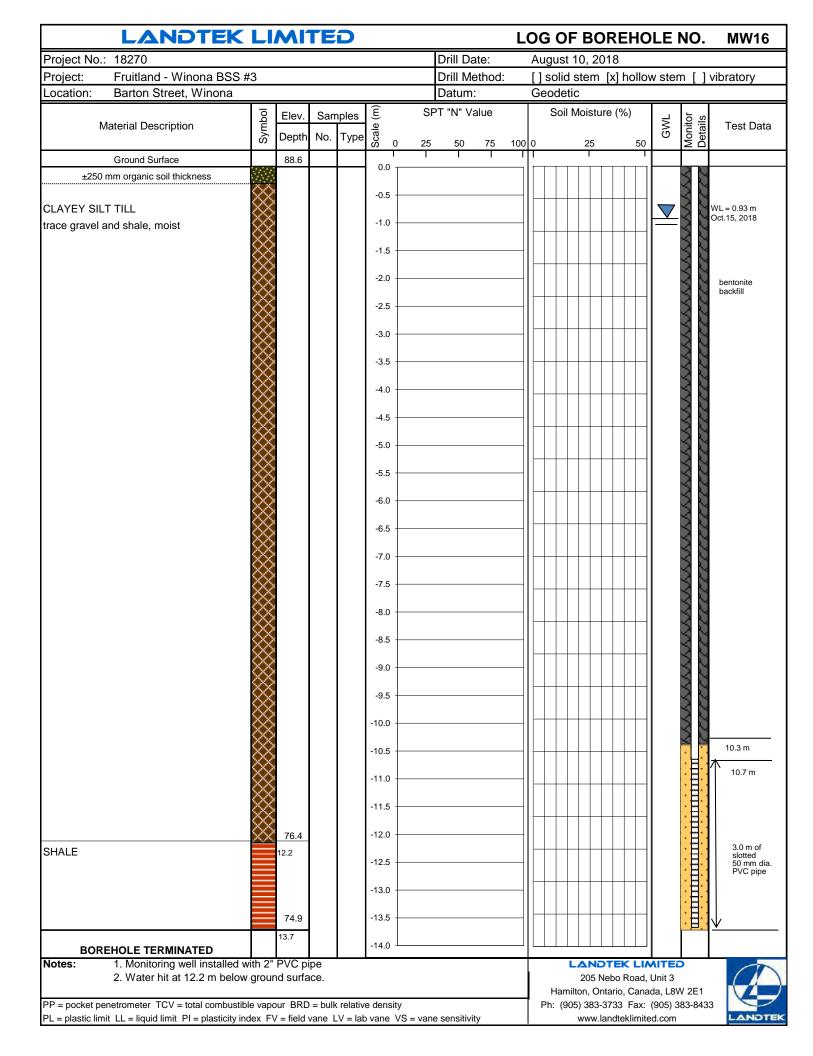


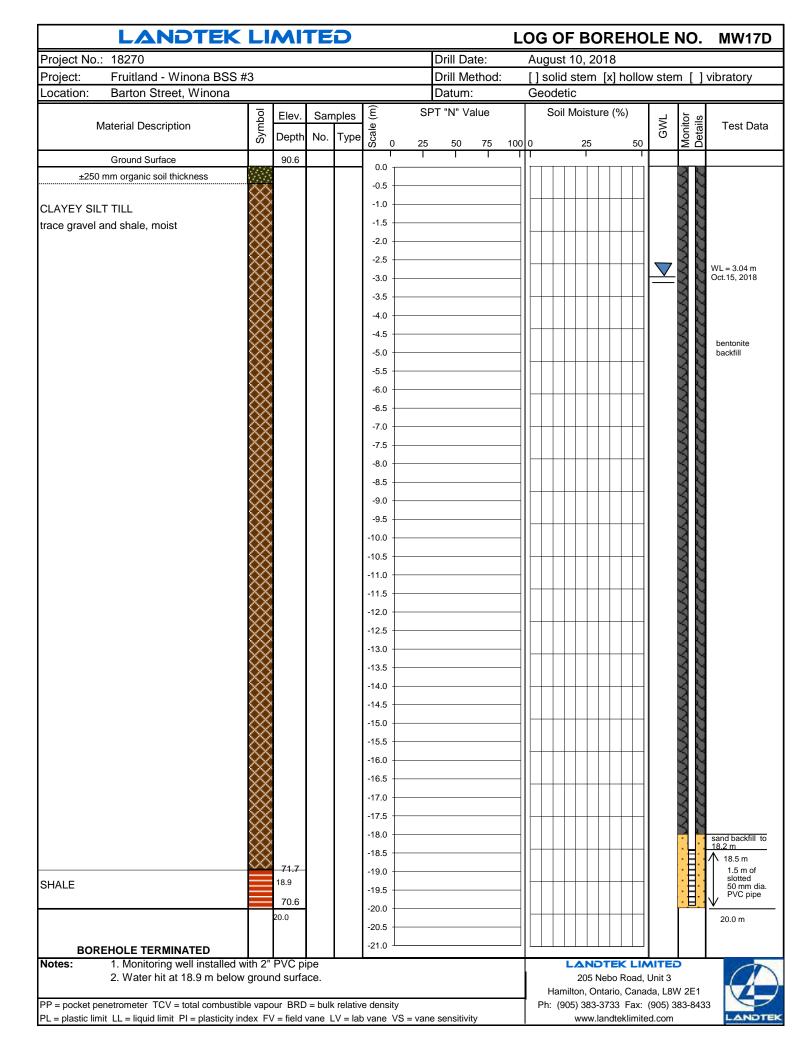


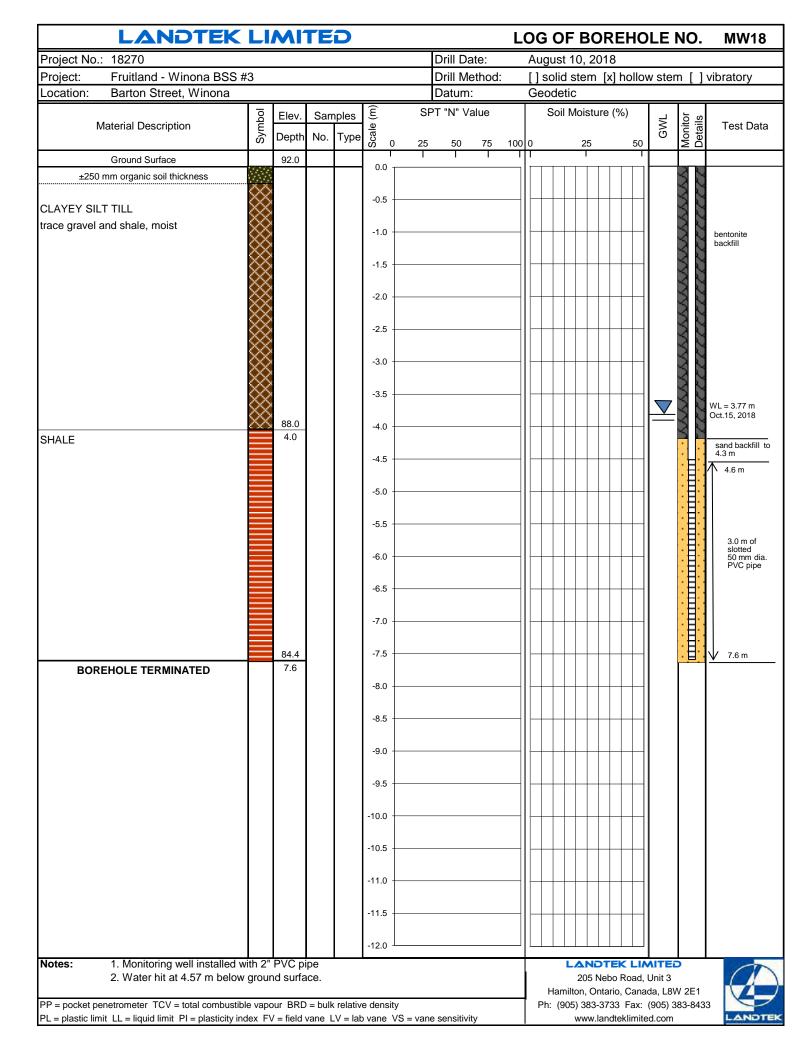


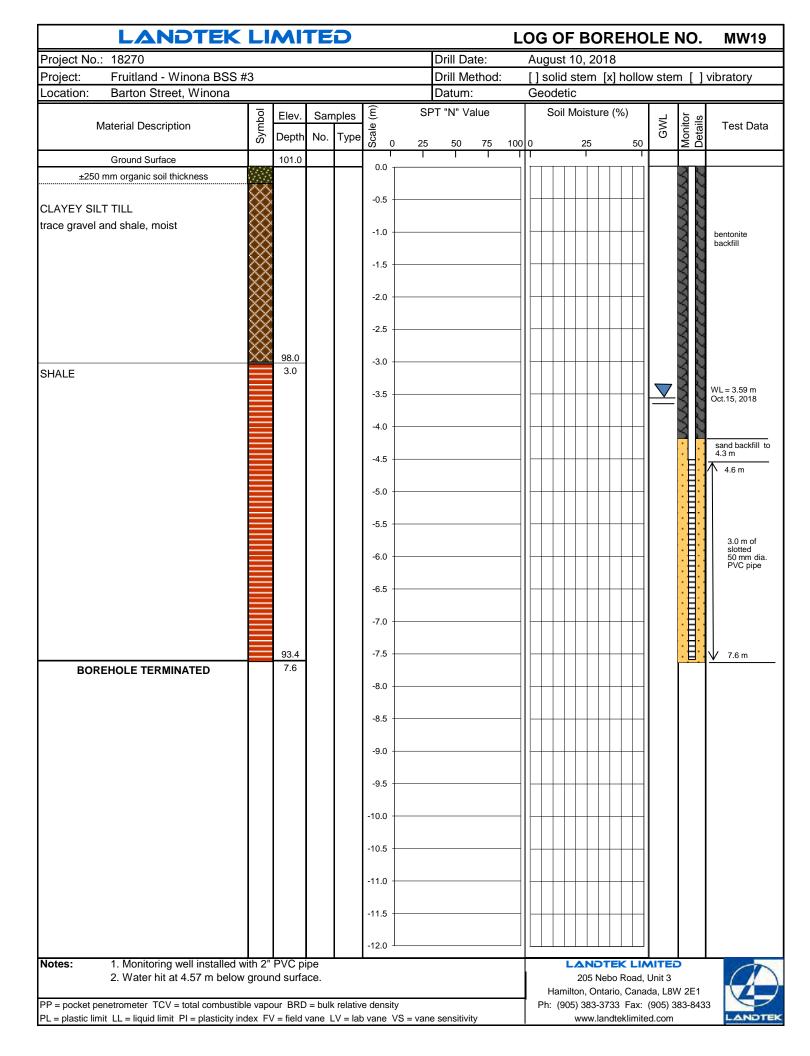












LANDTEK LI	Mľ	TE	D			I	LO	G OI	F BO	RE	НО	LE I	NO.	MW17S
Project No.: 18270					Drill Da	te:	Αı	ugust	10, 20	18				
Project: Fruitland - Winona BSS #3					Drill Me				stem	[x] h	ollo	w ster	n []	vibratory
Location: Barton Street, Winona					Datum:		G	eodet				_		
l oq	Elev.	Sam	nples	Ē SF	PT "N" Va	alue		Soil	Moistur	e (%)	٧	tor Is	To al Data
Material Description	Depth	No.	Туре	Scale (π) SF 0 25	50	75 10	00 0		25		50	GWL	Monitor Details	Test Data
Ground Surface	90.6			1 [T	1	TT				1		2 0	
±250 mm organic soil thickness				0.0									3 5	
×				-0.5									ইয়	
CLAYEY SILT TILL	6			-1.0									SB	
trace gravel and shale, moist				-1.5			1 -	\sqcup			Ш		319	bentonite
××				-2.0									ইট্	backfill
\otimes				-2.5			╢┝	+++		+	+		প্ৰ	
	6			-3.0									33	
×				-3.5			╢╴	††			\forall		33	
×				-4.0			$\parallel \parallel$						ইয়	
\times				-4.5									রেয	
	6			-5.0			╢	Ш					33	
\otimes				-5.5			$\parallel \parallel$						33	
×				-6.0			╢⊢	+++		+	+		ইয়	
	c			-6.5			$\parallel \parallel$						38	
\otimes				-7.0			$\exists \vdash$	++			+		319	
×				-7.5									ইট্	
\times				-8.0									রেয	
	6			-8.5			╢	Ш			Ш		33	
\otimes				-9.0			+						33	
×				-9.5			$\exists \Vdash$	+++			+	$oxed{\nabla}$	ইট্	WL = 9.93 m Oct.15, 2018
\times				-10.0			$\exists \parallel$					_	রেয	
	6			-10.5			$\exists \vdash$	++			+			sand backfill to 10.4 m
\times				-11.0			-						·目:	10.7 m 1.5 m of
×	78			-11.5										slotted 50 mm dia.
		ļ		-12.0			╢	Ш		Ш	Ш		<u>. ⊟</u>	PVC pipe
BOREHOLE TERMINATED	12.2 m			-12.5			$\parallel \parallel$							
				-13.0			11-	+++		+	+			
				-13.5			-							
				-14.0			╢╴	++		+	+			
				-14.5			$\exists \parallel$							
				-15.0										
				-15.5			╢┞	Ш	$\perp \! \! \perp \! \! \perp \! \! \perp$	\perp	\perp			
				-16.0										
				-16.5			1 -	+++		+	+			
				-17.0										
				-17.5			11	\Box		+	\top			
				-18.0										
				-18.5						\prod	\prod			
				-19.0				\coprod		$\perp \mid$	Ш			
				-19.5										
				-20.0			$\exists \vdash$	+++	+++	+	+			
				-20.5										
				-21.0			_ _				ш			
Notes: 1. Monitoring well installed with 2" 2. No Water hit.	PVC p	ipe	_						205 N					
									ilton, On	tario,	Cana	da, L8V		
PP = pocket penetrometer TCV = total combustible vaper PL = plastic limit LL = liquid limit PI = plasticity index FV					e sensitivit	v		Ph: (90	05) 383-3 www.la				83-843	1 LANDTEK

APPENDIX C MECP WELL RECORDS

File: 18270

	ONTARIO Well Drillers Mines, Provin		ario	68 Nº FEB 28 19	
County or Territorial District. Wentworth. Con. I. Lot. Street and Number (if is Owner. Landlian Jegin. Date Completed. J. 4. 7. 50. Cost (month) (year)	Township, Vill	aga. Tonto	Ord Sans	ottheet	PAINES J
Pipe and Casing Record Casing diameter(s)	Static level Pumping level Pumping rate Duration of t Distance from	7. / d Z .5. / est /	d. mer	· · · · · · · · · · · · · · · · · · ·	
Kind (fresh or mineral)	Water Record		Depth(s)	Kind of Water	No. of Feet Water Rises
Quality (hard, soft, contains iron, sulphur, etc.) Appearance (clear, cloudy, coloured) For what purpose(s) is the water to be used? How far is well from possible source of contamination What is the source of contamination?	lease. Y. D.	rischen, y	32/4.	Greet.	25/1
Enclose a copy of any mineral analysis that has been	made of water				
Well Log		1	L	cation of Wel	1
Overburden and Bedrock Record	From 0 ft.	To /5-ft.	well from	n below show dis road and lot l th by arrow.	
Ree shole	\sum	32/1	 4	T. END BORTON S. T.	
				208 High	-ay
Situation: Is well on upland, in valley, or on hillside Drilling Firm. Address. Name of Driller. Date.		Address	55° au Number		

				·	
VIM					
					· • /
[9]R [] N]	* DE 34"	į.		68 N	9 45/8/0
Elev. R		Í			/\
- 17 4 1		[, .	THE STREET OF STREET	and the first of the first of
Basin Z 4	ONTARIO	,		RECE	
The	Well Driller	s Act	}	FEB 2	o 1054
Department of			of Ontario	lttb m	C 1993
			•		o déparch
Water '	We11	R	acord -	DEPARTMEN	MINES !
Wentwood	<u> </u>	17.	ccoru		
	le	et	for Wind Horse	5	
	n	F 14	14/10 018	· · · · · · · · Pt. Lo	ot
and completed. Crystag J.G. J. 2.3. S. Lost of M.	(ell /pot inclu		Joseph C. Kars	ARRES Z.A.	. <i>f</i>
- Cost of W	en (not men	aing pur —	mp)		
Pipe and Casing Record			Pumping To	et	·
Casing diameter(s)	T				
Length(s) of cosing(s) /5 /3	Date	ang	. A.S A. P.S. 5		
	. Duration of	of Test	دينوس ک/		
Type of screen	Pumping F	Rate	2 gee men	····	• • • • • • • • • • • • • • • • • • • •
Type or pump,	ID		(در د ^ی		
Capacity of pump. Depth of pump setting.	Static level	of comp	pleted well / k' /	7. from lot	• • • • • • • • • • • • •
Depth of pump setting	. Is well a gi	avel-wal	ll type??14	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
<u> </u>	ater Record	ī			· · · · · · · · · · · · · · · · · · ·
Kind (fresh or mineral)	. A.		Depth(s)		. I
Quality (hard, soft, contains iron, sulphur etc.)			to Water Horizon	Kind o Water	
Comment of the content of the conten	Mara	• • • • • • • •			Take Kises
Appearance (clear, cloudy, coloured)	······································		36 H	Hall	
For what purpose(s) is the water to be used?		· · · · · · · · · · · · · · · · · · ·	· · · · · · ————		-
The property to the water to be used:	المناطبي المناطبة	• • • • • • • •	·····		
How far is well from possible source of contamination?					
What is source of contamination?	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •	<u> </u>	
Enclose a copy of any mineral analysis that has been m	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •		
mary that may been m	ade of water	· · · · · · · · · · · · · · · · · · ·	····-	<u> </u>	
Well Log					
Drift and Bedrock Record	From	l m	- L	cation of V	Veli
See alan		To	In diagram b	elow show di	stances of well
Red show	0 ft.	/Ø.ft.	from road and	lot line	Statices of Well
nea shall	10	36 F	-	<i>*</i>	
		<u> </u>			7
	<u> </u>	 			, 🚽
		 	Hamellon	Tro & Any	there is the
	 -			<u>~~</u>	
	 -		, A		
		<u> </u>	7	250'	
				<u></u> >	
	-		200		- //
		I	<u>\</u>	<u>/b</u> _	#8 Hory
		 		100	cn _{ii}
				•	**************************************
			!		
	<u> </u>				
Situation: Is well on upland, in valley, or on nulside?	upla	med.			
D-911 - 71	•			• • • • • • • • • • • • • • • • • • • •	
Address					
Address		•••••			• • • • • • • • • •
Recorded by	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •
Date: 3.4 a.m*.	* * * * * * · · · · · · · · · · · · · ·		5 5 ala	i an	•••••
Date 216.25 1 1 5	* * * * * * · · · · · · · · · · · · · ·		5 5 ala	i an	•••••
Date Zela e s . 1 1 5	* * * * * * · · · · · · · · · · · · · ·		5 5 ala	i an	••••••

μтм	<u> : </u>	7,		<u></u>		Į_	!	E	
4	<u> : </u>	<u> </u>	į			1	i	A IN	
Elev.	PR	<u></u>				J		•	
Racin	1214	l	1	ı	i	1			

RECEIVED

JUL 31 1951 68 Nº

4531

GEOLOGICAL BRANCH DEPARTMENT OF MINES

The Well Drillers Act

Department of Mines, Province of Ontario

Department of I	WIIDES, FIOVID	te or Ontar	10		
Water V	Vell 3	Reco	ord		
• •				de	
Waster of	Tamakip, Vill	ige, Town e	Barton St.	Tilgel	
	OWD (r City)	Benton H.		
	\$.	Wans	~~~~		••••••
Date Completed	t Well (excludi	ng pump)	. 1.4.0 4		
			umping Test		
Pipe and Casing Record	I_		•	· · · · · ·	
Casing diameter(s)	Date	July 2	(9 f. f. 5. 5		
Length(s) of casing(s)7	Static level		. 77		
Type of screen.	Pumping leve		644 2		
Length of screen	Pumping rate		gar . inine	• • • • • • • • • • • • •	
Distance from top of screen to ground level	Duration of t	est//.4			
Is well a gravel-wall type?	Distance from	cylinder or	bowls to ground	level	
V	Vater Record				
Kind (fresh or mineral).	1		Depth(s) to Water	Kind of	No. of Fee
Quality (hard, soft, contains iron, sulphur, etc.)	hard		to Water Horizon(s)	Water	Water Ris
Appearance (clear, cloudy, coloured)	سيد باوع		301	Good	26
For what purpose(s) is the water to be used?	sald			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
For what purpose(s) is the water to be about the					
How far is well from possible source of contamination?	40.			, · · · · ·	
What is the source of contamination? Suplice	lank				
Enclose a copy of any mineral analysis that has been ma	ade of water				
Well Log		ì	<u>-</u>		
Overburden and Bedrock Record	From	To	Loca	tion of Well	l
Red Clare	, 0 ft.	Z.v.ft.	In diagram b	elow show dist	tances of
The state of the s	9,	30'	well from re	ad and lot li	ne. In-
			dicate north	by arrow.	
				Ν	,
				N Ban 0.1000	あまり
			48	1000-	7
				0.	
					3
					, [
					4
					4
		<u> </u>			1
					1
		<u> </u>			
Situation: Is well on upland, in valley, or on hillside?.	Ufter	٠			
Address 5.5 authorise Of	٠	<i></i>			
Address S.S. Address		Address.			
Date July 39195		Licence N	lumber		
			۹. کېښېپ و . ۰	Tell.	
FORM 5			Signature o	I LICERSEE	

201	ER WE	CLL R	sion Act, 1957 ECORD	JAN 1 6 1960 ONTAGIO WASSE URCES COMMISSE MONTAGIO WASSE	Se year)
		1035	<u></u>		
Casing and Screen Record		<u> </u>	Pump	ing Test	<u></u>
Inside diameter of casing 5.7 Total length of casing 3.5.7 Type of screen Length of screen Depth to top of screen Diameter of finished hole 5.7		Test-pum Pumping Duration Water cle	ping rate	30 min	G.P.M.
Well Log			Wate	er Record	
Overburden and Bedrock Record	From ft.	To ft.	Depth(s) at which water(s) found	No. of feet water rises	Kind of water (fresh, salty, sulphur)
Red Shale	35'	35'	21,69	34'	Freak
		<u> </u>	<u> </u>		2/
Is well on upland, in valley, or on hillside Authorite Drilling Firm Address R. R. 1, Smithville, C.	ont.		Location diagram below road and lot line.		
Name of Driller Name of Driller Address Date Licence Number 705 Frank Mornite Name Mark Mornite Porm 5 Porm 5	ont.	 	18 18 18 18 18 18 18 18 18 18 18 18 18 1	of of the contract of the cont	777

1		
į		Ministry
į	(77)	of the
:	بپ	Environment

The Ontario Water Resource. WATER WELL RECU:

	I. PRINT ONLY IN 2. CHECK X GORE	SPACES PROVIDED ECT BOX WHERE APPLICABL	ر <mark>11</mark> ا	•	B 1 1 5		600	<u>اب، ت. ب</u>	ليك.	111	12 25
UNTY OR DISTRICT	11	TOWNSHIP, BOROUGH	CITY, TOWN, VILL	AGE		CON	BLOCK TRAC	T. SURVEY	ETC	·	LOT 8".
		<i>112</i>	12 Ar	vin	Ave	5/4	may 1	Purch	DATE COMP	MOJUA	49-53 24 18 4
		Time			MEVATION	اليا ا	ALL COOL		4. <u>1</u>	<u>""</u>	ــــــــــــــــــــــــــــــــــــــ
1	L(OG OF OVERBURD	EN AND BE	DROCK	MATERIA	LS (SEE)	NSTRUCTIO	NS)			·
NERAL COLOUR	MOST COMMON MATERIAL	OTHER	MATERIALS			GENER	AL DESCRIP	TION		DEPTH FROM	· FEET
Pres	1 martine.									0	60
7	1-1/Ne3/1/10										
				_,	·					1	
					-				<u>.</u>		
				<u></u>							<u> </u>
						<u> </u>					
				<u>.</u> .	<u> </u>						<u> </u>
			<u></u>		 						
										ļ <u></u>	
					 						-
_						·					
<u></u>	11.1.1.11	<u> </u>			<u> </u>		Liil				<u> </u>
2	<u> </u>			با لىل			ــلـــيا	لبليا	ے دد عیا لیہ		لبك
VAT	TER RECORD	51 CASING	& OPEN H			Z 517E)	S. OF OPENING	3	31-33 DIAME	TER 34-34	LENGTH
TER FOUND	KIND OF WATER	INSIDE DIAM MATERIAL INCHES	WALL THICKNESS INCHES	FR	FEET TO	W	HIAL AND TY	PE	!	DEPIH TO TOP OF SCREEN	41-44
4-55 8	SALTY 4 MINERALS 6 GAS	6 14 10 TEEL 30 CONCRETE	. 188	0	20	S .					FEE
_	FRESH 3 SULPHUR 19 SALTY 6 GAS	3 CONCRETE 40 OPEN HOL		20	60	61				LING REC	ORD
	FRESH 3 SULPHUR 24 SALTY 6 GAS	1 DSTEEL 2 GALVANIZE 3 CONCRETE	:		1.0.2	A ROM.	SET AT SA		ATERIAL AN		ACKER. ETC
	FRESH 3 DSULPHUR 25 4 DMINERALS SALTY 6 DGAS	4 DOPEN HOL S DPLASTIC	26	<u> </u>	27-30			22-25		•	
30-13 1 🗆	FRESH 3 DSULPHUR 34	2 Transport	NO MI	1		- 2	\$ · 2 9	30-23 60			
PUMPING TEST MET	SALTY 6 GAS			-4	10	•	OCATI	O N O	F WFL	1	
1 - PUMP	BAILER /	1/4 GPN 1	15-16 HOURS	17-18 MEINS					····	FROM ROAO	ANO
STATIC LEVEL			PUMPING RECOVERY	HES	LOT		DICATE NOR	ITH BY AR	ROW.	•	
28	پینے سی	ہم الاقتام اللہ	11-34	FEET	M	t. Bi	row	//		8	8'_
IF FLOWING. GIVE HATE	18-41 PUMP INJAKE	SEF AT WATER AT	END OF FEST	41	1			(-		, T	11/2/
FEET IF FLOWING. GEVE HATE RECOMMENDED PUT	GPM HP TYPE RECORMENDS PUMP	FEET + □ C	NOED	46-89	<i>'\</i>	K		 	350	→0	ME II
SHALLOW		PEET AATE		GPM	\ \·	410					
FINAL	MATER SUPPLY	& ABANDONED.		PPLY	•						
STATUS OF WELL	2 OBSERVATION WE 1 TEST HOLE 4 RECHARGE WELL	LL 6 ABANDONED 7 UNFINISHED 9 DEWATERING	POOR QUALITY			*	<u>کر</u> .		Vi	ne moo	nt
	DOMESTIC	S COMMERCIAL					·*/ _/ / _/				
WATER USE	STOCK S ERRIGATION LINDUSTRIAL	 ■ MUNICIPAL > □ PUBLIC SUPPLY ■ □ COOLING OR AIR 	CONDITIONING		2	Rida	Rd.	111/4			
	OTHER	* □	NOT USED		Salar T	7		'	^х ж.		
METHOD	CABLE TOOL ROTARY (CONVE		IOND					Į!	•	/	
OF ONSTRUCTE	ON 4 ROTARY (REVERS	9 DRIV	ING			•				/20	192
NAME OF WELL			WELL CONTRAC	708'S) [DATA	5.8	CONTRACTOR	<u></u>	DATE RECEIV	E0	43
	* Wallis		54/7	NO NE	SOURCE DATE OF IMS	PECTION	<u>54</u>	NSPECTOR .	SEP	07 198	38
ADDRESS A	2 Street	Creek		2							
NAME OF WELL	TECHNICIAN		WELL TECHNIC LICENCE NUMB			:					
<u></u>	TECHNICIAN/CONTRACTOR	SUBMISSION D	,	——: : ≚	. 1						

MINISTRY OF THE ENVIRONMENT COPY

The Ontario Water Resources Act WATER WELL RECORD

Environment Ontario	PACES PROVIDED 11	 6812080 ළිදියුයුව ලිය	N.,,,
2. CHECK 🗵 CORRE	TOWNSHIP BOROUGH CITY, TOWN VILLAGE	CON BLOCK, TRACT SURVEY ETC	LOT 25-27
	of Stoney cre	ek Conc 3	8 9 -
	l Ridge Rd.,	Vinemount, Ont LOR-3GO DAY 27	мо <u>08</u> ук <u>91</u> _
	HING #C.	ELEVATION RC. BASIN CODE II	<u> </u>
LO	G OF OVERBURDEN AND BEDROC	K MATERIALS (SEE INSTRUCTIONS)	
GENERAL COLOUR COMMON MATERIAL	OTHER MATERIALS	GENERAL DESCRIPTION	DEPTH FEET
Brown Clay		Loose	0 12
Grey Clay		Loose	12 3k
Grey Limestone		Hard	31 90
Red Shale		Hard	90 105
Grey Limestone		Hard	105 109
Red Shale		Hard	109 130
Blue Shale	· - · · · · · · · · · · · · · · · · · ·	Hard	130 140
	<u> </u>		
			_
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	البابالليبا ليلتليا		با لىلىلىلىل
32		33 34 65 85 SIZE (5) OF OPENING 31-33 DIAM	1 1 25 40 17ER 34.38 LENGTH 39.40
WATER RECORD WATER FOUND KIND OF WATER		ECORD 2 ISLOT NO 1	INCHES FEET
10-13 1 FRESH 3 USUCPHUR	DIAM MATERIAL INCRNESS FRU	MATERIAL AND TYPE	DEPTH TO FOP 44-44 9
2 SALTY 4 MINERALS 6 DGAS 15-10 1 FRESH 3 DSULPHUR (9)	61 3 GALVANIZED .188 1	31	FEET
2 SALTY 6 GAS	4 OPEN HOLE 5 PLASTIC 17-16 (OSTEEL 19	20-23 DEPTH SET AT - FEET MATERIAL AN	CEMENT GROUT
20-23 1 FRESH 3 SULPHUR 24 4 MINERALS 6 GAS	. 2 GALVANIZED	1 140 FROM TO 10-11 10-17	LEAD PACKER ETC I
25-28 1 FRESH 3 SULPHUR 29 4 MINERALS 2 SALTY 6 GAS	24-25 1 STEEL 24	27-30 16-21 22-25	
30-93 FRESH 3 SULPHUR 34 90 4 MINERALS 2 SALTY 6 5A5	2 GALVANIZEO 3 CONCRETE 4 DOPEN HOLE 5 DELASTIC	26-29 30-33 80	
PUMPING TEST NETHOD 10 PUMPING RATE		LOCATION OF WEL	
PUMP 2 BAILER 4GA		IN DIAGRAM BELOW SHOW DISTANCES OF WELL	
LEVEL END OF WATER L	EVELS DURING # DRECOVERY 30 MINUTES 45 MINUTES 60 MINUTES	LOT LINE INDICATE NORTH BY ARROW.	
## ## 129 129	29-31 32-34 35-37		
F FLOWING. 38-41 PUMP INTAKE	SET AT WATER AT END OF TEST 42	*	
PUMP INTARE SIF FLOWING. GIVE RATE GPM RECOMMENDED PUMP TYPE RECOMMENDED PUMP FYPE PUMP PUMP	FEET I CLEAR 2 D CLOUDY A3-45 RECOMMENDED 44-49 POWPING	1	ol J
SHALLOW DEEP SETTING	FEET RATE GPM		North Mary
FINAL 1 M WATER SUPPLY	S ABANDONED, INSUFFICIENT SUPPLY	\$10 x 1000	W. ()
STATUS 2 DESCRIPTION WELL	7 UNFINISHED	l∝ ' ^ll	1/21/
OF WELL 4 RECHARGE WELL 35-56 1 D DONESTIC	DEWATERING S COMMERCIAL	"XX"	*1101
WATER 2 STOCK 3 IRRIGATION	6 MUNICIPAL 7 PUBLIC SUPPLY		<i></i>
USE • INSUSTRIAL	• COOLING OR AIR CONDITIONING • NOT USED	Ridge	P d
METHOD 2 AOTARY (CONVEN	6 BORING FIONAL) 7 DIAMOND		
QF ROTARY (CONVENIENCE CONSTRUCTION 4 ROTARY (AIR)	_		76512
5 (# AIR PERCUSSION	OIGGING OTHER	DRILLERS REMARKS	
MAME OF WELL CONTRACTOR C O'Connor Well Dril	well contractor's ligence number 11ng T.td 4005	SE CONTRACTOR S9-62 DATE RECEIVE 4 0 0 5 SEF	1
ADDRESS		GATE OF INSPECTION INSPECTOR	
RR#1 Millgrove, Ont	LOR-1VO	S REMARKS	
J.B. O'Connor SIGNATURE OF TECHNICIAN/CONTRACTOR	T-0148	OFFICE	CSS.ES
John Wo Como	DAYNOYR		ORM NO 0506 (11/88) FORM

Ministry of Environment and Energy

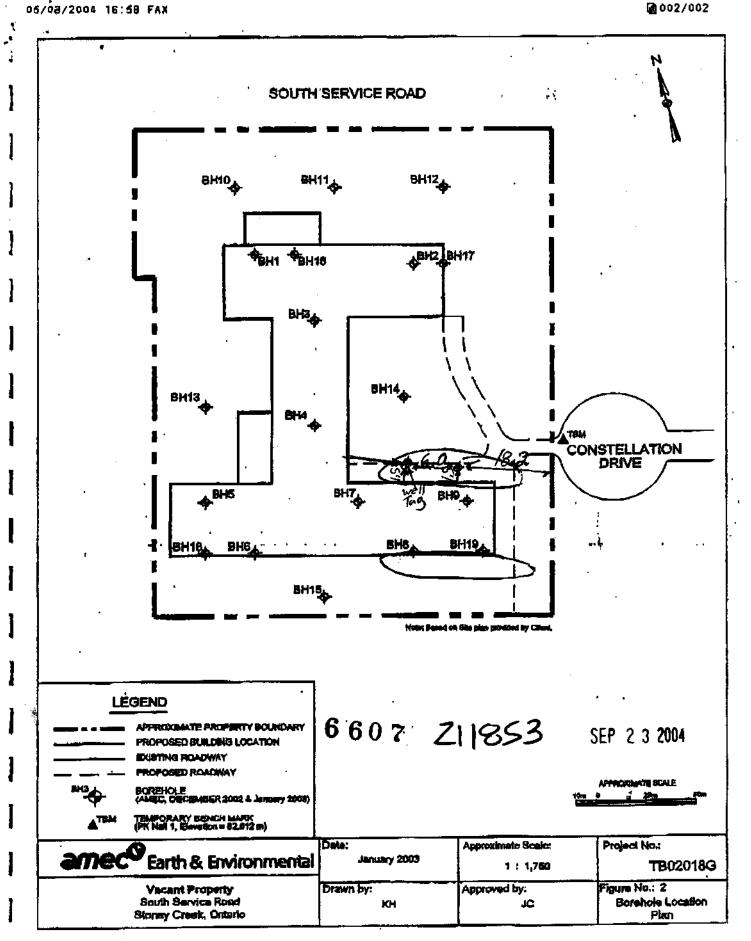
2 - MINISTRY OF ENVIRONMENT AND ENERGY COPY

The Ontario Water Resources Act WATER WELL RECORD

Print only in spaces provided.

Mark correct box with a checkmark, where applicable.

11


6813862

0506 (06/02) Front Form 9

Co	ounty or District	l-	. Inh		Township	/Borough/City/	Town/Village	t		Con block	tract surve	y, etc. l	ot 6 25-27
					Address	of Well Location	RI	-		, <u>J</u>	Date completed	S day 8	month Jear
21			Z	one Easti	ng	Northing		RC Eleva	ation RC	Basin Code	<u> </u>	iii	iv
	2	·	ы 10	LOG OF C	OVERBURDEN	N AND BEDR	OCK MAT	ERIALS (se	e instruction	ns)			
G	eneral colour	Most	common mater			er materials				description		Dep From	oth - feet To
	<u> </u>							han	d du	g we	= //	0	23-
								וכמומ	1inus	y de	illed	25	46
	· · · · · · · · · · · · · · · · · · ·						(1	+	y 	7,60		1
r			on crei	10				hat	tom	du	hole	25	245
r		hak	on crei							449	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24	24
			enin									24	11
	•	1 1	2 12/4	-								11	10
r			ceni	7		due w	all.	luca	ed t	7 5	/	10	سی ا
r						7		1777	<u> </u>			-	1
												†	
T													
3		<u> </u>		+ 1 + 1	. [] [1,1,1,	11.11	<u>.</u> 	Lillia	Hili	Lillia	.	
32		1111			لىنىا ك		ــــــا ل		ىنىيا لىل		ىب لىك	علل	۔ ــــــــــــــــــــــــــــــــــــ
4	1 WATE	R RECORD	21	51 Inside	CASING & O	PEN HÖLE	RECORD Depth	foot	Sizes of o	pening 31	1-33 Diameter	34-38 Ler	75 <u>8</u> ngth 39-40
	ater found - feet	Kind of w		diam inches	Material	thickness inches	From	То	Material a	nd type		nches Depth at to	feet
L	70		Minerals	1 //:	1	188	0	23-16	ြ	.,		-	41-44 feet
		1 Colbr 4	Sulphur ie Minerals	104	Open hole	100		^	61 F	LUGGING	& SEALING	RECOR	D
ľ	20-23 1 0	Fresh 3 0	Sulphur 24 Minerals	JM 37 :	1 □ Steel 19 2 □ Galvanızed		سر پر	20-23		Annular space		□ Abandor	ment
\vdash		ı ≳anık [₽] □		* */ ·	3 ☐ Concrete 4 B Open hole 5 ☐ Plastic		25	70	From 10-13	To Mater	rial and type (Ce	ment grout,	bentonite, etc.)
L	2 [Salty 6 🗆	Minerals Gas	1 1:	ı □ Şteel ²⁶ z □ Galvanized	-		27-30	18-21	22-25			
			Sulphur 34 60 Minerals Gas	1 1	a □ Concrete 4 □ Open hole 5 □ Plastic				26-29	30-33 80			
	Pumping test n	nethod 10	Pumping rate	2 11:14	Duration of pump	ping	<u></u>						
71	ı ⊡ Pump ₂		25		Hours	Mins		In diagram	below show	ATION OF N distances of		oad and	ot line.
EST	Static level	and of pumping	Water levels	during 1 30 minutes 29-31	45 minutes	2 ☐ Recovery 60 minutes 35-37	/ \	Indicate n	orth by arrow	-			
PUMPING TEST	32	l ec t	26-28 	29-31 feet	32-34 feet	35-37 fee t	N						
MP	If flowing give r		Pump intake set		Water at end of te		•		_				
=	Recommended p	oump type	Recommended pump setting	43-45	Recommended pump raie	46-49			20				
	☐ Shallow	Ф Феер	,	leet		9 GPM			34				
F	NAL STATU								-				
		on well	 5 Abandoned 6 Abandoned 7 Abandoned 	, poor quality	pply ⁹ □ Untinis ¹⁰ □ Replac	hed ement well		R:	doe Pr	1. 'b.	km		
	 □ Recharge 		8 🗀 Dewatering					714	dge Ro	,,,			
W	ATER USE		55-56 s ☐ Commercia	I	9 ☐ Notus		1				1		
	2 ☐ Stock 3 ☐ Irrigation 4 ☐ Industrial		6 ☐ Municipal7 ☐ Public supp8 ☐ Cooling & a		10 🗆 Other -						2		
	ETHOD OF		•								r		
I M	¹ □ Cable too	1	, IION 57 5 ☐ Air percussi 6 ☐ Boring	ion	9 ☐ Driving 10 ☐ Diggini								
	² ☐ Rotary (or ³ ☐ Rotary (re ⁴ ☐ Rotary (at	everse)	7 ☐ Diamond B ☐ Jetting		יי □ Other						2	2604	445
	ome chief. h	vanta-			Man Carre	ore Linners &I	Data		Sa Contractor		59-62 Date rece		63-68 BI
	ame of Well Conti 20 n		May	with	حسان	or's Licence No.	Source	çe	36	40	SEP		2003 "
A	contraction of Well Techniques of Techniques	d ,	5-1	6.2.1	10		Date	of Inspection		nspector			
N	ame of Well Techi	nician	ini Na		Well Technicia	an's Licence No.	Rem.	arks		<u> </u>		1274	
Si	gnature of Techni	ciary/Contractor	Terr	i FF	Submission of	ate 51	WINISTRY						71 71 7
1	1 Jona	4/1	V/cm		26 0	, <i>U</i> ,	2						

· ·				•	2×1 240	519	
Ontario Ministry the Env	7 O 1	ng Number (Place	· · · · · · · · · · · · · · · · · · ·	nt number below)	Regulation 90.	Well Resort	∋COrc urces Ac
Instructions for Completing For	m		्रमार्थः प्रमान	· ·		page	of
 For use in the Province of Onta All Sections must be completed Questions regarding completing All metre measurements shall Please print clearly in blue or blace 	ario only. This docun I in full to avoid delay I this application can I be reported to 1/10	s in processin be directed to	g. Further i the Water	instructions and	d explanations are ava	ailable on the back of t 416-235-6203.	his form.
Well Owner's Information and L		ormation	MUN (ON NO	LOT	
Address of Well Location (County/District	/Municipality)	Tov	vnship		Lot	Concession	
RR#/Street Number/Name	asek .		City/Town/Vi	llage	Site/Compa	artment/Block/Tract etc	•
GPS Reading NAD Zone E	asting Nor	thing _ l	Jnit Make/M	lodel Mode	ورمان of Operation: Und	differentiated Average	 aed
8 3 7 6	08930 47	286290			·	erentiated, specify	
Log of Overburden and Bedrock General Colour Most common materia				Genera	al Description	Depth	Metres
						From	<u>ь</u> 60
Brown 11/1		· LOIAZANIENIGETARWA			·	.60	4.50
Grea dry clean						4.50	6.0
		A					
~.							
· · · · · · · · · · · · · · · · · · ·		**************************************		~·····································			
					24,772,877,11,777,177,777,177,177,177,177,177,		
Hole Diameter	Con	struction Reco	rd		Tes	t of Well Yield	
Depth Metres Diameter Insid	Material	Wall	Depth	Metres	Pumping test method		ecovery Water Leve
Centime	1	centimetres	From	То	Pump intake set at -	min Metres min	Metres
		Casing		· · · · · · · · · · · · · · · · · · ·	(metres)	Static Level	
	Steel Fibreglass Plastic Concrete		2 0	0	Pumping rate - (litres/min)	1 / 1	
Water Record	Galvanized	. 7			Duration of pumpinghrs + min	2 / 2	
Water found at Kind of Water Metres	Steel Fibreglass				Final water level end	3 3	
Gas Salty Minerals	Plastic Concrete Galvanized				of pumpingmetres Recommended pump		······································
Other: Marine Sulphur Sulphur Other:	Steel Fibreglass	1			type. ☐Shallow ☐ Deep		
Gas Salty Minerals Other:	Plastic Concrete Galvanized				Recommended pump depth. metres		
m Fresh Sulphur		Screen			Recommended pump	<u> </u>	
Gas Salty Minerals Outside Other:	n Sieei Fibregiass			2 ~	If flowing give rate -	15 15 20 20	
After test of well yield, water was	Plastic Concrete Galvanized	10	6.0	3.0	(litres/min)	25 25	
Clear and sediment free Other, specify		Casing or Scre	en		If pumping discontin- ued, give reason.	30 30 40 40	
Chlorinated Yes No	Open hole					50 50	
	Annul	ar apace	andonment		Location (60 60 60 cf Woll	
Plugging and Sealing R Depth set at - Metres Material and type (benton	nite slurry, neat cement slurr	v) etc Volume	e Placed metres)		w shew-distances of well fi	r om ro ad, lot l ine, and buil	ding.
From To 5000	<i></i>	(CUDIC	medes)	Indicate north by	/ arrow.		7)
2.9 0 Benjonite				•	THE O	alon a	پ د
				-	(55) R))
	·				Du long		Ĩ
Method	of Construction			\			$\tilde{\tilde{\rho}}$
Cable Tool Rotary (air) Rotary (conventional) Air percussion	☐ Diamond ☐ Jetting		Digging Other				7
Rotary (reverse) Boring	☐ Driving				75		Š Š
Domestic Industrial	Vater Use Public Sup	poly V	Other				7
Stock Commercial Municipal	Not used	air conditioning		Audit No		te Well Completed	
Final	Status of Well			Audit No.	1000	Delivered C	MM DD 25 06
	Unfinished ent supply Dewatering		ned, (Other)	Was the well ov package delivere	THE STRICT TRACTOR	te Delivered YYYY	MM DD
Test Hole Abandoned, poor qua		ent well			Ministry Us	e Only	
Name of Well Contractor		Vell Contractor's Li	icence No.	Data Source		ontractor 660	7
Business Address street name, number, city e		(GQQ)		Date Received	TYXY DD Da	4	MM DD
Name of Well Technisian (last name, first name	Vildon V	Vell Technician's L	icence No.	SEP Remarks	2 3 2004 DD Da	ell Record Number	
こしょうけん ひとうかんとしたとう	· · · · · · · · · · · · · · · · · · ·	203-96		. STRUCTO		681409	6
Signature of Technician/Contractor			MM DD				
0506E (09/03)	Contractor's Copy 🔲 🛝	//inistry's Copy [☐ Well Owr	ner's Copy	Cette f	ormule est disponible e	n françai

@002/002

♥ Ontario	Ministry of the Environment	Well Tag Number	Place sticker and print number belo	OW)
Instructions for Comple	ting Form			
 All Sections must be of 	completed in full to average in the completing this application in the completing this application in the complete in the comp	oid delays in proce ation can be directe ad to 1/10 th of a me	ermanent legal docume sing. Further instruction to the Water Well Man	s and e
Address of Well Location (Cour	nty/District/Municipality)		Township	······································
RR#/Street Number/Name		<u>* </u>	City/Town/Village	ree
GPS Reading NAD 8 3	Zone Easting 6 08 9 30	Northing 478629	Unit Make/Model	Mode of
Log of Overburden and				

General Colour

Domestic

0506E (09/03)

∐ Stock

Well Record

Regulation 903 Ontario Water Resources Act

page $oldsymbol{\perp}$ of $oldsymbol{L}$

15	tructions for compieting Form		j	'
	English in the Description of Outside sale. This	 land and the second terror of the second sec		

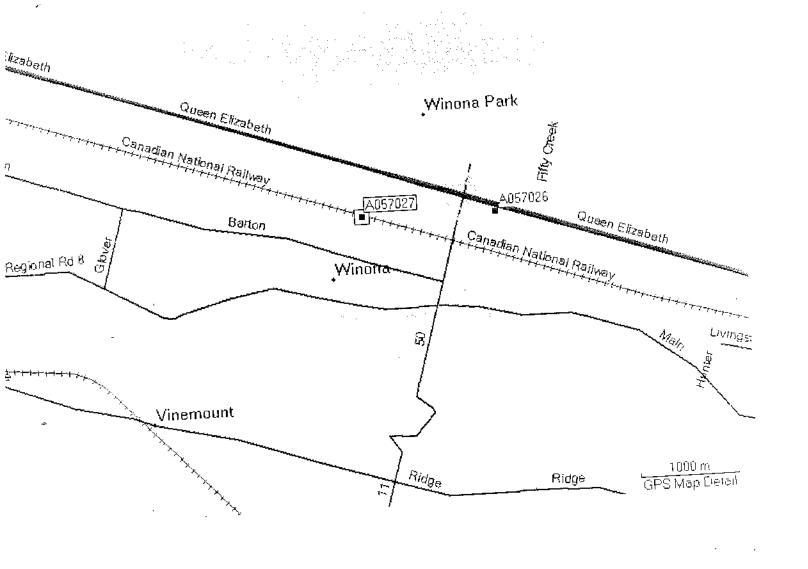
All SQueAll r	ections (stions re netr e ma	must be cor garding con	mpleted in apleting thi ts shall be	full to avoid delay is application can reported to 1/10	s in proces be directed	sing to t	. Further	instructions an	d explanations are available to the description of	ailable 416-2	on the ba 235-6203.	ick of	this form.
	,		or black	, white strings					·				
Address o	f Well Loc	ation (County	//District/Mu	inicipality)		Towr	ship		Lot		Conce	ssion	
	et Number		عاما ليعاد	<u> </u>]	Ci	ty/Toyn/Vi		Site/Compa	artmer	nt/Block/Tra	act etc	 >.
PS Read	ding	NAD Zor	ne Eastir 7 4 A	8930 V	thing 78629	D Ur	S <i>+⊙</i> ∽ nit Make/M		e of Operation: und	ifferent	iated	Avera	-
og of C	Overbur	1		aterials (see ins						er en itielt	eu, specay		
Seneral Co	olour I	Most common	material	Other M	aterials			Genera	al Description		Dep Fro		Metres To
						1	/	1 0	7				
				<u> </u>	2	1	+ a	11 -	ecord.	······································			
		***************************************		ļ		ļ	<i>u</i>	<u>je (()</u>	ecocar.				
				90		ļ							
													
												\dashv	
						ļ		d					
IIIIOMINES PERMISSI													
	ole Diam			Con	struction R	есого	1				bleiY llev		
Depth From	Metres To	Diameter Centimetres	Inside diam	Material	Wail thickness		Depth	Metres	Pumping test method		aw Down Water Level		ecovery Water Leve
	1		centimetres		centimetre		From	То	Pump intake set at -	min	Metres	min	Metres
					Casing		•		(metres)	Static Level			
				Steel Fibreglass					Pumping rate - (litres/min)	1		1	
	Vater Rec	ord		Plastic Concrete					Duration of pumping	2		2	
/ater found tMetr	es / 🔼	nd of Water		Steel Fibreglass	,				hrs + min Final water level end				
m _]Gas	Fresh	Sulphur Minerals		Plastic Concrete					of pumpingmetres	3		_3_	
Other:				Steel Fibreglass	 	 			Recommended pump type.	4		4	
m Gas	Fresh	Sulphur Minerals		Plastic Concrete					Shallow Deep Recommended pump	5		5	
Other:	·			Galvanized	8	<u> </u>			depthmetres	40			
m ∐Gas	Fresh ☐ Salty	n 💹 Sulphur Minerals	Outside	Steel Fibreglass	Screen	<u> </u>			rate. (litres/min)	10 15		10 15	
Other:	£		diam	Plastic Concrete	Slot No.				If flowing give rate -	20		20	
	r wen ynerd nd sedimer	l, water was nt free		Galvanized					(litres/min) If pumping discontin-	25 30		25 30	
Other,	specify			No	Casing or S	cree	n		uėd, give reason.	40		40	
hlorinate	d 🗌 Yes	□ No		Open hole					[[50 60		50 60	
	Plug	ging and Se	aling Reco	ord Annul	ar space	Abar	ndonment		Location		11		
Depth set a From	at - Metres To			slurry, neat cement slurr		ume ubic m	Placed netres)	In diagram below Indicate north by	w show distances of well for	om roa	nd, lot line, a	ınd bui	lding.
0	6.0	B5	eal			.08	_	indicate north by	y an ow.				
						ļ							
			lethod of	Construction		-							
Cable To		Rotary	(air)	Diamond	· · · · · · · · · · · · · · · · · · ·	I —	lgging						
] Rotary (] Rotary (convention reverse)	al) ☐ Air perd ☐ Borring	cussion	☐ Jetting ☐ Driving		0	ther						
	· ·			er Use									
] Domesti] Stock	c	☐ Industri		☐ Public Sup ☐ Not used	ply	<u>П</u> о	ther						
Irrigation	1	Municip	oal		air conditionin	9		Audit No. Z	19227 Pa	te Well	Completed YYY	Y ,	MM OD
Water S	Supply	Recharge w		Tus of Well Unfinished	Aba	ndone	d, (Other)		WHELP HIMMINGUE	te Deliv	vered y	YYY .	MM DD
Observa	ntion well	Abandoned, Abandoned,	insufficient s poor quality	upply Dewatering				package delivere	ed? Yes No				
		Weli Con	, , ,	chnician Informati	on	do 1 '-	DOO NE	Data Source	Ministry Us	e Only			
Srow	ell Contrac	€ Ded		AC.	Vell Contracto	S LICE	ence NO.	Data Source		7	091		
iusiness A	ddress (str	eet,game, numt						Date Received	7/~2005 ^M , ^{DO} Da	te of In:	spection y	YYY	MM DD
	ell Technic	ian (last name,			Vell Technicia		ence No.	Remarks	1 (1 .)	il Reco	ord Number		L
ignature c	LTeghnlok	in/Contractor	· · · · · · · · · · · · · · · · · · ·	, D	ate Submitted	-	MM DD	44.41	11/07	, S	·:		
· lu	13)	大二		itractor's Copy	200	Y	MX 00		9100		e est dispo	nibi-	an france
ener more	131		Con	stractor's Copy 🔲 - N	amistry's Co	m∨ 🛶	- Well Owi	ner's Copy 📗	Cette f	ormuk	e est alspo	rHDIÐ :	en manca:

4:00 PM		FA	X NO.				P. 02/	
a. ·	19 H			<	286 2746	7116	39	5068
	,	Well Tag Number (P	leas sticker and print mu	mber below	•		Well R	
	injstry of e Environme	4011791	3	.1	Regulation :	os Ontario	Water Reso	yrces Act
—			1798		-		page	of
instructions for Completing	Form							
• For use in the Prevince of	f Ontario only. Th	is document is a per	manent legal de	ocument. Ple	ui 101 niajan aza Me <i>scol</i> ianahwa	avvijapje ou (file leteus:	nce. • The back of:	this form.
- A Airean annomine (AM)	Notina this andical	MAA CAN DA CIFECTEC	DO DUG ANGROL AKE	Menegem	ent Coordinator	at 416-235	-6203.	11
- A M	ahali ka taganta	d to 1/10th of a metr	٠٠			Use Only		
Please print clearly in blut	or black ink only	Wall lefamention	MUN	1 001		Til	LOT	
Well Owner's Information	I ASI NAME	Mell Information	Melling Address (S	Street Number	Marne, RR,Lot,C	encession)	- 3	
	Last Name-	al wheeledk Inc.	C St.	<u> 71017</u>	<u> </u>	T44.	umber (includ	J(C)
County/District/Municipality		p/City/Town/Village			Jinh	416-5	SIS-9	<u> 2 P S</u>
Address of Well Location (County)			Township		L	,ot	Concession	
warete.	-darek		j Chy/TownVilles	YA	Site/Cor	mpariment/B	lock/Traci ét	3.
RR#/Street Number/Name	آ يون ده څ	2-1	- Jacon		<u> </u>	·		
GP\$ Reading NAD 200	Easting	67B6290	Unil Make/Mod	el Mode	of Operation:	Lindifferentiale Differentialed,		9ge0
log of Overburden and Be	GCP393C	(see instructions)	 					
General Colour Most common		Other Materials		General	Opecription		Depth	Meditras.
	· 		*				Ø	_60_
Grayle Grayle		•					.60	4.50
Brown 1///			,				4.50	6.0
GAGET - GLA CKAR	···							ļ
								
								<u> </u>
								
						···		
		1		- 4				
Hole Dismeter		Construction R	Diese			Test of We		-
Depth Matres Diameter	Ingejebb	Well	Depth	Matrea	Pumping test me		aber Level Tim	Recovery Worker Level
From To Continuouse	diam Mi	iterial (hickness		To		min	Adaptes into	Metwx
6.0 8 15	23131104-00	Casing	-R	<u></u>	(matres)	et - Sharic Level	/	
		[Nienglate 2	7 1 1		Pumping rate - (tires/min)	1		
	- Pine	Concesse 🐲	3.0	Ø	Duration of pump	ing 2	1/2	+
Water Record	Galmi			······································	thrs +	_ min	<i></i>	
Wisher found Kind of Water Metres Kind of Water	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fibregiass Concrete		"	First water level of purryping	_ 		
Gay Salty Minerals	Garre				Recommended t	STOP A	4	
Others		Fibregiess			Recommended p	Denny		_
		Conorete		l		trees 5	5	+
Ges Sulty Minorali	g Gave	Soreen	ii		Recommended		10)
☐ Gas ☐ Salky ☐ Minerali	Outside Steet	O Silventions Slot No		_	rate (meconic)	15	15	
Other:	clain Plan	c Concrete	6.0	3.0	(Mae/min)	te: <u>20</u>	2	
After test of well yield, water was	6.4	nized 10			If purabing discor	yun- 30	30	
Clear and security was	<u> </u>	No Casing or	Screen			40	5	
	- Copen	hole			IV .	50 80	- 8	
5-1,1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ال		Abandonment		Loca	tion of Wel		
Plugging and t	ionling Record		Volume Placed (cubic metres)	in diamen bais	H Bright Childrens of		i, intine, and	CAMPAGE AND ADDRESS OF THE PARTY OF THE PART
Decth est 31 - Malnes Atatoriel and 1	Abe (deligouse amu), ue	K CONTROL K STUTY) GET	(cubic metres)	Inclinate meth	~~~~~		5 /	1 🛷
60 2.9 3000				.	\ - 79	15 - V,	. 2	N 2
3.9 B Bento	<u>∧,16</u>		·	**		Cat (C) 100	×γ.	Ų.
	 			. +4	CO BUYE	nd	į.	15
		- 3		1 1	[×		Servic
	Method of Const	uetion			\/	1	1 1	13
Cable Tool Rola		Diamond ~ ~	□ Ologing ·	1 .	a Vie	_	\ '	17
Rotary (conventional)	orquesion	Jenino ** Drimng	☐ Other] 1		_	1	130
Rotary (reveree) @Borts	9	Printed		し オ	1	\	` ب	1
	Water Use							
Comestic Indu		Public Supply	Other		IL	_Plops		<u></u>
Stock Com	strial Mercial	Public Supply Not used Cooling & air condition		Audit No. 7	11AL		Completed	
	strial Mercial	☐ Not used ☐ Cooling & alls condition Well	ring .	<u> </u>	1185		Completed	
Stock Com Uniquition Mich	etial mercial opal Final Status of 1984	□ Not used □ Cooling & all condition Well □ Unfinished □ / □ Downstering		<u> </u>	1185	Date Deli	Completed	
Stock Com	etial mercial opal Final Status of	Not used Cooling & Air condition Well Unfinished Downstering Replacement wall	ring .	Was the well	990G?	Date Deli	Menad AAA	

7091

Contractor's Copy | Min

APR 2 7 2006


2252

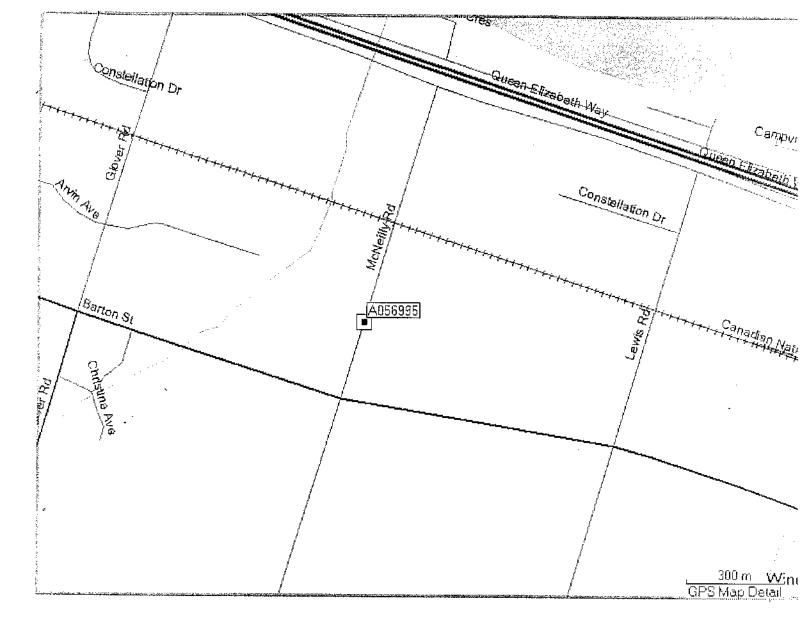
Ministry of

AO57027

		,	Well	Rec	ord
Regulation	903	Ontario	Water	Resourc	es Act

Well Tag Below) A 057027 Page / of / Well Owner's Information Q.E.W. WINONA RD. County/District/Municipality City/Town/Village Province Postal Code STONEY CREEK Ontario UTM Coordinates Zone Easting Northing GPS Unit Make Model Mode of Operation: Undifferentiated ☐ Averaged NAD 8 3 1 7 6 0 9 6 75 4 78 5 6 3 9 Differentiated, specify Overburden and Bedrock Materials (see instructions on the back of this form) FEST Depth (General Colour Most Common Material Other Materials General Description From Tó D BUWN TILL 4420 lo' SHALE GREEN SHALL RED 30 ¹ 10 ्रहर Annular Space/Abandonment Sealing Record Results of Well Yield Testing Type of Sealant Used (Material and Type) Check box if after test of well yield, water was: Volume Placed Draw Down Recovery From (Cubic Metres) Time Water Level Water Leve Time ☐ Clear and sand free Đ (Metres) 15' (Min) (Metres) BENTONITE HOLEPLUG (Min) ☐ Cannot develop to sand-free Statio Statio 151 state 301 SILICA SAND Level eve If pumping discontinued, give reason: 1 2 2 Pumping test method 3 3 Method of Construction Water Use Pump intake set at (Metres) 4 Cable Tool
Rotary (Conventional) 4 ☐ Diamond☐ Jetting ☐ Not used ☐ Dewatering Commercial ☐ Public Pumping rate (Litres/min) □ Domestic ■ Municipal k 5 Rolary (Reverse) ☐ Driving Livestock ☐ Test Hole Monitoring Rotary (Air) Digging !migation ☐ Cooling & Air Conditioning Duration of pumping 10 10 min / ☑ Boring ☐ Air percussion ☐ Industrial hrs + Other, specify Other, specify 15 15 Final water level end of pumping Status of Well (Metres) 20 20 ☐ Water Supply Dewatering Well Observation and/or Monitoring Hole Recommended pump type Replacement Well ☐ Abandoned, Insufficient Supply ☐ Alteration (Construction) 25 25 Shallow □ Deep ☐ Test Hole Abandoned, Poor Water Quality Other, specify Recommended pump depth Recharge Well ☐ Abandoned, other, specify 30 30 Metres Location of Well 40 40 ended pump rate Please provide a map below showing: - all property boundaries, and measurements sufficient to locate the well in relation to fixed points, 50 50 an arrow indicating the North direction f flowing give rate (Litres/min) detailed drawings can be provided as attachments no larger than legal size (8.5" by 14")
 vidigital pictures of inside of well can also be provided 60 60 Water Details Water found at Depth Kind of Water Metres Gas ☐ Fresh ☐ Salty ☐ Sulphur ☐ Minerals SEC WED Water found at Depth Gas Metres Water found at Depth Kind of Water Metres Fresh Salty Sulphur Minerals Gas Casing Used Screen Used Casing and Well Details neter of the Hole (Cer Galvanized ☐ Galvanized 3 % Steel Steel Depth of the Hole (Motres) FECT 🔲 Ģibreglass ☐ Fibreglass Date the Well Record and Package Delivered to Well Owner (yyyy/mm/dd) 30 Was the well owner's information Plastic Was the wen compackage delivered? Yes No Plastic (yyyy/mm/dd) Concrete Concrete Wall Thickness (Metros) 2007/ SCH YO No Casing and Screen Used Well Contractor and Well Technician Information Inside Diameter of the Casing (Metres) 2 Business Name of Well Contractor Open Hole Well Contractor's Licence No LANTEU DMUING SENVICES INC. 01 6 8 Disinfected? Depth of the Casing (Metres) PEF) Business Address (Street No./Name, number, RR) ☐ Yes ☐ No. Municipality 3661 MT. ALBENT MOAD SHALON Ministry Use Only Province Postal Code Business E-mail Address Well Contractor No 9 40411Va z 63329 ONTALIO Date Received (yyw/mm/c AUG 2 8 2007 Bus. Telephone No. (inc. area code) Name of Well Technician (Last Name, First Name) Date of inspection (yyyy/mm/dd) 9 0 5 4 78 22 43 TODA /45CO Well Technician's Licence No. Signature of Technician Date Submitted (yyyy/mm/dd) Remarks

AUG 2 8 2007


Ministry of the Environment

|Well* AO56995

A056995

Print Below) Well Record Regulation 903 Ontario Water Resources, Act

Well Ow	mer's in	formation		L		70-0	0.0000000000000000000000000000000000000	ing in the second	18 18 18 18 18 18 18 18 18 18 18 18 18 1	**************************************		rage <u>/</u>	State and the second se
First Name	e	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Last Nan	ne		E-n	nail Addre	<u>-</u> ∋5\$				r Well 0	Constructed
THE Mailing As	C1	eet Number/Nam	HAM	ILTON	Takt.t						· · · · · · · · · · · · · · · · · · ·	by W	ell Owner
		JAMES		LORTH	Municipal	iity MILTON		Prov		Postal Cod		phone No, (ir.	c. area code)
Part A C	onstruct	ion and/or <mark>M</mark> aj	jor Altera	ation of a W		-		-		1-1-1-1-	<u> </u>	<u> </u>	
_		ation (Street Num		, RR)	T	ownship				Lot	Cor	cession	<u>er eregyes ares a resemble a co</u>
County/Di	istrict/Mun	<u>Υ ΡοΑ-Ο</u> icipality			c	ity/Town/Villag					Province	Post	al Code
UTM Coon	dinatos 7	Zone , Easting		. 4.5-		STONE		reel			Ontari		
		176081		orthing 174815181		S Unit Make	Model		Mode of Op	peration: [liated, specify] Undifferent	iated A	veraged
Overburd	len and B	edrock Material	s (see inst	ructions on the	back of this	form)	100000						FEET
General C		Most Common N	Aaterial	C	ther Mater	ials	<u> </u>		General Des	scription		Dep From	oth (Motres) To
Brown		714					-					ها ا	10'
GNEY		TILL SHALE					ļ					10	
420		SHACE										35	' 51'
							1						
							ļ						
-			····										
***************************************							<u> </u>						
Depth Set a	FEGT at (Metre s)	Annular Space		nment Seali alant Used	ng Record	Volume	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Check ho	R x if after test c	esults of W	ell Yield Te		Recovery
From	То		Material ar	nd Type)		(Cubic M		water was	s: r and sand fre		Time Wai	er Level Time	Water Level
-6	47'	BENTONI	TE H	blep Lua	·			☐ Canr	not develop to		(Min) (N Static	fetres) (Min) Statio	
47'	51'	SILICA	SAN	>				If pumpin		, give reason:	Level 1	Level	
	<u>. </u>										·	1	
								Pumping	test method	,	2	/	
Meth	nod of Co	onstruction			Water Us	e		Pump int	ake set at (M	etres)	3	3	
☐ Cable To☐ Rotary (0		☑Diamond al} ☐ Jetting	□ Pu		Commerci		t used watering	Pumping	rate (Litres/m	ial	4	/ 4	
Rotary (F	Reverse)	Driving	Liv	estock [Test Hole	e ☑ Mo	onitoring	l anapang	rate (Elecani	un	5	5	
☐ Rotary (A	ssion	☐ Digging ☑ Boring	☐ Imig		_ Cooling &	Air Conditionir	ig ·	11	of pumping	in N	16	10	
Other, sp			. —	ner, specify	ETIS KACKSTVICE		X3/23016-240-X	Final wate	F level end of	- 1	15/4	15	٠.
☐ Water Su		☐ Dewatering				on and/or Monito		(Metres)	4		20	20	
☐ Replacen		☐ Abandoned ☐ Abandoned		nt Supply [(Construction)		Recomme Shall	ended pump ow Dec	/	25	25	
Recharge		Abandoned				өсну		Recomm	ended pump	deptin	30	30	
Please provi	ide a man l	pelow showing:	Location	of Well		// / / C// S		Recomme	Metres	rate	40	40	
- all property	boundarie	s, and measureme North direction	n ts sufficier	nt to locate the	well in relati	ion to fixed poir	rts,	(Litres/mir	9/	· uto	50	50	
 detailed dra 	awings can	be provided as atta ide of well can also	achments r	o larger than lo	egal size (8.	5" by 14")		If flowing (Litrex/mir	give rate		60	60	
* Vidigizai pici	iores or ins	ide of well call also	oe provide	SO.					O DISORBI ACTION MANAGE		L	<u></u>	70 W 3840 SW 900 SW
								11 119 mener 27 1 1 1 1	und at Depth		Details f Water		1
	,	ATTACH						105-6 5-				Sulphur	Minerals
		7	ED					water to	and at Depth Metres		f Water sh ØjSalty	Suìphur	Minerals
		ATTAC						1	und at Depth	Kind o	f Water		
				E/								Sulphur	
								ୁ Casını ☐ Galvani		Screen Used Salvanized	Diameter	ing and Well o£the Hole (⊖	
								Steel		Steel	3	<u></u>	
Date Well C	Completed			ation Date	the Well Re	cord and Pack	age	Fibregla Plastic	1 —	Fibreglass Plastic	Depth of	ine Hole (Motre	* FEET
(yyyy/mm/do 2007/07	1/24	package delivered	l? ∭Yes ∣	∠ Deliv		Owner (yyyyhi		Concre		Concrete	Wall Thic	kness <i>(Metre</i> s)	
	NO.	/ell Contractor	and Well	Technician	Informati	on Yesting Y				creen Used	Inside Dia	YO meter of the C	asing -(Metres)
Business Na		Contractor	(====	115E 11		Contractor's Lice	nce No.	Disinfected			2"		
Business Ad	dress (Stre	eet No./Name, nur	nber, RR)	, w y (*	Municipality		1	Disinfected Yes			Depth of t	he Casing (44a	koo) FEET
3661 1	Mr. A	LBEAT A	LUAD	SH 420 N	<u>'</u>				5487272		Use Only		
Province ONTAAI		ostal Code		E-mail Addres	SS			Audit No.	6332	7	Well Contract	or No.	
Bus.Telephor	ne No. (inc.	area code) Name d	of Well Tec		Name, Firs	t Name)		Date Recei	ved (yyyy/mm/	dd)	ಾte of Inspec	tion (yyyy/mm/	da)
		2 4 5 70 No. Signature of	Technicia	4566	1/42.	Submitted 4 - 1	/Ann 11-1 11-11	and the second second	3 2 8 <u>200</u> 7				
2 2		2	1.00 III (6)24	Why has	Joans S	Submitted (yyly	(mmydd)	Remarks					
0506E (11/2006	6)			- //VC	<u>~~:_</u> X	Ministry's	Copy	* * * * * * * * * * * * * * * * * * *	<u>an ayan taran Salahta</u>		© C	ueen's Printer fo	r Ontarlo, 2006

AUG 2 8 2007

6809

Well Owner's Information

Well Tag No. (Pla A 074667

Well Record

Regulation 903 Ontar

itario	vvater	Resources	AC
		2	
Pag	ne.	of 🔿	

600		2		//	4		^		
County/District/N	tighway No 8	City/To	own/Village	+10	eet 9	Provinc		Postal	Code
Won	tworth	2	stones	40	reek	Onta	ırio	181	E549
NAD 8 3	1 - 0 . (orthing 1784630 mage	11	ledel	Mode of Operation: Differentiated, specify	Undiffer	rentiated	XAve	raged
The second secon	d Bedrock Materials (see inst								1
General Colour	Most Common Material	Other Materials			General Description			Depth	(Miles
brown	sand soil	stones			packed			0	12
brown	Stones	sand			10050			12	14
brown	clay	gravel			packed			14	45
brown	gravel	clay			packed			45	60
brown	sand	gravel			packed			60	70
brown	clay	gravel			packed			70	85
grey	clay	1			dense			85	94
brown	sund	gravel			1005C			94	74-9
Depth Set at (Me	Annular Space/Abando tres) Type of Se	The same of the sa	Volume Plac	ced	Results of We Check box if after test of well yield,	Angel State of the Labour.	d Testing w Down	Re	ecovery
From To	(Material a	nd Type)	(Cubic Metre	res)	water was:	Time (Min)	Water Level	Time (Min)	Water Level
					Cannot develop to sand-free state	Static Level	22	Static Level	75
					If pumping discontinued, give reason:		29-6"	1	72-6
-					Pumping test method	2	27	2	
					bailer	3	111-6	3	67-6
Method of Cable Tool	of Construction Diamond	Water Use			Pump intake set at (Petrop)	4	74 0	4	1-
Rotary (Conver	ntional) Jetting Do	omestic Municipal	☐ Not use ☐ Dewate	tering	Pumping rate (Glassmin)	5	59-6		65
Rotary (Revers	and the same of th	vestock Test Hole	Monito Conditioning	oring	Duration of pumping	10	59-6	10	62-6
Air percussion Other, specify	☐ Boring ☐ Inc	dustrial her, specify			2 hrs + min	-	15	4	90
	Status	The second secon			Fignal water level end of pumping	15	75	15	38
Water Supply Replacement W	☐ Dewatering Well ☐ Abandoned, Insufficie	nt Supply Alteration (Co	_	Hole	Recommended pump type	20	75	20	28
☐ Test Hole	Abandoned, Poor Wa	ter Quality Other, specify			Shallow Deep Recommended pump depth	25	75	25	22
Recharge Well	☐ Abandoned, other, sp				7.5 Forest	30	75	30	22
	Location nap below showing:			0102316	Recommended pump rate (Catherina)	40	75	40	22
 an arrow indicating 	daries, and measurements sufficie ng the North direction				If flowing give rate	50	75	50	22
 detailed drawings vidigital pictures of 	can be provided as attachments of inside of well can also be provided	no larger than legal size (8.5° b) ed	y 14") A	١ '	(Lüres/min) 60 75				22
			W.		The second secon	Details	S		
		- 4				of Water	Salty Su	lphur	Minerals
		N. O			Water found at Depth Kind of	f Water			
	-	5		-		sh []S	Salty Su	lphur [Minerals
	Newtrallan	6					Salty Su	lphur [Minerals
	NOTONWY				Casing Used Screen Used		Casing an		
					Galvanized Galvanized Steel Steel	Dian	6£	ole (C	rones
Data Wall Comple	eted Was the well owner's inform				Fibreglass Fibreglass	Dept	th of the Hole	veet.	+
(yyyy/mm/dd)	package delivered?	Date the Well Record Delivered to Well Ow	ner (yyyy/mm/d	da)	Plastic Plastic Concrete Concrete	Wall	Thickness (MURCAL	-
201 03 K	Well Contractor and Well	2007 0:	26		No Casing and Screen Used	Insid	le Diameter o	f the Car	sing Inches
Business Name of	Well Contractor	Well Contr	ractor's Licence		Open Hole		64	_	
//onale Business Address	(Street No./Name, number, RR)	3 6 Municipality	40	0	Disinfected?	Dept	th of the Casi	ng (afforda	et-
	gional Rd 20	Niago	ara		Ministry	Use Or		463	
Province		E-mail Address					ntractor No.		
Bus.Telephone No.	(inc. area code) Name of Well Te	chnician (Last Name, First Na	ame)		Date Received (yyyy/mm/dd)	Date of In	spection (yy	yy/mm/d	(d)
Well Technician's 1	3370 Merrit	+ Donald	mitted (see fee	model	MAY 0 3 ZUUB				
T 3 7	3370 Merrit cence No. Signature of Technicia 2 Donald	Marritt 200	mitted (yyyy/mn 9 <i>03</i> 2	26	Remarks				
0506E (11/2006)		N	linistry's C	Сору			© Queen's F	rinter for	Ontario, 2006

Measurements recorded in:

Ministry of the Environment

Imperial

Metric

Well Tag No. (Place Sticker and/or Print Below)

Well Record

A156060

Regulation 903 Ontario Water Resources Act

Page i of /

Address of Well Loc	cation (Street Number/Name)		Township	Lot	Conce	ession	in minimum in the distribute described in the manufacture of the manufacture of the described of the described in the describ
255 Win County/District/Mur	JONA PD. nicipality		City/Town/Village		Province	Postal	Code
UTM Coordinates Z	Zone , Easting , Northin		<i>WINOWA</i> Municipal Plan and Subl	ot Number	Ontario Other	L 8	ESLB
	779390343						***************************************
Overburden and I General Colour	Bedrock Materials/Abandonme Most Common Material	1	ord (see instructions on the ther Materials	e back of this form) General Description	1	Dep	th (<i>nQft</i>)
BROWN	70 P S 0/ L			Safe	***************************************	From M	10
BROWN			**************************************	CHWKY		/ -	- 3'
<u>4</u> e-9	SHALE			/4M20	1010101010101010111110101010101010101010	3 ′.	201
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		.v.v.v.v	·				
//////////////////////////////////////			<u></u>		.aiaviautaat//avavvvi/aiavitavidaviavaviaviaviatiatididide/avidaaaa.	Tankin da kanana	
	.,,,	-	18************************************				
			y				
KENNEN CONTROL	Annular Spa	ce		Results of W	ell Yield Tes	ting	
Depth Set at (<i>m/t</i>) From To	Type of Sealant (Material and Ty	Used pe)	Volume Placed (m³/ft³)	After test of well yield, water was:	Draw Do	wn Ro	ecovery Water Level
0	5/8 Benzulte	<u></u>		Other, specify	- Ctatial	n/ft) (min)	(m/ft)
				If pumping discontinued, give reason:	Level	· · · · · · · · · · · · · · · · · · ·	<u> </u>
				Pump intake set at (m/ft)			
<u> </u>	Construction	Well U		Pumping rate (I/min / GPM)			
Cable Tool Rotary (Convention	さんがんがん かんがん こうばい スー・・・・・・ アラン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	e decembra e di dia a la cal e delle e decembra de la	pal Dewatering		5	5	
☐ Rotary (Reverse) ☐ Boring	☐ Driving ☐ Livestoc ☐ Digging ☐ Irrigation		lole Monitoring g & Air Conditioning	Final water level end of pumping (m/ft)	10	10	
☐ Air percussion ☐ Other, <i>specify</i>	☐ Industria☐ Other, s		imiusiiiinastiiiiistaa minastataniiiiis kaiiiinaaninastaaniiiis kaiiinaaniinastaanii	If flowing give rate (I/min / GPM)	15	15	
	Construction Record - Casing		Status of Well		20	20	/#M&\IO1/COLOTOHICH&\IOCULOTICA#/H#MI/O1000000&HO1001400
Diameter (Galva	Hole OR Material Wall nized, Fibreglass, Thickness ete, Plastic, Steel) (cm(in)) F	Depth (m/ft) rom To	☐ Water Supply ☐ Replacement Well	Recommended pump depth (m/ft)	25	25	***************************************
		0'-10'	☐ Test Hole ☐ Recharge Well	Recommended pump rate (I/min / GPM)	30	30	
	24437C . 2		☐ Dewatering Well☐ Observation and/or	Well production (I/min / GPM)	40	40	
			Monitoring Hole Alteration		50	50	
			(Construction) Abandoned,	Disinfected? Yes No	60	60	
	Construction Record - Screen		Insufficient Supply Abandoned, Poor		ell Location		
Outside Diameter (cm(in)) (Plastic,	Material Galvanized, Steel) Slot No.	Depth (<i>mft</i>) rom To	Water Quality Abandoned, other,	Please provide a map below following	instructions on	the back.	N I
	U4577C 101	0 - 20	specify 	WINGWA R.		⋖	T-
		0 7 42	Other, specify		NORTH CONTRACTOR CONTR		
	Water Details		Hole Diameter		SCHOOL		
·	oth Kind of Water: Fresh Ur as Other, <i>specify</i>	ntested Der From	pth (<i>m/ft</i>) Diameter To (<i>cm/in</i>)				
Water found at Dep	oth Kind of Water: Fresh Ur	ntested		//' 'O'			num d
	as Other, <i>specify</i> oth Kind of Water: Fresh Ur	ntested	·	25'-7		**************************************	
(<i>m/ft</i>) [] G	as Other, <i>specify</i>				L		
Business Name of V	Well Contractor and Well Tec Vell Contractor		ation Vell Contractor's Licence No.				
	TWO DIZILLARS		7 2 9 5			K -10-hishishishishishisataisatataataataasissa	
· ·	Street Number/Name)	į IVI	lunicipality NAMILION	Comments:			
Province	Postal Code Business E-m		XIUNG Con	Well owner's Date Package Delivere	24	Ainistry Use	Only
Bus.Telephone No. (ii	nc. area code) Name of Well Techr		·/////////////////////////////////////	information package		No. 2 1 0	
405692 Well Technician's Licer	2 4 & 1 BARRETT and Communication of Fechalician and Communication			delivered Date Work Completed Yes			
2 4 6	3 / 2	· · · · · · · · · · · · · · · · · · ·	20140425	punition.	03	101, 20	2014
0506E (2007/12) © Q	ueen's Printer for Ontario, 2007		Ministry's Conv				

Well ID

Well ID Number: 7274729 Well Audit Number: Z220108 Well Tag Number: A192858

This table contains information from the original well record and any subsequent updates.

Well Location

Address of Well Location	911 ARVIN AVE
Township	SALTFLEET TOWNSHIP
Lot	010
Concession	CON 01
County/District/Municipality	WENTWORTH
City/Town/Village	Hamilton
Province	ON
Postal Code	n/a
UTM Coordinates	NAD83 — Zone 17 Easting: 607610.00 Northing: 4786158.00
Municipal Plan and Sublot Number	
Other	-

Overburden and Bedrock Materials Interval

General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To
BRWN	FILL		SOFT	0 ft	1.8 ft
GREY	CLAY	TILL	DNSE	1.8 ft	2.7 ft
RED	SHLE	LMSN	HARD	2.7 ft	6.L ft

Annular Space/Abandonment Sealing Record

Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
0.0	.3 ft	CONCRETE	
-3 ft	3.4 ft	BENTONITE CHIPS	

Method of Construction & Well Use

Method of Construction	Well Use
Boring	
	Monitoring

Status of Well

Observation Wells

Construction Record - Casing

luside Diameter	Open Hole or material	Depth From	Depth To	
5.1 inch	PLASTIC	0 ft	3.6 ft	

Construction Record - Screen

Outside Material Depth Depth From To 6.4 inch PLASTIC 3.6 ft 6.1 ft

Well Contractor and Well Technician Information

Well Contractor's Licence Number: 6607

Results of Well Yield Testing

After test of well yield, water was
If pumping discontinued, give reason
Pump intake set at
Pumping Rate
Duration of Pumping
Fînal water level
If flowing give rate
Recommended pump depth
Recommended pump rate
Well Production
Disinfected?

Draw Down & Recovery

Draw Down Time(min)	Draw Down Water level	Recovery Time(min)	Recovery Water level
SWL			
1		1	
2		2	
3		3	
4		4	
5		5	
10		10	
t5		15	94
20		20	
25		25	
30		30	
40		40	
45		45	
50		50	
60		60	

Water Details

Water Found at Depth Kind

Hole Diameter

Depth From	Depth To	Diameter
0 ft	6.1 ft	21 inch

Audit Number: Z220108

Date Well Completed: October 22, 2015

Date Well Record Received by MOE: November 08, 2016

Updated: June 28, 2018

RateRate

Well ID

Well ID Number: 7274730 Well Audit Number: Z219992 Well Tag Number: A192868

This table contains information from the original well record and any subsequent updates.

Well Location

Address of Well Location	911 ARVIN AVE
Township	SALTFLEET TOWNSHIP
Lot	010
Concession	CON 01
County/District/Municipality	WENTWORTH
City/Town/Village	Hamilton
Province	ON
Postal Code	n/a
UTM Coordinates	NAD83 — Zone 17 Easting: 607611.00 Northing: 4786065.00
Municipal Plan and Sublot Number	
Other	_

Overburden and Bedrock Materials Interval

General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To
BRWN	FILL		SOFT	0 m	1.8 m
GREY	CLAY	TILL	DNSE	1.8 m	2.7 m
RED	SHLE	LMSN	HARD	2.7 m	6.1 m

Annular Space/Abandonment Sealing Record

Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Ptaced
0 m	,3 m	CONCRETE	
₅3 m	3.4 m	BENTONITE CHIPS	

Method of Construction & Well Use

Method of Construction	Well Use
Boring	
	Monitoring

Status of Well

Observation Wells

Construction Record - Casing

Inside	Open Hole or material	Depth	Depth
Diameter		From	To
5,1 cm	PLASTIC	0 m	3.6 m

Construction Record - Screen

Outside	Material	Depth From	Depth
Diameter		LEOH	to
	PLASTIC		6-1 m

Well Contractor and Well Technician Information

Well Contractor's Licence Number: 6607

Results of Well Yield Testing

After test of well yield, water was	
If pumping discontinued, give reas-	'n
Pump intake set at	
Pumping Rate	Π
Duration of Pumping	
Final water level	
If flowing give rate	
Recommended pump depth	
Recommended pump rate	_
Well Production	
Disinfected?	

Draw Down & Recovery

Draw Down Time(min)	Draw Down Water level	Recovery Time(min)	Recovery Water level
SWL			
t		1	
2		2	
3		3	
4		4	
5		5	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
45		45	
50		50	
60		60	

Water Details

Water Found at Depth Kind

Hole Diameter

Depth From	Depth To	Diameter
0 m	6-1 m	21 cm

Audit Number: Z219992

Date Well Completed: October 22, 2015

Date Well Record Received by MOE: November 08, 2016

Updated: June 28, 2018

RateRate

Well ID

Well ID Number: 7274731 Well Audit Number: Z219993 Well Tag Number: A192864

This table contains information from the original well record and any subsequent updates.

Well Location

Address of Well Location	911 ARVIN AVE
Township	SALTFLEET TOWNSHIP
Lot	010
Concession	CON 01
County/District/Municipality	WENTWORTH
City/Town/Village	Hamilton
Province	ON
Postal Code	n/a
UTM Coordinates	NAD83 — Zone 17 Easting: 607677,00 Northing: 4786214,00
Municipal Plan and Sublot Number	r
Other	

Overburden and Bedrock Materials Interval

General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To
BRWN	FILL		SOFT	0 m	1.8 m
GREY	CLAY	TILL	DNSE	1.8 m	2.7 m
RED	SHLE	LMSN	HARD	2.7 m	7.6 m

Annular Space/Abandonment Sealing Record

Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
0 m	:3 m	CONCRETE	
-3 m	3.9 m	RENTONITE CHIPS	

Method of Construction & Well Use

Method of Construction	Well Use
Boring	
	Monitoring

Status of Well

Observation Wells

Construction Record - Casing

Inside	Open Hole or material	Depth	Depth
Diameter		From	To
5.1 cm	PLASTIC	0 m	4.5 m

Construction Record - Screen

Outside	Material	Depth Depth
Diamete	r (viiateria)	From To
6.4 cm	PLASTIC	4.5 m 7.6 m

Well Contractor and Well Technician Information

Well Contractor's Licence Number: 6607

Results of Well Yield Testing

After test of well yield, water wa	s
If pumping discontinued, give re	азоп
Pump intake set at	
Pumping Rate	
Duration of Pumping	
Final water level	
If flowing give rate	
Recommended pump depth	
Recommended pump rate	
Well Production	
Disinfected?	

Draw Down & Recovery

Draw Down Time(min)	Draw Down Water level	Recovery Time(min)	Recovery Water level
SWL			
l		1	
2		2	
3		3	
4		4	
5		5	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
45		45	
50		50	
60		60	

Water Details

Water Found at Depth Kind

Hole Diameter

Depth From	Depth To	Diameter		
0 m	7.6 m	21 cm		

Audit Number: Z219993

Date Well Completed: October 22, 2015

Date Well Record Received by MOE: November 08, 2016

Updated: June 28, 2018

RateRate

Well ID

Well ID Number: 7276166 Well Audit Number: Z218836

Well Tag Number:

This table contains information from the original well record and any subsequent updates.

Well Location

Address of Well Location	1091 BARTON ST E
Township	SALTFLEET TOWNSHI
Lot	007
Concession	CON 01
County/District/Municipality	WENTWORTH
City/Town/Village	SALTFLEET
Province	ON
Postal Code	n/a
UTM Coordinates	NAD83 — Zone 17 Easting: 608575.00 Northing: 4785569.00
Municipal Plan and Sublot Number	-
Other	-

Overburden and Bedrock Materials Interval

General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To
	185			0 m	

Annular Space/Abandonment Sealing Record

Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
0 m	1.5 m	CLEAN FILL	
1.5 m	i:8 m	BENTONITE CHIPS	
1.8 m	2.3 m	BENTONTIE SLURRY	
2.3 m	3.66 m	CLEAN GRAVEL	

Method of Construction & Well Use

Method of Construction Well Use

Status of Well

Abandoned-Other

Construction Record - Casing

Inside	Open Hole or material	Depth	Depth
Diameter		From	To
152 cm	CONCRETE	0 m	3.66 m

Construction Record - Screen

Outside Material Depth Depth Diameter Material From To

Well Contractor and Well Technician Information

Well Contractor's Licence Number: 7523

Results of Well Yield Testing

After test of well yield, water was	
If pumping discontinued, give reason	WATER REMOVED
Pump intake set at	-
Pumping Rate	-
Duration of Pumping	-
Final water level	_
If flowing give rate	-
Recommended pump depth	-
Recommended pump rate	-
Well Production	-
Disinfected?	Y

Draw Down & Recovery

Draw Down Time(min)	Draw Down Water level	Recovery Time(min)	Recovery Water level
SWL			
1		t	
2		2	
3		3	
4		4	
5		5	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
45		45	
50		50	
60		60	

Water Details

Water Found at Depth Kind

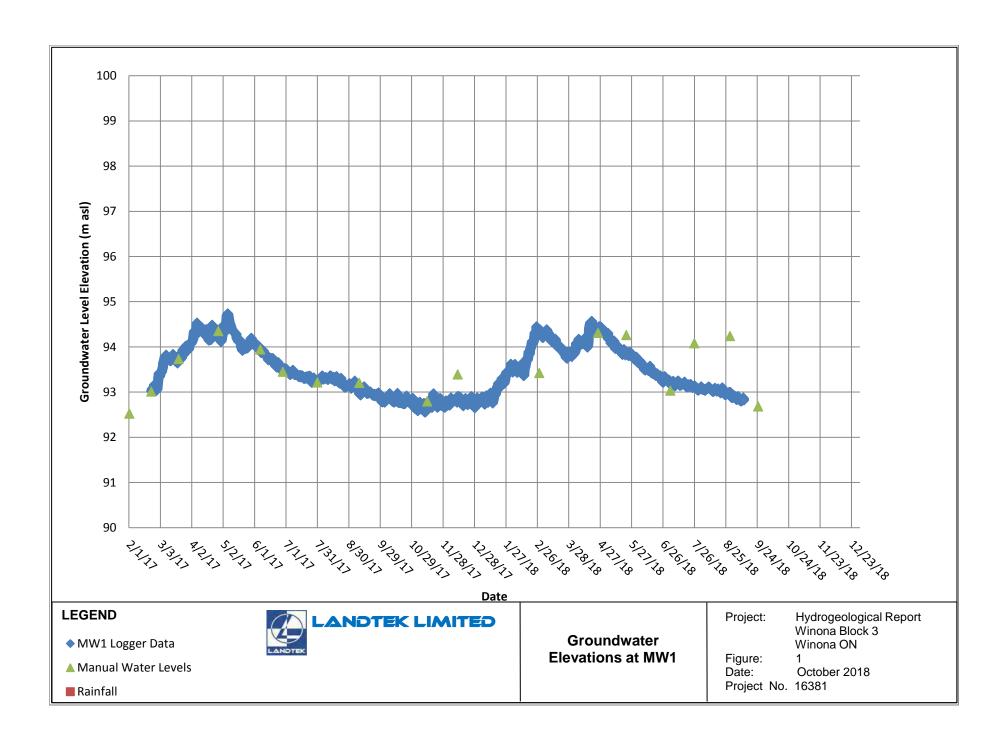
Hole Diameter

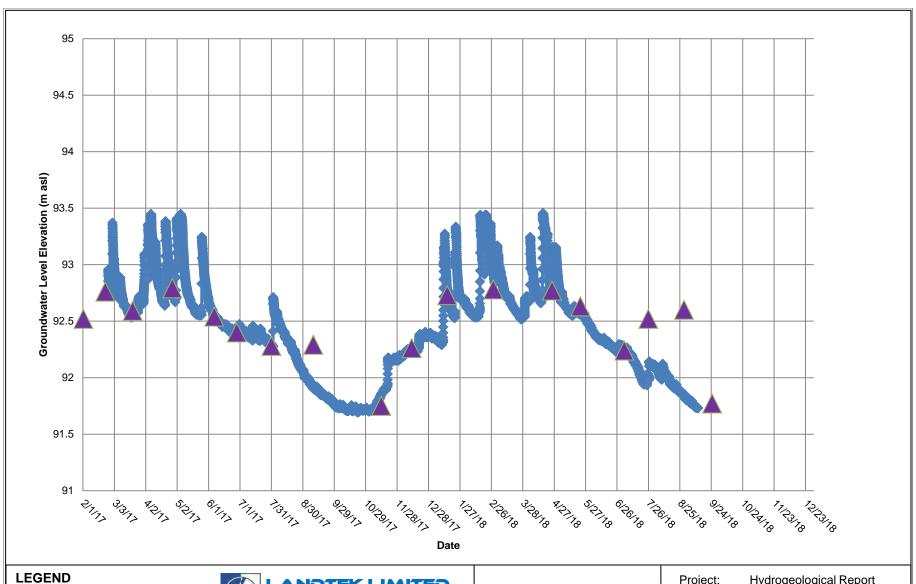
Depth	Depth	Diameter
From	To	Diameter

Audit Number: Z218836

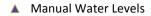
Date Welt Completed: October 05, 2015

Date Well Record Received by MOE: November 30, 2016


Updated: June 28, 2018


RateRate

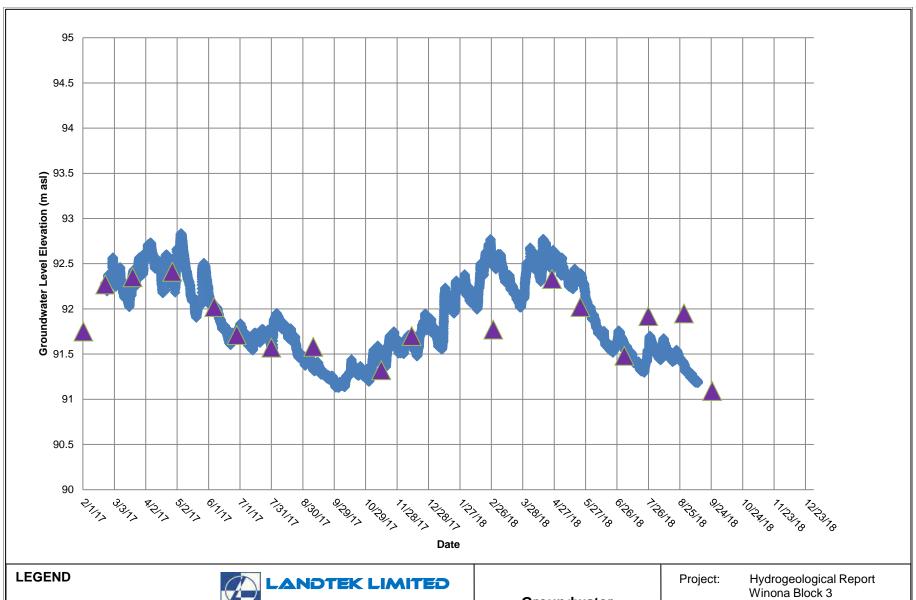
APPENDIX D HYDROGRAPHS



File: 18270

→ MW2 Logger Data

LANDTEK LIMITED


Groundwater **Elevations at MW2**

Hydrogeological Report Winona Block 3 Project:

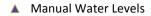
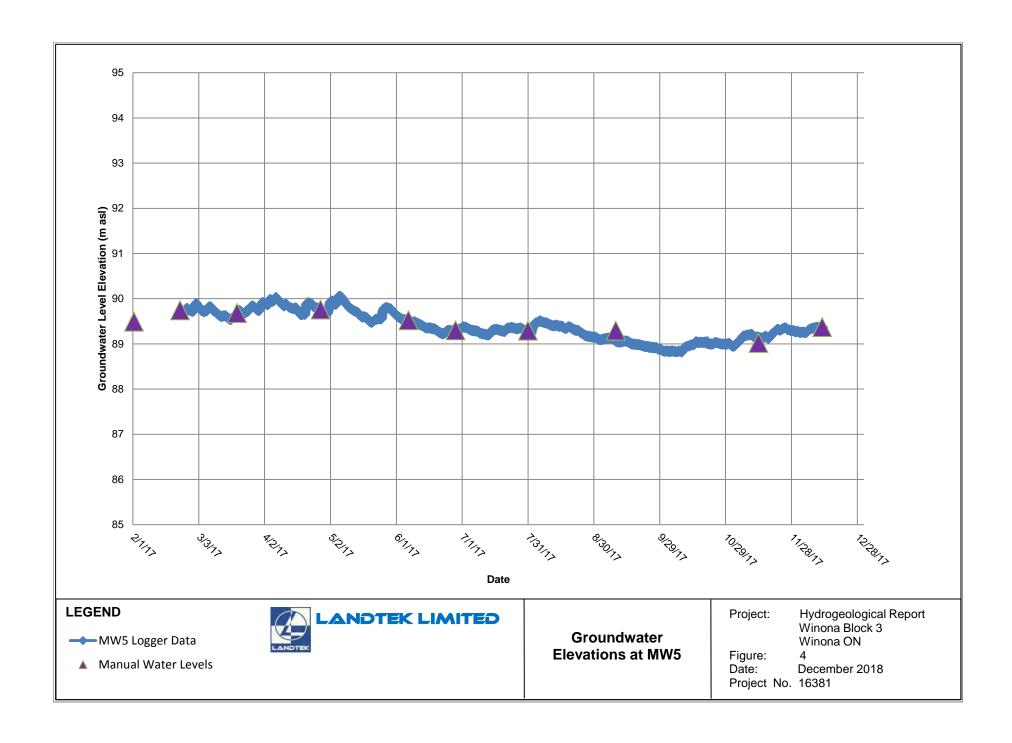

Winona ON

Figure:

Date: June 2017 Project No. 16381

→ MW4 Logger Data

LANDTEK LIMITED


Groundwater **Elevations at MW4**

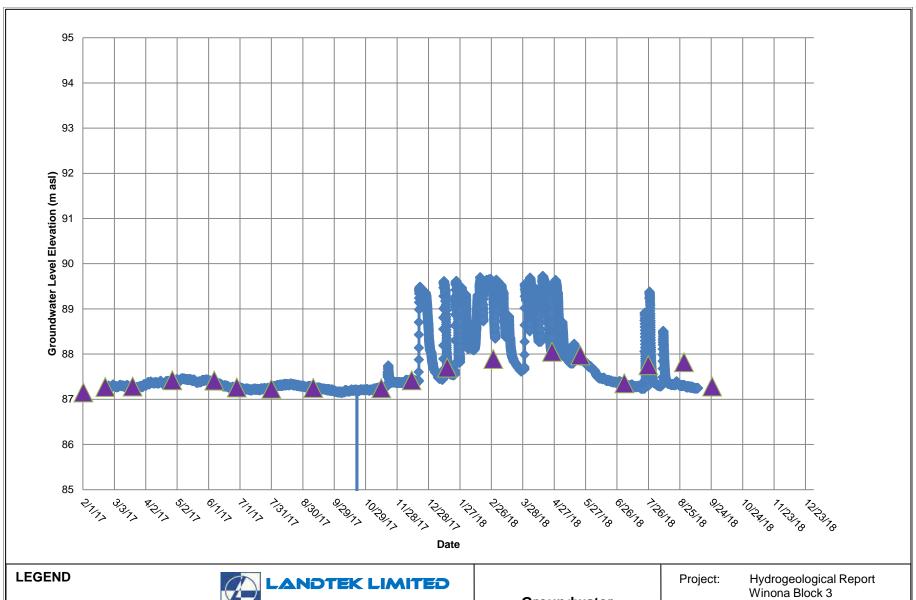
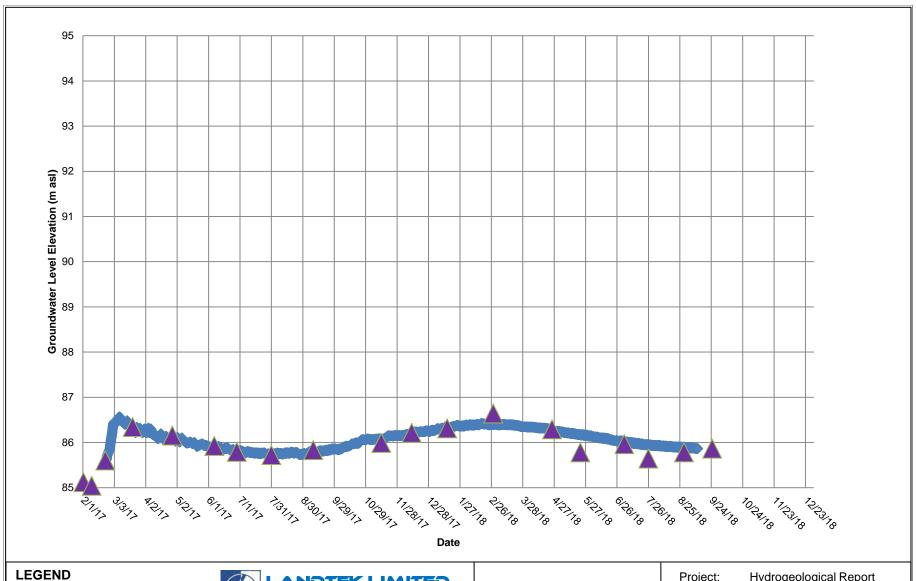
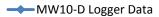

Winona ON

Figure:

Date: January 2018

Project No. 16381


Manual Water Levels

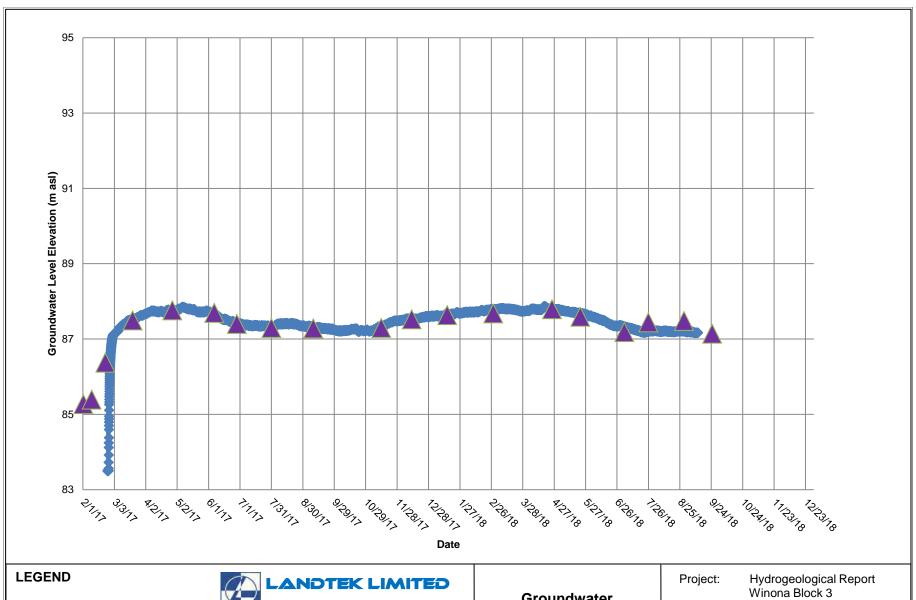


Groundwater **Elevations at MW7** Project:

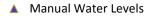
Winona ON

Figure:

▲ Manual Water Levels


LANDTEK LIMITED

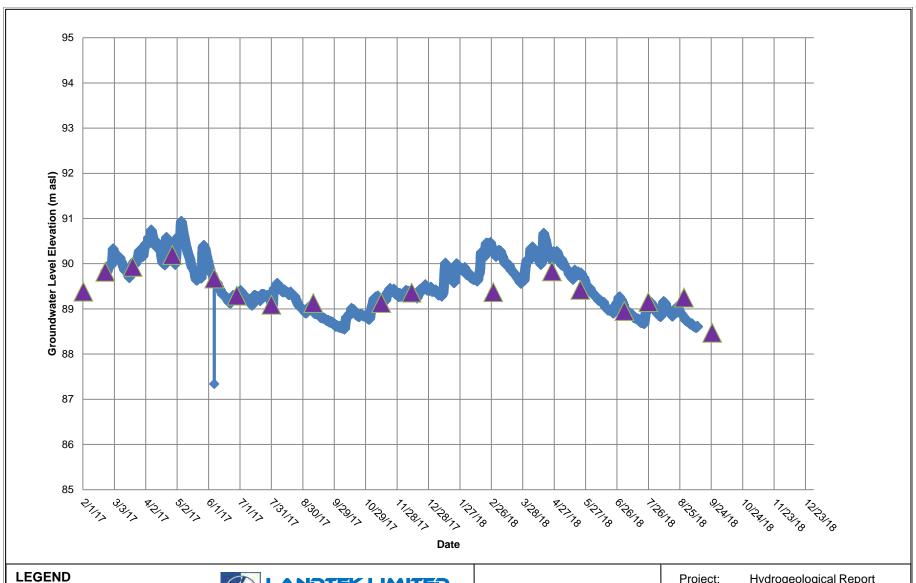
Groundwater **Elevations at MW10-D**


Hydrogeological Report Winona Block 3 Project:

Winona ON

Figure:

→ MW11 Logger Data



Groundwater **Elevations at MW11** Project:

Winona ON

Figure:

→ MW12 Logger Data

Manual Water Levels

LANDTEK LIMITED

Groundwater **Elevations at MW12**

Hydrogeological Report Winona Block 3 Project:

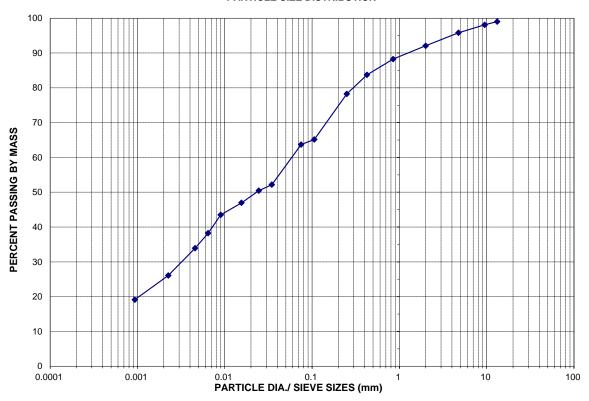
Winona ON

Figure:

APPENDIX E SIEVE AND HYDROMETER ANALYSIS

File: 18270

LOCATION: BLOCK SERVICING STRATEGY AREA WINONA #3


CLIENT: Block 3 Landowners Group

SOIL TYPE: SILTY SAND SOURCE: BH13 (0.7-1.2 m)

FILE NO.: 18270 LAB SAMPLE NO.: S304

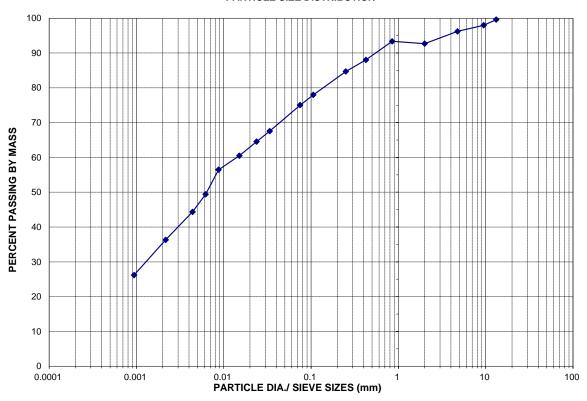
SAMPLE DATE: September 10, 2018

SAMPLED BY: RF

CLAY		SILT		5	SAND		GR	AVEL
←	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	99.0	
9.5	98.1	
4.75	95.8	
2.0	92.1	
0.850	88.3	
0.425	83.7	
0.250	78.3	
0.106	65.2	
0.075	63.7	
0.0347	52.2	
0.0246	50.4	
0.0156	47.0	
0.0090	43.5	
0.0065	38.3	
0.0046	33.9	
0.0023	26.1	
0.0009	19.1	

LOCATION: BLOCK SERVICING STRATEGY AREA WINONA #3


CLIENT: Block 3 Landowners Group

SOIL TYPE: CLAYEY SILT SOURCE: BH14 (0.7-1.2 m)

FILE NO.: 18270 LAB SAMPLE NO.: S305

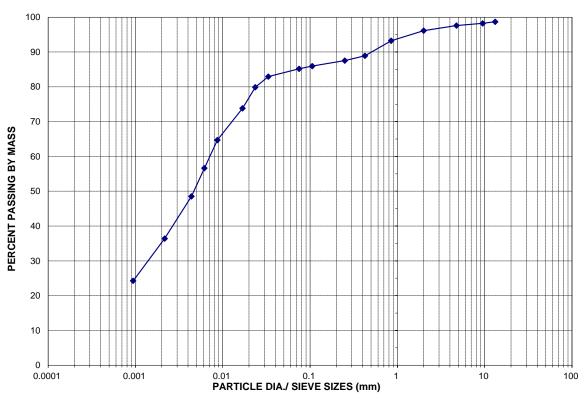
SAMPLE DATE: September 6, 2018

SAMPLED BY: RF

	0 D 4 V/E I
FINE MEDIUM COARSE FINE MEDIUM COARSE FINE	COARSE

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	99.6	
9.5	98.0	
4.75	96.2	
2.0	92.7	
0.850	93.4	
0.425	88.0	
0.250	84.7	
0.106	78.0	
0.075	75.0	
0.0336	67.6	
0.0238	64.5	
0.0151	60.5	
0.0087	56.5	
0.0062	49.4	
0.0044	44.4	
0.0022	36.3	
0.0009	26.2	

LOCATION: BLOCK SERVICING STRATEGY AREA WINONA #3


CLIENT: Block 3 Landowners Group

SOIL TYPE: CLATEY SILT SOURCE: BH15 (0.7-1.2 m)

FILE NO.: 18270 LAB SAMPLE NO.: S306

SAMPLE DATE: September 6, 2018

SAMPLED BY: RF

	0 D 4 V/E I
FINE MEDIUM COARSE FINE MEDIUM COARSE FINE	COARSE

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	98.7	
9.5	98.2	
4.75	97.6	
2.0	96.1	
0.850	93.2	
0.425	88.9	
0.250	87.5	
0.106	86.0	
0.075	85.2	
0.0333	82.9	
0.0236	79.9	
0.0169	73.8	
0.0087	64.7	
0.0062	56.6	
0.0044	48.5	
0.0022	36.4	
0.0009	24.3	

LOCATION: BLOCK SERVICING STRATEGY AREA WINONA #3

CLIENT: Block 3 Landowners Group

SOIL TYPE: CLATEY SILT SOURCE: BH16 (0.7-1.2 m)

FILE NO.: 18270

LAB SAMPLE NO.: S307

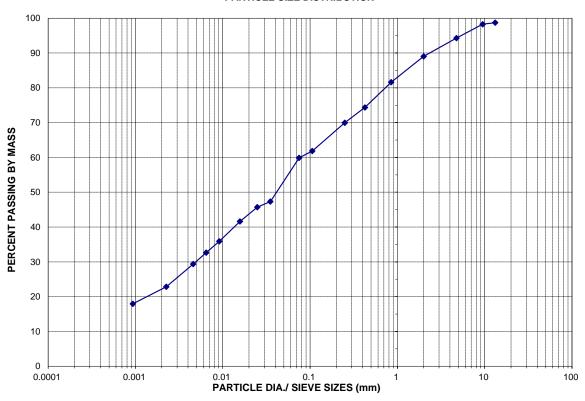
SAMPLE DATE: September 10, 2018

SAMPLED BY: RF

	0 D 4 V/E I
FINE MEDIUM COARSE FINE MEDIUM COARSE FINE	COARSE

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	100.0	
9.5	99.5	
4.75	98.5	
2.0	95.4	
0.850	91.6	
0.425	88.8	
0.250	86.5	
0.106	81.6	
0.075	79.5	
0.0348	67.8	
0.0246	66.7	
0.0156	62.9	
0.0090	58.2	
0.0064	50.7	
0.0046	47.0	
0.0022	39.4	
0.0009	30.1	

LOCATION: BLOCK SERVICING STRATEGY AREA WINONA #3


CLIENT: Block 3 Landowners Group

SOIL TYPE: CLATEY SILT SOURCE: BH17 (0.7-1.2 m)

FILE NO.: 18270 LAB SAMPLE NO.: S308

SAMPLE DATE: September 10, 2018

SAMPLED BY: RF

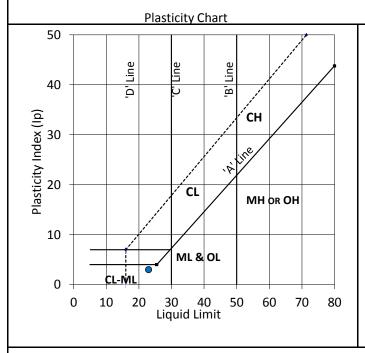
CLAY		SILT		5	SAND		GR	AVEL
←	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE

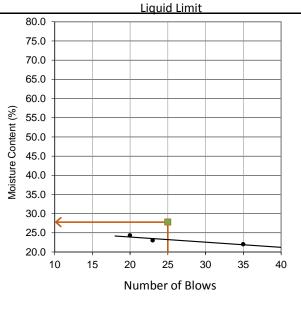
SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	98.7	
9.5	98.3	
4.75	94.3	
2.0	89.0	
0.850	81.6	
0.425	74.4	
0.250	70.0	
0.106	61.8	
0.075	59.9	
0.0351	47.3	
0.0249	45.7	
0.0158	41.6	
0.0091	35.9	
0.0065	32.6	
0.0046	29.4	
0.0023	22.8	
0.0009	18.0	

APPENDIX F

ATTERBERG LIMITS

File: 18270




Atterberg Limits

Project:	Hydrogeological Investigation	Sampled By:	RF
Location:	BLOCK SERVICING STRATEGY AREA WINONA #3	Tested By:	VH
Job No.:	18270	Sample Date	September 9, 2018
Borehole No:	BH13	Depth (m):	0.7-1.2 m
Report Date:	October 26, 2018	Test Date: Sept	ember 11, 2018

Liquid Limit Test					
Trial	Α	В	С		
No. of Blows	35	20	23		
Tare Number	NP13	NP20	NP21		
Wt. of Tare, g	13.70	14.00	13.90		
Wt. Wet Soil + Tare, g	39.20	36.50	35.80		
Wt. Dry Soil + Tare, g	34.60	32.10	31.70		
Wt. of Water, g	4.60	4.40	4.10		
Wt. of Dry Soil, g	20.90	18.10	17.80		
Moisture Content (%)	22.0	24.3	23.0		

Plastic Limit Test				
Trial	Α	В		
Tare Number	NP49	NP7		
Wt. of Tare, g	13.90	14.00		
Wt. Wet Soil + Tare, g	32.40	32.60		
Wt. Dry Soil + Tare, g	29.00	29.80		
Wt. of Water, g	3.40	2.80		
Wt. of Dry Soil, g	15.10	15.80		
Moisture Content (%)	22.5	17.7		

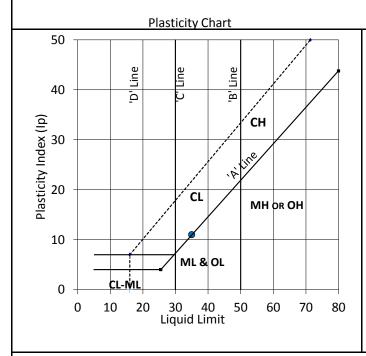
USCS Symbol CL

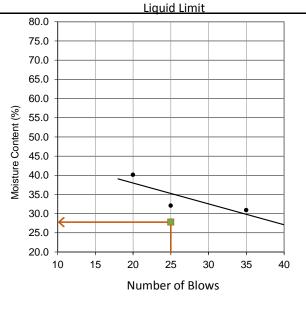
Liquid Limit (%) 23

Plastic Limit (%) 20

Plasticity Index (%) _____3

Soil Description: Low Plasticity




Atterberg Limits

Project:	Hydrogeological Investigation	Sampled By:	RF
Location:	BLOCK SERVICING STRATEGY AREA WINONA #3	Tested By:	VH
Job No.:	18270	Sample Date	September 6, 2018
Borehole No:	BH14	Depth (m):	0.7-1.2 m
Report Date:	October 26, 2018	Test Date:	September 7, 2018

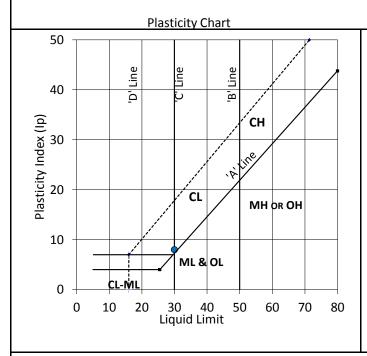
Liquid Limit Test						
Trial	Α	В	С			
No. of Blows	20	25	35			
Tare Number	NP28	T20	NP13			
Wt. of Tare, g	13.80	13.30	13.80			
Wt. Wet Soil + Tare, g	36.50	37.60	35.40			
Wt. Dry Soil + Tare, g	30.00	31.70	30.30			
Wt. of Water, g	6.50	5.90	5.10			
Wt. of Dry Soil, g	16.20	18.40	16.50			
Moisture Content (%)	40.1	32.1	30.9			

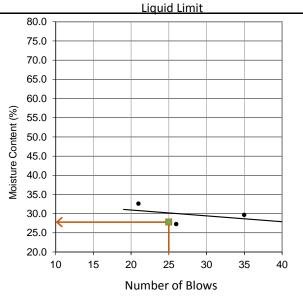
Plastic Limit Test			
Trial	Α	В	
Tare Number	NP51	NP7	
Wt. of Tare, g	13.60	13.80	
Wt. Wet Soil + Tare, g	25.10	27.40	
Wt. Dry Soil + Tare, g	22.20	25.70	
Wt. of Water, g	2.90	1.70	
Wt. of Dry Soil, g	8.60	11.90	
Moisture Content (%)	33.7	14.3	

Liquid Limit (%) 35
Plastic Limit (%) 24
Plasticity Index (%) 11

USCS Symbol CL

Soil Description: Medium Plasticity




Atterberg Limits

Project:	Hydrogeological Investigation	Sampled By:	RF
Location:	BLOCK SERVICING STRATEGY AREA WINONA #3	Tested By:	VH
Job No.:	18270	Sample Date	September 6, 2018
Borehole No:	BH15	Depth (m):	0.7-1.2 m
Report Date:	October 26, 2018	Test Date:	September 7, 2018

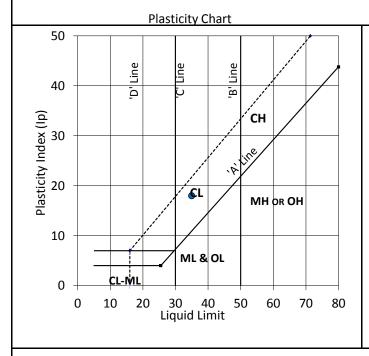
Liquid Limit Test				
Trial	Α	В	С	
No. of Blows	26	35	21	
Tare Number	NA	NP19	NP46	
Wt. of Tare, g	13.80	13.50	13.60	
Wt. Wet Soil + Tare, g	41.80	28.80	37.20	
Wt. Dry Soil + Tare, g	35.80	25.30	31.40	
Wt. of Water, g	6.00	3.50	5.80	
Wt. of Dry Soil, g	22.00	11.80	17.80	
Moisture Content (%)	27.3	29.7	32.6	

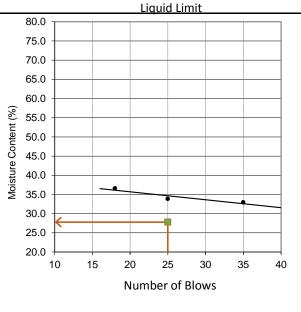
Plastic Limit Test			
Trial	Α	В	
Tare Number	T10	NP59	
Wt. of Tare, g	13.50	13.60	
Wt. Wet Soil + Tare, g	33.90	37.90	
Wt. Dry Soil + Tare, g	29.50	34.60	
Wt. of Water, g	4.40	3.30	
Wt. of Dry Soil, g	16.00	21.00	
Moisture Content (%)	27.5	15.7	

USCS Symbol CL

Soil Description: Medium Plasticity

Liquid Limit (%) 30 Plastic Limit (%) 22 Plasticity Index (%) _____8




Atterberg Limits

Project:	Hydrogeological Investigation	Sampled By:	RF
Location:	BLOCK SERVICING STRATEGY AREA WINONA #3	Tested By:	VH
Job No.:	18270	Sample Date	September 10, 2018
Borehole No:	BH16	Depth (m):	0.7-1.2 m
Report Date:	October 26, 2018	Test Date: September 1	2, 2018

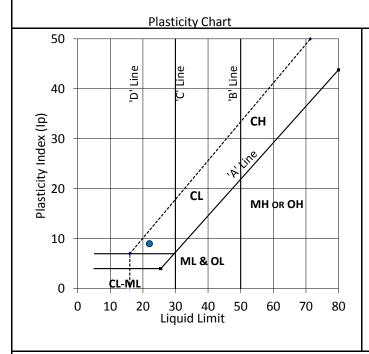
Liquid Limit Test			
Trial	Α	В	С
No. of Blows	35	25	18
Tare Number	T10	NP46	NP51
Wt. of Tare, g	13.50	13.70	13.70
Wt. Wet Soil + Tare, g	35.30	30.70	36.10
Wt. Dry Soil + Tare, g	29.90	26.40	30.10
Wt. of Water, g	5.40	4.30	6.00
Wt. of Dry Soil, g	16.40	12.70	16.40
Moisture Content (%)	32.9	33.9	36.6

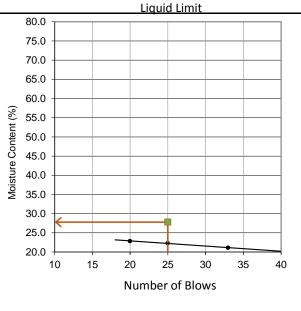
Plastic Limit Test			
Trial	Α	В	
Tare Number	NP19	NP37	
Wt. of Tare, g	13.50	13.70	
Wt. Wet Soil + Tare, g	31.60	31.90	
Wt. Dry Soil + Tare, g	29.00	29.10	
Wt. of Water, g	2.60	2.80	
Wt. of Dry Soil, g	15.50	15.40	
Moisture Content (%)	16.8	18.2	

USCS Symbol CL

Soil Description: Medium Plasticity

Liquid Limit (%) 35
Plastic Limit (%) 17
Plasticity Index (%) 18




Atterberg Limits

Project:	Hydrogeological Investigation	Sampled By:	RF
Location:	BLOCK SERVICING STRATEGY AREA WINONA #3	Tested By:	VH
Job No.:	18270	Sample Date	September 10, 2018
Borehole No:	BH17	Depth (m):	0.7-1.2 m
Report Date:	October 26, 2018	Test Date:	September 12, 2018

Liquid Limit Test			
Trial	Α	В	С
No. of Blows	33	25	20
Tare Number	Carl G	T20	TZ
Wt. of Tare, g	13.50	13.30	13.50
Wt. Wet Soil + Tare, g	35.30	39.60	46.30
Wt. Dry Soil + Tare, g	31.50	34.80	40.20
Wt. of Water, g	3.80	4.80	6.10
Wt. of Dry Soil, g	18.00	21.50	26.70
Moisture Content (%)	21.1	22.3	22.8

Plastic Limit Test			
Trial	Α	В	
Tare Number	NP28	NA	
Wt. of Tare, g	14.00	13.80	
Wt. Wet Soil + Tare, g	31.20	31.50	
Wt. Dry Soil + Tare, g	29.50	29.20	
Wt. of Water, g	1.70	2.30	
Wt. of Dry Soil, g	15.50	15.40	
Moisture Content (%)	11.0	14.9	

USCS Symbol CL

Soil Description: Low Plasticity

Liquid Limit (%) 22
Plastic Limit (%) 13
Plasticity Index (%) 9

File: 18270

APPENDIX G HYDRAULIC CONDUCTIVITY TESTING ANALYSIS RESULTS

Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)

Well Name =	MW1	
Well Depth =	6.86 m	
Initial WL (H _o) =	3.38 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow auger I.D., 12" O.D.)
Length of screen (L) =	3.048 m	(10 foot screen)
Water Level at Max Drawdown (H)	= 6.020 m	
H-H _o =	2.640 m	
Lag time (T _o) =	12750	(time at $(H-h)/(H-H_0) = 0.37$ on graph)

Hydraulic Cond.(K) = 2.41E-08 m/s 2.41E-06 cm/s

Screened material = Clayey Silt TILL

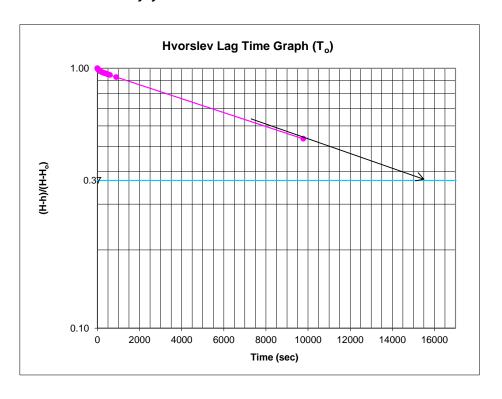
Time (sec)	WL (m)	$H-H_o$ (m)	(H-h)/(H-H _o)
0	6.02	2.64	1.00
5	6.02	2.64	1.00
10	6	2.62	0.99
20	5.99	2.61	0.99
25	5.99	2.61	0.99
30	5.99	2.61	0.99
40	5.985	2.61	0.99
50	5.98	2.60	0.98
60	5.975	2.60	0.98
90	5.97	2.59	0.98
120	5.955	2.58	0.98
150	5.95	2.57	0.97
180	5.94	2.56	0.97
210	5.93	2.55	0.97
240	5.925	2.55	0.96
270	5.92	2.54	0.96
300	5.915	2.54	0.96
360	5.9	2.52	0.95
420	5.89	2.51	0.95

Hvorslev Calculation

Lag time $(T_o) =$

(for Hydraulic Conductivity from Response Tests)

Well Name =	MW2	
Well Depth =	5.35 m	
Initial WL (H _o) =	1.77 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow auger I.D., 12" O.D.)
Length of screen (L) =	3.048 m	(10 foot screen)
Water Level at Max Drawdown (H) =	4.030 m	
H-H _o =	2.260 m	


15750

Hydraulic Cond.(K) = 1.95E-08 m/s 1.95E-06 cm/s

Screened material = clayey silt TILL

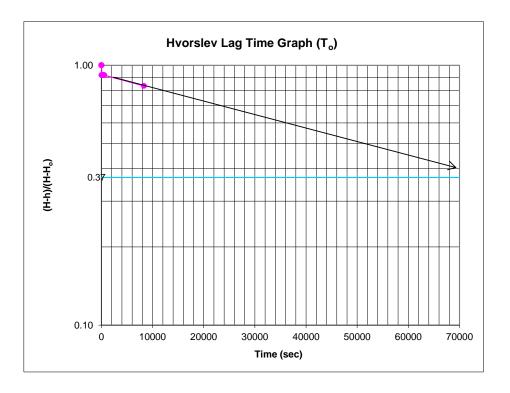
(time at $(H-h)/(H-H_0) = 0.37$ on graph)

Time (sec)	WL (m)	$H-H_o$ (m)	(H-h)/(H-H _o)
0	4.03	2.26	1.00
10	4.025	2.26	1.00
15	4.02	2.25	1.00
20	4.02	2.25	1.00
25	4.015	2.25	0.99
30	4.01	2.24	0.99
40	4.01	2.24	0.99
50	4.005	2.24	0.99
60	4	2.23	0.99
90	3.985	2.22	0.98
120	3.975	2.21	0.98
150	3.97	2.20	0.97
180	3.965	2.20	0.97
210	3.955	2.19	0.97
240	3.95	2.18	0.96
270	3.945	2.18	0.96
300	3.94	2.17	0.96
360	3.935	2.17	0.96
420	3.925	2.16	0.95

Hvorslev Calculation

Lag time $(T_o) =$

(for Hydraulic Conductivity from Response Tests)


Well Name =	MW3	
Well Depth =	5.22 m	
Initial WL $(H_o) =$	5.04 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow auger I.D., 12" O.D.)
Length of screen (L) =	3.048 m	(10 foot screen)
Water Level at Max Drawdown	ı (H) = 5.100 m	
$H-H_0 =$	0.060 m	

72000

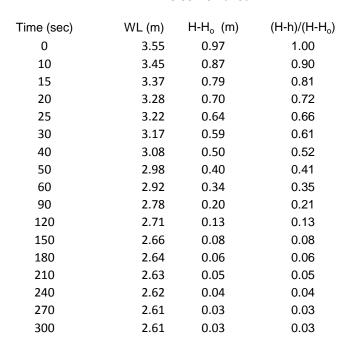
Hydraulic Cond.(K) = 4.27E-09 m/s 4.27E-07 cm/s Screened material = clayey silt TILL

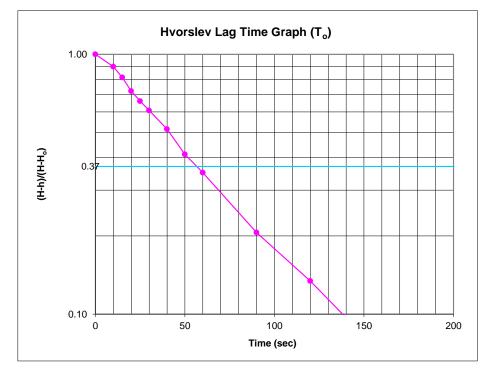
(time at $(H-h)/(H-H_0) = 0.37$ on graph)

Time (sec)	WL (m)	$H-H_o$ (m)	$(H-h)/(H-H_o)$
0	5.1	0.06	1.00
10	5.1	0.06	1.00
15	5.1	0.06	1.00
20	5.1	0.06	1.00
25	5.1	0.06	1.00
30	5.1	0.06	1.00
40	5.1	0.06	1.00
50	5.095	0.05	0.92
60	5.095	0.05	0.92
90	5.095	0.05	0.92
120	5.095	0.05	0.92
150	5.095	0.05	0.92
180	5.095	0.05	0.92
210	5.095	0.05	0.92
240	5.095	0.05	0.92
270	5.095	0.05	0.92
300	5.095	0.05	0.92
360	5.095	0.05	0.92
420	5.095	0.05	0.92

Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)


Well Name =	MW4	
Well Depth =	7.00 m	
Initial WL (H_o) =	2.58 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow au
Length of screen (L) =	3.048 m	(10 foot screen)
Water Level at Max Drawdown	(H) = 3.550 m	
H-H. =	0 970 m	


ow auger I.D., 12" O.D.)

Lag time $(T_0) =$ (time at $(H-h)/(H-H_0) = 0.37$ on graph) 58

Hydraulic Cond.(K) = 5.30E-06 m/s 5.30E-04 cm/s

Screened material = bedrock (shale)

Hvorslev Calculation

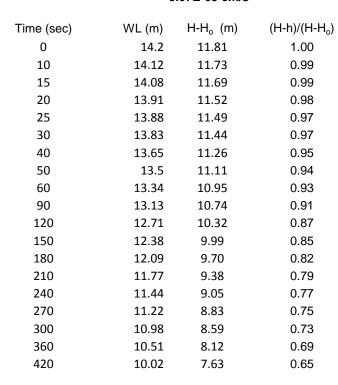
(for Hydraulic Conductivity from Response Tests)

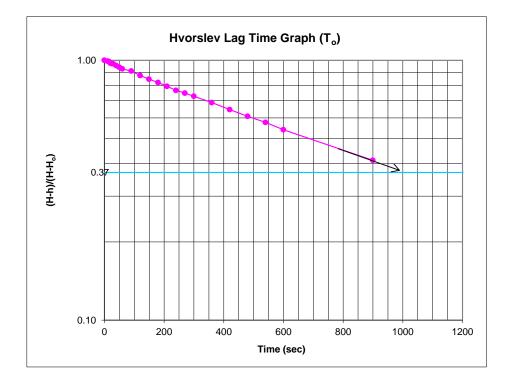
Well Name =	MW5
Well Depth =	15.50 m
Initial WL (H _o) =	2.39 m
Radius of pipe (r) =	0.025 m
Radius of hole (R) =	0.152 m
1 th t /1 \	0.040

(2.0" diameter)

(4.25" hollow auger I.D., 12" O.D.)

Length of screen (L) = 3.048 m (10 foot screen)


Water Level at Max Drawdown (H) = 14.200 m

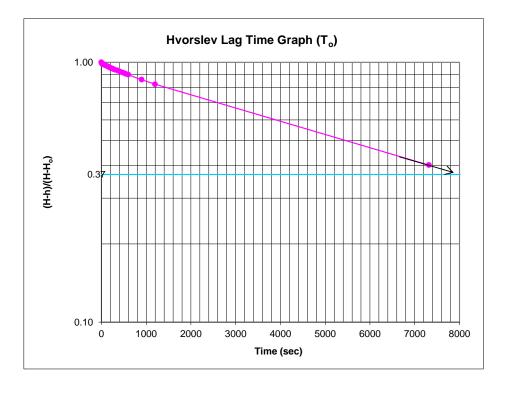

 $H-H_0 = 11.810 \text{ m}$

Lag time $(T_o) = 1000$ (time at $(H-h)/(H-H_o) = 0.37$ on graph)

Hydraulic Cond.(K) = 3.07E-07 m/s 3.07E-05 cm/s

Screened material = clayey silt till and upper weathered bedrock (shale)

Hvorslev Calculation


(for Hydraulic Conductivity from Response Tests)

Well Name =	MW6-D (deep)	
Well Depth =	19.11 m	
Initial WL (H _o) =	2.60 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow auger I.D., 12" O.D.)
Length of screen (L) =	3.048 m	(10 foot screen)
Water Level at Max Drawdown (H) =	7.650 m	
$H-H_o =$	5.050 m	
Lag time $(T_a) =$	7900	(time at $(H-h)/(H-H_a) = 0.37$ on graph

Hydraulic Cond.(K) = 3.89E-08 m/s 3.89E-06 cm/s

Screened material = shale bedrock

Time (sec)	WL (m)	$H-H_o$ (m)	(H-h)/(H-H _o
0	7.65	5.05	1.00
10	7.62	5.02	0.99
15	7.59	4.99	0.99
20	7.585	4.99	0.99
25	7.58	4.98	0.99
30	7.58	4.98	0.99
40	7.57	4.97	0.98
50	7.56	4.96	0.98
60	7.545	4.95	0.98
90	7.52	4.92	0.97
120	7.49	4.89	0.97
150	7.465	4.87	0.96
180	7.43	4.83	0.96
210	7.405	4.81	0.95
240	7.385	4.79	0.95
270	7.355	4.76	0.94
300	7.33	4.73	0.94
360	7.3	4.70	0.93
420	7.245	4.65	0.92

Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)

Radius of pipe (r) = 0.025 m (2.0" diameter) Radius of hole (R) = 0.152 m (4.25" hollow auger I.D., 12" O.D.)

Length of screen (L) = 6.096 m (20 foot screen)

Water Level at Max Drawdown (H) = 19.200 m

 $H-H_0 = 15.835 \text{ m}$

Lag time (T_o) = 90000 (time at $(H-h)/(H-H_o)$ = 0.37 on graph)

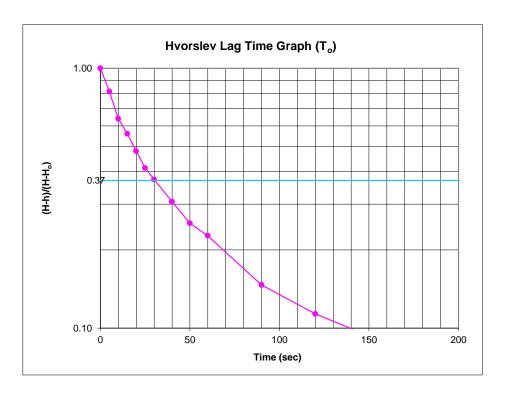
Hydraulic Cond.(K) = 2.10E-09 m/s 2.10E-07 cm/s

Screened material = shale bedrock

Time (sec)	WL (m)	$H-H_o$ (m)	(H-h)/(H-H _o)
0	19.2	15.84	1.00
10	19.18	15.82	1.00
15	19.16	15.80	1.00
20	19.13	15.77	1.00
25	19.11	15.75	0.99
30	19.08	15.72	0.99
40	19.07	15.71	0.99
50	19.05	15.69	0.99
60	19.04	15.68	0.99
90	19.01	15.65	0.99
120	18.99	15.63	0.99
150	18.96	15.60	0.98
180	18.94	15.58	0.98
210	18.92	15.56	0.98
240	18.905	15.54	0.98
270	18.89	15.53	0.98
300	18.88	15.52	0.98
360	18.84	15.48	0.98
420	18.81	15.45	0.98

(time at $(H-h)/(H-H_o) = 0.37$ on graph)

Hvorslev Calculation


(for Hydraulic Conductivity from Response Tests)

Well Name =	MW8	
Well Depth =	5.49 m	
Initial WL $(H_o) =$	1.20 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow auger I.D., 12" O.D.)
Length of screen (L) =	1.520 m	(5 foot screen)
Water Level at Max Drawdown (H) =	: 1.950 m	
$H-H_o =$	0.750 m	
Lag time (T _o) =	30	(time at $(H-h)/(H-H_0) = 0.37$ on graph

Hydraulic Cond.(K) = 1.58E-05 m/s 1.58E-03 cm/s

Screened material = shallow weathered shale bedrock

Time (sec)	WL (m)	$H-H_o$ (m)	$(H-h)/(H-H_o)$
0	1.95	0.75	1.00
5	1.81	0.61	0.81
10	1.68	0.48	0.64
15	1.62	0.42	0.56
20	1.56	0.36	0.48
25	1.51	0.31	0.41
30	1.48	0.28	0.37
40	1.43	0.23	0.31
50	1.39	0.19	0.25
60	1.37	0.17	0.23
90	1.31	0.11	0.15
120	1.285	0.09	0.11
150	1.27	0.07	0.09
180	1.265	0.06	0.09
210	1.26	0.06	0.08
240	1.25	0.05	0.07
270	1.25	0.05	0.07
300	1.245	0.05	0.06

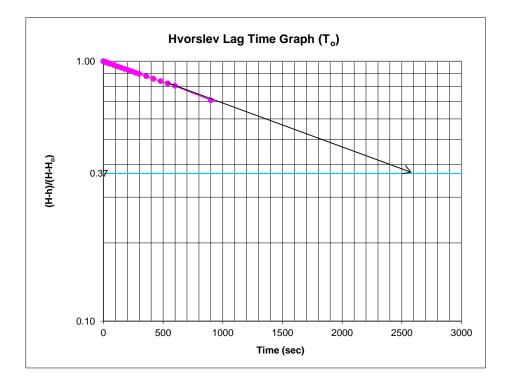
Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)

(2.0" diameter)

(4.25" hollow auger I.D., 12" O.D.)

Length of screen (L) = 3.048 m (10 foot screen)


Water Level at Max Drawdown (H) = 17.300 mH-H₀ = 14.330 m

Lag time $(T_0) = 2600$ (time at $(H-h)/(H-H_0) = 0.37$ on graph)

Hydraulic Cond.(K) = 1.18E-07 m/s 1.18E-05 cm/s

Screened material = shallow weathered shale bedrock

Time (sec)	WL (m)	$H-H_o$ (m)	$(H-h)/(H-H_o)$
0	17.3	14.33	1.00
15	17.23	14.26	1.00
20	17.19	14.22	0.99
25	17.16	14.19	0.99
30	17.12	14.15	0.99
40	17.07	14.10	0.98
50	17.02	14.05	0.98
60	16.97	14.00	0.98
90	16.81	13.84	0.97
120	16.66	13.69	0.96
150	16.5	13.53	0.94
180	16.35	13.38	0.93
210	16.2	13.23	0.92
240	16.06	13.09	0.91
270	15.92	12.95	0.90
300	15.79	12.82	0.89
360	15.52	12.55	0.88
420	15.23	12.26	0.86
480	14.99	12.02	0.84

Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)

Well Name = MW10-D (deep)

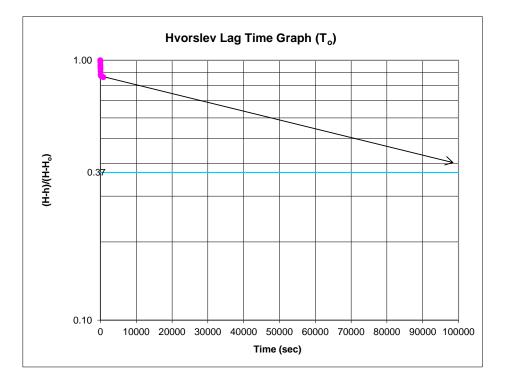
Well Depth = 21.22 mInitial WL (H_o) = 4.13 m

Radius of pipe (r) = 0.025 m (2.0" diameter)

Radius of hole (R) = 0.152 m (4.25" hollow auger I.D., 12" O.D.)

Length of screen (L) = 3.048 m (10 foot screen)

Water Level at Max Drawdown (H) = 21.000 m


 $H-H_0 = 16.870 \text{ m}$

Lag time (T_0) = 100000 (time at $(H-h)/(H-H_0) = 0.37$ on graph)

Hydraulic Cond.(K) = 3.07E-09 m/s 3.07E-07 cm/s

Screened material = shale bedrock

Time (sec)	WL (m)	$H-H_o$ (m)	(H-h)/(H-H _o
0	21	16.87	1.00
15	20.98	16.85	1.00
20	20.87	16.74	0.99
25	20.64	16.51	0.98
30	20.31	16.18	0.96
40	20.09	15.96	0.95
50	19.88	15.75	0.93
60	19.77	15.64	0.93
90	19.44	15.31	0.91
120	19.02	14.89	0.88
150	18.91	14.78	0.88
180	18.88	14.75	0.87
210	18.86	14.73	0.87
240	18.82	14.69	0.87
270	18.79	14.66	0.87
300	18.77	14.64	0.87
360	18.75	14.62	0.87
420	18.74	14.61	0.87
480	18.73	14.60	0.87

Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)

MW11 Well Name = 17.36 m Well Depth = Initial WL $(H_0) =$ 4.76 m Radius of pipe (r) = 0.025 m

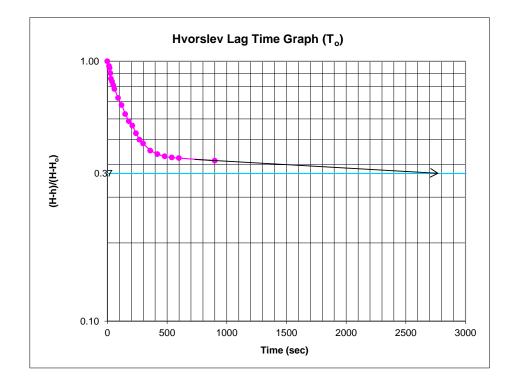
Radius of hole (R) = 0.152 m

3.048 m Length of screen (L) =

Water Level at Max Drawdown (H) = 13.300 m $H-H_0 =$ 8.540 m

Lag time $(T_0) =$ (time at $(H-h)/(H-H_0) = 0.37$ on graph) 2750

(2.0" diameter)


(10 foot screen)

(4.25" hollow auger I.D., 12" O.D.)

Hydraulic Cond.(K) = 1.12E-07 m/s 1.12E-05 cm/s

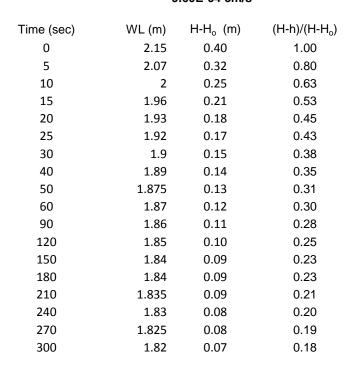
Screened material = shale bedrock

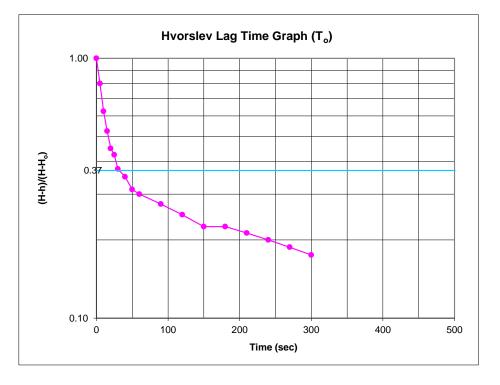
Time (sec)	WL (m)	$H-H_o$ (m)	(H-h)/(H-H _o)
0	13.3	8.54	1.00
15	12.95	8.19	0.96
20	12.81	8.05	0.94
25	12.45	7.69	0.90
30	12.08	7.32	0.86
40	11.89	7.13	0.83
50	11.67	6.91	0.81
60	11.44	6.68	0.78
90	10.93	6.17	0.72
120	10.55	5.79	0.68
150	10.11	5.35	0.63
180	9.78	5.02	0.59
210	9.59	4.83	0.57
240	9.27	4.51	0.53
270	9.02	4.26	0.50
300	8.88	4.12	0.48
360	8.63	3.87	0.45
420	8.51	3.75	0.44
480	8.44	3.68	0.43

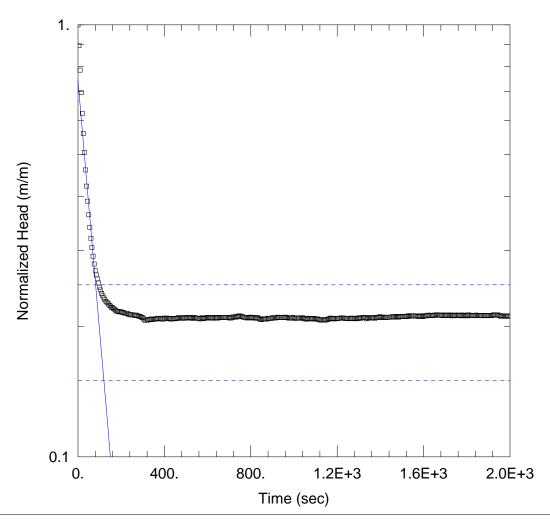
Hvorslev Calculation

(for Hydraulic Conductivity from Response Tests)

Well Name =	MW12	
Well Depth =	6.55 m	
' '		
Initial WL (H_0) =	1.75 m	
Radius of pipe (r) =	0.025 m	(2.0" diameter)
Radius of hole (R) =	0.152 m	(4.25" hollow au
Length of screen (L) =	3.048 m	(10 foot screen)
Water Level at Max Drawdown	(H) = 2.150 m	


hollow auger I.D., 12" O.D.)


 $H-H_0 =$ 0.400 m


Lag time $(T_0) =$ 32 (time at $(H-h)/(H-H_0) = 0.37$ on graph)

Hydraulic Cond.(K) = 9.60E-06 m/s 9.60E-04 cm/s

Screened material = weathered shale bedrock

Data Set: F:\LANDTEK K TESTS\Add Winona Block 3\Aqtesolve\MW14.aqt

Date: 09/25/18 Time: 10:57:15

PROJECT INFORMATION

Company: Landtek Limited Client: Urbantech West

Project: 18270 Location: Winona Test Well: MW14

Test Date: September 12, 2018

AQUIFER DATA

Saturated Thickness: 5.03 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW14)

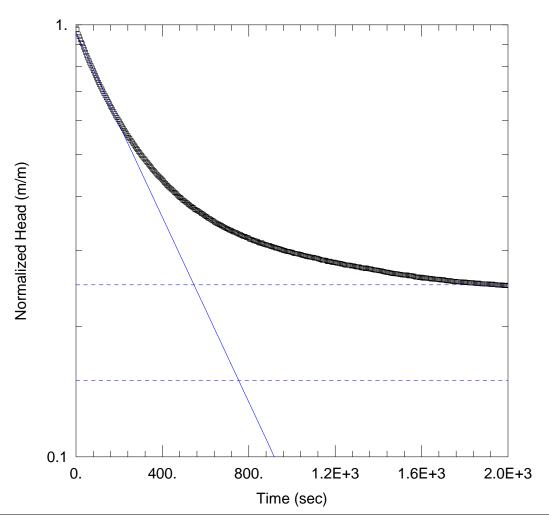
Initial Displacement: 0.4475 m

Total Well Penetration Depth: 5.03 m

Casing Radius: 0.0254 m

Static Water Column Height: 5.03 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 6.839E-6 m/sec

y0 = 0.3319 m

Data Set: F:\LANDTEK K TESTS\Add Winona Block 3\Aqtesolve\MW16.aqt

Date: 09/25/18 Time: 10:51:16

PROJECT INFORMATION

Company: Landtek Limited Client: Urbantech West

Project: 18270 Location: Winona Test Well: MW16

Test Date: September 12, 2018

AQUIFER DATA

Saturated Thickness: 10.26 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW16)

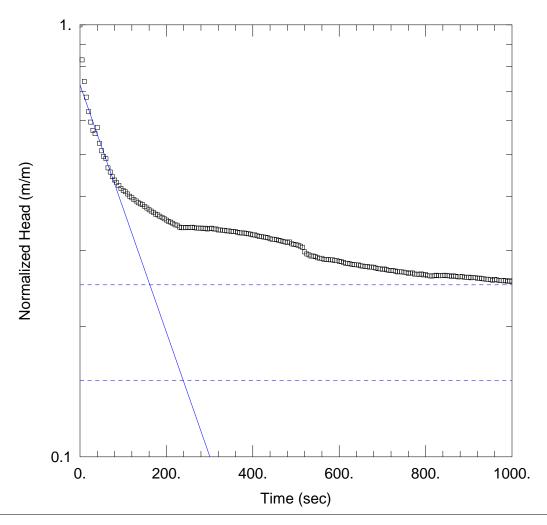
Initial Displacement: 0.5 m

Total Well Penetration Depth: 10.26 m

Casing Radius: 0.0254 m

Static Water Column Height: 10.26 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 1.447E-6 m/sec

y0 = 0.4798 m

Data Set: F:\LANDTEK K TESTS\Add Winona Block 3\Aqtesolve\MW17D.aqt

Date: 09/25/18 Time: 10:53:27

PROJECT INFORMATION

Company: Landtek Limited Client: Urbantech West

Project: 18270 Location: Winona Test Well: MW17D

Test Date: September 12, 2018

AQUIFER DATA

Saturated Thickness: 17.13 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW17D)

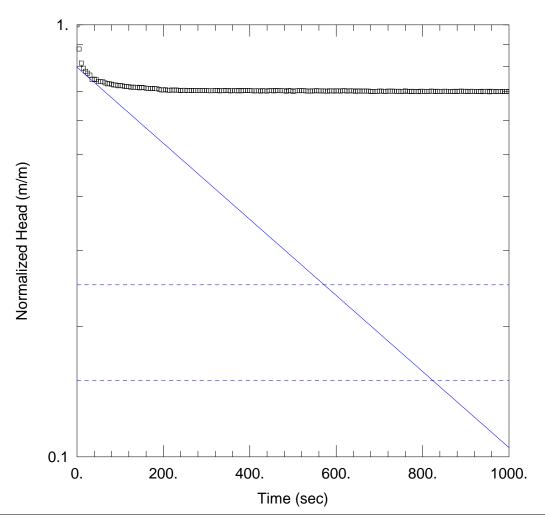
Initial Displacement: 0.3967 m

Total Well Penetration Depth: 17.13 m

Casing Radius: 0.0254 m

Static Water Column Height: 17.13 m

Screen Length: 1.5 m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 6.767E-6 m/sec

y0 = 0.2881 m

Data Set: F:\LANDTEK K TESTS\Add Winona Block 3\Aqtesolve\MW17.aqt

Date: 09/25/18 Time: 10:51:52

PROJECT INFORMATION

Company: Landtek Limited Client: Urbantech West

Project: 18270 Location: Winona Test Well: MW17S

Test Date: September 12, 2018

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 1.72 m

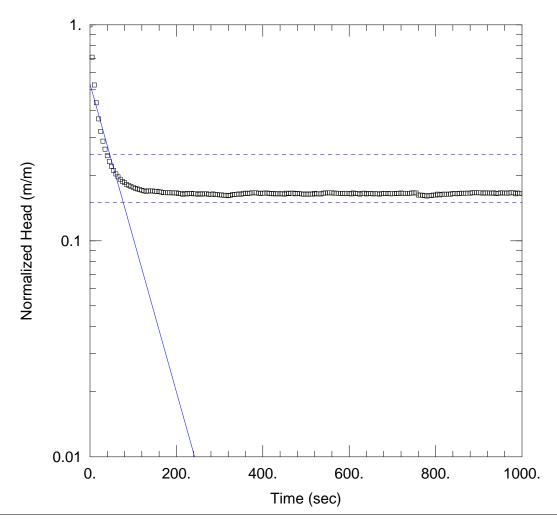
WELL DATA (MW17S)

Initial Displacement: 0.4048 m

Static Water Column Height: 1.72 m Total Well Penetration Depth: 1.72 m

Casing Radius: 0.0254 m

Screen Length: 1.5 m Well Radius: 0.0254 m Gravel Pack Porosity: 0.


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 2.08E-6 m/sec

y0 = 0.3227 m

Data Set: F:\LANDTEK K TESTS\Add Winona Block 3\Aqtesolve\MW18.aqt

Date: 09/25/18 Time: 10:54:38

PROJECT INFORMATION

Company: Landtek Limited Client: Urbantech West

Project: 18270 Location: Winona Test Well: MW18

Test Date: September 12, 2018

AQUIFER DATA

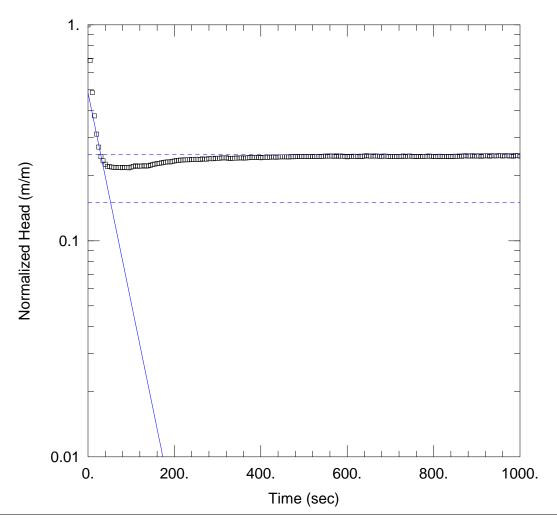
Saturated Thickness: 4.12 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW18)

Initial Displacement: 0.3783 m

Total Well Penetration Depth: 7.12 m

Casing Radius: 0.0254 m


Static Water Column Height: 4.12 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 9.639E-6 m/sec y0 = 0.2011 m

Data Set: F:\LANDTEK K TESTS\Add Winona Block 3\Aqtesolve\MW19.aqt

Date: 09/25/18 Time: 10:56:28

PROJECT INFORMATION

Company: Landtek Limited Client: Urbantech West

Project: 18270 Location: Winona Test Well: MW19

Test Date: September 12, 2018

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 4.2 m

WELL DATA (MW19)

Initial Displacement: 0.3901 m

Total Well Penetration Depth: 4.2 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.2 m

Screen Length: 3. m Well Radius: 0.0254 m Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 1.316E-5 m/secy0 = 0.1892 m

APPENDIX H LABORATORY CERTIFICATE OF ANALYSIS

File: 18270

LANDTEK LIMITED ATTN: HENRY EREBOR 205 NEBO ROAD, UNIT 3

HAMILTON ON L8W 2E1

Date Received: 25-SEP-18

Report Date: 03-OCT-18 14:57 (MT)

Version: FINAL

Client Phone: 905-383-3733

Certificate of Analysis

Lab Work Order #: L2170497
Project P.O. #: NOT SUBMITTED

Job Reference: 18270 C of C Numbers: 17-618803

Legal Site Desc:

Mathy Mahadeya Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2170497 CONTD....
Page 2 of 18

18270	ANALII	ICAL	GUID	LLINL	KLFOR	X I	0:	Page 2 of 3-OCT-18 14:57	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline		•
		Qualifier	D.L.		Analyzeu		Guideiii ie	ELITTIES	
L2170497-1 MW13									
Sampled By: CLIENT on 24-SEP-18						#1	#2		
Matrix: WATER							<u>-</u>		
Physical Tests									
Colour, Apparent	5.0		2.0	CU	26-SEP-18		5		
Conductivity	1510		3.0	umhos/cm	26-SEP-18				
рН	7.96		0.10	pH units	26-SEP-18		6.5-8.5		
Redox Potential	250	PEHR	-1000	mV	28-SEP-18				
Total Dissolved Solids	875	DLDS	20	mg/L	27-SEP-18		*500		
Turbidity	3.54		0.10	NTU	26-SEP-18		5		
Anions and Nutrients									
Alkalinity, Bicarbonate (as CaCO3)	129		10	mg/L	28-SEP-18				
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18				
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18				
Alkalinity, Total (as CaCO3)	129		10	mg/L	28-SEP-18		30-500		
Ammonia, Total (as N)	1.44	DLHC	0.040	mg/L	03-OCT-18				
Bromide (Br)	<0.50	DLDS	0.50	mg/L	27-SEP-18				
Chloride (CI)	343	DLDS	2.5	mg/L	27-SEP-18		*250		
Computed Conductivity	1480			uS/cm	28-SEP-18				
Conductivity % Difference	-1.9			%	28-SEP-18				
Fluoride (F)	0.16	DLDS	0.10	mg/L	27-SEP-18	1.5			
Hardness (as CaCO3)	294			mg/L	28-SEP-18		*80-100		
Ion Balance	96.0			%	28-SEP-18				
Langelier Index	0.4	DI DO	0.40	No Unit	28-SEP-18				
Nitrate (as N)	<0.10	DLDS	0.10	mg/L	27-SEP-18	10			
Nitrite (as N)	1.09	DLDS	0.050	mg/L	27-SEP-18	*1			
Saturation pH	7.52		0.0000	pH	28-SEP-18				
Orthophosphate-Dissolved (as P)	<0.0030 924		0.0030	mg/L	27-SEP-18 28-SEP-18				
TDS (Calculated) Sulfate (SO4)	183	DLDS	1.5	mg/L mg/L	27-SEP-18		500		
Anion Sum	15.7	DLDS	1.5	me/L	28-SEP-18		300		
Cation Sum	15.1			me/L	28-SEP-18				
Cation - Anion Balance	-2.1			%	28-SEP-18				
Inorganic Parameters	2.1			/0	20-021-10				
Silica	10.3		2.1	mg/L	26-SEP-18				
Bacteriological Tests	10.0			g/ _	20 02. 10				
E. Coli	0		0	CFU/100m	27-SEP-18	0			
2. 33				L	2. 02. 10				
Total Coliform Background	31000	DLM	1000	CFU/100m	27-SEP-18				
				L					
Total Coliforms	150	DLM	10	CFU/100m	27-SEP-18	*0			
Metals				L					
	F 04		0.40	CVE	26 050 40				
Sodium Adsorption Ratio Total Metals	5.31		0.10	SAR	26-SEP-18				
	0.064	DITIC	0.050	m = /I	26 SED 40		04		
Aluminum (Al)-Total	0.061	DLHC	0.050	mg/L	26-SEP-18	0.000	0.1		
Antimony (Sb)-Total	<0.0010	DLHC		mg/L	26-SEP-18	0.006			
Arsenic (As)-Total	0.0025	DLHC	0.0010	mg/L	26-SEP-18	0.0100			
Barium (Ba)-Total	0.0558	DLHC	0.0010	mg/L	26-SEP-18	1			
Beryllium (Be)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18				
Bismuth (Bi)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2170497 CONTD.... Page 3 of 18

03-OCT-18 14:57 (MT)

Sample Details 03-OC1-18 14:57 (MT								4.57 (WIT)	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2170497-1 MW13									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Total Metals									
Boron (B)-Total	0.45	DLHC	0.10	mg/L	26-SEP-18	5			
Cadmium (Cd)-Total	<0.000050		0.000050	mg/L	26-SEP-18	0.005			
Calcium (Ca)-Total	78.8	DLHC	0.50	mg/L	26-SEP-18				
Cesium (Cs)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18				
Chromium (Cr)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18	0.05			
Cobalt (Co)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18				
Copper (Cu)-Total	<0.010	DLHC	0.010	mg/L	26-SEP-18		1		
Iron (Fe)-Total	<0.10	DLHC	0.10	mg/L	26-SEP-18		0.3		
Lead (Pb)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.01			
Magnesium (Mg)-Total	23.7	DLHC	0.050	mg/L	26-SEP-18				
Manganese (Mn)-Total	0.0598	DLHC	0.0050	mg/L	26-SEP-18		*0.05		
Molybdenum (Mo)-Total	0.0229	DLHC	0.00050	mg/L	26-SEP-18				
Nickel (Ni)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18				
Phosphorus (P)-Total	<0.50	DLHC	0.50	mg/L	26-SEP-18				
Potassium (K)-Total	3.22	DLHC	0.50	mg/L	26-SEP-18				
Rubidium (Rb)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18				
Selenium (Se)-Total	0.00079	DLHC	0.00050	mg/L	26-SEP-18	0.05			
Silicon (Si)-Total	4.8	DLHC	1.0	mg/L	26-SEP-18				
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18				
Sodium (Na)-Total	209	DLHC	0.50	mg/L	26-SEP-18	*20	*200		
Strontium (Sr)-Total	2.14	DLHC	0.010	mg/L	26-SEP-18				
Sulfur (S)-Total	58.2	DLHC	5.0	mg/L	26-SEP-18				
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18				
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18				
Thorium (Th)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18				
Tin (Sn)-Total	0.0013	DLHC	0.0010	mg/L	26-SEP-18				
Titanium (Ti)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18				
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18				
Uranium (U)-Total	0.00230	DLHC	0.00010	mg/L	26-SEP-18	0.02			
Vanadium (V)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18				
Zinc (Zn)-Total	<0.030	DLHC	0.030	mg/L	26-SEP-18		5		
Zirconium (Zr)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18				
L2170497-2 MW14									
Sampled By: CLIENT on 24-SEP-18									
						#1	#2		
Matrix: WATER									
Physical Tests									
Colour, Apparent	16.4		2.0	CU	26-SEP-18		*5		
Conductivity	1320		3.0	umhos/cm	26-SEP-18				
pH	7.65		0.10	pH units	26-SEP-18		6.5-8.5		
Redox Potential	244	PEHR	-1000	mV	28-SEP-18				
Total Dissolved Solids	959	DLDS	20	mg/L	27-SEP-18		*500		
Turbidity	17.8		0.10	NTU	26-SEP-18		*5		
Anions and Nutrients									
Alkalinity, Bicarbonate (as CaCO3)	221		10	mg/L	28-SEP-18				
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18				
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18				
				<u> </u>			l .		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD.... Page 4 of 18

03-OCT-18 14:57 (MT) Sample Details Units Grouping Analyte Result Qualifier D.L. Analyzed **Guideline Limits** L2170497-2 MW14 Sampled By: CLIENT on 24-SEP-18 #1 #2 Matrix: WATER **Anions and Nutrients** 221 30-500 Alkalinity, Total (as CaCO3) 10 mg/L 28-SEP-18 Ammonia, Total (as N) 4.77 DLHC 0.10 mg/L 03-OCT-18 Bromide (Br) < 0.50 **DLDS** 0.50 mg/L 27-SEP-18 **DLDS** Chloride (CI) 153 2.5 mg/L 27-SEP-18 250 Computed Conductivity 1420 uS/cm 28-SEP-18 Conductivity % Difference 7.7 28-SEP-18 Fluoride (F) 0.20 **DLDS** 0.10 mg/L 27-SEP-18 1.5 Hardness (as CaCO3) 613 mg/L 28-SEP-18 *80-100 98.2 28-SEP-18 Ion Balance % No Unit 28-SEP-18 Langelier Index 8.0 Nitrate (as N) < 0.10 **DLDS** 0.10 ma/L 27-SEP-18 10 < 0.050 **DLDS** Nitrite (as N) 0.050 mg/L 27-SEP-18 Saturation pH 6.90 рH 28-SEP-18 0.0030 Orthophosphate-Dissolved (as P) < 0.0030 mg/L 27-SEP-18 922 TDS (Calculated) mg/L 28-SEP-18 Sulfate (SO4) 343 **DLDS** 500 1.5 mg/L 27-SEP-18 Anion Sum 15.1 28-SEP-18 me/L Cation Sum 14.8 me/L 28-SEP-18 Cation - Anion Balance -0.9 % 28-SEP-18 **Inorganic Parameters** Silica 12.7 2.1 26-SEP-18 mg/L **Bacteriological Tests** E. Coli 0 0 CFU/100m 27-SEP-18 0 51000 DLM 1000 CFU/100m 27-SEP-18 Total Coliform Background CFU/100m **Total Coliforms** 900 DLM 100 27-SEP-18 *****0 Metals SAR Sodium Adsorption Ratio 0.90 0.10 26-SEP-18 **Total Metals** Aluminum (AI)-Total 0.097 DLHC 0.050 mg/L 26-SEP-18 0.1 Antimony (Sb)-Total < 0.0010 DLHC 0.0010 mg/L 26-SEP-18 0.006 DLHC Arsenic (As)-Total 0.0017 0.0010 mg/L 26-SEP-18 0.0100 DLHC 0.0010 Barium (Ba)-Total 0.0157 mg/L 26-SEP-18 1 DLHC Beryllium (Be)-Total < 0.0010 0.0010 mg/L 26-SEP-18 < 0.00050 DLHC 0.00050 26-SEP-18 Bismuth (Bi)-Total mg/L Boron (B)-Total 1.48 DLHC 0.10 mg/L 26-SEP-18 5 Cadmium (Cd)-Total < 0.000050 DLHC 0.000050 mg/L 26-SEP-18 0.005 Calcium (Ca)-Total 204 DLHC 26-SEP-18 0.50 mg/L Cesium (Cs)-Total < 0.00010 DLHC 0.00010 mg/L 26-SEP-18 DLHC 0.0050 Chromium (Cr)-Total < 0.0050 mg/L 26-SEP-18 0.05 26-SEP-18 < 0.0010 DLHC 0.0010 Cobalt (Co)-Total mg/L < 0.010 Copper (Cu)-Total DLHC 0.010 mg/L 26-SEP-18 1 Iron (Fe)-Total 0.90 DLHC 0.10 mg/L 26-SEP-18 *0.3 Lead (Pb)-Total < 0.00050 DLHC 0.00050 mg/L 26-SEP-18 0.01 Magnesium (Mg)-Total 25.3 DLHC 0.050 mg/L 26-SEP-18

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD....
Page 5 of 18
03-OCT-18 14:57 (MT)

8270	ANALII	ICAL	שוטט	LLINE	KLPUK	A I	0	Page 5 of 1: 3-OCT-18 14:57 (M
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	·
7	Result	Qualifier	D.L.	Units	Analyzeu		Guidelli	le Limits
L2170497-2 MW14								
Sampled By: CLIENT on 24-SEP-18						#1	#2	
Matrix: WATER						#1	#2	
Total Metals								
Manganese (Mn)-Total	0.0702	DLHC	0.0050	mg/L	26-SEP-18		*0.05	
Molybdenum (Mo)-Total	0.00452	DLHC	0.00050	mg/L	26-SEP-18		0.00	
Nickel (Ni)-Total	< 0.0050	DLHC	0.0050	mg/L	26-SEP-18			
Phosphorus (P)-Total	<0.50	DLHC	0.50	mg/L	26-SEP-18			
Potassium (K)-Total	13.7	DLHC	0.50	mg/L	26-SEP-18			
Rubidium (Rb)-Total	0.0088	DLHC	0.0020	mg/L	26-SEP-18			
Selenium (Se)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.05		
Silicon (Si)-Total	5.9	DLHC	1.0	mg/L	26-SEP-18			
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18			
Sodium (Na)-Total	51.2	DLHC	0.50	mg/L	26-SEP-18	*20	200	
Strontium (Sr)-Total	6.18	DLHC	0.010	mg/L	26-SEP-18			
Sulfur (S)-Total	107	DLHC	5.0	mg/L	26-SEP-18			
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18			
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18			
Thorium (Th)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18			
Tin (Sn)-Total	0.0015	DLHC	0.0010	mg/L	26-SEP-18			
Titanium (Ti)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18			
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18			
Uranium (U)-Total	0.00116	DLHC	0.00010	mg/L	26-SEP-18	0.02		
Vanadium (V)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18		_	
Zinc (Zn)-Total	<0.030	DLHC	0.030	mg/L	26-SEP-18		5	
Zirconium (Zr)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18			
L2170497-3 MW15								
Sampled By: CLIENT on 24-SEP-18							"0	
Matrix: WATER						#1	#2	
Physical Tests								
Colour, Apparent	37.0		2.0	CU	26-SEP-18		*5	
Conductivity	1140		3.0	umhos/cm				
pH	7.66		0.10	pH units	26-SEP-18		6.5-8.5	
Redox Potential	249	PEHR	-1000	mV	28-SEP-18			
Total Dissolved Solids	833	DLDS	20	mg/L	27-SEP-18		*500	
Turbidity	32.4		0.10	NTU	26-SEP-18		*5	
Anions and Nutrients								
Alkalinity, Bicarbonate (as CaCO3)	255		10	mg/L	28-SEP-18			
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18			
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18			
Alkalinity, Total (as CaCO3)	255		10	mg/L	28-SEP-18		30-500	
Ammonia, Total (as N)	5.30	DLHC	0.20	mg/L	03-OCT-18			
Bromide (Br)	<0.50	DLDS	0.50	mg/L	27-SEP-18			
Chloride (CI)	84.5	DLDS	2.5	mg/L	27-SEP-18		250	
Computed Conductivity	1250			uS/cm	28-SEP-18			
Conductivity % Difference	9.4			%	28-SEP-18			
Fluoride (F)	0.25	DLDS	0.10	mg/L	27-SEP-18	1.5		
Hardness (as CaCO3)	562			mg/L	28-SEP-18		*80-100	
Ion Balance	98.0			%	28-SEP-18			
Langelier Index	0.8			No Unit	28-SEP-18			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD....
Page 6 of 18
03-OCT-18 14:57 (MT)

18270	ANALII	ICAL	GOID	LLINL	KEFOR	\ I	(Page 6 of 18 03-OCT-18 14:57 (MT)
Sample Details	Desuit	0	D.I.	11.26	A 1 1			· ·
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed	l e	Guidelir	ne Limits
L2170497-3 MW15								
Sampled By: CLIENT on 24-SEP-18						11.4	" 0	
Matrix: WATER						#1	#2	
Anions and Nutrients								
Nitrate (as N)	<0.10	DLDS	0.10	mg/L	27-SEP-18	10		
Nitrite (as N)	<0.050	DLDS	0.050	mg/L	27-SEP-18	1		
Saturation pH	6.90			pH	28-SEP-18			
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	27-SEP-18			
TDS (Calculated)	819			mg/L	28-SEP-18			
Sulfate (SO4)	328	DLDS	1.5	mg/L	27-SEP-18		500	
Anion Sum	13.4			me/L	28-SEP-18			
Cation Sum	13.2			me/L	28-SEP-18			
Cation - Anion Balance	-1.0			%	28-SEP-18			
Inorganic Parameters								
Silica	12.2		2.1	mg/L	26-SEP-18			
Bacteriological Tests								
E. Coli	0		0	CFU/100m	27-SEP-18	0		
				L L				
Total Coliform Background	NR	NDOGT	1000	CFU/100m	27-SEP-18			
Total Coliforms	1600	DLM	100	CFU/100m	27-SEP-18	*0		
Total Collottis	1000	DLIVI	100	L	21-3LF-10	0		
Metals								
Sodium Adsorption Ratio	0.67		0.10	SAR	26-SEP-18			
Total Metals								
Aluminum (AI)-Total	0.220	DLHC	0.050	mg/L	26-SEP-18		*0.1	
Antimony (Sb)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.006		
Arsenic (As)-Total	0.0023	DLHC	0.0010	mg/L	26-SEP-18	0.0100		
Barium (Ba)-Total	0.0237	DLHC	0.0010	mg/L	26-SEP-18	1		
Beryllium (Be)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18			
Bismuth (Bi)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18			
Boron (B)-Total	0.96	DLHC	0.10	mg/L	26-SEP-18	5		
Cadmium (Cd)-Total	<0.000050	DLHC	0.000050		26-SEP-18	0.005		
Calcium (Ca)-Total	171	DLHC	0.50	mg/L	26-SEP-18			
Cesium (Cs)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18			
Chromium (Cr)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18	0.05		
Cobalt (Co)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18			
Copper (Cu)-Total	<0.010	DLHC	0.010	mg/L	26-SEP-18		1	
Iron (Fe)-Total	0.37	DLHC	0.10	mg/L	26-SEP-18	0.01	*0.3	
Lead (Pb)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.01		
Magnesium (Mg)-Total	32.8	DLHC	0.050	mg/L	26-SEP-18		*0.05	
Manganese (Mn)-Total	0.0677	DLHC	0.0050	mg/L	26-SEP-18		*0.05	
Molybdenum (Mo)-Total	0.00951	DLHC	0.00050	mg/L	26-SEP-18			
Nickel (Ni)-Total Phosphorus (P)-Total	<0.0050 <0.50	DLHC DLHC	0.0050 0.50	mg/L	26-SEP-18 26-SEP-18			
Potassium (K)-Total	13.2	DLHC	0.50	mg/L mg/L	26-SEP-18			
Rubidium (Rb)-Total	0.0086	DLHC	0.0020	mg/L	26-SEP-18			
Selenium (Se)-Total	<0.00050	DLHC	0.0020	mg/L	26-SEP-18	0.05		
Silicon (Si)-Total	5.7	DLHC	1.0	mg/L	26-SEP-18	0.00		
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18			
Sodium (Na)-Total	36.4	DLHC	0.50	mg/L	26-SEP-18	*20	200	
				g. =	3			

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD.... Page 7 of 18

18270							03-OCT-18 1	4:57 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits	
L2170497-3 MW15								
Sampled By: CLIENT on 24-SEP-18								
						#1	#2	
Total Metals								
Strontium (Sr)-Total	7.01	DLHC	0.010	mg/L	26-SEP-18			
Sulfur (S)-Total	95.5	DLHC	5.0	mg/L	26-SEP-18			
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18			
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18			
Thorium (Th)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18			
Tin (Sn)-Total	0.0017	DLHC	0.0010	mg/L	26-SEP-18			
Titanium (Ti)-Total	<0.0070	DLUI	0.0070	mg/L	26-SEP-18			
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.00		
Uranium (U)-Total	0.00702	DLHC	0.00010	mg/L	26-SEP-18	0.02		
Vanadium (V)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18		_	
Zinc (Zn)-Total	<0.030	DLHC	0.030	mg/L	26-SEP-18		5	
Zirconium (Zr)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18			
L2170497-4 MW16								
Sampled By: CLIENT on 24-SEP-18						11.4	"0	
Matrix: WATER						#1	#2	
Physical Tests								
Colour, Apparent	23.8		2.0	CU	26-SEP-18		*5	
Conductivity	5140		3.0	umhos/cm	26-SEP-18			
pH	7.65		0.10	pH units	26-SEP-18		6.5-8.5	
Redox Potential	249	PEHR	-1000	mV	28-SEP-18			
Total Dissolved Solids	3980	DLDS	20	mg/L	27-SEP-18		*500	
Turbidity	28.4		0.10	NTU	26-SEP-18		*5	
Anions and Nutrients								
Alkalinity, Bicarbonate (as CaCO3)	79		10	mg/L	28-SEP-18			
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18			
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18			
Alkalinity, Total (as CaCO3)	79		10	mg/L	28-SEP-18		30-500	
Ammonia, Total (as N)	5.32	DLHC	0.20	mg/L	03-OCT-18			
Bromide (Br)	11.8	DLDS	1.0	mg/L	27-SEP-18			
Chloride (CI)	925	DLDS	5.0	mg/L	27-SEP-18		*250	
Computed Conductivity	5830			uS/cm	28-SEP-18			
Conductivity % Difference	12.6			%	28-SEP-18			
Fluoride (F)	0.28	DLDS	0.20	mg/L	27-SEP-18	1.5		
Hardness (as CaCO3)	1670			mg/L	28-SEP-18		*80-100	
Ion Balance	81.3			%	28-SEP-18			
Langelier Index	0.4			No Unit	28-SEP-18			
Nitrate (as N)	<0.20	DLDS	0.20	mg/L	27-SEP-18	10		
Nitrite (as N)	<0.10	DLDS	0.10	mg/L	27-SEP-18	1		
Saturation pH	7.20			рН	28-SEP-18			
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	27-SEP-18			
TDS (Calculated)	4780			mg/L	28-SEP-18			
Sulfate (SO4)	2490	DLDS	3.0	mg/L	27-SEP-18		*500	
Anion Sum	79.3			me/L	28-SEP-18			
Cation Sum	64.4			me/L	28-SEP-18			
Cation - Anion Balance	-10.3			%	28-SEP-18			
Inorganic Parameters								

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD....
Page 8 of 18
03-OCT-18 14:57 (MT)

8270	ANALII	ICAL	GUID	LLIINL	KLFOR	. I	0	Page 8 of 1 3-OCT-18 14:57 (N				
Sample Details Grouping Analyte	tails Analyte Result Qualifier D.L. Units Analyzed						Guideline Limits					
L2170497-4 MW16					7 11.101, 1200			<u> </u>				
Sampled By: CLIENT on 24-SEP-18												
Matrix: WATER						#1	#2					
Inorganic Parameters												
Silica	8.5		2.1	mg/L	26-SEP-18							
Bacteriological Tests												
E. Coli	0		0	CFU/100m	27-SEP-18	0						
Total Californ Dealersund	NR	NDOCT	1000	CFU/100m	27-SEP-18							
Total Coliform Background	INK	NDOGT	1000	L	21-SEP-16							
Total Coliforms	10		0	CFU/100m	27-SEP-18	*0						
				L								
Metals												
Sodium Adsorption Ratio	7.46		0.10	SAR	26-SEP-18							
Total Metals												
Aluminum (AI)-Total	0.143	DLHC	0.050	mg/L	26-SEP-18		*0.1					
Antimony (Sb)-Total	0.0011	DLHC	0.0010	mg/L	26-SEP-18	0.006						
Arsenic (As)-Total	0.0018	DLHC	0.0010	mg/L	26-SEP-18	0.0100						
Barium (Ba)-Total	0.0253	DLHC	0.0010	mg/L	26-SEP-18	1						
Beryllium (Be)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18							
Bismuth (Bi)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18							
Boron (B)-Total	4.20	DLHC	0.10	mg/L	26-SEP-18	5						
Cadmium (Cd)-Total	<0.000050	DLHC	0.000050	mg/L	26-SEP-18	0.005						
Calcium (Ca)-Total	476	DLHC	0.50	mg/L	26-SEP-18							
Cesium (Cs)-Total	0.00024	DLHC	0.00010	mg/L	26-SEP-18							
Chromium (Cr)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18	0.05						
Cobalt (Co)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18							
Copper (Cu)-Total	<0.010	DLHC	0.010	mg/L	26-SEP-18		1					
Iron (Fe)-Total	0.37	DLHC	0.10	mg/L	26-SEP-18		*0.3					
Lead (Pb)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.01						
Magnesium (Mg)-Total	116	DLHC	0.050	mg/L	26-SEP-18		*0.05					
Manganese (Mn)-Total Molybdenum (Mo)-Total	0.336 0.00831	DLHC	0.0050 0.00050	mg/L	26-SEP-18 26-SEP-18		*0.05					
Nickel (Ni)-Total	<0.0050	DLHC	0.00050	mg/L mg/L	26-SEP-18							
Phosphorus (P)-Total	<0.50	DLHC	0.0030	mg/L	26-SEP-18							
Potassium (K)-Total	29.5	DLHC	0.50	mg/L	26-SEP-18							
Rubidium (Rb)-Total	0.0187	DLHC	0.0020	mg/L	26-SEP-18							
Selenium (Se)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.05						
Silicon (Si)-Total	4.0	DLHC	1.0	mg/L	26-SEP-18							
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18							
Sodium (Na)-Total	699	DLHC	0.50	mg/L	26-SEP-18	*20	*200					
Strontium (Sr)-Total	10.0	DLHC	0.010	mg/L	26-SEP-18							
Sulfur (S)-Total	749	DLHC	5.0	mg/L	26-SEP-18							
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18							
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18							
Thorium (Th)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18							
Tin (Sn)-Total	0.0022	DLHC	0.0010	mg/L	26-SEP-18							
Titanium (Ti)-Total	<.0050	DLUI	0.0050	mg/L	26-SEP-18							
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.00						
Uranium (U)-Total	0.00115	DLHC	0.00010	mg/L	26-SEP-18	0.02						
Vanadium (V)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18							

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD....
Page 9 of 18

18270								3-OCT-18 1	4:57 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2170497-4 MW16									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Total Metals							_		
Zinc (Zn)-Total	<0.030	DLHC	0.030	mg/L	26-SEP-18		5		
Zirconium (Zr)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18				
L2170497-5 MW17S									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Physical Tests									
Physical Tests	00.0		0.0	011	00.050.40		4-		
Colour, Apparent	23.2		2.0	CU	26-SEP-18		*5		
Conductivity	5860		3.0 0.10	umhos/cm	26-SEP-18		0.5.0.5		
pH	7.64	חבוום		pH units	26-SEP-18		6.5-8.5		
Redox Potential	252	PEHR	-1000	mV	28-SEP-18		* F00		
Total Dissolved Solids	4570	DLDS	20	mg/L	27-SEP-18		*500		
Turbidity Anions and Nutrients	18.8		0.10	NTU	26-SEP-18		*5		
			4.0		00.055.40				
Alkalinity, Bicarbonate (as CaCO3)	52		10	mg/L	28-SEP-18				
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18				
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18		00.500		
Alkalinity, Total (as CaCO3)	52	DILIC	10	mg/L	28-SEP-18		30-500		
Ammonia, Total (as N) Bromide (Br)	3.69 19.0	DLHC DLDS	0.10 1.0	mg/L	03-OCT-18 27-SEP-18				
Chloride (Cl)	1610	DLDS	5.0	mg/L mg/L	27-SEP-18		*250		
Computed Conductivity	6460	DLDS	3.0	uS/cm	28-SEP-18		230		
Conductivity % Difference	9.8			%	28-SEP-18				
Fluoride (F)	0.32	DLDS	0.20	mg/L	27-SEP-18	1.5			
Hardness (as CaCO3)	1840		0.20	mg/L	28-SEP-18	1.0	*80-100		
Ion Balance	82.5			%	28-SEP-18		00 100		
Langelier Index	0.3			No Unit	28-SEP-18				
Nitrate (as N)	<0.20	DLDS	0.20	mg/L	27-SEP-18	10			
Nitrite (as N)	<0.10	DLDS	0.10	mg/L	27-SEP-18	1			
Saturation pH	7.36			pH	28-SEP-18				
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	27-SEP-18				
TDS (Calculated)	5160			mg/L	28-SEP-18				
Sulfate (SO4)	2020	DLDS	3.0	mg/L	27-SEP-18		*500		
Anion Sum	88.5			me/L	28-SEP-18				
Cation Sum	73.0			me/L	28-SEP-18				
Cation - Anion Balance	-9.6			%	28-SEP-18				
Inorganic Parameters									
Silica	8.1		2.1	mg/L	26-SEP-18				
Bacteriological Tests									
E. Coli	1		0	CFU/100m	27-SEP-18	*0			
Total Coliform Background	NR	NDOGT	1000	CFU/100m	27-SEP-18				
Total Coliforms	53		0	CFU/100m	27-SEP-18	*0			
Metals				L					
Sodium Adsorption Ratio	8.27		0.10	SAR	26-SEP-18				
Journal Adsorption Natio	0.21		0.10	JAN	20 OLI-10				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD.... Page 10 of 18 03-OCT-18 14:57 (MT)

Sample Details						03-OCT-18 14:57 (MT)						
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits				
L2170497-5 MW17S												
Sampled By: CLIENT on 24-SEP-18												
Matrix: WATER						#1	#2					
Total Metals												
Aluminum (Al)-Total	0.189	DLHC	0.050	ma/l	26-SEP-18		*0.1					
` ,	<0.0010	DLHC	0.030	mg/L	26-SEP-18	0.006	0.1					
Antimony (Sb)-Total	0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.006						
Arsenic (As)-Total	0.0012	DLHC	0.0010	mg/L	26-SEP-18	0.0100 1						
Barium (Ba)-Total Beryllium (Be)-Total	<0.0202	DLHC	0.0010	mg/L mg/L	26-SEP-18							
Bismuth (Bi)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18							
Boron (B)-Total	3.09	DLHC	0.00030	mg/L	26-SEP-18	5						
Cadmium (Cd)-Total	<0.000050	DLHC	0.000050	mg/L	26-SEP-18	0.005						
Calcium (Ca)-Total	513	DLHC	0.50	mg/L	26-SEP-18	0.003						
Cesium (Cs)-Total	0.00020	DLHC	0.00010	mg/L	26-SEP-18							
Chromium (Cr)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18	0.05						
Cobalt (Co)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18	0.00						
Copper (Cu)-Total	<0.010	DLHC	0.010	mg/L	26-SEP-18		1					
Iron (Fe)-Total	0.32	DLHC	0.10	mg/L	26-SEP-18		*0.3					
Lead (Pb)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.01	0.0					
Magnesium (Mg)-Total	136	DLHC	0.050	mg/L	26-SEP-18	0.01						
Manganese (Mn)-Total	0.497	DLHC	0.0050	mg/L	26-SEP-18		*0.05					
Molybdenum (Mo)-Total	0.0227	DLHC	0.00050	mg/L	26-SEP-18		0.00					
Nickel (Ni)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18							
Phosphorus (P)-Total	<0.50	DLHC	0.50	mg/L	26-SEP-18							
Potassium (K)-Total	25.6	DLHC	0.50	mg/L	26-SEP-18							
Rubidium (Rb)-Total	0.0163	DLHC	0.0020	mg/L	26-SEP-18							
Selenium (Se)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.05						
Silicon (Si)-Total	3.8	DLHC	1.0	mg/L	26-SEP-18							
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18							
Sodium (Na)-Total	816	DLHC	0.50	mg/L	26-SEP-18	*20	*200					
Strontium (Sr)-Total	12.8	DLHC	0.010	mg/L	26-SEP-18							
Sulfur (S)-Total	610	DLHC	5.0	mg/L	26-SEP-18							
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18							
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18							
Thorium (Th)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18							
Tin (Sn)-Total	0.0022	DLHC	0.0010	mg/L	26-SEP-18							
Titanium (Ti)-Total	<0.0050	DLUI	0.0050	mg/L	26-SEP-18							
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18							
Uranium (U)-Total	0.00044	DLHC	0.00010	mg/L	26-SEP-18	0.02						
Vanadium (V)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18							
Zinc (Zn)-Total	<0.030	DLHC	0.030	mg/L	26-SEP-18		5					
Zirconium (Zr)-Total	<0.0030	DLHC	0.0030	mg/L	26-SEP-18							
L2170497-6 MW17D												
Sampled By: CLIENT on 24-SEP-18												
Matrix: WATER						#1	#2					
Physical Tests												
Colour, Apparent	13.9		2.0	CU	26-SEP-18		*5					
Conductivity	5880		3.0	umhos/cm								
pH	7.64		0.10	pH units	26-SEP-18		6.5-8.5					
Redox Potential	248	PEHR	-1000	mV	28-SEP-18		0.0 0.0					
Redox Potential	248	PEHK	-1000	∣ m∨	28-SEP-18							

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2170497 CONTD.... Page 11 of 18 03-OCT-18 14:57 (MT)

Sample Details								13-OCT-18 1	4:57 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2170497-6 MW17D									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Physical Tests									
· ·	40.40	DIDC	200		07.050.40		*500		
Total Dissolved Solids Turbidity	4840 13.6	DLDS	20 0.10	mg/L NTU	27-SEP-18 26-SEP-18		*500 *5		
Anions and Nutrients	13.6		0.10	INTO	20-3EF-10		5		
			40		00 CED 40				
Alkalinity, Bicarbonate (as CaCO3) Alkalinity, Carbonate (as CaCO3)	55 <10		10 10	mg/L	28-SEP-18 28-SEP-18				
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L mg/L	28-SEP-18				
Alkalinity, Total (as CaCO3)	55		10	mg/L	28-SEP-18		30-500		
Ammonia, Total (as N)	3.80	DLHC	0.10	mg/L	03-OCT-18		30 300		
Bromide (Br)	18.2	DLDS	1.0	mg/L	27-SEP-18				
Chloride (CI)	1540	DLDS	5.0	mg/L	27-SEP-18		*250		
Computed Conductivity	6270			uS/cm	28-SEP-18				
Conductivity % Difference	6.4			%	28-SEP-18				
Fluoride (F)	0.29	DLDS	0.20	mg/L	27-SEP-18	1.5			
Hardness (as CaCO3)	1870			mg/L	28-SEP-18		*80-100		
Ion Balance	85.3			%	28-SEP-18				
Langelier Index	0.3			No Unit	28-SEP-18				
Nitrate (as N)	<0.20	DLDS	0.20	mg/L	27-SEP-18	10			
Nitrite (as N)	<0.10	DLDS	0.10	mg/L	27-SEP-18	1			
Saturation pH	7.33			pН	28-SEP-18				
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	27-SEP-18				
TDS (Calculated)	4960			mg/L	28-SEP-18				
Sulfate (SO4)	1930	DLDS	3.0	mg/L	27-SEP-18		*500		
Anion Sum	84.4			me/L	28-SEP-18				
Cation Sum	72.0			me/L	28-SEP-18				
Cation - Anion Balance	-7.9			%	28-SEP-18				
Inorganic Parameters									
Silica	7.7		2.1	mg/L	26-SEP-18				
Bacteriological Tests									
E. Coli	1		0	CFU/100m L		*0			
Total Coliform Background	NR	NDOGT	1000	CFU/100m L					
Total Coliforms	1000	DLM	100	CFU/100m L	27-SEP-18	*0			
Metals									
Sodium Adsorption Ratio Total Metals	7.89		0.10	SAR	26-SEP-18				
Aluminum (Al)-Total	0.157	DLHC	0.050	mg/L	26-SEP-18		*0.1		
Antimony (Sb)-Total	0.137	DLHC	0.000	mg/L	26-SEP-18	0.006	0.1		
Arsenic (As)-Total	0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.006			
Barium (Ba)-Total	0.0013	DLHC	0.0010	mg/L	26-SEP-18	1			
Beryllium (Be)-Total	<0.0203	DLHC	0.0010	mg/L	26-SEP-18	'			
Bismuth (Bi)-Total	<0.0010	DLHC	0.00050	mg/L	26-SEP-18				
Boron (B)-Total	3.11	DLHC	0.10	mg/L	26-SEP-18	5			
Cadmium (Cd)-Total	<0.000050	DLHC	0.000050	_	26-SEP-18	0.005			
Calcium (Ca)-Total	521	DLHC	0.50	mg/L	26-SEP-18				
Cesium (Cs)-Total	0.00020	DLHC	0.00010	mg/L	26-SEP-18				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2170497 CONTD.... Page 12 of 18 03-OCT-18 14:57 (MT)

18270	00 001 10 17:01 (M1)									
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits		
L2170497-6 MW17D										
Sampled By: CLIENT on 24-SEP-18										
Matrix: WATER						#1	#2			
Total Metals										
Chromium (Cr)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18	0.05				
Cobalt (Co)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.00				
Copper (Cu)-Total	<0.010	DLHC	0.010	mg/L	26-SEP-18		1			
Iron (Fe)-Total	0.28	DLHC	0.10	mg/L	26-SEP-18		0.3			
Lead (Pb)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.01				
Magnesium (Mg)-Total	137	DLHC	0.050	mg/L	26-SEP-18					
Manganese (Mn)-Total	0.483	DLHC	0.0050	mg/L	26-SEP-18		*0.05			
Molybdenum (Mo)-Total	0.0224	DLHC	0.00050	mg/L	26-SEP-18					
Nickel (Ni)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18					
Phosphorus (P)-Total	<0.50	DLHC	0.50	mg/L	26-SEP-18					
Potassium (K)-Total	25.2	DLHC	0.50	mg/L	26-SEP-18					
Rubidium (Rb)-Total	0.0164	DLHC	0.0020	mg/L	26-SEP-18					
Selenium (Se)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.05				
Silicon (Si)-Total	3.6	DLHC	1.0	mg/L	26-SEP-18					
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18					
Sodium (Na)-Total	783	DLHC	0.50	mg/L	26-SEP-18	*20	*200			
Strontium (Sr)-Total	12.7	DLHC	0.010	mg/L	26-SEP-18					
Sulfur (S)-Total	593	DLHC	5.0	mg/L	26-SEP-18					
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18					
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18					
Thorium (Th)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18					
Tin (Sn)-Total	0.0046	DLHC	0.0010	mg/L	26-SEP-18					
Titanium (Ti)-Total	<0.0040	DLUI	0.0040	mg/L	26-SEP-18					
Tungsten (W)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.00				
Uranium (U)-Total	0.00046	DLHC	0.00010	mg/L	26-SEP-18	0.02				
Vanadium (V)-Total Zinc (Zn)-Total	<0.0050 <0.030	DLHC DLHC	0.0050 0.030	mg/L	26-SEP-18 26-SEP-18		_			
Ziric (Zri)-Total Zirconium (Zr)-Total	<0.030	DLHC	0.030	mg/L mg/L	26-SEP-18		5			
	<0.0030	DLITC	0.0030	IIIg/L	20-3LF-10					
L2170497-7 MW18										
Sampled By: CLIENT on 24-SEP-18						#1	#2			
Matrix: WATER							112			
Physical Tests										
Colour, Apparent	6.4		2.0	CU	26-SEP-18		*5			
Conductivity	795		3.0	umhos/cm						
рН	7.62		0.10	pH units	26-SEP-18		6.5-8.5			
Redox Potential	256	PEHR	-1000	mV	28-SEP-18					
Total Dissolved Solids	516	DLDS	20	mg/L	27-SEP-18		*500			
Turbidity	4.56		0.10	NTU	26-SEP-18		5			
Anions and Nutrients										
Alkalinity, Bicarbonate (as CaCO3)	300		10	mg/L	28-SEP-18					
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18					
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18					
Alkalinity, Total (as CaCO3)	300		10	mg/L	28-SEP-18		30-500			
Ammonia, Total (as N)	1.31	DLHC	0.040	mg/L	03-OCT-18					
Bromide (Br)	<0.10		0.10	mg/L	27-SEP-18					
Chloride (CI)	25.5		0.50	mg/L	27-SEP-18		250			

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2170497 CONTD.... Page 13 of 18 03-OCT-18 14:57 (MT)

18270						03-OCT-18 14:57 (MT)						
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits				
L2170497-7 MW18												
Sampled By: CLIENT on 24-SEP-18												
Matrix: WATER						#1	#2					
Anions and Nutrients												
Computed Conductivity	776			uS/cm	28-SEP-18							
Conductivity % Difference	-2.4			%	28-SEP-18							
Fluoride (F)	0.114		0.020	mg/L	27-SEP-18	1.5						
Hardness (as CaCO3)	403		0.020	mg/L	28-SEP-18	1.0	*80-100					
Ion Balance	113			%	28-SEP-18		00.00					
Langelier Index	0.7			No Unit	28-SEP-18							
Nitrate (as N)	9.99		0.020	mg/L	27-SEP-18	10						
Nitrite (as N)	<0.010		0.010	mg/L	27-SEP-18	1						
Saturation pH	6.92			pH	28-SEP-18							
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	27-SEP-18							
TDS (Calculated)	500			mg/L	28-SEP-18							
Sulfate (SO4)	79.2		0.30	mg/L	27-SEP-18		500					
Anion Sum	8.03			me/L	28-SEP-18							
Cation Sum	9.08			me/L	28-SEP-18							
Cation - Anion Balance	6.1			%	28-SEP-18							
Inorganic Parameters												
Silica	8.99		0.21	mg/L	26-SEP-18							
Bacteriological Tests												
E. Coli	0		0	CFU/100m	27-SEP-18	0						
Total Coliform Background	132000	DLM	1000	CFU/100m	27-SEP-18							
Total Coliforms	340	DLM	10	CFU/100m	27-SEP-18	*0						
Metals				L								
Sodium Adsorption Ratio Total Metals	0.44		0.10	SAR	26-SEP-18							
Aluminum (AI)-Total	0.191		0.010	mg/L	26-SEP-18		*0.1					
Antimony (Sb)-Total	0.00018		0.00010	mg/L	26-SEP-18	0.006						
Arsenic (As)-Total	0.00047		0.00010	mg/L	26-SEP-18	0.0100						
Barium (Ba)-Total	0.0472		0.00020	mg/L	26-SEP-18	1						
Beryllium (Be)-Total	<0.00010		0.00010	mg/L	26-SEP-18							
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L	26-SEP-18							
Boron (B)-Total	0.133		0.010	mg/L	26-SEP-18	5						
Cadmium (Cd)-Total	<0.000010		0.000010	mg/L	26-SEP-18	0.005						
Calcium (Ca)-Total	119		0.50	mg/L	26-SEP-18							
Cesium (Cs)-Total	0.000050		0.000010	mg/L	26-SEP-18							
Chromium (Cr)-Total	0.00058		0.00050	mg/L	26-SEP-18	0.05						
Cobalt (Co)-Total	0.00016		0.00010	mg/L	26-SEP-18							
Copper (Cu)-Total	<0.0010		0.0010	mg/L	26-SEP-18		1					
Iron (Fe)-Total	0.198		0.050	mg/L	26-SEP-18		0.3					
Lead (Pb)-Total	0.00022		0.00010	mg/L	26-SEP-18	0.01						
Magnesium (Mg)-Total	25.8		0.050	mg/L	26-SEP-18							
Manganese (Mn)-Total	0.0161		0.00050	mg/L	26-SEP-18		0.05					
Molybdenum (Mo)-Total	0.000553		0.000050	mg/L	26-SEP-18							
Nickel (Ni)-Total	0.00079		0.00050	mg/L	26-SEP-18							
Phosphorus (P)-Total	<0.050		0.050	mg/L	26-SEP-18							

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2170497 CONTD.... Page 14 of 18 03-OCT-18 14:57 (MT)

18270							C	3-OCT-18 1	4:57 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2170497-7 MW18									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Total Metals									
Potassium (K)-Total	5.44		0.050	mg/L	26-SEP-18				
Rubidium (Rb)-Total	0.00305		0.00020	mg/L	26-SEP-18				
Selenium (Se)-Total	0.00111		0.000050	mg/L	26-SEP-18	0.05			
Silicon (Si)-Total	4.20		0.10	mg/L	26-SEP-18	0.00			
Silver (Ag)-Total	<0.000050		0.000050	mg/L	26-SEP-18				
Sodium (Na)-Total	20.2		0.50	mg/L	26-SEP-18	*20	200		
Strontium (Sr)-Total	0.712		0.0010	mg/L	26-SEP-18				
Sulfur (S)-Total	28.7		0.50	mg/L	26-SEP-18				
Tellurium (Te)-Total	0.00031		0.00020	mg/L	26-SEP-18				
Thallium (TI)-Total	<0.000010		0.000010	mg/L	26-SEP-18				
Thorium (Th)-Total	<0.00010		0.00010	mg/L	26-SEP-18				
Tin (Sn)-Total	0.00056		0.00010	mg/L	26-SEP-18				
Titanium (Ti)-Total	0.00489		0.00030	mg/L	26-SEP-18				
Tungsten (W)-Total	<0.00010		0.00010	mg/L	26-SEP-18				
Uranium (U)-Total	0.00264		0.000010	mg/L	26-SEP-18	0.02			
Vanadium (V)-Total	0.00116		0.00050	mg/L	26-SEP-18				
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	26-SEP-18		5		
Zirconium (Zr)-Total	0.00037		0.00030	mg/L	26-SEP-18				
L2170497-8 MW19									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Physical Tests									
Colour, Apparent	210		2.0	CU	26-SEP-18		*5		
Conductivity	1400		3.0	umhos/cm	26-SEP-18				
pH	7.64		0.10	pH units	26-SEP-18		6.5-8.5		
Redox Potential	245	PEHR	-1000	mV	28-SEP-18		0.0 0.0		
Total Dissolved Solids	1050	DLDS	20	mg/L	27-SEP-18		*500		
Turbidity	225		0.10	NTU	26-SEP-18		*5		
Anions and Nutrients									
Alkalinity, Bicarbonate (as CaCO3)	387		10	mg/L	28-SEP-18				
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L	28-SEP-18				
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L	28-SEP-18				
Alkalinity, Total (as CaCO3)	387		10	mg/L	28-SEP-18		30-500		
Ammonia, Total (as N)	0.969	DLHC	0.040	mg/L	03-OCT-18				
Bromide (Br)	<0.50	DLDS	0.50	mg/L	27-SEP-18				
Chloride (CI)	38.6	DLDS	2.5	mg/L	27-SEP-18		250		
Computed Conductivity	1510			uS/cm	28-SEP-18				
Conductivity % Difference	7.7			%	28-SEP-18				
Fluoride (F)	0.12	DLDS	0.10	mg/L	27-SEP-18	1.5			
Hardness (as CaCO3)	710			mg/L	28-SEP-18		*80-100		
Ion Balance	106			%	28-SEP-18				
Langelier Index	0.9			No Unit	28-SEP-18				
Nitrate (as N)	2.77	DLDS	0.10	mg/L	27-SEP-18	10			
Nitrite (as N)	<0.050	DLDS	0.050	mg/L	27-SEP-18	1			
Saturation pH	6.71			рН	28-SEP-18				
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	27-SEP-18				
									

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD....
Page 15 of 18
03-OCT-18 14:57 (MT)

18270	ANALII	ICAL	GOID	LLIINL	IXLI OI	\ 1	C	Page 15)3-OCT-18 14:	
Sample Details	December	0	D.1	11.26					
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed	<u> </u>	Guidelir	ne Limits	
L2170497-8 MW19									
Sampled By: CLIENT on 24-SEP-18									
Matrix: WATER						#1	#2		
Anions and Nutrients									
TDS (Calculated)	1030			mg/L	28-SEP-18				
Sulfate (SO4)	422	DLDS	1.5	mg/L	27-SEP-18		500		
Anion Sum	16.4	DEBO	1.5	me/L	28-SEP-18		300		
Cation Sum	17.5			me/L	28-SEP-18				
Cation - Anion Balance	3.1			%	28-SEP-18				
Inorganic Parameters	0.1			/0	20 021 10				
Silica	9.8		2.1	mg/L	26-SEP-18				
Bacteriological Tests	9.0		2.1	IIIg/L	20-3LF-10				
E. Coli	1		0	CFU/100m	27-SEP-18	*0			
				L					
Total Coliform Background	NR	NDOGT	1000	CFU/100m L	27-SEP-18				
Total Coliforms	12000	DLM	1000	CFU/100m	27-SEP-18	*0			
				L					
Metals									
Sodium Adsorption Ratio	1.15		0.10	SAR	26-SEP-18				
Total Metals									
Aluminum (AI)-Total	0.396	DLHC	0.050	mg/L	26-SEP-18		*0.1		
Antimony (Sb)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.006			
Arsenic (As)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18	0.0100			
Barium (Ba)-Total	0.0211	DLHC	0.0010	mg/L	26-SEP-18	1			
Beryllium (Be)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18				
Bismuth (Bi)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18				
Boron (B)-Total	0.72	DLHC	0.10	mg/L	26-SEP-18	5			
Cadmium (Cd)-Total	<0.000050	DLHC	0.000050	mg/L	26-SEP-18	0.005			
Calcium (Ca)-Total	187	DLHC	0.50	mg/L	26-SEP-18				
Cesium (Cs)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18				
Chromium (Cr)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18	0.05			
Cobalt (Co)-Total	<0.0010	DLHC	0.0010	mg/L	26-SEP-18				
Copper (Cu)-Total	<0.010	DLHC	0.010	mg/L	26-SEP-18		1		
Iron (Fe)-Total	0.31	DLHC	0.10	mg/L	26-SEP-18		*0.3		
Lead (Pb)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	0.01			
Magnesium (Mg)-Total	59.1	DLHC	0.050	mg/L	26-SEP-18				
Manganese (Mn)-Total	0.0816	DLHC	0.0050	mg/L	26-SEP-18		*0.05		
Molybdenum (Mo)-Total	0.00332	DLHC	0.00050	mg/L	26-SEP-18				
Nickel (Ni)-Total	<0.0050	DLHC	0.0050	mg/L	26-SEP-18				
Phosphorus (P)-Total	<0.50	DLHC	0.50	mg/L	26-SEP-18				
Potassium (K)-Total	9.93	DLHC	0.50	mg/L	26-SEP-18				
Rubidium (Rb)-Total	0.0055	DLHC	0.0020	mg/L	26-SEP-18				
Selenium (Se)-Total	0.00106	DLHC	0.00050	mg/L	26-SEP-18	0.05			
Silicon (Si)-Total	4.6	DLHC	1.0	mg/L	26-SEP-18				
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	26-SEP-18	***			
Sodium (Na)-Total	70.5	DLHC	0.50	mg/L	26-SEP-18	*20	200		
Strontium (Sr)-Total	5.01	DLHC	0.010	mg/L	26-SEP-18				
Sulfur (S)-Total	146	DLHC	5.0	mg/L	26-SEP-18				
Tellurium (Te)-Total	<0.0020	DLHC	0.0020	mg/L	26-SEP-18				
Thallium (TI)-Total	<0.00010	DLHC	0.00010	mg/L	26-SEP-18				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L2170497 CONTD.... Page 16 of 18

03-OCT-18 14:57 (MT) Sample Details Grouping Result Qualifier D.L. Units Analyte Analyzed **Guideline Limits** L2170497-8 MW19 Sampled By: CLIENT on 24-SEP-18 #1 #2 Matrix: WATER **Total Metals** Thorium (Th)-Total < 0.0010 DLHC 0.0010 26-SEP-18 mg/L Tin (Sn)-Total 0.0036 DLHC 0.0010 mg/L 26-SEP-18 DLUI 0.0080 Titanium (Ti)-Total <0.0080 mg/L 26-SEP-18 Tungsten (W)-Total < 0.0010 DLHC 0.0010 mg/L 26-SEP-18 Uranium (U)-Total 0.0113 DLHC 0.00010 26-SEP-18 0.02 mg/L 0.0050 Vanadium (V)-Total DLHC 26-SEP-18 < 0.0050 mg/L DLHC 26-SEP-18 Zinc (Zn)-Total < 0.030 0.030 mg/L 5 Zirconium (Zr)-Total <0.0030 DLHC 0.0030 mg/L 26-SEP-18

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Sample Parameter Qualifier key listed:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
NDOGT	NO DATA: Overgrown with Target
DLUI	Detection Limit Raised: Unknown Interference generated an apparent false positive test result.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Test Description Method Reference*** Matrix ALK-AUTO-WT Water **Automated Speciated Alkalinity** EPA 310.2

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange

colourimetric method.

ALK-SPECIATED-WT pH Measurement for Spec. Alk APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

BR-IC-N-WT Water Bromide in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

COLOUR-APPARENT-WT Water Colour **APHA 2120**

Apparent Colour is measured spectrophotometrically by comparison to platinum-cobalt standards using the single wavelength method after sample decanting. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment. Concurrent measurement of sample pH is recommended.

EC-MF-WT Water SM 9222D E. coli

A 100 mL volume of sample is filtered through a membrane, the membrane is placed on mFC-BCIG agar and incubated at 44.5 -0 .2 °C for 24 - 2 h.

Method ID: WT-TM-1200

FC-WT Water **APHA 2510 B** Conductivity

Water samples can be measured directly by immersing the conductivity cell into the sample. **ETL-SAR-CALC-WT** Water Sodium Adsorption Ratio Calculation **ETL-SILICA-CALC-WT** Water Calculate from SI-TOT-WT EPA 200.8 F-IC-N-WT Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

IONBALANCE-OP03-WT Water Detailed Ion Balance Calculation APHA 1030E, 2330B, 2510A MET-T-CCMS-WT Water Total Metals in Water by CRC EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

NH3-WT Ammonia, Total as N EPA 350.1

Sample is measured colorimetrically. When sample is turbid a distillation step is required, sample is distilled into a solution of boric acid and measured

colorimetrically.

NO2-IC-WT Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT Nitrate in Water by IC Water EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PO4-DO-COL-WT Diss. Orthophosphate in Water APHA 4500-P PHOSPHORUS

by Colour

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.

Reference Information

REDOX-POTENTIAL-WT Water

Redox Potential

APHA 2580

This analysis is carried out in accordance with the procedure described in the "APHA" method 2580 "Oxidation-Reduction Potential" 2012. Results are reported as observed oxidation-reduction potential of the platinum metal-reference electrode employed, in mV.

It is recommended that this analysis be conducted in the field.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TDS-WT Water Total Dissolved Solids APHA 2540C

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TC-MF-WT Water Total Coliforms SM 9222B

A 100mL volume of sample is filtered through a membrane, the membrane is placed on mENDO LES agar and incubated at 35-0.5°C for 24-2h.

Method ID: WT-TM-1200

TCB-MF-WT Water Total Coliform Background SM 9222B

A 100mL volume of sample is filtered through a membrane, the membrane is placed on mENDO LES agar and incubated at 35–0.5°C for 24–2h.

Method ID: WT-TM-1200.

TURBIDITY-WT Water Turbidity APHA 2130 B

Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

17-618803

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Environmental

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

COC Number: 17 - 618803

L2170497-COFC

	www.alegiobal.com		<u> </u>							<u>-1</u>										
Report To	Contact and company name below will appear on the final report		Report Format	Pist indum.	· ·					ow - Co	ntaci	your AM	to conf	Ha mnf	E&P TAT	B (Surc	charges n	nay ap	ply)	
Company:	andtern Limited	Select Report For	mat: 🔯 POF 🗷	Devoel Bo			Regul	ar [R]	X Stæ	TAT brobe	î îf rece	ived by 3 p	om - bus	iness day	/s - no su	charges	apply			
Contact:	Henry Grebor		C) Report with Repo			A Print	4 day [F	4-20%]		_ L 🤅	1	Busines	s day	(E-100°	%]					
Phone:	781-880-3992	Compare Resul	ts to Criteria on Report - p	rovide details below if	box checked		3 day [F	-		. 🖁	Sa	me Day,	, Week	end or	Statuti	ory hol	liday [E2	2-200%		_
	Company address below will appear on the final report	Select Distribution): 🔀 EMAIL	MAIL	FAX	2 day [P2-50%] (Laboratory opening fees may apply)]						11			니					
Street:	205 Nelso Rd. Un+3	Email 1 or Fax	Email 1 or Fax					Date and Time Required for all E&P TATe: dd-mmm-yy inhtmm												
City/Province:	Hametor ON	Email 2	For tests that can not be performed according to the service level selected, you will be contacted.																	
Postal Code:	L&W ZGI	Email 3		·.	1							Analysis	s Requ	est						
invoice To	Same as Report To VES NO		Invoice Dis	tribution	_			Indicate	Filtered (F	, Present	ed (P) o	r Fillered a	ind Presi	erved (F/I	P) below				teile	
	Copy of Invoice with Report	Select Invoice Dis	stribution: 📈 EM	VIÍ HYIT	FAX					<u> • [</u>			١.	Ш		Ш.	L_] '	8	
Company:	Landtek linked	Email 1 or Fax				\neg						7				$\overline{}$	\neg	1 '	ŧ	;
Contact:	Hanor Follow	Email 2	•			13)		1		-			ŀ	-				2 2	
	Project Information	0	il and Gas Required	Fields (client us	(e)	اود ا	,				-] /	lΙ					Ş	
ALS Account # /	Quote #:	AFE/Cost Center:		PQ#		اهدا				l.	-		1 /	1.	`		"		ā	
Job#:	18270	Major/Minor Code:		Routing Code:	•	4	- '					'	!	1			.		3	82
PO/AFE:		Requisitioner:				θ			.				'			-		ا ۾ ا	9	🚆
LSD:		Location:	Mr.	•		<u>~</u>	. 🗽	·	5			١,	.'		·	- -	.	₫	함	CONTAINERS
	20,00				-	4	1	'		ŀ	'							I	ğ	월 ,
ALS Lab Wor	* Order # (lab use only): _A\7\0\47\ A50	ALS Contact:		Sampler:		3		. `	.			1	'			Ι,	.	8	æ	\ \oldsymbol{\pi} \
ALS Semple #	Sample Identification and/or Coordinates		Date	Time	Security Days	2			!				'	1 1				₹	활	NUMBER
(lab use only)	(This description will appear on the report)	<u> </u>	(dd-mmm-yy)	(hh;mm)	Sample Type	0												₹ .	Seri	3
1	MW13		24-Sep-18		Water	*			П		\top						\Box			4
2	MWILL		.1		Ţ.,	X		1								7				4
3	mv15			· · · · · · · · · · · · · · · · · · ·		¥			ΠÌ		\top					\top	\Box			
Ŭ	MW 16	 '	1.			X			 - 	_	1				\top	+	\neg	<u> </u>	_	4
5	mwizs	· · · · · · · ·				4										\top	\Box	T		4
G	MWFD		- - 	-		X					1	1.	\top		\neg	十		<u> </u>		444
	mw18					V	-	_	1	\dashv	╅		\vdash		-	\top	 	\vdash	 	玉
8	- · - · - · - · · - · · · · · · · · · ·	<u>.</u>	17		<u> </u>		-+		\vdash	_			+	╁	\dashv	+	+	╁	├	17
75	MWI9		· •	,	 	¥-	-	_	\vdash	+	╧	-	+	\vdash		$\dot{-}$		╀┯╵	┝╌	4
						┝╼╼┼		_	┵	-	+.	- ·	 	┢┉┥	+	+	$+\!\!-$	├ ─-	\vdash	┥
											┿.		<u> </u>	\sqcup				<u> </u>	. :	Щ
		· · · · <u> </u>								•			<u> · </u>							
-				•				ŀ			'									
	Special Instructions /	Specify Criteria to	add on report by click	ing on the drop-do	own list below				SAI	IPLE C	OND	TION AS	RECI	SIVED	(lab us	only)				
	g Water (DW) Samples' (client use)	(elec	stronic COC only)			Frozer	4			Sif	Obs	ervations	3	Yes			No		[
,	n from a Regulated DW System?			-		ice Pa	_	_	Cubes	☐ Cu	stody	seal inta	ici	Yes			No		•] :
	Б. [Д], но . г			1		Coolin	g Initiate	<u>——</u>												
· ·	uman consumptioni use?						INII	AL COOL	.ER TEMP	FRATURE	S °C		\vdash		FINAL CC	OLER T	EMPERAT	URES Y	2	
117	±5 1					<u> </u>	1							<u> </u>						
	SHIPMENT RELEASE (client use)		INITIAL SHIPMEN	RECEPTION (la	ib use only)		\mathcal{I}			FII	VAL S	HIPMEN		EPTIC	del) NC	U\$8 Of	ily)			
Released by:	Tree L (P () S) as C	Received by:		Max 3	5/12	Time:		eceived	by: Gi	Į.		Date		25/	11 \$			Time:		
REFER TO RACIA	Tree to Sout 25 lock PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WALIT	E LABORATORY	COPY YELLON			γ	$\frac{\lambda_{1}}{\lambda_{1}}$	}		<u></u>	1	لبہ	10			يكيد		ME COLUMN

APPENDIX I

SANITARY AND STORM SEWERS EXCAVATION DEWATERING CALCULATIONS

File: 18270

Appendix I: Table – Sanitary and Storm Sewers Excavation Dewatering Calculations

$$Q = [(0.73 + 0.27 \frac{H - h}{H}) \frac{xk(H^2 - h^2)}{L}]$$

Equation 1: Dewatering requirements for the potential dewatering construction activities /sources have been calculated using the method of dewatering for a long narrow trench, partial penetration by a single row of well points for an unconfined aquifer (unconfined conditions) midway between two equidistant and parallel line sources (p. 22 of CIRIA, by Somerville, 1986).

Where: $Q = pumping rate (m^3/s)$

k = hydraulic conductivity (m/s)

H = distance from the static water level to the bottom of the aquifer (m)

h = height of the water table (m) (height of the bottom of excavation above the bottom of the aquifer)

x = length of trench (m)

$$L = C(H - h) \sqrt{k}$$

L = distance to line source, taken as equal to radius of influence (m), and given by

Where C = 1750 (Source: P.18 of CIRIA Somerville, 1986)

Equation 2: The potential calculated Zone of Influence (ZOI) represents the area where groundwater levels may be affected by a dewatering activity as a result of groundwater withdrawal. The Zone of Influence is dependent on the hydraulic conductivity, the type of aquifer and the amount by which the water level is to be lowered (Somerville, 1988). The calculation for the ZOI utilizes the method for the calculation of radius of influence, as provided on page 18 of CIRIA (Somerville, 1986).

Excavation	Excavation Trench length (m)	Excavation Depth Below Water Table	H (m)	h (m)	Zone of Influence (L) (m)	Dewatering Rate (Q) L/day
Overburden	50	5	6.0	1.0	1.9	3,424
Bedrock	50	5	6.0	2.0	19.7	46,327

Assumptions for hydrogeological setting:

- 1. An unconfined aquifer is presumed to exist locally with the existing water table estimated to at 0.78 and extending to an estimated depth of approximately 6.0 mbgs and 7.0 mbgs in clayey silt and bedrock, respectively.
- 2. An ideal aguifer is assumed for the preliminary calculations of pumping rates and drawdown, as described in CIRIA (Somerville, 1986).
- 3. The maximum excavation depth of construction activities is assumed to be 5.0 mbgl (0.5 m below invert of the Sewers)
- 4. It is assumed that as a requirement of the proposed construction activities the trench will be pumped dry.
- 5. The geometric mean of the hydraulic conductivity values for clayey silt and bedrock beneath the site were determined to be 4.505 x 10-8 m/s and 5.0865 x 10-6 m/s, respectively.

APPENDIX J

TOWNHOMES AND DETACHED HOMES BASEMENTS EXCAVATION CALCULATIONS

File: 18270

Appendix J Table – Townhouses and Detached Homes Basement Excavation Dewatering Calculations

Refer to Section 4.1.1 of the Hydrogeological Report for Lengths and Width of Excavations

$$Q = \pi K (H^2 - h_w^2) / ln (R_o/r_e)$$

Equation 1: The potential groundwater flow rate to the excavation for the proposed lots segments was estimated using the dewatering equation for a fully penetrated well of unconfined aquifer fed by circular source (Powers, et al., 2007).

Where: Q = pumping rate $(m^3/s)\pi\sqrt{\sqrt{}}$

K = hydraulic conductivity (m/s)

H = saturated thickness of the aquifer before dewatering (m)

hw = saturated thickness of the aquifer after dewatering (m)

R = radius of cone of depression (m)

r_e = equivalent radius (m)

 $R = C^*(H - h)^*\sqrt{(K)}$ Radius of Influence - Sichardt's equation

 $r_e = \sqrt{(L*B)/\pi}$ (applies when a/b>1.5 and R0 << rs)

 $r_e = (L + B)/\pi$ (applies when a/b<1.5 and R0 >>rs)

Excavation	K	Н	h _w	R	r _e	Q L/day	Q with 1.2 Factor of Safety
Overburden							
Townhouse	4.505 x 10 ⁻⁸ m/s	6	3	2	5.0	909	1,091
Detached Home	4.505 x 10 ⁻⁸ m/s	6	3	2	7.2	1,236	1,483
Bedrock							
Townhouse	5.0865 x 10 ⁻⁶ m/s	7	4	20	6.0	38,843	46,612
Detached Home	5.0865 x 10 ⁻⁶ m/s	7	4	20	8.5	53,326	63,991

Assumptions for hydrogeological setting:

- 1. An unconfined aquifer is presumed to exist locally with the existing water table estimated to at 0.00 mbgs and extending to an estimated depth of approximately 6.0 mbgs and 7.0 mbgs for clayey silt and bedrock, respectively.
- 2. An ideal aquifer is assumed for the preliminary calculations of pumping rates and drawdown, as described in CIRIA (Somerville, 1986).
- 3. The maximum excavation depth of construction activities is assumed to be 3.0 mbgl (0.5 m below invert of the Basement Floor)
- 4. It is assumed that as a requirement of the proposed construction excavation will be pumped dry.
- 5. The geometric mean of the hydraulic conductivity values for clayey silt and bedrock beneath the site were determined to be 4.505 x 10-8m/, respectively.

File: 18270

APPENDIX K WATER BALANCE

APPENDIX K: DETAILED WATER BALANCE - Fruitland Winona BSS #3

1. Climate Information

Precipitation (collected from Env. Canada data)	930 mm/a
Evapotranspiration (calculated by Thornthwaite method	609 mm/a
Water Surplus	321 mm/a

2. Infiltration Rates

Infiltration Factors (Table 2) Flat Land (average slope not exceeding 0.6 m per km) 0.3 Medium combinations of clay and loam 0.2 **Cultivated Lands** 0.1 **TOTAL** 0.6

Infiltration (0.6 x 321 mm/a) 193 mm/a Run-off (321 mm/a - 193 mm/a) 128 mm/a

Typical Recharge Rates (Table 3)

Clayey Silt 100-125 mm/a 125-150 mm/a Silt silty sand to sandy silt 150-200 mm/a

Site development area is underlain by glaciolacustrine material (clayey silt overlying silty material).

Based on the above, the recharge rate is approximately 112.5 mm/a

with runoff of 208.5 mm/a

3. Site Statistics

Pi	re-	D	e١	ve	lo	p	m	eı	nt:	:

Building roofs	4.72 ha	47,200 m ²
Parking Areas, Roadways, Other impervious Areas	11.46 ha	114,600 m ²
Green space, open space, natural areas	89.52 ha	895,200 m ²
TOTAL	105.70 ha	1,057,000 m ²
Post-Development:		
Building roofs	21.62 ha	216,200 m ²
Doubling Areas Deadways Other important Areas	22.45 ha	224 F00 m ²

Parking Areas, Roadways, Other impervious Areas 221,500 m² 22.15 ha Green space, SWMP, natural areas 61.93 ha 619,300 m² **TOTAL** 105.70 ha 1,057,000 m²

Commercial Buildings

619,300 m² Landscape coverage (58.6%) 61.93 ha 221,500 m² Parking/Roadway coverage (21.0%) 22.15 ha **Building (20.4%)** 21.62 ha 216,200 m²

APPENDIX K: DETAILED WATER BALANCE - Fruitland Winona BSS #3

4. Annual Pre-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Building Roofs	47,200	43,896	-	-	43,896
Green Space	895,200	832,536	545,177	100,710	186,649
Roads, Other impervious	114,600	106,578	-	-	106,578
TOTAL	1,057,000	983,010	545,177	100,710	337,123

5. Annual Post-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Building Roofs	216,200	201,066	-	-	201,066
Roads, Other impervious	221,500	205,995	-	-	205,995
Green space, open space,					
natural areas	619,300	575,949	377,154	69,671	129,124
TOTAL	1,057,000	983,010	377,154	69,671	536,185

6. Comparison of Pre-Development and Post-Development

	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Pre-Development	983,010	545,177	100,710	337,123
Post-Development	983,010	377,154	69,671	536,185

7. Post development infiltration measures

Post-development infiltration volume 69,671 m³
Pre-development infiltration volume 100,710 m³
Deficit from pre to post-development infiltration 31,039 m³
Percentage of water collected from roof area required to match pre-development infiltration 15 %

Landtek Limited Project: 18270 Page 2 of 2

APPENDIX K: Thornthwaite Method For Calculating Evapotranspiration

Thornthwaite method for determining potential evapotranspiration

A monthly index is obtained from the equation:

$$i = (t/5)^{1.514}$$

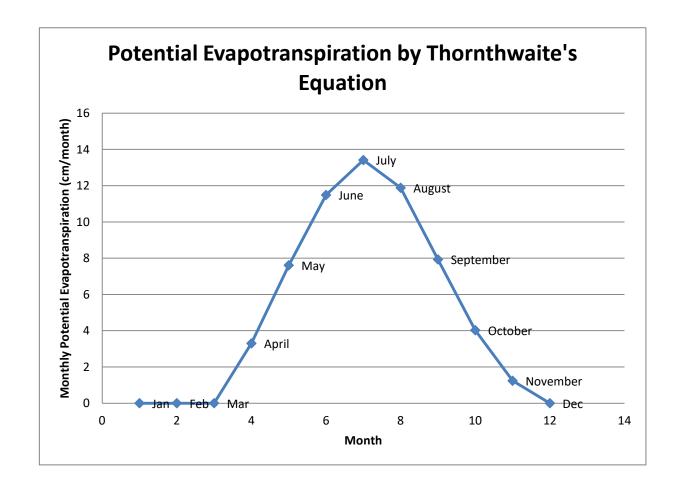
Summation of the 12 monthly values gives an appropriate heat index, I.

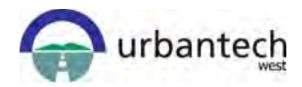
To calculate a, the expression is:

$$a = 0.0000006751^3 - 0.00007711^2 + 0.017921 + 0.49239$$

From these relations, a general equation for potential evapotranspiration is obtained. It is:

$$e=1.6(10t/I)^a$$


in which a has the value given in the equation above.


APPENDIX K: Thornthwaite Method For Calculating Evapotranspiration

	Daily Average Temp (C°)	Monthly index (i)	Potential Evapotranspiration (cm)	Adjusted Potential Evaportranspiration (cm)
Jan	-5.5			0
Feb	-4.6			0
Mar	-0.1			0
April	6.7	1.557530876	2.946791827	3.300406846
May	12.8	4.150260027	6.038429267	7.608420877
June	18.3	7.13034204	8.973741023	11.48638851
July	20.9	8.718883818	10.39718	13.4123622
August	20	8.156781464	9.902149829	11.88257979
September	15.8	5.708555702	7.625570812	7.930593644
October	9.3	2.558836857	4.238152363	4.026244745
November	3.7	0.633894267	1.526004012	1.236063249
Dec	-2.3			0

1.108273042

HEAT INDEX (I) = 38.61508505 60.88 cm/year 608.83 mm/year

APPENDIX B-3
Figure 1a — Excerpt from Toronto's Wet Weather Flow Management Guidelines

File: 18270

APPENDIX I WATER BALANCE

1. Climate Information

Precipitation (collected from Env. Canada data)	930 mm/a
Evapotranspiration (calculated by Thornthwaite method	609 mm/a
Water Surplus	321 mm/a

2. Infiltration Rates

Infiltration Factors (Table 2) Rolling Land (average slope from 2.8 m to 3.8 m per kı 0.3 Medium combinations of clay and loam 0.2 **Cultivated Lands** 0.1 **TOTAL** 0.6

Infiltration 193 mm/a Run-off (321 mm/a - 161 mm/a) 128 mm/a

Typical Recharge Rates (Table 3)

Clayey Silt/Clayey Silt 100-125 mm/a Silt 125-150 mm/a silty sand to sandy silt 150-200 mm/a

Site development area is underlain by glaciolacustrine material (clayey silt/silty clay material).

Based on the above, the recharge rate is approximately 112.5 mm/a

with runoff of 208.5 mm/a

3. Site Statistics

Includes all areas - Planned and unpla	anned areas for development
--	-----------------------------

Pre-Development:

Building roofs +	ha	m ²
Parking Areas, Roadways, Other impervious Areas	6.35 ha	63,459 m ²
Green space, open space, natural areas	69.36 ha	693,600 m ²
TOTAL	75.71 ha	757,059 m ²

Post-Development:

Building Roof	19.15 ha	191,500 m ²
Parking Areas, Roadways, Other impervious Areas	17.04 ha	170,400 m ²
Green space, SWMP, natural areas	39.52 ha	395,159 m ²
TOTAL	75.71 ha	$757,059 \text{ m}^2$

Industrial Buildings

Landscape coverage (52.2%)	39.52 ha	395,159 m ²
Parking/Roadway coverage (22.5%)	17.04 ha	170,400 m ²
Building (25.3%)	19.15 ha	191,500 m ²

APPENDIX I: D ETAILED WATER BALANCE - Fruitland Winona Secondary Plan Block 3

4. Annual Pre-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Building Roofs	0	0	-	-	0
Green Space	693,600	645,048	422,402	78,030	144,616
Roads, Other impervious	63,459	59,017	-	-	59,017
TOTAL	757,059	704,065	422,402	78,030	203,633

5. Annual Post-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Building Roofs	191,500	178,095	-	•	178,095
Roads, Other impervious	170,400	158,472	-	•	158,472
Green space, open space,					
natural areas	395,159	367,498	240,652	44,455	82,391
TOTAL	757,059	704,065	240,652	44,455	418,958

6. Comparison of Pre-Development and Post-Development

	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m³)
Pre-Development	704,065	422,402	78,030	203,633
Post-Development	704,065	240,652	44,455	418,958

7. Post development infiltration measures

Post-development infiltration volume	44,455 m ³
Pre-development infiltration volume	78,030 m ³
Deficit from pre to post-development infiltration	33,575 m ³
Percentage of water collected from roof area required to match pre-development infiltration	19 %

LANDTEK LIMITED Project: 18270 Page 2 of 2

APPENDIX I: Thornthwaite Method For Calculating Evapotranspiration

Thornthwaite method for determining potential evapotranspiration

A monthly index is obtained from the equation:

$$i = (t/5)^{1.514}$$

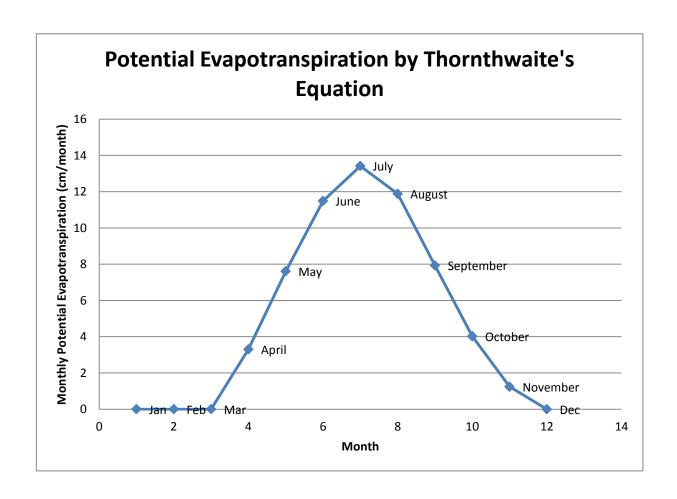
Summation of the 12 monthly values gives an appropriate heat index, I.

To calculate a, the expression is:

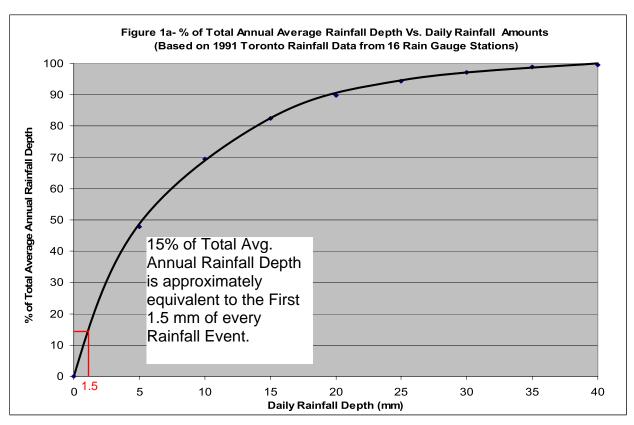
$$a = 0.0000006751^3 - 0.00007711^2 + 0.017921 + 0.49239$$

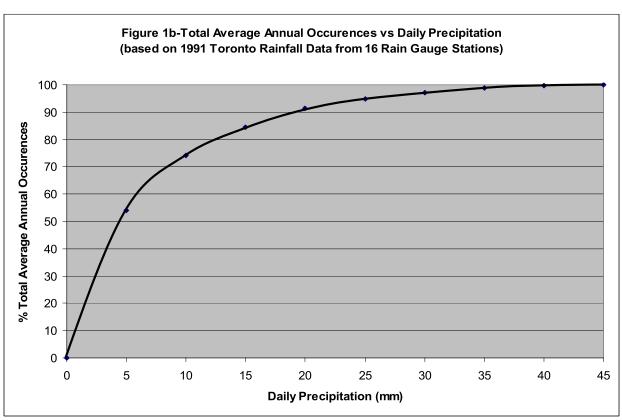
From these relations, a general equation for potential evapotranspiration is obtained. It is:

$$e = 1.6 \left(\frac{10t}{I}\right)^a$$


in which a has the value given in the equation above.

APPENDIX I: Thornthwaite Method For Calculating Evapotranspiration


Daily Average Temp (C°)		Monthly index (i)	Potential Evapotranspiration (cm)	Adjusted Potential Evaportranspiration (cm)	
Jan	-5.5			0	
Feb	-4.6			0	
Mar	-0.1			0	
April	6.7	1.557530876	2.946791827	3.300406846	
May	12.8	4.150260027	6.038429267	7.608420877	
June	18.3	7.13034204	8.973741023	11.48638851	
July	20.9	8.718883818	10.39718	13.4123622	
August	20	8.156781464	9.902149829	11.88257979	
September	15.8	5.708555702	7.625570812	7.930593644	
October	9.3	2.558836857	4.238152363	4.026244745	
November	3.7	0.633894267	1.526004012	1.236063249	
Dec	-2.3			0	


HEAT INDEX (I) = 38.61508505 60.88 cm/year 608.83 mm/year

a = 1.108273042

City of Toronto 8

APPENDIX C TERRESTRIAL DATA

C-1 Updated Environmental Impact Statement, Block 3 (Arcadis, February 2020)

Landowners Group

UPDATED ENVIRONMENTAL IMPACT STATEMENT, BLOCK 3

Stoney Creek, Ontario

February 2020

B. Llard

Barbara Hard, Ph.D., P.Biol., R.P.Bio., QP_{RA} Senior Biologist and Discipline Lead, Natural Sciences

Jufu Kirk

Jennifer Kirk, Ph.D., QP_{RA} Discipline Lead, Risk Assessment

UPDATED ENVIRONMENTAL IMPACT STATEMENT, Block 3

Stoney Creek, Ontario

Prepared for:
Landowners Group
c/o Urbantech West
2030 Bristol Circle
Oakville, Ontario L6H 0H2

Prepared by:
Arcadis Canada Inc.
121 Granton Drive
Richmond Hill, Ontario L4B 3N4
Tel 905 764 9380

Date: February 2020

Our Ref.: 30030165

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

EXEC	CUTIVE S	JMMARY		ES-1
1 II	NTRODUC	TION		1
1.1	Policy Re	view		2
	1.1.1	Provincial Policy Statement.		2
	1.1.2	City of Hamilton Official Plar	1	2
	1.1.3	Hamilton Conservation Auth	ority Policies	3
	1.1.4	Fruitland-Winona Secondary	Plan	3
2 F	IELD INVI	NTORIES METHODOLOGY		5
2.1	Backgrou	nd Information		5
2.2	Biologica	Surveys		5
	2.2.1	Vegetation		6
	2.2.2	Breeding Birds		6
	2.2.3	Other Wildlife		6
3 E	XISTING	CONDITIONS		7
3.1	Site Desc	ription		7
	3.1.1	Geology, Landforms and To	pography	7
	3.1.2	Significant Habitat		7
	;	.1.2.1 Areas of Natural a	nd Scientific Interest	7
	;	.1.2.2 Provincially Signification	cant Wetlands	7
	(.1.2.3 Surface water Bod	ies and Fish Habitat	7
	(.1.2.4 Wetlands		8
	;	.1.2.5 Significant Woodla	nds and Valleylands	8
3.2	Vegetation	n Surveys		8
	3.2.1	Ecological Land Classification	on	9
	3.2.2	Plant Species of Significance	e	13
3.3	Wildlife S	urveys		13
	3.3.1			
	3.3.2	Incidental Wildlife		14
3.4	Species	t Risk Screening		15

3	3.5 Signif	ificant Wildlife Habitat	15
3	3.6 Other	r Ecological Features	19
	3.6	6.1 Linkages and Corridors	19
	3.6	6.2 Deer Yards	19
4	DESCR	RIPTION OF PROPOSED DEVELOPMENT	20
5	IDENTI	IFICATION AND ASSESSMENT OF IMPACTS	19
6	MITIGA	ATION MEASURES	24
7	RECOM	MMENDATIONS	26
8	REFER	RENCES	27
9	LIMITA	ATIONS	29
Ta	able 2-1 able 3-1 able 3-2	Summary of Natural Environment Surveys Completed Incidental Wildlife Observations Species at Risk	10
F	IGUR	ES	
Fi	gure 1-1:	Site Location	1
	_	Site Plan and Ecological Land	
Fig	gure 4-1:	Proposed Development	14
	APPE	NDICES	
A	Appendix A	A – Terms of Reference and Review Comments	

Appendix C – Vegetation Inventory

 $\label{eq:def-problem} \mbox{Appendix D} - \mbox{Breeding Bird Surveys}$

Appendix E – Fish Habitat Self-Assessment

Appendix F – Communications

EXECUTIVE SUMMARY

Arcadis Canada Inc. (Arcadis) was retained by Urbantech West on behalf of the Landowners Group to complete an Environmental Impact Statement (EIS) for a Block Servicing Strategy (BSS) in support of Draft Plan applications for their lands in Block 3 of the Fruitland-Winona Secondary Plan Area in Stoney Creek. This EIS addresses proposed development for the entire Block 3 area Concept Plan (hereafter referred to as "the Site").

The completion of an EIS was required by City of Hamilton and in order to assess if the proposed development could potentially have negative impacts on ecological, hydrological or hydrogeological features and functions.

Significant natural features were not identified on the Site, there are no Core Areas located within Block 3.

Potentially negative impacts were identified through the EIS and mitigation measures have to be implemented to eliminate or minimize impacts on the natural environment:

In accordance with the Migratory Birds Convention Act, mitigation measures for the protection of migratory birds and their nests have to be implemented before trees and shrubs can be removed and development begins. This applies for tree nesting as well as ground nesting species of breeding birds. Tree, shrub and vegetation removal should occur outside of the breeding bird season, which in Stoney Creek runs from the end of March to the end of August.

A tree preservation and protection plan is recommended to identify trees that should be retained. This should include a detailed evaluation of trees in hedgerows which consist of native species. The tree preservation plan should be developed by a certified arborist. Wherever possible, hedgerow like plantings using native species should be incorporated in landscape plans for green spaces.

It is recommended to include pollinator friendly plantings of native trees, shrubs and flowering plants in green spaces in Block 3 to provide habitat for birds and insects, including caterpillars. In addition, planting of native grasses and sedges should be included in the landscape design, wherever possible.

Carolina wren, a locally rare species was noted during breeding bird surveys. In order to mitigate loss of habitat, including old orchard and hedgerows, nest boxes could be provided in green spaces. In addition, plantings of native plant species will attract the insects Carolina wren feeds on and will provide nesting opportunities.

Mitigation measures are recommended for general earthworks such as grading and construction. It is recommended to install silt fencing to prevent excessive run off entering drainage ditches to avoid sedimentation and to regularly inspect the integrity and effectiveness of the silt fencing as a barrier.

Development of a residential subdivision with paved surfaces and roofs may result in indirect effects such as increased sediment transport, diversion of water, changes in volumes of surface runoff. Stormwater will

UPDATED ENVIRONMENTAL IMPACT STATEMENT

be directed to two stormwater ponds which will be located south of Barton Street, one will be constructed west of the existing school and one east of Lewis Street.

It is recommended that the functions of the watercourses (i.e., surface water conveyance) should be maintained (e.g., with stormwater management), and any potential disruptions should be properly mitigated (e.g., silt fencing to limit sediment loading). Consistent with the recommendations of the approved subwatershed study, the proposed stormwater management plan will replace the water quality and quantity function of the drainage features in the study area.

Provided that mitigation measures are implemented, long term or residual effects on natural environment features in the vicinity of Block 3 are not expected.

.

1 INTRODUCTION

Arcadis Canada Inc. (Arcadis) was retained by Urbantech West on behalf of the Landowners Group to complete an Environmental Impact Statement (EIS) for a Block Servicing Strategy (BSS) in support of Draft Plan applications for their lands in Block 3 of the Fruitland-Winona Secondary Plan Area in Stoney Creek. This EIS addresses proposed development for the entire Block 3 area Tertiary Plan (hereafter referred to as "the Site") (Figure 1-1).

The completion of an EIS was required by City of Hamilton and in order to assess if the proposed development could potentially have negative impacts on ecological, hydrological or hydrogeological features and functions. If potentially negative impacts are identified through the EIS, mitigation measures have to be implemented to eliminate or minimize impacts on the natural environment.

1.1 Policy Review

1.1.1 Provincial Policy Statement

Technical guidance for implementing the natural heritage policies of the 2014 Provincial Policy Statement (PPS) is provided in the Ministry of Natural Resources Natural Heritage Reference Manual (OMNR 2010). This manual presents the Province's recommended technical considerations in line with the PPS for protection of natural heritage features and areas in Ontario.

In accordance with Section 2.1. of the 2014 PPS issued under Section 3 of the Planning Act (MAH, 2014), this EIS considers the protection of natural features, areas, functions and biodiversity. Applicable policies within the PPS include:

- Policy 2.1.1 Natural features and areas shall be protected for the long-term;
- Policy 2.1.2 The diversity and connectivity of natural features in an area, and the long-term
 ecological function and biodiversity of natural heritage systems, should be maintained, restored,
 or where possible, improved, recognizing linkages between and among natural heritage features
 and areas, surface water features and ground water features;
- Policy 2.1.7 Development and site alteration shall not be permitted in habitat of endangered species and threatened species, except in accordance with provincial and federal regulations; and
- Policy 2.1.8 Development and site alteration shall not be permitted on adjacent lands to natural
 heritage features and areas identified in policies 2.1.4, 2.1.5 and 2.1.6 unless the ecological
 function of the adjacent lands has been evaluated and it has been demonstrated that there will
 be no negative impacts on the natural features or on their ecological functions.

1.1.2 City of Hamilton Official Plan

The Site is located within the Urban Official Plan (UHOP) (City of Hamilton, 2013). Schedule B of the UHOP shows the Hamilton Natural Heritage System which does not identify Core Areas on and adjacent to the Site. However, there are features within the Natural Heritage System that have not been mapped including habitat for Species at Risk (SAR) and Significant Wildlife Habitat (SWH).

Applicable policies within the UHOP include:

- Policy C.2.5.2 New development and site alteration shall not be permitted within provincially significant wetlands, significant coastal wetlands or significant habitat of threatened and endangered species;
- Policy C.2.5.4 New development and site alteration shall not be permitted within significant woodlands, significant valleylands, significant wildlife habitat and significant areas of natural and

- scientific interest unless it has been demonstrated that there shall be no negative impacts on the natural features or on their ecological functions;
- Policy C.2.5.5 New development and site alteration shall not be permitted on adjacent lands to the natural heritage features and areas identified in Section C.2.5.2 to C.2.5.4 unless the ecological function of the adjacent lands has been evaluated and it has been demonstrated that there shall be no negative impacts on the natural features or on their ecological functions.

1.1.3 Hamilton Conservation Authority Policies

Based on agency mapping the drainage features and associated floodplain at the Site is regulated by Hamilton Conservation Authority (HCA) in accordance with Ontario Regulation (O. Reg.) 161/06 under the Conservation Authorities Act: "Hamilton Conservation Authority: Regulation of Development, Interference with Wetlands and Alterations to Shorelines and Watercourses". This Regulation prohibits development in regulated areas, unless a permit is granted by the HCA.

1.1.4 Fruitland-Winona Secondary Plan

The Fruitland-Winona Secondary Plan was developed to provide guidance for development within the Secondary Plan area and includes general policies for residential and commercial development, amongst others. It also includes a Block Servicing Strategy and policies for cultural heritage resources. The general policies for the natural heritage system include core areas, linkages, vegetation protection zones and restoration areas.

Applicable policies within the Fruitland-Winona Secondary Plan include:

Policy 7.4.2.5 Natural Heritage - Ensure natural heritage features, such as environmentally significant areas, valley lands, streams, significant woodlands and wetlands are protected and enhanced; Prohibit development on lands with natural hazards such as flood plains; and, Ensure that the natural beauty and distinctive landscape character created/ provided by the Niagara Escarpment and the adjacent agricultural areas are considered and protected as development proceeds.

Policy 7.4.11 Natural Heritage System General Policies- Natural Heritage System consists of Core Areas, Linkages, Vegetation Protection Zones and Restoration Areas. Wherever possible, development within the Fruitland-Winona Secondary Plan Area shall promote a healthy Natural Heritage System by restoring, enhancing, and linking habitat/Core Areas, vegetation protection zones, linkages, and restoration areas; All development within the Fruitland-Winona Secondary Plan area shall comply with the Endangered Species Act. 2007 or its successor legislation; and, Protection and enhancement of natural heritage features that provide opportunities for corridors from the Niagara Escarpment to Lake Ontario shall be encouraged. Where possible, the Vegetation Protection Zone should restore or enhance the features and/or ecological functions of the Core Area as recommended by an Environmental Impact Statement prepared in accordance with Section F.3.2.1 of Volume 1, to the satisfaction of the City; When new development or site alteration is proposed adjacent to or within a Restoration rea, the Restoration Area shall be evaluated through an Environmental Impact Statement in accordance with the SCUBE Sub-watershed Studies where required by the City of Hamilton and shall require site specific restoration or planting plans as per the completed

Environmental Impact Statement. A portion of Watercourse No. 5 located north of Sherwood Park Road may be considered for relocation and natural channel design reconstruction to the satisfaction of the City in consultation with the Conservation Authority.

Policy 7.4.14 Block Servicing Strategy- This policy has provisions for lands to be developed within the Fruitland-Winona Secondary Plan, including Block 3. Provisions include that the City of Hamilton prepares a Terms of Reference for a Block Servicing Strategy in consultation with the Conservation Authority and develops the Block Servicing Strategy itself. Other provision in this policy include that the Fruitland-Winona Sub-Watershed Studies shall form the basis of all Block Servicing Strategies; A Block Servicing Strategy shall conform to the vision, objectives and policies of this Plan and shall identify the land use designations, densities and natural heritage features, including Vegetation Protection Zones and Restoration Areas. I addition, it identifies requirements for studies, such as hydrogeological investigations and stormwater studies and design criteria for the protection of natural features such as watercourses.

The location of the Site is outside the boundaries of the Niagara Escarpment Plan, outside Escarpment Protection Areas and the Greenbelt Plan and therefore, is not subject to policies related to those plans.

In 2012 Stantec completed avian Species at Risk (SAR) and breeding bird surveys within the Fruitland-Winona Secondary Plan area. SAR surveys were conducted for bobolink, Eastern meadowlark, barn swallow and chimney swift as there was a potential for these species to occur and breed in the area. Based on the surveys, no areas were recommended for SAR habitat preservation due to small or non-existent populations and low quality habitat. Stantec recommended that the City be aware that these SAR and SAR habitats occur in the area and that the City cooperate with the Ministry of Natural Resources and Forestry (MNRF) to ensure that the *Endangered Species Act* (ESA, 2007) is applied to all SAR species (now under Ministry of the Environment, Conservation and Parks, MECP) and Significant Wildlife Habitat (SWH) during future development and the review of any land use changes.

The Stoney Creek Urban Boundary Expansion Subwatershed Study (SCUBESS) provided the management and implementation strategy for the Fruitland-Winona Secondary Plan area (Aquafor Beech, 2013). The Secondary Plan area includes four parcels: SCUBE West, SCUBE Central, SCUBE East -Parcel A and SCUBE East -Parcel B. The limits and bounding streets of the parcels are shown in Figure 1.1. The City of Hamilton has also provided a Block Servicing Schedule for this area (Map B.7.4-4 – Fruitland-Winona Secondary Plan-Block Servicing Strategy Area Delineation).

The SCUBESS aims at maintaining a sustainable Natural Heritage System (NHS) for preserving landscape diversity within an urban context. It has provided recommendations for management of natural heritage and stream systems. There are certain lands, including watercourses that are restricted from development and have specified limitations or constraints. During the Phase 1 study, investigations were carried out to identify environmental constraints and opportunities for natural resources. A management strategy was developed to protect and enhance significant natural features at the Phase 2 study level. This strategy also provided requirements with regard to stormwater management, land use policies and servicing. The Phase 3 study has been completed to introduce an implementation plan for this strategy.

2 FIELD INVENTORIES METHODOLOGY

2.1 Background Information

Background information was obtained from various sources, including Ministry of Natural Resources and Forestry Natural Heritage Information Centre (NHIC, 2018), the City of Hamilton Natural Areas Inventory (2014), City of Hamilton Official Plan (2013), Significant Wildlife Habitat Technical Guide (MNRF, 2010), Ontario Breeding Bird Atlas (2005), aerial photographs, previous reports and the SCUBESS (Aquafor Beech, 2013). Species significance ranking was based on the provincial rank (S Rank), listing on the Endangered Species Act (ESA, 2007), the Committee on the Status of Wildlife in Canada (COSEWIC, 2018), the Species at Risk Act (SARA, 2002) and the local status in the City of Hamilton as recorded in the 2014 Hamilton Natural Areas Inventory Project Species Checklist (City of Hamilton, 2014).

2.2 Biological Surveys

Terms of Reference for the EIS were compiled by Arcadis and submitted to the City of Hamilton and Hamilton Conservation Authority for review, comments and approval. The Terms of Reference are contained in Appendix B. Site visits were carried out in order to complete Natural Environment inventories in accordance with the Terms of Reference and the Environmental Impact Statement (EIS) Guidelines (City of Hamilton, 2015). Table 2-1 shows the dates and site visits completed.

Table 2-1 Summary of Natural Environment Surveys Completed

Site Visit (Date and Time)	Personnel on Site	Survey Completed	Weather Conditions	Comments
May 28, 2015, 6 am to 9.30 am	Barbara Hard	Breeding bird survey, spring vegetation survey, incidental wildlife, Species at Risk.	15°C, clear, sunny, light wind	
July 7, 2015, 5 am to 8 am	Barbara Hard, Elaine Mason	Breeding bird survey, summer vegetation survey, incidental wildlife, Species at Risk.	19°C, clear, sunny, light wind	
August 20, 2015, 9 am to 1 pm	Barbara Hard	Late summer vegetation survey, incidental wildlife, Species at Risk.	15 °C, few clouds, sunny, light wind	
June 1, 2016 5.30 am to 8.30 am	Barbara Hard, Elaine Mason	Breeding bird survey, spring vegetation survey, incidental wildlife, Species at Risk.	17 °C, clear, sunny, light wind	
July 13, 2016 6 am to 9.30 am	Barbara Hard	Breeding bird survey, summer vegetation survey, incidental wildlife, Species at Risk.	20°C, clear, sunny, no wind	
November 17, 2016, 9 am to 12 pm.	Barbara Hard	Site walk, vegetation survey, incidental wildlife.	10 °C, some clouds, sunny, light wind	Site walk with City, HCA and Consultants
June 5, 2017 6 am to 9.30 am	Barbara Hard	Breeding bird survey, spring vegetation survey, incidental wildlife, Species at Risk.	15 °C, early morning fog, light wind	
July 7, 2017 6.15 am to 11 am	Barbara Hard	Breeding bird survey, summer vegetation survey, incidental wildlife, Species at Risk.	21°C, clear, sunny, no wind	
June 26, 2019, 5.40 am to 2.30 pm	Barbara Hard	Bobolink and Meadowlark Survey, Aquatic Habitat Assessment	19 °C, scattered clouds, sunny, no wind	

Site Visit (Date and Time)	Personnel on Site	Survey Completed	Weather Conditions	Comments
July 3, 2019 5.35 am to 12.20 pm	Barbara Hard	Bobolink and Meadowlark Survey, Aquatic Habitat Assessment	18 °C, clear, sunny, light wind	
July 10, 2019 5.45 am to 3 pm	Barbara Hard, Sean McKee	Bobolink and Meadowlark Survey, Aquatic Habitat Assessment	19 °C, few clouds, sunny, light wind	
November 22, 2019 2 pm to 5 pm	Barbara Hard	Aquatic Habitat Assessment	5 °C, heavy clouds, moderate wind	Survey conducted following rain and snow melt

2.2.1 Vegetation

Plant species lists were compiled in spring, summer and fall by walking the Site. Vegetation communities were classified in accordance with Ecological Land Classification (ELC) for southern Ontario (Lee et al., 1998) and mapped on an aerial photograph of the Block 3 area.

2.2.2 Breeding Birds

All birds seen or heard during site visits were recorded. The breeding bird survey was carried out in accordance with the Ontario Breeding Bird Atlas protocols and consisted of 5 minute long point counts. Six (6) breeding bird surveys were carried out: May 28, 2015; July 7, 2015; June 1, 2016 July 13, 2016, June 5, 2017 and July 7, 2017. Bobolink and Meadowlark surveys were conducted on June 26, 2019, July 3, 2019 and July 10, 2019 following the MNRF Bobolink Survey Protocol provided by the City of Hamilton.

Species significance was evaluated based on national, provincial and local level published literature and current status lists, including the Hamilton Natural Areas Inventory Project 3rd Edition (2014) Species Checklist.

2.2.3 Other Wildlife

Incidental observations of mammals, amphibians, reptiles and insects during the site visits were recorded. Observations included direct sightings and indirect evidence such as calls, tracks, scat, burrows, dens and browse. The species list includes federal, provincial rankings and local status. Local status was based on the Hamilton Natural Areas Inventory Project 3rd Edition (2014) Species Checklist.

2.2.4 Fish Habitat Assessment

Fish habitat assessments were conducted on June 26, 2019, July 3, 2019, July 10, 2019 and November 22, 2019 on the drainage ditches and Watercourse 7.2 and 9 located north of Block 3. The assessment report and methodology are contained in Appendix E.

3 EXISTING CONDITIONS

3.1 Site Description

The Site consists predominantly of agricultural land and a mixture of land uses. South of Barton Street the lands are primarily agricultural with an existing school, single family residential and local commercial uses. North of Barton Street the existing land use is mostly local commercial and vacant agricultural lands. At the north east corner of Barton Street and Lewis Road the extension of Arvin Avenue has recently been completed. This work was undertaken as part of an industrial subdivision and the lands in this area are currently being developed as an industrial park.

3.1.1 Geology, Landforms and Topography

A review of the geology map indicates that the Site is situated on a shale plain located between the Niagara Escarpment and Lake Ontario. The bedrock in the area is dominated by the Queenston formation consisting of shale and siltstone with minor limestone and sandstone. The area soils are identified as clay to silt textured till derived from glaciolacustrine deposits and shale (Ontario Geological Survey, 2010). The existing topography of the Site is gently sloping from south to north.

3.1.2 Significant Habitat

3.1.2.1 Areas of Natural and Scientific Interest

The MNRF NHIC lists no ANSI's on or in the vicinity of the Site (NHIC, 2018). The closest ANSIs are located approximately 10 km from the Site: Devil's Punch Bowl, a provincially significant Life Science ANSI on the Niagara Escarpment to the south west of the Site and the regionally significant North Vinemount Escarpment Life Science ANSI, south east of the Site. The Niagara Escarpment Natural Area is located between 300 m (from the corner of McNeilly Road and Highway 8) and 750 m (from the corner of Lewis Road and Highway 8) south of the Site. The Niagara Escarpment Protection Area begins south of Highway 8 and extends to the Niagara Escarpment Natural Area.

3.1.2.2 Provincially Significant Wetlands

According to the NHIC mapping, there are no Provincially Significant Wetlands (PSWs) located on or in the vicinity of the Site. The Fifty Creek Environmentally Significant Area (ESA) and the Fifty Creek locally significant wetland complex are located approximately 2 km east of the Site. Both the Niagara Escarpment Natural Area and Fifty Creek are shown as core areas in the Hamilton Official Plan (2013).

3.1.2.3 Surface water Bodies and Fish Habitat

Surface water bodies and fish habitat were not identified during the natural environment surveys. A number of intermittent drainage ditches and watercourses are present throughout the Site and along roads, e.g., Lewis Road and Barton Street, however, they are dry most of the year.

A fish habitat assessment was undertaken to verify the findings of the approved SCUBESS (Aquafor Beech, 2013) which does not identify watercourses on the Site and to determine whether an authorization or review is required as part of the DFO Self-Assessment. Arcadis conducted fish habitat assessments for the following watercourses and ditches (Appendix E):

- Watercourse 7.2;
- Watercourse 9:
- Three (3) watercourses between McNeilly Road and Lewis Road; and
- Ditches along Barton Street, Lewis Road, and Highway 8.

As part of this DFO Fish Habitat Self-Assessment a total of nine locations were assessed for potential fish habitat. None of the watercourses and ditches comprise direct fish habitat. As noted previously (Aquafor Beech 2013), Watercourses 7.2 and 9 provide indirect habitat (i.e., surface water conveyance) to downstream sections, however, there are barriers to fish passage to the watercourses in Block 3. The conveyance of surface water was found to be limited and deemed to be seasonal and/or transient in nature, e.g., Drainage Ditch 3 (Appendix E, Figure 2) was found to be dry for most of the year and was only found to have standing water after a snow melt and heavy rain event in the fall, whereas the drainage ditches along Lewis Road between Highway 8 and Barton Street remained dry . In general, the watercourses in the area are ephemeral and have been modified/channelized, and have been incorporated into roadside drainage ditches, developed areas, or agricultural drainage. Although these watercourses and ditches are not considered fish habitat, some locations provide surface water conveyance to downstream sections that do comprise fish habitat, there is potential for impacts to fish or fish habitat as part of the development.

3.1.2.4 Wetlands

Wetlands are not present on the Site. A small area of cattails and common reed is found on the City property west of Lewis Road which indicates a seasonally wet area associated with the drainage ditch that runs along the west side of the Winona Elementary School property boundary.

3.1.2.5 Significant Woodlands and Valleylands

There are no natural or significant woodlots or valleylands on or in the vicinity of the Site and contiguous woodlands of 0.5 hectares or more are not present. Furthermore, the Hamilton Official Plan does not identify any significant woodlands on the Site. The Site is largely comprised of actively farmed and fallow agricultural land, including maintained and overgrown orchards interspersed with hedgerows.

3.2 Vegetation Surveys

Vegetation communities were classified in accordance with Ecological Land Classification (ELC) for southern Ontario (Lee et al., 1998) and mapped. According to the Terms of Reference, the spring survey was to be carried out between the end of April and June, the summer survey was to be carried out in late August/early September. The plant species list contained in Appendix C includes provincial rankings and local status. Local status was based on the Hamilton Natural Areas Inventory Project 3rd Edition (2014) Species Checklist. Non-native species are identified.

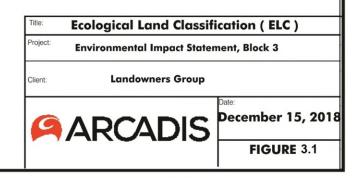
3.2.1 Ecological Land Classification

Vegetation communities were classified in accordance with Ecological Land Classification (ELC) for southern Ontario (Lee et al., 1998) and mapped (Figure 3-1). The Site is comprised of cultural meadows, old orchards and agricultural fields interspersed with hedgerows. There are no natural communities present and all communities have been strongly influenced by anthropogenic activities.

Legend

Ecological Land Classification (ELC)

CUM1-1= Dry-Moist Old Field Meadow


CUS1= Cultural Savannah

HR= Hedgerow

MAS2-1= Cattail Mineral Shallow Marsh

OR= Orchard

BB= Breeding Bird Survey location

Reference: ESRI ArcGIS Online Base Layers

I. Cultural Meadow- Dry-Moist Old Field Meadow (CUM1-1)

The cultural meadows at the Site appear to be fallow agricultural fields, overgrown apple orchards or maintained (manicured) grassed areas.

Cultural Meadow- CUM1-1(A)

Cultural Meadow CUM1-1(A) is located south of Barton Street and east of McNeilly Road. At the time of the Site visits, it was partly mowed close to the backyard fences of the residences along McNeilly Road and Barton Street. The reminder of the cultural meadow is not managed and is vegetated with sumac (*Rhus typhina*), buckthorn (*Rhamnus cathartica*), goldenrod (*Solidago canadensis*), Queen Anne's Lace (*Daucus carota*), yellow hawkweed (*Hieracium caespitosum*), teasel (*Dipsacus fullonum*), buttercup (*Ranunculus acris*), thistle (*Cirsium canadensis*, *C. vulgare*), red and white clover (*Trifolium pratense* and *T. repens*), dandelion (*Taraxacum officinale*), vetch (*Vicia gracca*), milkweed (*Asclepias syriaca*), Virginia creeper (*Parthenocissus quinquefolia*), orchard grass (*Dactylis glomerata*), timothy (*Phleum pratense*) and other grasses (*Poa* spp.)

Cultural Meadow- CUM1-1(B)/AG and CUM1-1(C)/AG

Both cultural meadows are located on the south side of Barton Street. They have been left fallow for a number of years and have been recently been turned back to agricultural land use to grow cash crops. Soybean (*Glycine max*) was grown in 2016. Mature hedgerows are present along the boundaries and one remnant is present in the north eastern section of CUM1-1(B). On both cultural meadows remnants of the old cultural meadow are present along the edges and along Barton Street. Vegetation includes sumac, buckthorn, goldenrod, Queen Anne's Lace, wild mustard (*Sinapsis arvense*), yellow hawkweed, teasel, chicory (*Cichorium intybus*), curled dock (*Rumex crispus*), buttercup, thistle, red and white clover, vetch, milkweed, prickly lettuce (*Lactuca serriola*), Philadelphia fleabane (*Erigeron philadelphicus*), New England aster (*Symphyotrichum novae-angliae*), Virginia creeper, reed canary grass (*Phalaris arundinacea*), orchard grass and grasses. Purple loosestrife (*Lythrum salicaria*) is resent in the drainage ditch that runs along the south side of Barton Street.

The cultural meadows/soybean fields likely provide habitat for smaller mammals and birds and may be used as linkage to other fields or orchards.

Cultural Meadow- CUM1-1(D)

Cultural meadow CUM1-1(D) is located adjacent to the Winona Elementary School property, south of the parking lot on Lewis Road. The cultural meadow consists of meadow grasses with oxeye daisy (*Leucanthemum vulgare*), dandelion, milkweed and Dame's rocket (*Hesperis matronalis*). The meadow appears to be regularly maintained though cutting. The cultural meadow is likely to provide habitat to small mammals. Because it is fenced with only a small area for access from Lewis Road, it is unlikely to be used as corridor and it doesn't provide linkage to other natural environment features.

Cultural Meadow- CUM1-1(E)

Cultural meadow CUM1-1(E) is located northeast corner of Lewis Road and Highway 8. Access was restricted to one partial site walk in November of 2016, so the ELC was completed from the road side. The cultural meadow appears to be a farrow agricultural field, possibly a former orchard. Vegetation present consists of small shrubs, weeds and grasses, including briar rose (*Rosa eglanteria*) and buckthorn. The cultural meadow likely provides habitat for smaller mammals and birds and may be used as linkage to other fields.

Cultural Meadow- CUM1-1(F)

Cultural meadow CUM1-1(F) is located northeast corner of Barton Street and McNeilly Road. Access was not granted, so the ELC was completed from the road side. The cultural meadow appears to be a vacant lot, over grown with shrubs, weeds and grasses such as sumac, teasel, goldenrod, dandelion, wild mustard, vetch, orchard grass, timothy, annual bluegrass (*Poa annua*) and creeping bentgrass (*Agrostis stolonifera*). The cultural meadow likely provides habitat for smaller mammals and birds and may be used as linkage to other fields.

Cultural Meadow- CUM1-1(G)

Parcel CUM1-1(G) is located on the northwest side of Barton Street and Lewis Road. It is flat with a couple of small, vegetated soil mounds. A well maintained orchard is located on the west side and a small hedgerow with a drainage ditch along Lewis Road. This cultural meadow is vegetated with manicured lawn and appears to be cut and maintained regularly. This cultural meadow provides only limited wildlife habitat as there is no shelter present on this parcel.

II. Orchard- OR

Orchard- OR is not an ELC category but has been used at the Site for orchards. Numerous orchard and grape vine plantations are present in the Block 3 area. Two are located east of McNeilly Road. The orchards are planted with fruit trees, including cherry (*Prunus* sp.), peach (*P. persica*), pear (*Pyrus* sp.) and grape vine (*Vitis* sp.). Groundcover consists of weeds and grasses, including goldenrod, thistle, dandelion, red and white clover.

III. Hedgerow- HR

Hedgerows are as such not a distinct category in the ELC system, however, to facilitate land classification at the Site, this vegetation community was added. At the Site, mature hedgerows line agricultural fields and orchards and are characterized by vegetation that is influenced by anthropogenic activities such as agriculture. Composition of hedgerows varies, but includes sumac, sugar maple (*Acer saccharum ssp. saccharum*), Manitoba maple (*Acer negundo*), burr oak (*Quercus macrocarpa*), red oak (*Q. rubra*), white oak (*Q. alba*), white mulberry, black locust (*Robinia pseudoacacia*), white ash (*Fraxinus americana*), black willow (*Salix nigra*), willow (*Salix spp.*), buckthorn, grey dogwood (*Cornus racemosa*), common lilac (*Syringa*)

vulgaris), domestic pear, domestic cherry, common apple (*Malus pumila*), briar rose, red-osier dogwood (*C. stolonifera*), riverbank grape (*Vitis riparia*) and Virginia creeper. The understorey consists of weeds and grasses, including dandelion, goldenrod, red and white clover and thistle.

IV. Cattail Mineral Shallow Marsh- MAS2-1

Cattails (*Typha latifolia*) were found growing in approximately 50 m of the drainage ditch on the southern boundary of cultural meadow CUM1-1(D). The area is relatively small and confined to the drainage ditch area. Vegetation in the area includes common reed (*Phragmites australis*), teasel, thistle, goldenrod, Philadelphia fleabane, aster and grasses.

V. Cultural Savannah- CUS1

A cultural savannah is present on the west side of Lewis Road. It consists of an open cultural meadow with grasses and weeds and a tree cover of white ash (*Fraxinus americana*).

3.2.2 Plant Species of Significance

Plant surveys were completed in the spring, summer and fall on lands where access was permitted by the landowner. A plant species list is shown in Table C-1. Species significance rankings were obtained from MNRF (S Rank), COSEWIC (2018), ESA (2007), SARA (2002) and the City of Hamilton Natural Areas Inventory Species Checklist (2014).

Plant species of significance on a local, provincial or national level were not identified and no plant Species at Risk were encountered during the surveys. A total of 92 species were recorded and the percentage of introduced, non-native species is 70%. The relatively high percentage of non-native species present at the Site is an indication of heavily managed lands (agricultural lands, orchards) and other anthropogenic influences and disturbances from residences and infrastructure.

Milkweed which is an important plant for the Monarch butterfly (*Daunus plexippus*), a Species at Risk (Special Concern) was observed on the Site. Monarch is considered to be a common butterfly in the Hamilton area according to the City of Hamilton Natural Areas Inventory Species Checklist (2014) and milkweed is abundant in Southern Ontario.

3.3 Wildlife Surveys

3.3.1 Breeding Birds

All birds seen or heard during site visits were recorded. The breeding bird survey was carried out in accordance with the Ontario Breeding Bird Atlas protocols and consisted of 5 minute long Point Counts. Six (6) breeding bird surveys were carried out: May 28, 2015; July 7, 2015; June 1, 2016 and July 13, 2016, June 5 and July 7, 2017. Survey locations are shown in Figure 3.1. In addition, bobolink (*Dolichonyx oryzivorus*) and Eastern meadowlark (*Sturnella magna*) specific surveys were conducted on June 26, 2019, July 3, 2019 and July 10, 2019 following the MNRF Bobolink Survey Protocol provided by the City of

Hamilton. Bobolink and Eastern meadowlark were no heard or observed during any breeding bird surveys. Survey locations and GPS coordinates can be found in Appendix D.

Species significance was evaluated based on national, provincial and local level published literature and current status lists, including the Hamilton Natural Areas Inventory Project 3rd Edition (2014) Species Checklist.

Barn swallow (*Hirundo rustica*), a Species at Risk was observed foraging over open areas. Carolina wren (*Thryothorus ludovicianus*), a locally rare species was noted during breeding bird surveys.

3.3.2 Incidental Wildlife

Incidental observations of wildlife were recorded based on sightings and/or indirect evidence such as tracks, scat and dens (Table 3-1). Species significance ranking was based on the provincial rank (S Rank), listing on the Endangered Species Act (ESA, 2007), the Committee on the Status of Wildlife in Canada, COSEWIC (2017), the Species at Risk Act (SARA, 2002) and the local status in the City of Hamilton as recorded in the Hamilton Natural Areas Inventory Project species check list (2014).

Wildlife species observed during the natural environment surveys were species commonly found in urban and agricultural settings close to residential areas. Monarch, a Species at Risk was observed feeding on milkweed.

Table 3-1 Incidental Wildlife Observations

Common Name	Scientific Name	S Rank	ESA	COSEWIC	SARA	City of Hamilton*
Mammals						
White-tailed Deer	Odocoileus virginianus	S5				С
Raccoon	Procyon lotor	S5				C
Eastern Grey Squirrel	Sciurus carolinensis	S5				C
Eastern Cottontail Sylvilagus floridanus		S5				С
Lepidoptera						
Monarch Butterfly	Daunus plexippus	S2N, S4B	SC	END	SC	C
Tiger Swallowtail	Papilio canadensis	S5				ND
Cabbage White	Pieris rapae	SNA	·			I, C

Legend:

* HCA (2014) Hamilton Natural Areas Inventory Project, 3rd Edition. Species Checklist Document. Hamilton Conservation Authority

C: Common COSEWIC: Committee on the Status of Wildlife in Canada

I: Introduced (non native) ESA: Endangered Species Act ND: Status not determined SARA: Species at Risk Act

SRank: Provincial Conservation Status (NHIC) END: Endangered S2N: Imperiled SC: Special Concern

S4: Apparently secure SNA: Conservation status not applicable

S5: Secure B: Breeding N: Non-breeding

3.4 Species at Risk Screening

Arcadis completed a Species at Risk screening. Records of Species at Risk were obtained from the Ministry of Natural Resources and Forestry (MNRF) and the Natural Heritage Information Centre (NHIC), Species at Risk Ontario (SARO, 2018) and Hamilton Natural Areas Inventory Project 3rd Edition (2014) Species Checklist (Table 3-2).

Two SAR were observed on the Site, barn swallow and monarch. Although bobolink and Eastern meadowlark have been reported in the vicinity of the Site and potential habitat is present, neither species was recorded during the breeding bird surveys of the Site (2015 to 2019).

Arcadis contacted the Ministry of Environment, Conservation and Parks (MECP) with regards to SAR, in particular records of bobolink and Eastern meadowlark. MECP response can be found in Appendix F. No additional information was received from MECP regarding SAR.

3.5 Significant Wildlife Habitat

Habitat for Species of Conservation Concern (Not including Endangered or Threatened Species)

Significant Wildlife Habitat (SWH) screening was completed for habitat of Species of Conservation concern (other than endangered and threatened species) (MNRF, 2015). Monarch has been observed on Site and milkweed on which monarch depends on for their life cycle is scattered throughout the general area.

According to the Natural Heritage Information Centre (NHIC) Monarch is listed provincially (S-Rank) as S2N, S4B, which is imperiled, non-breeding (S2N) and apparently secure, breeding (S4B). In Hamilton, monarch is listed as common which indicates that there is no concern in the Hamilton area with monarch occurrences. Milkweed is present on the Site, however, not in notably high abundance and only single individuals of monarch were observed, therefore, the Site is not considered SWH.

Seasonal Concentration Areas of Animals

Seasonal concentration areas are areas where wildlife species such as migratory species occur annually in spring and fall in aggregations using areas as stopover. These stopover areas are used by congregations of large numbers of individuals of a species for resting and feeding along the migratory routes, e.g., in certain areas along the shores of the Great Lakes before and after crossing the lakes.

Monarch stopover areas are present along Lake Erie and Lake Ontario where butterflies stop over before and after crossing the Great Lakes during spring and fall migration. Certain criteria are required for stopover areas, including the presence of meadows and forests within 5 km of either Lake Erie or Lake Ontario. Although the Site is within 5 km of Lake Ontario, other criteria are not fulfilled, e.g., forest is not present and only single monarch have been observed, and there is no overabundance of milkweed and other nectar plants. Therefore, the Site is not considered SWH.

Table 3-2 Species at Risk

Table 5-2 Openies at Misk											
Common Name	Scientific Name	SARA	ESA	Srank	City of Hamilton	Habitat Requirement	Habitat present on Site				
Plants											
Green Dragon	Arisaema dracontium	SC	sc	S3	Rare	Wet deciduous forests along streams.	No. Forest not present on Site.				
False Hop Sedge	Carex lupuliformis	END	END	S1	N/A	Riverine swamps and marshes.	No. Riverine wetlands not present on Site.				
American Chestnut	Castanea dentata	END	END	S2	Uncommon	Dryer upland deciduous forests with sandy, acidic to neutral soils.	No. Forest not present on Site.				
Eastern Flowering Dogwood	Cornus florida	END	END	S2?	Uncommon	Thickets, stream banks, shaded forests.	No. Thickets, stream banks and forest not present on Site.				
American Columbo	Frasera caroliniensis	END	END	S2	Rare	Open, moist deciduous forests, dense shrub thickets, grasslands and swamps.	No. Forest not present on Site.				
Cucumber Tree	Magnolia acuminata	END	END	S2	N/A	Rich, deciduous forest	No. Forest not present on Site.				
Red Mulberry	Morus rubra	END	END	S2	Rare	Rich woods, flood plains	No. Forest/ floodplain not present on Site.				
Broad Beech Fern	Phegopteris hexagonoptera	sc	SC	S3	Rare	Rich, deciduous forests	No. Forest not present on Site.				
Few-flowered Club-Rush	Trichophorum planifolium	No Status	END	S1	Rare	Dry open wooded slopes	No. Open wooded slope not present on Site.				
Mammals											
Woodland Vole	Microtis pinetorum	SC	sc	S3?	Rare	Deciduous Forest	No. Forest not present on Site.				
Insects											
Rusty-patched Bumble Bee	Bombus affinis	END	END	S1	N/A	Open habitats, urban settings, open woods	Potential, flowering weeds present. However, Site not known occurrence location on SARO distribution map.				
Monarch	Danaus plexippus	SC	SC	S2N, S4B	Common	Open habitats with milkweed present.	Yes. Milkweed present. Observed on Site.				
Amphibians											
Jefferson Salamander	Ambystoma jeffersonianum	END	END	S2	Rare	Deciduous forests, breeds in vernal pools	No. Forest and vernal pools not present on Site.				
Turtles											
Spiny Softshell	Apalone spinifera spinifera	THR	END	S3	Rare	Rivers, lakes ponds.	No. Waterbodies not present on Site.				
Snapping Turtle	Chelydra serpentine	sc	sc	S3	Common	Wetlands, ponds and lakes	No. Waterbodies not present on Site.				
Blanding's Turtle	Emydoidea blandingii	THR	THR	S3	Rare	Large wetlands and shallow lakes.	No. Large wetlands or lake not present on Site.				
Northern Map Turtle	Graptemys geographica	SC	SC	S3	Rare	Rivers and lakeshores	No. Rivers or lakes not present on Site.				
Eastern Musk Turtle	Sternotherus odoratus	sc	sc	S3	Rare	Ponds, lakes, marshes and rivers.	No. Waterbodies not present on Site.				

Common Name	Scientific Name	SARA	ESA	Srank	City of Hamilton	Habitat Requirement	Habitat present on Site		
Snakes									
Eastern Ribbonsnake	Thamnophis sauritus	SC	SC	S4	Rare	Close to water, especially in marshes	No. Waterbodies not present on Site.		
Birds									
Henslow's Sparrow	Ammodramus henslowii	END	END	SHB	Extirpated	Farm fields, tall grass pastures, and wet meadows.	Potential. Farm fields and pasture present on Site. Not observed on Site or recorded during breeding bird surveys. Site not known occurrence location on SARO distribution map.		
Eastern Whip-poor-will	Antrostomas vociferus	THR	THR	S4B	Rare	Open woodlands or openings in mature, deciduous, coniferous and mixed forests.	No. Forest not present on Site.		
Short-eared Owl	Asio flammeus	SC	SC	S2N,S4B	Rare	Large, open areas with low vegetation, including grasslands, meadows, marshes and agricultural areas	Potential, as open areas are present. Not observed on Site or recorded during breeding bird surveys. Site not known occurrence location on SARO distribution map.		
Black Tern	Chlidonias niger	No Status	SC	S3B	Extirpated	Shallow cattail marshes with or near open water.	No. Shallow cattail wetlands with open water not present on Site.		
Cerulean Warbler	Dendroica cerulea	END	THR	S3B	Rare	Mature, deciduous forests.	No. Mature forest not present on Site.		
Bobolink	Dolichonyx oryzivorus	THR	THR	S4B	Uncommon	Open hay fields	Potential. Open fields present on Site. Not observed on Site or recorded during breeding bird surveys.		
Acadian Flycatcher	Empidonax virescens	END	END	S2S3B	Rare	Mature, shady forests with ravines, forested swamps.	No. Mature forest or forested swamp not on Site		
Peregrine Falcon	Falco peregrinus	SC	SC	S3B	Rare	Tall, steep cliff ledges close to large bodies of water. In urban areas on tall buildings.	No. Cliff ledges or tall buildings not present on Site.		
Bald Eagle	Haliaeetus leucocephalus	No Status	SC	S2N, S4B	Rare	Variety of habitats and forest types, near major lake or river.	No. Forest not present on Site.		
Barn Swallow	Hirundo rustica	THR	THR	S4B	Common	Man-mad structures, near open grasslands and wetlands	Yes, observed foraging by adjacent residents on Site, agricultural buildings present offsite.		
Yellow-breasted Chat	Icteria virens	END	END	S1B	Rare	Dense shrubbery, including abandoned farm fields, clearcuts, powerline corridors, fencerows, forest edges and openings, swamps, and edges of streams and ponds	Potential, forest edge and open areas present on Site. Not observed on Site or recorded during breeding bird surveys. Site not known occurrence location on SARO distribution map.		
Least Bittern	Ixobrychus exilis	THR	THR	S4B	Rare	Cattail wetlands.	Potential. Small cattail wetland area present on Site. Not observed on Site or recorded during breeding bird surveys. Site not known occurrence location on SARO distribution map.		
Loggerhead Shrike	Lanius Iudovicianus	END	END	S2B	Extirpated	Grasslands with scattered low trees and shrubs.	Potential. Grasslands with scattered low trees/shrubs present on Site. Not observed on Site or recorded during breeding bird surveys. Site not known occurrence location on SARO distribution map.		
Prothonotary Warbler	Protonotaria citrea	END	END	S1B	Rare	Flooded woodlands or swamps	No. Flooded areas or swamps not present on Site.		
Eastern Meadowlark	Sturnella magna	THR	THR	S4B	Uncommon	Pastures, hayfields, agricultural fields	Potential. Pasture, hayfield/ agricultural fields present on Site. Not observed on Site or recorded during breeding bird surveys. Recorded offsite in the vicinity of the Site.		
Barn Owl	Tyto alba	END	END	S1	Extirpated	Farmlands, fallow fields and meadows with barns and old farm buildings.	Potential. Farm fields present on Site, farm buildings present off site. Not observed on Site or recorded during breeding bird surveys. Site not		

Common Name	Scientific Name	SARA	ESA	Srank	City of Hamilton	Habitat Requirement	Habitat present on Site
							known occurrence location on SARO distribution map.
Fish							
Redside Dace	Clinostomus elongatus	END	END	S2	Rare, possibly extirpated	Pools and slow-moving areas of small streams with a gravel bottom.	No. Natural watercourses not present on Site.

Legend:
ESA: Endangered Species Act
SARA: Species at Risk Act
END: Endangered
NAR: Not at Risk
SC: Special Concern
THR: threatened

SNA: Conservation Rank not applicable SZN: Non-breeding migrants/vagrants

SRank: Provincial Conservation Status (NHIC)
S1: Critically imperilled
S2: Imperiled
S3: Vulnerable
S4: Apparently secure
S5: Secure

S2?: Rank uncertain

SHB: Possibly extirpated, historic breeder

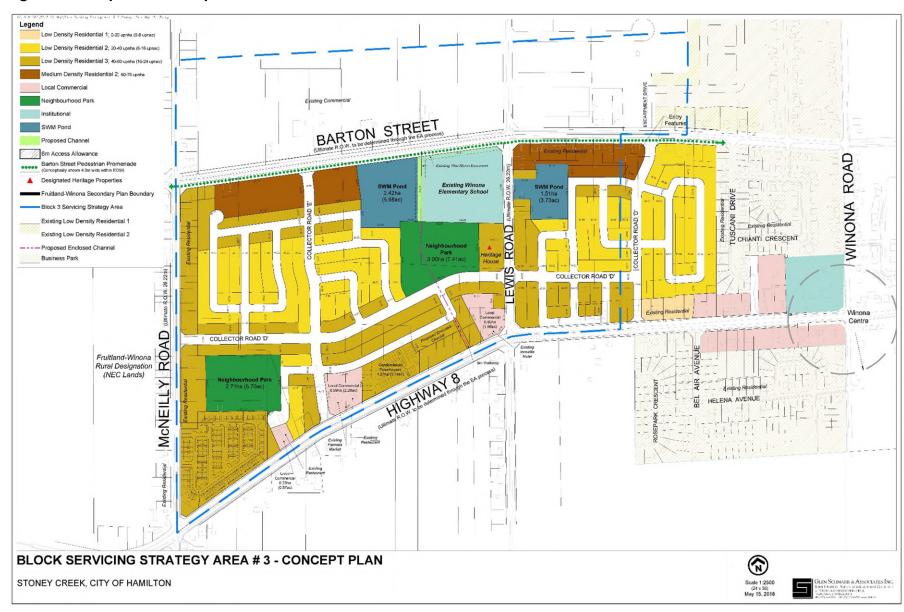
B: Breeding N: Non-breeding NA: Not available

3.6 Other Ecological Features

3.6.1 Linkages and Corridors

Wildlife corridors are important features which allow wildlife to move between natural environment features. Corridors provide shelter from harsh weather conditions, protection from predators and allow wildlife to move safely across the landscape.

At the Site wildlife can move freely across agricultural fields, orchards and along hedgerows. Movement to the north is limited by the highway, fenced commercial properties and private residences. Forested areas along and on the nearby Niagara Escarpment to the south allow for suitable east west movement.


3.6.2 Deer Yards

There are no known deer yards at the Site. However, there was evidence that deer use the Site (sightings).

4 DESCRIPTION OF PROPOSED DEVELOPMENT

It is proposed to develop Block 3 with a subdivision, including low and medium density homes, parks, commercial space, stormwater ponds and access roads (Figure 4-1).

Figure 4.1: Proposed Development

5 IDENTIFICATION AND ASSESSMENT OF IMPACTS

All natural environment features on the Site have been heavily influenced and/or managed by anthropogenic activities such as agriculture and orchard management. They consist of agricultural fields that are planted with cash crops, fallow fields which over time turned into cultural meadows, planted and abandoned fruit orchards and grape plantations and planted hedgerows. Vegetation throughout the Site consists of common native and non-native species, none of which are considered Species at Risk or locally rare. The relatively high percentage of non-native species indicates historic disturbance from agriculture. None of the vegetation communities identified on the Site are considered rare, uncommon or sensitive.

The hedgerows and orchard trees provide some nesting opportunities for breeding birds and it is expected that trees and shrubs that will be removed as part of the grading and development will be replaced. The hedgerows and orchards are not considered significant or sensitive to disturbance and similar habitat is available in the immediate vicinity south of Highway 8 and will be available again in green spaces, parks and backyards once Block 3 is developed.

Although there are man-made drainage ditches present, none are considered fish habitat or potential fish habitat as they are seasonally dry. A small patch of wetland plants is present in the drainage ditch that runs along the school property. Because of the small size and the presence of non native, invasive plants, it is not considered significant or sensitive. Although these watercourses and ditches are not considered fish habitat, there is some surface water conveyance to downstream sections that do comprise fish habitat and therefore, there is potential for impacts to fish or fish habitat as part of the development. Decrease in water quality e.g., through increased sedimentation, introduction of chemicals into the watercourses from project activities and/or increases in water quantity may have a negative impact on fish habitat downstream (indirect impacts). Effects may include decrease in fish health, reproduction and loss of spawning and feeding habitats. Therefore, activities involving these watercourses should consider potential impacts of water quality of these watercourses on downstream fish habitat.

The natural environment surveys did not identify any development constraints in accordance with the PPS. Development will have no impact on PSWs, significant wetlands, valleylands, wildlife habitat or woodlands or ANSIs. However, it should be noted that prior to removal of trees in the hedgerows, mitigation measures should be implemented (see Section 6).

One SAR, barn swallow was found to use the Site for foraging, however, no breeding habitat was identified on Site as no buildings are present that may be used for nesting. It was not possible to locate nests on buildings offsite during natural environment surveys. Some foraging areas will be lost due to the development. However, extensive areas for feeding are available in the immediate vicinity of the Site, e.g., south of Highway 8 and within Block 3, e.g., on the school playing fields. In addition, mitigation measures recommended in Section 6 include plantings which may attract flying insects on which barn swallow feed. Significant impacts to barn swallow are therefore not expected.

Monarch, a Species at Risk (Special Concern) was observed feeding on milkweed. Monarch depends on milkweed for its life cycle, and some potential habitat will be lost in the development area. However,

UPDATED ENVIRONMENTAL IMPACT STATEMENT

milkweed is common and plentiful in the Stoney Creek area, along roadsides, edges of agricultural fields and orchards as well as on vacant lots and fallow fields. Monarch is considered common in the Hamilton area. Impact to monarch is not expected, however, mitigation plantings are recommended to compensate for loss of milkweed and other flowering plants (Section 6).

One locally rare species, Carolina wren was recorded. Carolina wren feeds on insects and spiders, including moths, beetles, grasshoppers and caterpillars. Habitat includes brushy thickets, shrubby residential areas and backyards and overgrown farmlands. There may be some temporary loss of habitat as Block 3 is being developed, however, since Carolina wren doesn't require specialized habitat and green space and vegetated backyards are part of the development, the impact to Carolina wren is not considered significant.

During construction wildlife species may be temporarily displaced but will re-establish to the available habitat once the new development is completed. Overall, temporary habitat loss will not have any significant long term effects on the existing populations as individuals will adapt and become tolerant of the new conditions. However, disturbance and removal of trees and shrubs during the breeding bird season can have a direct adverse effects on nesting birds which have to be mitigated.

6 MITIGATION MEASURES

In accordance with the Migratory Birds Convention Act, mitigation measures for the protection of migratory birds and their nests have to be implemented before trees and shrubs can be removed and development begins. This applies for tree nesting as well as ground nesting species of breeding birds, e.g., in cultural meadows. Tree, shrub and vegetation removal should occur outside of the breeding bird season, which in Stoney Creek runs from the end of March to the end of August.

A tree preservation and protection plan is recommended to identify trees that should be retained. This should include a detailed evaluation of trees in hedgerows which consist of native species. The tree preservation plan should be developed by a certified arborist. Wherever possible, hedgerow like plantings using native species should be incorporated in landscape plans for green spaces.

It is recommended to include pollinator (butterfly, moth and bee) friendly plantings of native trees, shrubs and flowering plants in green spaces in Block 3 to provide habitat for birds and insects, including caterpillars. Recommended native tree and shrub species include maple (*Acer* spp.), American basswood (*Tilia americana*), cherry (*Prunus* spp.), oak (*Quercus* spp.), poplar (*Populus* spp.), willow (*Salix* spp.), viburnum (*Viburnum* spp.), dogwood (*Cornus* spp.), elderberry (*Sambucus canadensis*), sumac (*Rhus* spp.), serviceberry (*Amelanchier* spp.), rose (*Rosa* spp.) and raspberry (*Rubus* spp.). Flowering plant species should include native milkweed (*Asclepias* spp.), aster (*Aster* spp.), goldenrod (*Solidago* spp.), sunflower (*Helianthus* spp.), wild bergamot (*Monarda fistulosa*), Joe-Pye weed (*Eutrochium* spp.) and echinacea (*Echinacea* spp.). In addition, planting of native grasses and sedges such as big bluestem grass (*Andropogon gerardii*), bottlebrush grass (*Elymus hystrix*), Bebb's sedge (*Carex bebbii*), ebony sedge (*C. ebenea*) and stellate sedge (*C. rosea*) should be included in the landscape design, wherever possible.

Carolina wren, a locally rare species was noted during breeding bird surveys. In order to mitigate loss of habitat, including old orchard and hedgerows, nest boxes could be provided in green spaces, although it is acknowledged that implementation may be difficult as part of the development. Plantings of native plant species will attract the insects Carolina wren feeds on and will provide nesting opportunities.

Mitigation measures are recommended for general earthworks such as grading and construction. It is recommended to install silt fencing to prevent excessive run off entering drainage ditches to avoid sedimentation and to regularly inspect the integrity and effectiveness of the silt fencing as a barrier.

Development of a residential subdivision with paved surfaces and roofs may result in indirect effects such as increased sediment transport, diversion of water, changes in volumes of surface runoff. Stormwater will be directed to two stormwater ponds which will be located south of Barton Street, one will be constructed west of the existing school and one east of Lewis Street.

It is recommended that the functions of the watercourses (i.e., surface water conveyance) should be maintained (e.g., with stormwater management), and any potential disruptions should be properly mitigated (e.g., silt fencing to limit sediment loading). Consistent with the recommendations of the approved subwatershed study, the proposed stormwater management plan will replace the water quality and quantity

UPDATED ENVIRONMENTAL IMPACT STATEMENT

function of the drainage features in the study area.

Provided that mitigation measures are implemented, long term or residual effects on natural environment features in the vicinity of Block 3 are not expected.

7 RECOMMENDATIONS

The Arcadis work program was completed in accordance with the EIS Terms of Reference as compiled in consultation with the City of Hamilton and HCA.

The EIS was prepared with consideration of applicable policies of the PPS, UHOP, Fruitland-Winona Secondary Plan and HCA in which natural features and functions are to be maintained or enhanced and potentially negative direct, indirect and/or cumulative effects have to be mitigated.

In order for the proposal to proceed as planned, the following recommendations are made to mitigate potential impacts:

- Complete tree and shrub and cultural meadow vegetation removal outside of breeding bird season (trees and shrubs should be removed between September to March);
- Complete a Tree Preservation Plan;
- Use native tree, shrub and flowering plant species, including milkweed for green spaces;
- Install nest boxes for Carolina wren in green spaces, where feasible; and
- Install silt fencing during earthworks, grading and construction to avoid excessive sedimentation in drainage ditches.

8 REFERENCES

Aquafor Beech (2013) Stoney Creek Urban Boundary Expansion Area (SCUBE) East Subwatershed Study. http://www2.hamilton.ca/NR/rdonlyres/C77B2702-3319-4546-9C22-7F6AA7C030F8/0/Jun0462 PED13099 PW13040 App D Phase 1 and 2 Study East.pdf

Cadman, M.E., Eagles, P.F.J. and Helleiner, F.M (2005) Atlas of the breeding birds of Ontario. University of Waterloo Press. Waterloo, Ontario.

City of Hamilton (2015) Environmental Impact Statement (EIS) Guidelines.

City of Hamilton (2013) Urban Hamilton Official Plan. <a href="https://www.hamilton.ca/city-planning/official-plan-zoning-by-law/urban-hamilton-official-plan-zoning-by-law/urban-zonin

COSEWIC (2017) Committee on the Status of Endangered Wildlife in Canada. http://www.cosewic.gc.ca/default.asp?lang=En&n=5D654E9B-1

ESA (2007) Endangered Species Act. Government of Ontario. https://www.ontario.ca/laws/statute/07e06

HCA (2014) Hamilton Natural Areas Inventory Project 3rd edition.

Lee, H.T., Bakowski, W.D., Riley, J., Bowles, J., Puddister, M., Uhlig, P., and McMurray, S. (1998) Ecological Land Classification for Southern Ontario. First approximation and its application. Including update 2008. Ministry of Natural Resources, South Central Science Section, Science Development and Transfer Branch.

MAH (2014) Provincial Policy Statement. Ministry of Municipal Affairs and Housing.

MNDM (2015) Bedrock Geology of Ontario. OGSEarth for Google Earth. Ministry of Northern Development and Mines. http://www.mndmf.gov.on.ca/en/mines-and-minerals/applications/ogsearth

MNRF (2000) Significant Wildlife Habitat Technical Guide. Ministry of Natural Resources and Forestry.

MNRF (2005) Significant Wildlife Habitat Criteria Schedules For Ecoregion 7E. Ministry of Natural Resources and Forestry. https://dr6j45jk9xcmk.cloudfront.net/documents/4776/schedule-7e-jan-2015-access-vers-final-s.pdf

MNRF (2010) Natural Heritage Reference Manual for the Natural heritage policies of the Provincial Policy Statement 2005. Ministry of Natural Resources, 248 pp._

http://cloca.ca/resources/Outside%20documents/Natural%20Heritage%20Policies%20of%20the%20Provincial%20Policy%20Statement%20MNR%202010.pdf

MNRF (2018) Species at Risk in Ontario. Ministry of Natural Resources and Forestry.

UPDATED ENVIRONMENTAL IMPACT STATEMENT

http://www.ontario.ca/environment-and-energy/species-risk

NHIC (2018) Natural Heritage Information Centre. Ministry of Natural Resources and Forestry. http://www.ontario.ca/environment-and-energy/natural-heritage-information-centre

OBBA (2015) Ontario Breeding Bird Atlas. http://www.birdsontario.org/atlas/index.jsp

SARA (2002) Species at Risk Act. Government of Canada. http://laws-lois.justice.gc.ca/eng/acts/s-15.3/

9 LIMITATIONS

An EIS is designed to identify existing natural environment conditions based upon a physical Site inspection of the property and an evaluation of readily available information. Natural environment inventories and the nature of the work dictates that findings and conclusions may not be definitive, but rather qualitative statements based on the observations made and research data accessed.

Achieving the study objectives stated in this report has required us to arrive at conclusions based on the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce this possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained. Professional judgment was also exercised in the formulation of recommendations. Like all professional persons rendering advice, we cannot act as absolute insurers of the conclusions we reach; we commit ourselves to care and competence in reaching those conclusions.

Our undertaking, therefore, is to perform our work, within the limits prescribed by our client, with the usual thoroughness and competence of our profession. No other warranty or representation, expressed or implied, is included or intended in this report.

This report was prepared by Arcadis Canada Inc. (Arcadis) exclusively for the account of the Landowners Group (the Client). Other than the Client, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Arcadis. Nothing in this report is intended to constitute or provide a legal opinion. Arcadis accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

The conclusions presented represent the best judgment of the assessors based on current environmental standards and on the Site conditions observed between May 2015 and November 2019. Due to the nature of the

investigation and the limited data available, the assessors cannot warrant against undiscovered environmental liabilities.

Respectfully submitted,

ARCADIS Canada Inc.

APPENDIX A: TERM	MS OF REFERE	ENCE AND RE\	/IEW COMMENTS	

Arcadis Response to City of Hamilton Comments, dated September 12, 2019

No.	City of Hamilton Comment	Arcadis Response
1	A Comment Response table has not been provided with the revised Block 3 Servicing Strategy. This would be helpful to ensure that all previous comments have been addressed.	Comment response table is now provided.
2a i	Policy Review: A policy review has been provided within Section 1.1 of the EIS. There is concern that a comprehensive discussion has not been provided. Natural Heritage System: Based on mapping within Volumes 1 and 2 of the Urban Hamilton Official Plan (UHOP), a Natural Heritage System has not been identified within Block 3. It was identified within previous comments (April 3, 2019) that there are features within the Natural Heritage System that are not mapped. These features include habitat for Species at Risk (SAR) and Significant Wildlife Habitat (SWH). There is concern that this has not been discussed within the EIS.	Section 1.1 has been updated.
2a ii	Fruitland Winona Secondary Plan: Block 3 is located within the Fruitland Winona Secondary Plan. There is concern with Section 1.1.4 (Fruitland Winona Secondary Plan) of the revised EIS. Discussions focus on the Stoney Creek Urban Boundary Expansion Subwatershed Study and not on policies of the Secondary Plan.	Section 1.1.4 has been updated.
2b i	Field Surveys: Generally, field surveys were undertaken according to approved protocols. Watercourses: Within Table 2-1 (Summary of Natural Environment Surveys Completed), it has been identified that aquatic habitat assessments were completed June 26, July 3, and July 10, 2019. Since these watercourses may exhibit ephemeral conditions, there is concern that the field surveys were not completed in spring or fall.	An additional fall survey of the watercourses was completed on November 22, 2019.
2c i	Watercourses: A Fish Habitat Assessment has been included within Appendix E; however, there is concern that discussions have not been provided within the main EIS. Further clarification is required.	The discussion on fish habitat has been revised.
2c ii	The Fish Habitat Assessment focuses on the field survey that was undertaken on July 10, 2019. Within Table 2-1 (Summary of Natural Environment Surveys Completed), it was identified that assessments were completed June 26, July 3 and	The Fish Habitat Assessment has been updated and includes the fall visit. Findings from all other assessments were the same at each Site visit.

No.	City of Hamilton Comment	Arcadis Response
	July 10, 2019. Further clarification is required on why the other assessments have not been discussed.	
2c iii	Discussions within the Fish Habitat Assessment are focused on direct fish habitat. There is concern that indirect habitat has not been thoroughly considered. Further clarification is required.	Additional discussion has been provided.
	Locally Rare Species: Carolina Wren, a locally rare species has been observed breeding within the study area. Within previous comments (April 3, 2019), there was concern that the impact of development on this species was not considered.	Additional discussion has been provided.
2d	Based on review of the revised EIS, there is concern that this comment has not been adequately addressed. Discussions with regards to this species are missing from Sections 3.3.1 (Breeding Bird Surveys) and 5 (Identification and Assessment of Impacts). In addition, there is concern with the limited discussion that has been provided within Sections 6 (Mitigation Measures) and 7 (Recommendations). Further discussion is required.	
2e i	SAR: SAR is under the jurisdiction of the Ministry of Environment, Conservation and Parks (MECP) (formerly Ministry of Natural Resources and Forestry (MNRF)). In previous comments (April 3, 2019), there was concern that correspondence from MECP/MNRF was not included in the report. While correspondence has been provided from MECP in Appendix F (Communications), there is concern that this does not adequately address the previous comment.	No additional communication with MECP is available.
2e ii	Eastern Meadowlark/Bobolink: Surveys were undertaken to determine if these species ("threatened") were found within the Block 3 study area. The locations of the survey sites have been provided on Figure D-1 (Appendix D: Breeding Bird Surveys); however, this figure is very difficult to read. Further clarification is required.	The format of Figure D-1 has been changed to make it clearer.
2e iii	Barn Swallow: Within Appendix D (Breeding Bird Surveys), Barn Swallow, a "threatened" species was identified as possibly breeding within the study area. There is concern that this species has not been considered in the development of this area.	Barn swallow would be breeding offsite as they attach their nest on or in buildings and no buildings (or any other suitable structures) are present on Site. Barn swallow prefer barns or sheds for nesting, they attach nests either inside on walls or beams or on the outside of those types of buildings where there is an overhang. They generally return to their old nests.
2e iv	Within Section 5 (Identification and Assessment of Impacts) it has been identified that there is extensive feeding areas available in the vicinity of the area for Barn Swallow and Monarch and impacts on these species are not expected. There is	Section 5 has been revised.

No.	City of Hamilton Comment	Arcadis Response
	concern with this statement. Additional habitat within the vicinity does not recognize the potential habitat that will be lost as a result of development of this area.	
2f	SWH: Monarch, a species of "Special Concern" has been observed within the study area. Based on the Ministry of Natural Resources and Forestry (MNRF) SWH Criteria Schedules for Ecoregion 7E (January 2015), habitat for Species of Conservation Concern (not including Endangered or Threatened Species) has been identified as SWH. Included in this category are all Special Concern and Provincially Rare (S1-S3; SH) plant and animal species. Within previous comments (April 3, 2019), there was concern that this had not been discussed within the report. Based on review of the revised EIS, there is concern that this comment has not been adequately addressed. The discussion in Section 3.4.1 (Significant Wildlife Habitat) focusses on Monarch stopover areas and does not discuss this species as a Species of Conservation Concern.	Additional discussion has been provided in Section 3.4.1.
2g	Opportunities for Enhancement: In previous comments (April 3, 2019) there was concern that opportunities to retain hedgerows should be included within the development concept. While it has been identified that a tree preservation plan should be completed, there is concern that the incorporation of hedgerows has not been considered within the development concepts.	In Section 6 Mitigation Measures- it is recommended to incorporate hedgerow like plantings in the landscape design wherever possible.

Memorandum

To: Margaret Fazio

Project Manager

Growth Management

From: Melissa Kiddie

Natural Heritage Planner

Development Planning, Heritage and Design, Suburban Team

Phone: 905-546-2424 Ext. 1290 **Fax:** 905-546-4202

Date: September 12, 2019 File: N/A

Subject: Block 3 Servicing Strategy-Second Submission August 2019

Natural Heritage Planning Comments

Natural Heritage Planning staff has reviewed the revised Block 3 Servicing Strategy that has been prepared by Urbantech West August 2019.

- 1. A Comment Response table has not been provided with the revised Block 3 Servicing Strategy. This would be helpful to ensure that all previous comments have been addressed.
- 2. The focus of these comments is on Appendix C (Terrestrial Data; C-1 Updated Environmental Impact Statement (EIS) Block 3 prepared by Arcadis July 2019)
 - a) Policy Review: A policy review has been provided within Section 1.1 of the EIS. There is concern that a comprehensive discussion has not been provided.
 - i. Natural Heritage System: Based on mapping within Volumes 1 and 2 of the Urban Hamilton Official Plan (UHOP), a Natural Heritage System has not been identified within Block 3. It was identified within previous comments (April 3, 2019) that there are features within the Natural Heritage System that are not mapped. These features include habitat for Species at Risk (SAR) and Significant Wildlife Habitat (SWH). There is concern that this has not been discussed within the EIS.
 - ii. Fruitland Winona Secondary Plan: Block 3 is located within the Fruitland Winona Secondary Plan. There is concern with Section 1.1.4 (Fruitland Winona Secondary Plan) of the revised EIS. Discussions focus on the Stoney Creek Urban Boundary Expansion Subwatershed Study and not on policies of the Secondary Plan.
 - b) Field Surveys: Generally, field surveys were undertaken according to approved protocols.
 - i. Watercourses: Within Table 2-1 (Summary of Natural Environment Surveys Completed), it has been identified that aquatic habitat

assessments were completed June 26, July 3, and July 10, 2019. Since these watercourses may exhibit ephemeral conditions, there is concern that the field surveys were not completed in spring or fall.

c) Watercourses:

- i. A Fish Habitat Assessment has been included within Appendix E; however there is concern that discussions have not been provided within the main EIS. Further clarification is required.
- ii. The Fish Habitat Assessment focuses on the field survey that was undertaken on July 10, 2019. Within Table 2-1 (Summary of Natural Environment Surveys Completed), it was identified that assessments were completed June 26, July 3 and July 10, 2019. Further clarification is required on why the other assessments have not been discussed.
- iii. Discussions within the Fish Habitat Assessment are focused on direct fish habitat. There is concern that indirect habitat has not been thoroughly considered. Further clarification is required.
- d) Locally Rare Species: Carolina Wren, a locally rare species has been observed breeding within the study area. Within previous comments (April 3, 2019), there was concern that the impact of development on this species was not considered.

Based on review of the revised EIS, there is concern that this comment has not been adequately addressed. Discussions with regards to this species are missing from Sections 3.3.1 (Breeding Bird Surveys) and 5 (Identification and Assessment of Impacts). In addition, there is concern with the limited discussion that has been provided within Sections 6 (Mitigation Measures) and 7 (Recommendations). Further discussion is required.

e) SAR:

 SAR is under the jurisdiction of the Ministry of Environment, Conservation and Parks (MECP) (formerly Ministry of Natural Resources and Forestry (MNRF)). In previous comments (April 3, 2019), there was concern that correspondence from MECP/MNRF was not included in the report.

While correspondence has been provided from MECP in Appendix F (Communications), there is concern that this does not adequately address the previous comment.

ii. Eastern Meadowlark/Bobolink: Surveys were undertaken to determine if these species ("threatened") were found within the Block 3 study area. The locations of the survey sites have been provided on Figure D-1 (Appendix D: Breeding Bird Surveys); however this figure is very difficult to read. Further clarification is required.

- iii. Barn Swallow: Within Appendix D (Breeding Bird Surveys), Barn Swallow, a "threatened" species was identified as possibly breeding within the study area. There is concern that this species has not been considered in the development of this area.
- iv. Within Section 5 (Identification and Assessment of Impacts) it has been identified that there is extensive feeding areas available in the vicinity of the area for Barn Swallow and Monarch and impacts on these species are not expected. There is concern with this statement. Additional habitat within the vicinity does not recognize the potential habitat that will be lost as a result of development of this area.
- f) SWH: Monarch, a species of "Special Concern" has been observed within the study area. Based on the Ministry of Natural Resources and Forestry (MNRF) SWH Criteria Schedules for Ecoregion 7E (January 2015), habitat for Species of Conservation Concern (not including Endangered or Threatened Species) has been identified as SWH. Included in this category are all Special Concern and Provincially Rare (S1-S3; SH) plant and animal species. Within previous comments (April 3, 2019), there was concern that this had not been discussed within the report.
 - Based on review of the revised EIS, there is concern that this comment has not been adequately addressed. The discussion in Section 3.4.1 (Significant Wildlife Habitat) focusses on Monarch stopover areas and does not discuss this species as a Species of Conservation Concern.
- g) Opportunities for Enhancement: In previous comments (April 3, 2019) there was concern that opportunities to retain hedgerows should be included within the development concept. While it has been identified that a tree preservation plan should be completed, there is concern that the incorporation of hedgerows has not been considered within the development concepts.

If you have any questions, please contact me at (905) 546-2424 ext. 1290.

Melissa

MK:mk

Memo

To: Melissa Kiddie, M.E.S (PI), ERPG, Natural Heritage Planner, City of Hamilton

Jaime Tellier, Conservation Planner, Hamilton Conservation Authority

From: Barbara Hard, Ph.D., Senior Ecologist

cc: Jason Mosdell, MCIP, RPP, Project Manager, Branthaven Development Corp.

Date: May 5, 2015

Re: Proposed Terms of Reference, Scoped Environmental Impact Statement (EIS)

Block 3, Block Servicing Strategy, Fruitland-Winona Secondary Plan, City of

Hamilton

It is our understanding that Block 3 of the Fruitland-Winona Secondary Plan requires a Block Servicing Strategy as per Amendment 17 to the Urban Hamilton Official Plan from May 14, 2014. The City of Hamilton prepared Terms of Reference for the Block Servicing Strategy in consultation with the Conservation Authority which includes the requirement for a Scoped Environmental Impact Statement (EIS).

Specific natural heritage requirements for the Block Servicing Strategy for Block 3 are outlined in the City of Hamilton "Terms of Reference for Fruitland-Winona Block Servicing Strategy" document, dated October 15, 2013.

They include:

- Ecological Land Classification and Vegetation Surveys
 - Update SCUBE East Subwatershed Study Phase 1 & 2
- Define limits of natural heritage feature boundaries
- Review the width of the preliminary vegetation protection zone (VPZ) that have been established within the Subwatershed Study
- Drainage and Infrastructure improvement works:
 - Identification of design measures to avoid/mitigate the potential negative effects of the proposed channel improvements on existing natural heritage features and functions.

The completion of the Scoped EIS report will follow the City of Hamilton Draft *Environmental Impact Statement (EIS) Guidelines* (revised November 2013) and will include a description of the proposed development, mapping and aerials, a description of the surrounding environment (biophysical inventory), impact identification and assessment and mitigation and monitoring plans (as needed). If the newly revised EIS guidelines (January 2015) are ratified by Council while work to support the EIS is ongoing, changes, if applicable, will be incorporated in the EIS report.

The following are the proposed Terms of Reference for the EIS field inventories for the Site for review and comments by the City of Hamilton and Hamilton Conservation Authority (HCA):

1. Vegetation

Vegetation communities that are found will be described in accordance with Ecological Land Classification (ELC) for southern Ontario (Lee et al., 1998 and Lee, 2008) and mapped. A two season survey will be carried out and species lists will be compiled. The spring survey will be carried out between the beginning of May and June, the summer survey will be carried out in late August/early September. The species list will include federal, provincial rankings and local status. Non-native species will be identified.

2. Breeding Bird Survey

All birds seen or heard during site visits will be recorded. A breeding bird survey will be carried out in accordance with the Ontario Breeding Bird Atlas protocols. Two surveys will be carried out, the first one between May 24 and June 6 and the second between June 16 and July 10, 2015.

Species significance will be evaluated based on national, provincial and local level published literature and current status lists.

3. Species at Risk

ARCADIS will carry out a Species at Risk screening. Records of Species at Risk will be obtained from the Ministry of Natural Resources and Forestry (MNRF) and the Natural Heritage Information Centre (NHIC). The presence of Species at Risk, if any, will be noted and included in the EIS report.

4. Wildlife

Incidental observations of mammals, amphibians, reptiles and insects during the site visits will be recorded. Observations will include direct sightings and indirect evidence such as calls, tracks, scat, burrows, dens and browse. The species list will include federal, provincial rankings and local status.

5. Draft Outline of EIS Report

The following is the proposed draft outline of the EIS Report:

- 1.0 Introduction
 - 1.1 Policy Review
 - 1.1.1 Provincial Policy Statement
 - 1.1.2 Hamilton Official Plan
 - 1.1.3 Hamilton Conservation Authority Policies
 - 1.2 Background Information Review
- 2.0 Field Inventories Methodology
- 3.0 Existing Conditions
 - 3.1 Site description
 - 3.2 Vegetation Surveys

- 3.3 Wildlife Surveys
 3.3.1 Breeding Birds
 3.3.2 Incidental Wildlife
 3.4 Species at Risk Screening
 4.0 Description of Proposed Development
 5.0 Identification and Assessment of Impacts
 6.0 Mitigation Measures
 7.0 Recommendations

A Healthy Watershed for Everyone

BY EMAIL

September 30, 2019

Margaret Fazio, Senior Project Manager Infrastructure Planning Growth Management, Planning & Economic Development Department City of Hamilton 71 Main St. West, 6th Floor Hamilton, ON L8R 4Y5

Dear Ms. Fazio,

Re: Block Servicing Strategy, Fruitland-Winona Secondary Plan Area, Block 3, Second Submission, August 2019

Thank you for providing the Hamilton Conservation Authority (HCA) with the *Block Servicing Strategy, Fruitland Winona Secondary Plan, Block 3* (Urbantech West, Second Submission, August 2019). HCA staff have reviewed the report and August 14/19 Urbantech comment response letter, and offer the following comments for consideration.

Environmental Impact Assessment

1. Natural Heritage Features and Watercourses

In Section 3, Existing Conditions, it is noted that discussions between the City of Hamilton (City) and HCA resulted in the determination that regulated watercourse features 1, 2, 3 and 4 did not require protection and could be enclosed. With respect to feature 1 (Watercourse 9), it is indicated enclosure was allowed given downstream infrastructure constraints. In Section 3.6, it is further noted enclosure was allowed given City concerns related to flooding and safety. In addition to this, the City's preference for an enclosed system was also related to concerns over consistency with the Secondary Plan, parkland requirements and useable recreational space, as well as anticipated long-term maintenance costs associated with an open watercourse feature. HCA suggests these additional considerations raised by the City should be identified in the report.

HCA staff continue to note there was insufficient fisheries sampling work completed to determine if fish may be present at certain times or to support the conclusions made in the report that the drainage features within the block do not provide or support fish habitat (Section 3.7 and App C, EIS, Section 3.1.2.3). Appendix E of the EIS (Arcadis, Updated July 2019) provides a DFO fish habitat self-assessment, which acknowledges there may be some surface water conveyance from the block to downstream sections that do comprise fish habitat.

HCA suggests this should be noted in the body of the EIS and main report, along with the limitations of the assessment work completed. In HCA staff's opinion, based on the work completed, the report should note the on-site intermittent streams likely provide some form of contributory function as fish habitat, which will need to be considered at the time of development. While the report has completed a DFO self-assessment, HCA staff notes recent changes to the *Fisheries Act* will likely require further review to determine the potential for impacts and need for an authorization from DFO at the time of development. HCA suggest this should be noted in the final report.

Table 9-1 states fish rescue permits and/or a LOA will not be required. In the absence of more detailed information or staging plan to identify when construction/enclosure will occur, HCA suggests this statement in Table 9-1 is potentially misleading.

Survey work completed as part of the EIS recorded Barn swallow foraging on site. Monarch was also recorded as part of survey work completed for the study. HCA staff suggest that indicating there is additional habitat for these species in the surrounding area does not recognize the considerable area of potential habitat that will be lost as a result of development of the block (as well as the surrounding blocks), nor is it clear which surrounding habitat areas are being referred to.

While the EIS has included some correspondence with the MECP regarding species at risk, there is nothing included to indicate all issues have been resolved to MECP's satisfaction. If additional information/correspondence is available HCA suggests it should be included in the final report.

The EIS includes a limited discussion regarding Significant Wildlife Habitat (SWH). This section could be expanded to address all potential categories/types of SWH. For example, while Monarch are discussed in terms of the site's function as a migratory stop over (seasonal concentration areas), the site is not reviewed as potential habitat for a species of conservation concern.

HCA staff support the limited recommendations made in Section 6 (Mitigation Measures) and 7 (Recommendations) of the EIS. Further consideration could be given to retaining hedgerows in the development concept (e.g. in association with the SWM pond, school and neighbourhood parks).

Hydrology and Hydraulics Assessments

2. Lack of Model Calibration, Validation or Parameter Sensitivity Analysis

Given the significant revisions to the original MIKE 11 modeling (and the considerable changes in peak flow rates), HCA staff had previously suggested that some form of model calibration or

validation is warranted. Due to the lack of available flow observations in Watercourse 9, this review was expected to focus on a fulsome comparison of peak flow rates under existing conditions and future uncontrolled conditions (at all key comparison locations) to peak flow rates determined by previous approved modeling studies (SCUBE SWS 2013, FDRP, etc.). Also, a sensitivity analysis of key model parameters was suggested, to further validate the revised modeling results.

The intended sensitivity analysis was not provided in the revised submission. HCA staff had expected a review of changes in peak flow rates resulting from changes in the values selected for key parameters (within justified ranges). It was staff's expectation that this review would help address concerns regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study.

Due to the errors found in the original SCUBE Subwatershed Study 2013 MIKE 11 model, a peak flow comparison to this study was not relied on.

Table 5-12 and 5-13, compares the existing and future uncontrolled peak flows determined by the updated MIKE 11 design event model, SCUBE 2013, and FDRP 1989. However, there appears to be errors in the tables. The FDRP future uncontrolled drainage areas do not appear consistent with the FDRP report. Although not relied upon, it was also observed that the SCUBE 2013 peak flows are not consistent with the 1st submission report.

HCA staff completed a comparison of the design event model peak flows to FDRP 1989 results. Given the magnitude of the increases, HCA staff have concerns regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study.

The existing condition peak flows determined using the single event (design event) modelling are significantly greater than the peak flows previously determined by the FDRP. At the downstream crossings of CNR and QEW (Nodes 11 & 13), the current study 100-year existing conditions peak flows are 40 and 65 % larger than the FDRP results (when normalizing for drainage area differences).

The future uncontrolled condition peak flows determined using the single event (design event) modelling are also significantly greater than the peak flows previously determined by the FDRP. At the downstream crossings of CNR and QEW (Nodes 11 & 13), the current study 100-year peak flows are 50 and 30% larger than the FDRP results (when normalizing for drainage area differences).

Some differences between the peak flows was expected given the different modelling approach (design event versus continuous), different model software and differing parametrization choices. However, significantly higher existing conditions peak flows (with respect to previous assessments) would result in greater allowable release rates from the development. Without further confirmation as to the accuracy and confidence in the modelled

results, there is concern about the potential for an increase in actual peak flow rates downstream (compared to current in-field conditions).

In addition to the above, the continuous model peak flows (from the 1st submission) were also compared to FDRP results. It was noted that the 100-year existing conditions peak flow rates determined using the continuous modelling were -45% and -5% smaller than the FDRP results (when normalizing for drainage area differences), at the downstream crossings of CNR and QEW. The 100-year future uncontrolled conditions peak flow rates determined using the continuous modelling (as presented in the 1st submission), were -25% and -15% smaller than the FDRP results (when normalizing for drainage area differences), at the downstream crossings of CNR and QEW.

As detailed in Review Comment 4 below, the unexpectedly large increases in peak flow rates (for both existing and future uncontrolled conditions) between the design event and continuous versions of the Block Servicing Study model increases HCA staff's concern regarding the accuracy and confidence in the peak flow rates modelled.

As further review, HCA staff intend to compare the Block Servicing Study peak flow results to our ongoing Flood Plain Mapping Update study, and will provide further comment once this review is completed. Once this review has been completed, HCA staff may request additional justifications / reviews to address any outstanding accuracy and confidence concerns.

3. Corrected Errors from the Original SCUBE SWS 2013 MIKE 11 Modeling

HCA had suggested that the report provide further detail regarding the errors that were found and corrected in the original SCUBE SWS 2013 MIKE 11 modeling, as this information forms another aspect of the validation of the revised peak flows.

It is HCA staff's suggestion that the details provided in the DHI memo dated June 12, 2018 (Subject: Scube East Model Update — Corrected Slopes) be included in the report, as this memo describes the key error (considerably low values for urban catchment slope) found and corrected from the original SCUBE Subwatershed Study 2013 MIKE 11 model.

The DHI memo dated June 12, 2018 also identifies significant differences in peak flows when the original SCUBE Subwatershed Study 2013 MIKE 11 model (using 2007 version of MIKE 11) was re-run using the 2017 version of MIKE 11. Although it is acknowledged that the 2017 re-run produced lower peak flows, the magnitude of differences and lack of understanding of reasons for the differences increases HCA staff's concern regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study.

4. Recommend the Use of Design Storm Assessments, given Statistical Issues with the Frequency Flow Analysis

Given the Frequency Flow Analysis concerns, HCA had suggested that further consideration be given to the use of a design storm / single event modeling approach for all required assessments (SWM pond design, impacts of Proposed Conditions with SWM Controls on downstream Existing Condition peak flow rates, revised Future Uncontrolled Conditions), and that appropriate validation / sensitivity analysis of the adopted design event modeling would be necessary.

In reviewing the revised submission, HCA notes the peak flows determined using the single event (design event) modelling are significantly greater than the peak flows determined using the continuous modelling (as presented in the 1st submission).

HCA staff had suggested the design event approach given the expected inaccuracies in the frequency flow analysis. However, HCA staff had not expected such large increases in peak flow rates. For example, at Nodes 1, 10, 11, and 13, the 100-year existing conditions peak flows determined using the design event modelling were 65%, 32%, 55%, and 74% greater than the continuous modeling results. Also, the 100-year future uncontrolled conditions peak flows at Nodes 10, 11, and 13 increased by 101%, 105%, and 53%, respectively.

4(a). Flood Storage and Flow Attenuation Within Feature 1

Further discussions are suggested regarding how (or if) the flood storage and flow attenuation of Drainage Area 300 within the existing onsite Feature 1 should be accounted for, if the Block Servicing Study continues to propose enclosure of this feature with external flows re-routed to the downstream Venetian Meats channel.

4(b). Assessing the Potential Effects of Enlarging the Highway 8, Lewis Road and Barton Street Culvert Crossings

The proposed upgrades to culvert crossings may reduce flow attenuation, and possibly increase flows, water levels and velocities downstream of the crossings. Depending on the proposed upgrades, a downstream impact assessment may be required, and would be based on a comparison of the following scenarios:

- Existing land use, with existing SWM (if any), existing conditions at all hydraulic structures, and accounting for the flow attenuation at the crossings.
- Proposed site land use, existing land use offsite, with proposed site SWM and existing
 offsite SWM (if any), proposed crossing details, existing conditions at all offsite hydraulic
 structures and downstream channel sections, and accounting for the flow attenuation at
 ALL hydraulic structures.
- The review is requested to include the range of storms evaluated in the overall study.

This recommended assessment differs from the assessments undertaken to date to support this study, where flow attenuation at hydraulic structures appears to have been ignored.

5. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Conditions for Four Storm Events

This previous HCA review comment has been addressed.

6. Peak Flow Comparison Locations Downstream of the Site for the Various Pond Rating Curve Scenarios

The previous HCA review comment has been addressed.

7. Channel Capacity in the Venetian Meats Channel

The previous HCA review comment has been addressed.

8. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities

HCA had recommended that a table be included comparing the peak flow rates under Proposed Conditions with SWM Controls to the existing flow capacities of culverts and channel sections downstream of the site.

It is expected that the previous HCA review comment will be addressed at the Detailed Design stage.

9. Comparison of Peak Flows under Future Uncontrolled Conditions to Existing Culvert & Channel Capacities

As an update to the same evaluation from the SCUBE 2013 study, HCA had recommended that there be a comparison of peak flow rates under Future Uncontrolled Conditions (Regional and 100 year event) to the existing flow capacities of culverts and channel sections at the QEW and CNR crossings downstream of the site.

It is expected that the previous HCA review comment will be addressed at the Detailed Design stage.

- 10. Reduced Peak Flow Rates between Node 1 and Node 5 under Existing Conditions

 The previous HCA review comment has been addressed.
- 11. Lack of Change in 100 year Storm Event Peak Flow Rate between Node 5 and Node 8 under Existing Conditions

The previous HCA review comment has been addressed.

- 12. Reduced Peak Flow Rates between Node 13 and Node 14 under Existing Conditions
 The previous HCA review comment has been addressed.
- 13. Drainage of Catchments 200 & 201A

The previous HCA review comment has been addressed.

14. External Conveyance Sewer System:

The previous HCA review comment has been addressed.

15. Statistical Distribution Selection – Appendix F

This previous HCA review comment has been addressed.

16. Proposed Condition with SWM Control Peak Flows for Node 1

This previous HCA review comment has been addressed.

17. Final Hydrology and Hydraulics Modeling Files to be Provided

Once finalized, HCA would request that a copy of all modelling files be provided.

SWM Pond Design

All previous HCA review comments related to SWM pond design (comments #18-23) have been addressed.

Additional Comments

24. Proposed % Imperviousness Values

HCA had suggested it should be confirmed the proposed imperviousness values are consistent with the Fruitland Winona Secondary Plan and SCUBE SWS 2013.

In reviewing the revised report and responses, HCA notes the proposed % imperviousness (approximately 70%) are considerably larger than that which was assumed in the SCUBE 2013 Subwatershed Study (50%). Notwithstanding the on-going review of the modelling, it is noted the proposed increase in imperviousness could potentially increase the regulatory floodplain downstream.

25. Recommended Runoff Coefficients by Land Use

See comment #24 above.

26. Available Topography Data Used in the Study

HCA had requested additional details regarding the topographic data used for this study, including source, date created, contour interval, etc.

The previous HCA review comment has been addressed.

That said, it is expected that there is a typo, and that the contour interval of the GTA Mass Points and Breaklines 2002 data is 1.0m, not 10.0m. It is also expected that the 2017 McLaren topographic survey was the primary source of topographic data for the study.

27. Recommendations for Future Study

The report contains a number of recommendations for additional study, assessment and design work at subsequent stages of development planning (e.g. SWM design, water balance, infiltration and LID, etc.). Additional recommendations have been provided in the comments above. It is recommended that these items be summarized in a separate section in the final report to ensure all recommendations and future work requirements are adequately captured.

Thank you for the opportunity to review and comment on the draft report. HCA staff are available to meet to discuss these comments in more detail if that would be helpful.

Kind regards,

Mike Stone MCIP, RPP

Manager, Watershed Planning Services

MS/JB

Memorandum

To: Margaret Fazio

Project Manager

Growth Management

From: Melissa Kiddie

Natural Heritage Planner

Development Planning, Heritage and Design, Suburban Team

Phone: 905-546-2424 Ext. 1290 **Fax:** 905-546-4202

Date: April 3, 2019 File: N/A

Subject: Block 3 Servicing Strategy

Natural Heritage Planning Comments

Natural Heritage Planning staff has reviewed the Block 3 Servicing Strategy that has been prepared by Urbantech West January 2019. The focus of these comments is on Appendix C (Terrestrial Data-Environmental Impact Statement prepared by Arcadis December 2018).

- Natural Heritage System: Based on the Fruitland Winona Secondary Plan, the Natural Heritage System has not been identified within Block 3. It is important to note that there are features associated with the Natural Heritage System that are not mapped. These features include habitat for Species at Risk and Significant Wildlife Habitat.
- 2. Field Surveys: Generally, field surveys were undertaken according to approved protocols.
 - a) Vegetation: Within the Plant List, Hawthorn sp. have been identified. Since there are locally uncommon/rare species, there is concern that this species was only identified to genus. Further clarification is required.
 - b) Breeding Birds: It is important to note that one of the breeding bird surveys (July 13, 2016) was completed outside of the timing window (the end date of surveys is July 10).
- 3. Locally Rare Species: Carolina Wren, a locally rare species has been observed breeding within the study area. There is concern that the impact of development on this species has not been considered. Further clarification is required.
- 4. Species at Risk (SAR): Within the Provincial Policy Statement, UHOP and Fruitland Winona Secondary Plan, policies are provided that affords protection to "threatened" and "endangered" species. These policies include:
 - Development and site alteration shall not be permitted in habitat of endangered species and threatened species except in accordance with provincial and federal requirements (PPS 2.1.7);

- New development and site alteration shall not be permitted within significant habitat of threatened and endangered species (UHOP policy C.2.5.2); and,
- All development shall comply with the Endangered Species Act, 2007 or its successor legislation (Fruitland-Winona Secondary Plan policy 7.4.11.1).
- a) SAR is under the jurisdiction of the Ministry of Environment, Conservation and Parks (MECP) (formerly Ministry of Natural Resources and Forestry (MNRF)). There is concern that correspondence from MECP/MNRF has not been included within the report.
- b) Bobolink: Based on background information, it was identified that Bobolink, a "threatened" species could potentially be located within the study area. There is concern that appropriate surveys to identify this species were not undertaken. Surveys are to be undertaken as per MNRF Bobolink Survey Methodology. This methodology indicates that transects are to be determined with point counts completed along transects. Three (3) sets of point counts are to be completed in June or the first week of July. These surveys are to start 30 minutes after dawn and continue to no later than 9 am. Further clarification is required.
- c) Barn Swallow: Barn Swallow, a "threatened" species was identified as breeding within the study area. There is concern that this species has not been considered in the development of this area.
- 5. Significant Wildlife Habitat (SWH) Screening: Monarch, a species of "Special Concern" has been observed within the study area. Based on the MNRF SWH Criteria Schedules for Ecoregion 7E (January 2015), habitat for Species of Conservation Concern (not including Endangered or Threatened Species) has been identified as SWH. Included within this category are all Special Concern and Provincially Rare (S1-S3; SH) plant and animal species. There is concern that this has not been discussed within the report. Further discussion is required.
- 6. Opportunities for Enhancement:
 - a) Hedgerows: Hedgerows have been identified within the study area. These features contain native trees such as Sugar Maple, Bur Oak, Red Oak and White Oak. Since the City recognizes the importance of trees and woodlands to the health and quality of life in the community, the protection and restoration of trees and forests is encouraged (policy C.2.11.1). There is concern that this has not been discussed. Opportunities to retain trees within these hedgerows should be included within the development concepts.
 - b) Enhancement of Special Concern Species Habitat: Common Milkweed is used by Monarch, a 'Special Concern' species. Since this area is proposed to be developed, there is concern that this species will be removed. Opportunities to include Milkweed and other native species that support butterfly habitat should be integrated into development. Further discussion is required.

If you have any questions, please contact me at (905) 546-2424 ext. 1290.

Melissa

MK:mk

A Healthy Watershed for Everyone

BY EMAIL

April 17, 2019

Margaret Fazio, Senior Project Manager Infrastructure Planning Growth Management, Planning & Economic Development Department City of Hamilton 71 Main St. West, 6th Floor Hamilton, ON L8R 4Y5

Dear Ms. Fazio,

Re: Block Servicing Strategy, Fruitland-Winona Secondary Plan Area, Block 3, January 2019

Thank you for providing the Hamilton Conservation Authority (HCA) with the *Block Servicing Strategy, Fruitland Winona Secondary Plan, Block 3* (Urbantech West, January 2019). HCA staff have reviewed the report and offer the following comments for consideration.

Environmental Impact Assessment

1. Natural Heritage Features and Watercourses

In Section 3, Existing Conditions, it is noted that discussions between the City of Hamilton (City) and HCA resulted in the determination that regulated watercourse features 1, 2, 3 and 4 did not require protection and could be enclosed. With respect to feature 4 (Watercourse 9), it is indicated enclosure was allowed given downstream infrastructure constraints. In Section 3.6, it is further noted enclosure was allowed given City concerns related to flooding and safety. In addition to this, the City's preference for an enclosed system was also related to concerns over consistency with the Secondary Plan, parkland requirements and useable recreational space, as well as anticipated long-term maintenance costs associated with an open watercourse feature. HCA suggests these additional considerations raised by the City should be identified in the report.

HCA staff note there was insufficient fisheries sampling work completed to determine if fish may be present at certain times. With respect to watercourse enclosure, HCA suggests it should be noted in Section 3.7, Environmental Impact Assessment, that consultation with the Department of Fisheries and Oceans (DFO) may be required to determine the potential impacts to fish or fish habitat. While this is noted in Table 9-1, it is suggested that a further reference in section 3.7 be included.

Table 9-1 states fish rescue permits and/or a LOA will not be required. In the absence of more detailed information or staging plan to identify when construction/enclosure will occur, HCA suggests this statement in Table 9-1 is potentially misleading.

The Environmental Impact Statement (EIS) provided in Appendix C indicates that Eastern Meadowlark and Bobolink have been reported previously from the vicinity of the site and that potential habitat is present, but that neither species was recorded during survey work; survey work did however record Barn swallow foraging on site. HCA staff note earlier surveys have documented each of these species on site. Monarch was also recorded as part of survey work completed for the study. HCA suggests that these species, the potential impacts to their habitat as a result of development of the block, and mitigation measures should be discussed further.

HCA staff suggest that indicating there is additional habitat for these species in the surrounding vicinity/Stoney Creek area does not recognize the considerable area of potential habitat that will be lost as a result of development of the block (as well as the surrounding blocks). If consultation with the MECP regarding these species at risk and potential Endangered Species Act requirements has occurred, HCA suggests this information should also be included.

HCA staff suggest Section 6 (Mitigation Measures) and 7 (Recommendations) of the EIS could be clarified to indicate that all vegetation types, including cultural meadows, must be considered in relation to the Migratory Bird Convention Act, and that any vegetation removal should only occur outside the migratory and breeding bird timing windows.

HCA staff note the mitigation measures section is very minimal. While there may be few environmental features in the block, HCA suggest the section could be expanded to be more robust, for example to include discussion regarding tree preservation plans, measures for Monarchs, etc.

Hydrology and Hydraulics Assessments

2. Lack of Model Calibration, Validation or Parameter Sensitivity Analysis

Given the significant revisions to the original MIKE 11 modeling (and the considerable changes in peak flow rates), HCA staff suggest that some form of model calibration or validation is warranted. Due to the lack of available flow observations in Watercourse 9, this review is expected to focus on a fulsome comparison of peak flow rates under existing conditions and future uncontrolled conditions (at all key comparison locations) to peak flow rates determined by previous approved modeling studies (SCUBE SWS 2013, FDRP, etc.). Also, a sensitivity analysis of key model parameters is suggested, to further validate the revised modeling results.

3. Corrected Errors from the Original SCUBE SWS 2013 MIKE 11 Modeling

The existing condition and future uncontrolled condition peak flows in Table 5-4 are considerably larger than those determined in the SCUBE SWS 2013 study, at available comparison locations (Nodes 12, 13 and 14). It is suggested that the report further detail the errors that were found and corrected in the original SCUBE SWS 2013 MIKE 11 modeling, as this information forms another aspect of the validation of the revised peak flows.

4. Recommend the Use of Design Storm Assessments, given Statistical Issues with the Frequency Flow Analysis

Given the Frequency Flow Analysis concerns, it is suggested that further consideration be given to the use of a design storm / single event modeling approach for all required assessments (SWM pond design, impacts of Proposed Conditions with SWM Controls on downstream Existing Condition peak flow rates, revised Future Uncontrolled Conditions). Further review / discussion of the adopted design storm details and validation / sensitivity analysis of the design event modeling would be necessary.

5. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Conditions for Four Storm Events

It was HCA staff's understanding, based on previous discussions, that the assessment was to include a comparison of peak flows for Proposed Conditions with SWM Controls to Existing Conditions for four discrete storm events, in addition to the comparison of peak flows determined by Flood Frequency Analysis of the continuous modeling results. The completion of this assessment would become more important in the absence of the assessments requested under item #4 above.

6. Peak Flow Comparison Locations Downstream of the Site for the Various Pond Rating Curve Scenarios

Given HCA's focus on ensuring that downstream flow regimes are maintained, it is recommended that peak flows for Proposed Conditions with SWM Controls be compared to Existing Conditions, at Nodes 7 – 14 for each of the various pond rating curve scenarios.

Furthermore, it is recommended that Table 5-18 also compare peak flows for Proposed Conditions with SWM Controls (Preferred Pond Rating Curve Scenario) to Existing Conditions, at Nodes 7-14.

7. Channel Capacity in the Venetian Meats Channel

It is HCA staff's understanding that the Venetian Meats constructed channel has a flow capacity of 5.3 m³/s for the reach between Node 7 and 8, and a flow capacity of 8.1 m³/s for the reach between Node 8 and 10. It is suggested that this be confirmed, and be considered within the pond design as necessary.

8. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities

It is recommended that a table be included comparing the peak flow rates under Proposed Conditions with SWM Controls to the existing flow capacities of culverts and channel sections downstream of the site.

 Comparison of Peak Flows under Future Uncontrolled Conditions to Existing Culvert & Channel Capacities

As an update to the same evaluation from the SCUBE 2013 study, it is recommended that there be a comparison of peak flow rates under Future Uncontrolled Conditions (Regional and 100 year event) to the existing flow capacities of culverts and channel sections at the QEW and CNR crossings downstream of the site.

10. Reduced Peak Flow Rates between Node 1 and Node 5 under Existing Conditions

Based on Table 3-2, there is a reduction in existing condition peak flow rates between Node 1 and Node 4 or 5 for the various return period events. Given the increase in drainage area, it was expected that the peak flow rates would have increased between Node1 and Node 5. It is suggested that the modeling / Flood Frequency Analysis be reviewed for possible errors. If no errors are evident, it is suggested that the report discuss the rationale for these findings.

11. Lack of Change in 100 year Storm Event Peak Flow Rate between Node 5 and Node 8 under Existing Conditions

Based on Table 3-2, there is no change in existing condition peak flow rates between Node 5 and Node 8 for the 100 year storm event. However, there are 35 to 20 % increases in peak flow rates between these two Nodes for the 2 to 50 year storm events, respectively. It was expected that the 100 year storm event peak flow rates would have increased between Node 5 and Node 8. It is suggested that the modeling / Flood Frequency Analysis be reviewed for possible errors. If no errors are evident, it is suggested that the report discuss the rationale for these findings.

12. Reduced Peak Flow Rates between Node 13 and Node 14 under Existing Conditions

Based on the existing condition peak flows in Table 3-2, there is a reduction in peak flow rates between Node 13 and Node 14 for the various return period events up to 50. Given the increase in drainage area, it was expected that the peak flow rates would have increased between Node 1 and Node 5. It is suggested that the modeling / Flood Frequency Analysis be reviewed for possible errors. If no errors are evident, it is suggested that the report discuss the rationale for these findings.

13. Drainage of Catchments 200 & 201A

Text on Page 24 states "A total of approximately 123.4 ha has been determined to drain to the culvert crossing Barton Street on the west side of Lewis Road (Flow Node 5 with characteristics shown in Table 3-1)". However, it is HCA staff's understanding that Catchments 200 and 201A also drain to the upstream side of this culvert via an existing 900 mm diameter storm sewer.

Based on the consultant's review and site observations, it would be appreciated if it could be confirmed whether the 900 mm diameter storm sewer draining Catchments 200 and 201A ends at the upstream side of the culvert crossing Barton Street on the west side of Lewis Road (Culvert ID 3), or if the 900 mm diameter storm sewer ends at the downstream side Culvert ID 3.

14. External Conveyance Sewer System

Text on Page 27 states "As such, the Regulatory storm event, or 100-year storm, is to be conveyed through an external conveyance storm sewer. For this reason, there will no longer be a floodplain issue for the site. The storm sewer has been sized to accommodate an external peak flow of 1.88 m³/s from the lands west of Lewis Road and south of Highway 8 based on calculations provided in the storm sewer design sheet included in Appendix G".

Based on the existing condition peak flows in Table 3-2, the 100-year peak flow rate at Node 1 (which represents this drainage area (DA 300)) is 2.40 m³/s. It is suggested that the hydrologic modeling and storm sewer flow estimates be reviewed to ensure that consistency has been maintained. However, it is acknowledged that the full flow capacity at the upstream end of the External Conveyance Sewer System is a minimum of 2.75 m³/s.

15. Statistical Distribution Selection – Appendix F

HCA staff were not completely clear what the orange dots shown on Figure 1 - 4 of Appendix F represent. Clarification would be appreciated.

16. Proposed Condition with SWM Control Peak Flows for Node 1

In Table 5-4, for Node 1 the peak flows for Proposed Conditions with SWM Control are the same as that for Future Uncontrolled Conditions. This is expected to be a clerical error, as the Node 1 peak flows for Proposed Conditions with SWM Control are expected to be the same as those under existing conditions, given this drainage area is upstream of the proposed Block 3.

17. Final Hydrology and Hydraulics Modeling Files to be Provided

Please provide a final copy of all modelling files, including output files, for future reference.

SWM Pond Design

18. Summary of Tasks for Detailed Design

Throughout the report, text identifies SWM pond design and assessment aspects to be addressed during subsequent stages of development planning. It is recommended that these items be summarized in a separate section for clarity. Also, is would be appreciated if the summary addressed all recommended actions and design criteria as per the Terms of Reference for Fruitland – Winona Block Servicing Strategy (Nov 2013).

19. SWM Pond Volume Requirements

It is suggested that pond volume requirements be based on design event modeling of the proposed conditions, rather than using SCUBE 2013 flow – volume relationships, which may not be accurate given the revised drainage patterns and imperviousness.

20. Proposed Development Areas Not Serviced by the Two Proposed SWM Ponds

It is suggested that the report text more clearly highlight the areas that will not be serviced by the two proposed SWM Ponds, as well as the fact that for these areas on-site storm water management will need to be evaluated and accounted for during subsequent development planning stages.

21. Table 5-5 Pond 9-2 (West) Release Rates

It was HCA staff expectation that the 2-year and 100-year release rates shown in Table 5-5 for Pond 9-2 (West) would be similar to the peak flows for Proposed Conditions with SWM Control for Node 4 shown in Table 5-4, however the peak flows are considerably different. It is suggested that the report be reviewed and discussion text be included to clarify this matter.

22. Required Storage Volumes for Pond 2 (West) in Table 5-14

The required storage volumes were expected to be consistent with Scenario 2 Table 5-8 values. It is suggested that the report be reviewed and discussion text be included to clarify this matter.

23. What Does Pre-development Flows Represent in Tables 5-7 to 5-9

HCA staff were unclear what drainage area and location the Pre-development Flows in these tables represented. Clarification would be appreciated.

Additional Comments

24. Proposed % Imperviousness Values

It would be appreciated if the report could confirm that the proposed values are consistent with the Fruitland Winona Secondary Plan and SCUBE SWS 2013.

25. Recommended Runoff Coefficients by Land Use

It would be appreciated if the report could confirm that the proposed values are consistent with the Fruitland Winona Secondary Plan and SCUBE SWS 2013.

26. Available Topography Data Used in the Study

Please include in Section 3.1 (Existing Topography) the details of the topographic data used for this study, including source, date created, contour interval, etc.

27. Recommendations for Future Study

The report contains a number of recommendations for additional study, assessment and design work at subsequent stages of development planning (e.g. SWM design, water balance, infiltration and LID, etc.). Additional recommendations have been provided in the comments above. It is recommended that these items be summarized in a separate section in the final report to ensure all recommendations and future work requirements are adequately captured.

Thank you for the opportunity to review and comment on the draft report. HCA staff are available to meet to discuss these comments in more detail if that would be helpful.

Kind regards,

Mike Stone MCIP, RPP

Manager, Watershed Planning Services

MS/JB

A Healthy Watershed for Everyone

BY EMAIL

February 12, 2020

Margaret Fazio, Senior Project Manager Infrastructure Planning Growth Management, Planning & Economic Development Department City of Hamilton 71 Main St. West, 6th Floor Hamilton, ON L8R 4Y5

Dear Ms. Fazio,

Re: Block Servicing Strategy, Fruitland-Winona Secondary Plan Area, Block 3, Third Submission, January 2020

Thank you for providing the Hamilton Conservation Authority (HCA) with the *Block Servicing Strategy, Fruitland Winona Secondary Plan, Block 3* (Urbantech West, Third Submission, January 2020). HCA staff have reviewed the report and offer the following comments for consideration.

Summary and Significant Outstanding Issues

While the third submission report has addressed some of HCA's September 30, 2019 natural heritage and engineering review comments, as well as subsequent follow-up engineering comments (email dated November 4, 2019), a number of comments/requested assessments have not been completed. The outstanding items are described below, with the more significant issues summarized here for quick reference.

The requested evaluation to confirm negligible potential erosion impacts resulting from the significantly increased downstream peak flow rates, under the proposed development which includes the bypass of upstream external flows, does not seem to have been completed.

The proposed upgrades to culvert crossings at Barton, Lewis and Highway 8 have not been detailed and may reduce flow attenuation and possibly increase flows, water levels and velocities downstream of the crossings. Depending on the proposed upgrades, a downstream impact assessment may be required.

Staff note the existing condition peak flow rates have changed considerably at some key locations, when compared to the first submission results. Given the lack of changes to the existing conditions assessment this was not expected, and staff suggest further comment regarding the changes should be included in the report.

In addition, HCA staff request that future uncontrolled peak flow results be provided in the main report, as the information is not easily abstracted from the provided Appendices. It is HCA staff's intention to compare the peak flow results to our ongoing Flood Plain Mapping Update study, and will provide further comment once this review is completed. Once this review has been completed, HCA staff may request additional justifications / reviews to address any outstanding accuracy and confidence concerns.

Environmental Impact Assessment

1. Natural Heritage Features and Watercourses

HCA provided natural heritage related comments dated September 30, 2019 regarding the second submission report. In reviewing the third submission staff note that ARCADIS has not provided a direct response to these comments. While Urbantech's comment response table included in Appendix M indicates HCA's natural heritage requested revisions have been included in the EIS and main body of the revised report, in reviewing the third submission staff note this generally does not appear to be the case as it relates to HCA's species at risk, significant wildlife habitat and fisheries comments.

HCA notes not all of the EIS's recommended mitigation measures are noted in the main report. It may be helpful for the report to refer to the EIS for the complete list of recommended mitigation measures.

In Section 3, Existing Conditions, it is noted that discussions between the City of Hamilton (City) and HCA resulted in the determination that regulated watercourse features 1, 2, 3 and 4 did not require protection and could be enclosed. With respect to feature 1 (Watercourse 9), it is indicated enclosure was allowed given downstream infrastructure constraints. In Section 3.6, it is further noted enclosure was allowed given City concerns related to flooding and safety. In addition to this, the City's preference for an enclosed system was also related to concerns over consistency with the Secondary Plan, parkland requirements and useable recreational space, as well as anticipated long-term maintenance costs associated with an open watercourse feature. HCA continues to suggest that these additional considerations raised by the City and its preference for an enclosed system should be identified in the report.

Hydrology and Hydraulics Assessments

2. Lack of Model Calibration, Validation or Parameter Sensitivity Analysis

The intended sensitivity analysis has not been provided. HCA staff had expected a review of changes in peak flow rates resulting from changes in the values selected for key parameters (within justified ranges). It was staff expectation that this review would help address concerns

regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study. HCA suggests this analysis should be completed as part of the final report.

As per HCA email correspondence dated November 4, 2019, staff note the third submission BSS designs and assessments have been based on the continuous modeling (as per the First Submission).

HCA staff have compared the third submission existing conditions peak flow results to our ongoing Flood Plain Mapping Update study. The unit peak flow rates are similar between the two studies at the CNR crossing and at Lake Ontario. However, it should be noted that the BSS unit peak flow rates are considerably higher at the Highway 8 crossing.

Also, it was noted that the third submission existing condition peak flow rates have changed considerably at some key nodes, when compared to the first submission results. Given the lack of changes to the existing conditions assessment, this was not expected. Please provide an explanation for the revised peak flow rates.

It was further noted that the main report tables and tables within the figures were inconsistent with regards to peak flow rates. It appears that the figures are still based on second submission results.

In addition, HCA staff request that future uncontrolled peak flow results be provided in the main report, as the information is not easily abstracted from the information provided. It is HCA staff's intention to compare the peak flow results to our ongoing Flood Plain Mapping Update study, and will provide further comment once this review is completed. Once this review has been completed, HCA staff may request additional justifications / reviews to address any outstanding accuracy and confidence concerns.

3. Corrected Errors from the Original SCUBE SWS 2013 MIKE 11 Modeling

The DHI memo dated June 12, 2018 has now been included in the report Appendices. This memo identifies significant differences in peak flows when the original SCUBE Subwatershed Study 2013 MIKE 11 model (using 2007 version of MIKE 11) was re-run using the 2017 version of MIKE 11. Although it is acknowledged that the 2017 re-run produced lower peak flows, the magnitude of differences and lack of understanding of reasons for the differences increases HCA staff's concern regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study. While this continues to be a concern, no action is required at this time.

4. Recommend the Use of Design Storm Assessments, given Statistical Issues with the Frequency Flow Analysis

As per HCA email correspondence dated November 4, 2019, the third submission BSS designs and assessments have been based on the continuous modeling (as per the first submission).

As per HCA email correspondence dated November 4, 2019, an assessment was to be completed confirming that the resultant peak flow rates, under the scenario of proposed development with SWM and Catchment 300 flows bypassing the site, will not result in any adverse flooding or erosion impacts on downstream channel sections or culverts (Nodes 5 – 14). The third submission includes a comparison of peak flows at key culverts, as well as within the Venetian Meats channel.

It does not appear that an evaluation has been completed to confirm negligible potential erosion impacts resulting from the significantly increased downstream peak flow rates under the proposed development. HCA suggests this assessment should be completed.

Furthermore, it had been expected that all channel sections downstream of the proposed development would be reviewed to confirm that the increased peak flow rates are expected to have no flooding impacts. It appears that only the Venetian Meat channel section was assessed in this regard.

In addition, a similar comparison has not yet been provided for the future uncontrolled conditions scenario.

The proposed upgrades to culvert crossings at Barton, Lewis and Highway 8 have not been detailed and may reduce flow attenuation and possibly increase flows, water levels and velocities downstream of the crossings. Depending on the proposed upgrades, a downstream impact assessment may be required.

Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities

As discussed in above, the third submission provides some, but not a full comparison of peak flow rates under Proposed Conditions with SWM Controls to the existing flow capacities of culverts and channel sections downstream of the site.

Comparison of Peak Flows under Future Uncontrolled Conditions to Existing Culvert & Channel Capacities

As an update to the same evaluation from the SCUBE 2013 study, HCA had recommended that there be a comparison of peak flow rates under Future Uncontrolled Conditions (Regional and 100 year event) to the existing flow capacities of culverts and channel sections at the QEW and CNR crossings downstream of the site. As discussed in above, the third submission has not provided this comparison.

Thank you for the opportunity to review and comment on the third submission report. HCA staff are available to meet to discuss these comments in more detail if that would be helpful towards addressing key outstanding issues and ensuring timelines are met for completion of the study.

Kind regards,

M. S.

Mike Stone MCIP, RPP

Manager, Watershed Planning Services

MS/JB

Comment No.	Report Reference	Comment Details	Commen tor's Name	Staff's Area of work - Department, Division, Area
SMW - Engin	eering Comments			
1		The final Block Servicing Strategy Report (BSS) should be signed and stamped by a Qualified Professional Engineer.		
2	Analysis	The current BSS SWM strategy is based on continuous modelling using MIKE 11. However, the report included the flow results for design storm event simulation from the 2nd BSS submission in several sections, which are outdated. Please ensure that during final submission, the relevant report sections, appendices and engineering drawings are including the flow assessment results based on the latest DHI memo (Jan 15, 2020). Some examples of inconsistencies are: Table 5-9, SWM pond target scenario tables for ponds 2 and 3 in Appendix H, Drawings SWM-5 and SWM-6.		
3		Previous comment 18: table 5-15 should revise the topsoil depth to a minimum 200mm and include the option of rear yard swales with 150mm perforated pipe with granular materials.		
4	Table 5.12- Section 5.7	Please verify the unitary volume calculations for Pond 3. The storage volumes should be "m3/imp-ha" to be consistent with that of Pond-2.		
5	(Annendix B)	 a) The Hydrogeological Investigation Report (Landtek, July, 2019) included sections for water taking evaluation and impact assessment, monitoring and mitigation plans during construction. Please clarify why these sections are removed from the Jan, 2020 report. b) The water balance assessment results in Appendix I are not consistent with report section 3.2 and the July, 2019 report. Please verify. 		
6	Sanitary Sewer	 a) Please note that as per City standards sanitary sewers should be maximum 75% full. The proposed sewer from MH15A-W to MH12A-W should be upsized, which is shown to be 81% full. This sewer leg has an intermediate manhole, MH 24A-W, which should be added in the design sheet. b) In sanitary-west option 2 design sheet, please verify the population densities for West condo, EX5, EX6, EX7, EX8; and ensure consistency with sanitary drainage area plans. c) In sanitary sewer design sheets for the west area, the flows from MH 24A-W to MH12A-W and MH 24A-W(1) to MH12A-W are not added downstream. 		
O	(Appendix I)	Please revise. d) Please clarify the outlet of catchment 16 (1.42 ha) in the sanitary drainage area plans. Is it going to Street D or Street E?		
		e) For option 2, the existing McNeilly Road sanitary sewer north of Barton Street is shown to be 97% full. Please note that during detailed design stage (for higher population densities), sewer upgrade may trigger based on flow monitoring of the existing sewer along McNeilly Road.		
7	DWG GR-1	Previous comment 4g : based on section A-A, it appears that partial drainage from existing lots fronting McNeilly Road currently goes through the Block 3 lands and the proposed fill will block this drainage. During detailed design, a temporary/interim ditch inlet should be considered to pick up the external drainage from the existing lots.		Project Manager, Infrastructure
		a) During detailed design, please ensure that additional manholes are provided at locations, where currently two pipes are shown leaving from the same manhole at different directions, therefore the conveyance systems should be separated to avoid any interaction.	Zakia	Planning, Growth
		b) DWGs SAN-1 and SAN-1A: the proposed sanitary sewer from MH 25A-W to MH 7A-W is going through private lands. Please note that a suitable block should be dedicated to the City for this proposed sewer. The land owner should acknowledge in writing, about the proposed sanitary sewer through his lands.	Sultana	Management Division, Planning &

8	SAN-4, SAN- 1A to SAN-4A	c) DWGs SAN-1 and SAN 1-A: please verify the top and inverts at MH 33 A-W and MH 31A-W. During detailed design, please ensure that minimum 2.75m cover is provided for all sanitary sewers as per City standards.		Economic Development,
		d) A note should be added in the drainage plans for the external drainage from HWY-8 to EX.MH 10 (20.45 ha in sanitary sewer design sheet).		City of Hamiltor
		e) Please show the north limit of catchment 1, immediately south-east of Barton Street and Lewis Road.		
		f) Previous comment 20g: catchment 3 should divided to separate areas north and south of Barton Street.		
9	DWG STM-1	Previous comment 11h : please clarify the park servicing strategy. We understand that the minor flows will be captured by the proposed park stub connection to Street D storm sewer. Please clarify whether major flows will be conveyed overland to public streets.		
		Please provide MIKE 11 flow results for catchment 300 and 200, the 2nd submission BSS included the 100-year hydrographs showing the 100-year peak flows for these catchments, which is removed from this submission. Based on the continuous simulation results (BSS, Jan 2020), 100-year peak flows for		
	DWG-STM3	catchments 300 and 200 are 2.648 m ³ /s and 1.474 m ³ /s respectively. Based on single event modeling (BSS 2nd submission), 100-year peak flows for		
10	(External Bypass Pipe)	catchments 300 and 200 were 4.017 m ³ /s and 1.5 m ³ /s respectively. While for both modelling scenarios, catchment 200 flows are in good agreement, catchment 300 flows are significantly different. Based on the reduced flows for catchment 300, the sewer size from MH 7C to MH6C is reduced to 1350mm in the storm sewer design sheet; however the drainage area plans are still showing a 1500mm sewer. The external bypass sewer design should be kept same as the BSS 2nd submission scenario 2a, therefore sewer from MH7C to MH6C should be kept as 1500mm. Please revise the storm sewer design sheet		
		accordingly.		
11	DWG STM-4	Previous comments 6c,10b,11f: please verify the drainage area of catchments EXT 4.1 and EXT 4.2, there appears to be typo. The BSS should include discussions about the SWM/drainage strategy for the external areas north-east of Barton Street and McNeilly Road. Drainage to the venetian meat channel, Arvin Avenue storm sewer and existing watercourse should be documented. A note should be added that the option of extending the existing 1950mm storm sewer from McNeilly Road to Arvin Avenue may be considered during detailed design stage, which may allow EXT 4.1 lands to drain to Arvin Avenue		
		storm sewer.		
		a) During detailed design, major overland flow route for both ponds should be directed to the wet cell. If 100-year flows are captured in storm sewers, a split manhole may be required to divert the major flows to the wet cell, or the forebay may be upsized considering the additional flows.		
12	DWGs SWM-1 to SWM-4	b) DWG SWM-1(<i>Previous comment 14.2b</i>): the drawings are still showing pond 2 access road from Barton Street. During detailed design stage access road should be provided from internal streets as noted in the response letter.		
		c) DWG SWM-2 (<i>Previous comment 4i</i>): during detailed design stage, the proposed berm design at Barton Street should be confirmed.		
		d) DWG SWM-3: the drawings are not showing any connection of internal streets to Pond 3 access Road. During detailed design, access should be provided		
		from internal streets, not Lewis Road.		
13	DWG SWM-7	Please verify the drainage area of catchment 101A, which is 1.98 ha in other drawings.		
atural Her	itage			
14	Appendix C- Section 1.1.2 (page2)	Previous comment (Sept. 12, 2019) 2 a) i) has not been addressed. On page 2 it is stated "Schedule B of the UHOP shows the Hamilton Natural Heritage System which does not identify Core Areas on and adjacent to the site". As identified in previous comments, there are features within the Natural Heritage System that have not been mapped. These features incude habitat for Species at Risk (SAR) and Significant Wildlife Habitat (SWH). The statement needs to be revised to include this caveat.		
15	Appendix C- Section 1.1.4 (page 3)	Previous comment (Sept. 12, 2019) 2 a) ii) has not been addressed. On page 3, the discussion within Section 1.1.4 (Fruitland Winona Secondary Plan) focuses on the Stoney Creek Urban Boundary Expansion Subwatershed Study and not on policies of the Secondary Plan (policies 7.4.2.5-natural heritage principles; 7.4.11-Natural Heritage System general policies and 7.4.14-Block Servicing Strategy). This section is to be revised to include these policies.		Natural Heritage Planner:
16	Appendix C- Section 3.4 (page 15)	On page 15, Section 3.4 has been labelled as "Species at Risk Screening". While this label describes the first three paragraphs, section 3.4.1 describes Significant Wildlife Habitat. Significant Wildlife Habitat should be its own section.	Melissa	Development Planning, Heritage and
17	Appendix C- Section 5 (page 22)	Previous comment (Sept. 12, 2019) 2 e) iv) has not been addressed: On page 22 it has been stated that "Monarch depends on milkweed for its life cycle, however milkweed is common and plentiful in the Stoney Creek area". It is important to note that additional habitat within the vicinity does not recognize the potential habitat that will be lost as a result of development within this area.	Kiddie	Design, Planning and Economic

	Appendix C-			Development,
18	Section 6 (page	Previous comment (Sept. 12, 2019) 2 d) : As a measure to mitigate the impacts on the locally rare Carolina Wren, it has been identified that nest boxes could be provided within green spaces. It is important to note that this may be difficult to implement as part of development of this area.		City of Hamilton
	24) Appendix C-	could be provided within green spaces. It is important to note that this may be difficult to implement as part of development of this area.	†	
19	Appendix D:	Previous comment (Sept. 12, 2019) 2 e) ii): The locations of Eastern Meadowlark/Bobolink surveys have been provided on Figure D-1. The stations have		
	Breeding Birds	been labelled in red and are very difficult to read. This figure needs to be revised to clearly identify the station numbers.		
20	Appendix C- Appendix D: Breeding Birds	Previous comment (Sept. 12, 2019) 2 e) iii) has not been addressed: Within the breeding bird table provided within Appendix D, Barn Swallow, a "threatened" species has been identified as possibly breeding within the study area. There is concern with this evaluation. Within the text of Appendix C, it has been noted that Barn Swallow was only found foraging within the area and that no breeding habitat was available for this species (page 22). This table needs to be revised to reflect this information.		
Public Cons	ultation /Administr	ative		
21	Appendix N - 1, Public Stakeholder List	Remove staff names' rows, down to Councillors. Remove last 2 columns for the entire list - not needed and some of these are internal - City directions.		
		Replace staff names with my name - Margaret Fazio - Liaison to City staff/Project Team and internal communications.		0 11
22	Appendix N - 2	Change title from "Notice of Public Comment" to "Notice of 30 day Public Review"	†	Growth
23	Appendix N-4	Leave the notice but need to add your PIC panels - preferably in colour here. Feb 23, 2016 Returned letters/Landowner Inquiries - this list shows peoples names and addresses, and if you wish to follow City's privacy protection best practices, we suggest removing this list. You may wish to just mention in numbers, in the main body of the report, how many people registered letters were sent to, include your mailing list map/refer to the study map, how many were returned and how many provided comments. This is the kind of information Coucil would be interested in. By the Way, Council Members are treated as the rest of the public.		Management Division, Infrastructure Planning.
24	Appendix N - 3	Out of order with N-3 in hard copy - please check the e copy as well. Title says PIC but there are no panels, but where the N-3 says there are letters, there are maps in that section?May just be out of order. If providing the sign in sheet, please either provide a blank (which we don't have, I know), or black out attendee names & contact information to protect their privacy.		
25	Executive Summary	Provide long form of EIS. Also, discussions with transportation staff indicated - as per concept map, that further intersection control measures are to be determined at Application submission/Detailed Design stage. Therefore, we would like to suggest to reword to the following: "If changes are made to the road network the City has the right to ask for Traffic Impact Studies, if found to be required. As development proceeds, the determination of intersection controls (stop-control or mini-roundabout), within each development area will be required."	M. Fazio & Mohan Philip	Growth Management & Transportation Planning
26	Introduction, fourth paragraph	Suggest changing last sentence to" This study pertains to the Block 3 area within the Secondary Plan.		
	Introduction -	Subject changing last sentence to This study pertuns to the block's area within the secondary Hall.	†	
27	Overall			
	Comment	Please use an accronym for Block 3 SS consistently. Currently there are BSS, Block 3, Block 3 SS in use. Suggest sticking to just one for clarity.		
28	Purpose	NHS - introduce the long form before using the accronym]	
29	Official Public Comment	Please reword the first sentence - it is repetitive. Please reword the tense of this section into past tense, rather than future. Thiurd sentence please change to: "The hard copy of the study report was made available at City Hall - Clerk's Dest, and 6th Floor - front counter"		

	1	
30	SCUBE Subwatershed Study	Second Paragraph - last sentence - suggest removing. Not sure it's needed? When you are describing Phases does Phase 3 mean this current study? Sorry not clear. Perhaps it should be stated earlier in this Section 1.7, that SCUBE Subwatershed Studies followed a Municipal Class Environmental Assessment process, which fulfilled the requirements of Phases 1 & 2, - at teh bottom of the second paragraph? It would provide more process clarity. You refer to Phase 3 for this study (third paragraph - page 10), but we are not technically carrying out Phase 3 EA process, so would suggest refraining from using thatPhase 3 reference here. Just state that "this BSS provides an implementation strategy for the Block 3 area" Last paragraph - top line mentions "SWMF" - please provide long form I don't know what it is? Could you please use Pond 2 & 3 naming consistently, and always mention "East" and "West" when referring to POnds by number. Also, please add a statement which talks about SCUBE Subwatershed Study East establishing the numbering system for the Ponds. Just so nobody is wondering what happened to Pond 1.
31	Section 4.2 Roadworks; pg 29	Please place the first setence of the first paragraph below the first paragraph - under the bullers. Otherwise the sentence doesn't feel like it's pertaining to roadworks, but is speaking to general grading for the entire sitewe know it's dependent on roads, so moving it will make that relationship clearer. Second Paragraph - it is likely that cycling will also be included on the east-west collector, so the bottom sentence should also include a statement Please reword the bottom paragraph to indicate that Barton and Fifty Road Phases 3 & 4 Municipal Class EA (EA), as well as Highway 8 Phases 3 & 4 EA are
32	Roadworks continued	Please reword the bottom paragraph to indicate that Barton and Fifty Road Phases 3 & 4 Municipal Class EA (EA), as well as Highway 8 Phases 3 & 4 EA are ongoing at the time of writing of this report. McNeilly and Lewis were not identified in SCUBE TMP (sub-set of the Secondary Plan), to trigger a need for further study. All roads which are rural will become urbanized within Block 3 SS. Until Barton and Highway 8 EA are completed the ROW width is determined by the Secondary Plan policies. Barton Road is classified as a major arterial roadway, currently identified in the Secondary Plan to require 40.576m ROW, which is 36.576 m from centre line, with additional off set of 4m to the south. Highway 8 is an arterial roadway with the ROW of 36.576m, however. The ongoing EAs may amend these ROW widths. McNeilly and Lewis Roads will remain classified as collector roads, with ROW width 26.213m. Please note that local road ROW is not 20m exactly but 20.117m.
33	4.3 STORM DRAINAGE, pg 30	Second Paragraph - fourth sentence suggest rewording to "The ponds are not intended to accommodate additional drainagecontrols need to ensure that downstream exceedances don't occu". Currently the sentence feels disjointed and hard to follow.
34	4.3.2 External Storm Drainage Requirements	Bottom of second paragraph"Mike 11 model results are greater than those determined using the rational method"suggest putting "rational method" in quotation marks, because to a non-specialist this sounds like Mike 11 is irrational, therefore shouldn't be used?:) ALso, suggest putting in brackets after "rational method" (standard calculation used to determine flows).
35	5.3 SWM Targets & Design Criteria, pg. 34	
36	5.7.1 Extended Detention Storage, pg 56	Please remove the reference to Meander Belt calculations, and the associated Appendix, except for Erosion analyses - downstream. Meander belt is no longer applicable.
37	5.7.3 Sediment Forebay pg. 58	Please make references to SWM Ponds consistent with the rest of the ReportSWM West (Pond 2), SWM East (Pond 3).
38	5.9.1 LID BMPS for GROUNDWATER RECHARGE	Second Paragraph - second sentence. Please replace "will" with "were".
39	8 TRAFFIC/ TRANSPORTATIO N	Not sure if this needs to be repeated from Roadworks? If yes see pg. 30 comments provided above.
40	8.2 FUTURE BACKGROUND TRAFFIC CONDITIONS	First sentence - please add "at full build out scenario" in brackets after 2024 or add the number 2024 after the bottom sentenceso that whoever is reading it can connect the dots.

M.Fazio

Management Division, Infrastructure Planning.

Growth

41	Please remove the last sentence of the bottom paragraph. Barton street EA, at intersections with Lewis and McNeilly has identified a need for signalized intersections. If we can just leave it out we're covered. Also, please see above for wording on intersection control - comments on Executive Summary.	
42		
43		
44		
45		
46		
47		

APPENDIX B: SITE PHOTOGRAPHS

UPDATED ENVIRONMENTAL IMPACT STATEMENT

PHOTO 1

Date: August 20, 2015

Direction: South

Description:

Agricultural land/Cultural meadow, view from Barton Street

PHOTO 2

Date: August 20, 2015

Direction: North

Description:

Cultural meadow, view from Barton Street

UPDATED ENVIRONMENTAL IMPACT STATEMENT

PHOTO 3

Date: June 1, 2016

Direction: West

Description:

Meadow adjacent to school on Lewis Road.

PHOTO 4

Date: June 5, 2017

Direction: South

Description:

Orchard adjacent to cultural meadow.

UPDATED ENVIRONMENTAL IMPACT STATEMENT

PHOTO 5

Date: June 5, 2017

Direction: South

Description:

Agricultural field and meadow.

PHOTO 6

Date: June 5, 2017

Direction: West

Description:

Cultural savannah adjacent to Lewis Road.

APPENDIX C: VEGETATION INVENTORY

Table C-1: Vascular Plant Species List

Table C-1: Vascular i	lant openio Liet					City of
Common Name	Scientific Name	S Rank	COSEWIC	ESA	SARA	City of Hamilton*
Manitoba Maple	Acer negundo	S5				N
Norway Maple	Acer platanoides	SNA				I
Silver Maple	Acer saccharinum	S5				N
Sugar Maple	Acer saccharum ssp. saccharum	S5				N
Common Yarrow	Achillea millefolium	S5				I
Creeping Bentgrass	Agrostis stolonifera	SNA				I
Garlic Mustard	Alliaria petiolata	SNA				I
Common Ragweed	Ambrosia artemisiifolia	S5				N
Corn Chamomile	Anthemis arvensis	SNA				I
Common Buckthorn	Rhamnus cathartica	SNA				I
Common Burdock	Arctium minus	SNA				I
Common Milkweed	Asclepias syriaca	S5				N
Garden Asparagus	Asparagus officinalis	SNA				I
Common Wintercress	Barbarea vulgaris	SNA				I
Lamb's Quarters	Chenopodium album	SNA				I
Chicory	Cichorium intybus	SNA				I
Canada Thistle	Cirsium canadensis	SNA				I
Bull Thistle	Cirsium vulgare	SNA				
Field Bindweed	Convolvulus arvensis	SNA				I
Grey Dogwood	Cornus racemosa	S5				N
Red-osier Dogwood	Cornus stolonifera	S5				N
Common Hawthorn	Crataegus monogyna	N/A				N/A
Orchard Grass	Dactylis glomerata	SNA				I
Queen Ann's Lace	Daucus carota	SNA				I
Deptford Pink	Dianthus armeria	SNA				I
Teasel	Dipsacus fullonum	SNA				I
Field Horsetail	Equisetum arvense	S5				N
Philadelpia Fleabane	Erigeron philadelphicus	S5				N
Meadow Fescue	Festuca pratensis	SNA				I
White Ash	Fraxinus americana	S4				N
Honey-Locust	Gleditsia triacanthos	SNA				I
Soybean	Glycine max	SNA				I
Dame's Rocket	Hesperis matronalis	SNA				
Yellow Hawkweed	Hieracium caespitosum	SNA				I
Foxtail Barley	Hordeum jubatum	S5				N
St. John's Wort	Hypericum perforatum	SNA				
Spotted Jewelweed	Impatiens capensis	S5				N
Prickly Lettuce	Lactuca serriola	SNA				I
Sweet Pea	Lathyrus odoratus	SNA				I
Butter-and-Eggs	Linaria vulgaris	SNA				I
Oxeye Daisy	Leucanthemum vulgare	SNA				I
Tartarian Honeysuckle	Lonicera tatarica	SNA				I
Common Apple	Malus pumila	SNA				I
Black Medick	Medicago lupulina	SNA				I
Alfalfa	Medicago sativa	SNA				I

Common Name	Scientific Name	S Rank	COSEWIC	ESA	SARA	City of Hamilton*
Sweet White Clover	Melilotus albus	SNA				I
White Mulberry	Morus alba	SNA				1
Virginia Creeper	Parthenocissus quinquefolia	S4?				N
Reed Canary Grass	Phalaris arundinacea	S5				N
Timothy	Phleum pratense	SNA				I
Common Reed	Phragmites australis	SNA				I
Scots Pine	Pinus sylvestris	SNA				I
English Plantain	Plantago lanceolata	SNA				I
Common Plantain	Plantago major	S5				N
Annual Bluegrass	Poa annua	SNA				I
Kentucky Bluegrass	Poa pratensis	S5				I
Grass spp.	Poa spp.	N/A				N/A
Sulphur Cinquefoil	Potentilla recta	SNA				I
Peach sp.	Prunus persica	N/A				I
Cherry sp.	Prunus sp.	N/A				I
Pear sp.	Pyrus sp.	N/A				I
White Oak	Quercus alba	S5				N
Bur Oak	Quercus macrocarpa	S5				N
Red Oak	Quercus rubra	S5				N
Tall Buttercup	Ranunculus acris	SNA				I
Buckthorn	Rhamnus cathartica	SNA				ı
Rhubarb	Rheum rhabarbarum	SNA				NL
Poison Ivy	Rhus radicans	S5				N
Staghorn Sumac	Rhus typhina	S5				N
Black Locust	Robinia pseudoacacia	SNA				1
Briar Rose	Rosa eglanteria	SNA				i
Black Raspberry	Rubus occidentalis	S5				N
Curled Dock	Rumex crispus	SNA				1
Black Willow	Salix nigra	S4?				N
Willow	Salix spp.	N/A				N/A
Wild Mustard	Sinapsis arvensis	SNA				14// (
Bittersweet Nightshade	Solanum dulcamara	SNA				·
Canada Goldenrod	Solidago canadensis	S5				N
Perennial Sow-thistle	Sonchus arvensis	SNA				
New England Aster	Symphyotrichum novae-angliae	S5				N
Common Lilac	Syringa vulgaris	SNA				1
Common Tansy	Tanacetum vulgare	SNA				· ·
Common Dandelion	Taraxacum officinale	SNA				1
		SNA				1
Field Pennycress American Basswood	Thlaspi arvense Tilia americana					I N
		S5				N
Goat's Beard	Tragopogon dubius	SNA	+			l l
Red Clover	Trifolium pratense	SNA	 			l ,
White Clover	Trifolium repens	SNA	 			l N
Broad-leaved Cattail	Typha latifolia	S5				N
Stinging Nettle	Urtica dioica	SNA				<u> </u>
Cow Vetch	Vicia gracca	SNA				l
Riverbank Grape	Vitis riparia	S5				N

ENVIRONMENTAL IMPACT STATEMENT

Common Name	Scientific Name	S Rank	COSEWIC	ESA	SARA	City of Hamilton*
Grape sp.	Vitis sp.	N/A				N/A

Legend:

* HCA (2014) Hamilton Natural Areas Inventory Project, 3rd Edition. Species Checklist Document. Hamilton Conservation Authority

I: Introduced (non native)

N; Native

NA: Not applicable NL: Not listed U: Uncommon

S4: Apparently secure

S5: Secure

SNA: Conservation status not applicable

ESA: Endangered Species Act

100305-0003 C-3

APPENDIX D: BREEDING BIRD SURVEYS

Table D-1: Breeding Birds

Common Name	Scientific Name	Habitat	Survey Location (BB#)	ELC/ Location	S Rank	COSEWIC	SARA Status	ESA Status	City of Hamilton	Breeding Status
Canada Goose	Branta canadensis	I	2, 4, 8	CUM1-1, AG	S5B				С	POSS
Turkey Vulture	Cathartes aura	O/AG	2, 3, 10	CUM1-1, AG	S5B				UC	POSS
Killdeer	Charadrius vociferus	O/AG	2, 3, 11	CUM1-1	S5B/S5N				A	POSS
Rock Pigeon	Columba livia	U	2, 8, 10, 12, 20, 21	CUM1-1, U	SNA				Α	POSS
American Woodcock	Scolopax minor	AG/O/MW	3, 6	CUM1-1, AG	S4B				С	POSS
Ring-billed Gull	Larus delawarensis	I	1, 12	CUM1-1	S5B/S4N				A	POSS
Barn Swallow	Hirundo rustica	AG/U	3, 6	CUM1-1, AG	S4B	THR	THR	THR	С	
Tree Swallow	Tachycineta bicolor	O/WL	14, 15, 16	West of Lewis Road	S4B					POSS
Mourning Dove	Zenaida macroura	ES/U	2, 4, 10, 13, 15, 16, 17, 18, 19, 20	Urban	S 5				А	POSS
Northern Flicker	Colaptes auratus	AG/U/W	5, 6, 14, 20	CUM1-1, AG,	S4B				С	POSS
Willow Flycatcher	Empidonax traillii	Т	2, 3, 5, 6, 9, 10	CUM1-1, HR, AG	S5B				С	POSS
Eastern Kingbird	Tyrannus	O/AG/U	1, 2, 3, 6, 8,	CUM1-1, AG	S4B				Α	POSS
Red-eyed Vireo	Vireo olivaceus	W/U	4, 8, 13, 17, 19	CUM1-1, AG, HR, U	S5B				С	POSS
Blue Jay	Cyanocitta cristata	W/U	4, 5, 6, 7, 9, 11, 13, 17, 18, 19, 20, 21	CUM1-1, U, OR, AG	S 5				А	POSS
American Crow	Corvus brachyrhyncos	AG/W/O	1, 6, 10, 12, 17, 18, 19, 20, 21	CUM1-1, U, OR, AG	S5B				С	POSS
Black-capped Chickadee	Poecile atricapillus	MW	1, 2, 3, 4, 7, 9, 11, 12, 15, 17,19, 21	CUM1-1, U, OR, AG, HR	S5				А	POSS
White-breasted Nuthatch	Sitta carolinensis	W	1, 3, 5, 7, 8, 10, 18, 21	CUM1-1, U, OR, AG, HR	S5				С	POSS
Carolina Wren	Thryothorus ludovicianus	W	3, 5, 6, 9, 10, 15, 16	CUM1-1, U, HR	S3S4				R	POSS
House Wren	Troglodytes aedon	AG/U/WL/W	2, 3, 7, 8, 11, 14, 18, 20	CUM1-1, U, AG	S5B				С	POSS
American Robin	Turdus migratorius	U	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21	CUM1-1, U, OR, AG	S5B				А	POSS
Gray Catbird	Dumetella carolinensis	T/AG/U	3, 4, 5, 6, 10,	CUM1-1, AG	S4B				А	POSS
European Starling	Sturnus vulgaris	AG/U	1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 18, 19, 21	CUM1-1, AG, HR, U	SNA				А	POSS
Cedar Waxwing	Bombycilla cedrorum	W/AG/U	5, 6, 7, 8	CUM1-1, AG, U	S5B				С	POSS
Yellow Warbler	Setophaga petechia	Т	2, 3, 5, 6, 9, 14	CUM1-1, AG	S5B				А	POSS
Chipping Sparrow	Spizella passerina	CW	1, 5, 7, 9, 14,	CUM1-1, AG,	S5B				A	POSS

Common Name	Scientific Name	Habitat	Survey Location (BB#)	ELC/ Location	S Rank	COSEWIC	SARA Status	ESA Status	City of Hamilton	Breeding Status
			15, 18, 19	U						
Song Sparrow	Melospiza melodia	ES	1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13,	CUM1-1, AG, U, HR	OFD					DOGG
			15, 18, 19, 21 1, 2, 4, 10, 11,	CUM1-1, U	S5B				A	POSS
Northern Cardinal	Cardinalis	U	13, 15, 16, 17, 18, 19, 20, 21	COM1-1, O	S5				А	POSS
Red-winged Blackbird	Agelaius phoeniceus	WL	2, 5, 14, 16	WL, CUM1-1	S4				A	POSS
Common Grackle	Quiscalus quiscula	W/U	1, 5, 7, 9, 14, 15, 18, 19	CUM1-1, AG, U	S5B				A	POSS
Brown-headed Cowbird	Molothrus ater	W	4, 5, 10, 14	OR, AG, CUM1-1	S4B				А	POSS
House Finch	Haemorhous mexicanus	U	1, 2, 8, 13, 15, 16, 17	U, CUM1-1, AG	SE				А	POSS
American Goldfinch	Spinus tristis	ES	3, 4, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19	CUM1-1, AG, OR, U	S5B				А	POSS
House Sparrow	Passer domesticus	U	2, 4, 13, 15, 19, 21	CUM1-1, AG, U	SE				A	POSS

Legend: S Ranks:

AG: Agricultural CW: Coniferous Woodlands DW: Deciduous Woodlands ES: Early Successional

MW: Mixed Woodlands

S Ranks:
S3: Vulnerable
S4: Apparently secure
S5: Secure
B: Breeding
E: Exotic (non-native)
POSS: Possible Breeding
SNA: No S Rank assigned
SNA: No S Rank assigned (non-native species)

NAR: Not at Risk U: Urban W: Woodlands WL: Wetlands


A: Abundant C: Common UC: Uncommon R: Rare THR: Threatened

arcadis.com 100305-0003

Table D-2: Bobolink Survey Locations

Location Number	Survey Location	Dates Completed	GPS Location (17 T)	Comment
1	250 m north of Barton, east of McNeilly Road	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608292.51 mE 4785803.21 mN	Bobolink and Eastern meadowlark not heard or observed
2/BB1	Barton Street, 170 m east of McNeilly Road	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608214.83 mE 4785803.21 mN	Bobolink and Eastern meadowlark not heard or observed
3/BB3	250 m south of Barton, in soybean field	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608166.64 mE 4785305.81 mN	Bobolink and Eastern meadowlark not heard or observed
4	250 m north of Highway 8 in old orchard	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608041.62 mE 4785042.36 mN	Bobolink and Eastern meadowlark not heard or observed
5	Highway 8, 150 m east of McNeilly Road	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	607984.96 mE 4784794.10 mN	Bobolink and Eastern meadowlark not heard or observed
6/BB20	Highway 8 at McNeilly Road	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	607831.25 mE 4784751.45 mN	Bobolink and Eastern meadowlark not heard or observed
7/BB8	Barton Street, 285 m east of McNeilly	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608335.35 mE 4785533.27 mN	Bobolink and Eastern meadowlark not heard or observed
8/BB7	250 m south of Barton, in soybean field	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608280.36 mE 4785280.83 mN	Bobolink and Eastern meadowlark not heard or observed
9/BB6	180 m north of Highway 8	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608248.85 mE 4785044.52 mN	Bobolink and Eastern meadowlark not heard or observed
10/BB9	Barton Street, 305 m west of Lewis Road	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608581.30 mE 4785488.21 mN	Bobolink and Eastern meadowlark not heard or observed
11/BB10	250 m south of Barton Street, in soybean field	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608520.71 mE 4785244.56 mN	Bobolink and Eastern meadowlark not heard or observed
12	150 m north of Highway 8	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608489.43 mE 4785060.72 mN	Bobolink and Eastern meadowlark not heard or observed
13/BB14	205 m west of Lewis Road	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608638.64 mE 4785326.27 mN	Bobolink and Eastern meadowlark not heard or observed

Location Number	Survey Location	Dates Completed	GPS Location (17 T)	Comment
14/BB11	Lewis Road, 210 m north of Barton Street	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608951.57 mE 4785657.89 mN	Bobolink and Eastern meadowlark not heard or observed
15	Lewis Road, 50 m north of Barton Street	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608883.89 mE 4785484.57 mN	Bobolink and Eastern meadowlark not heard or observed
16	Lewis Road, south of school property	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608831.86 mE 4785255.73 mN	Bobolink and Eastern meadowlark not heard or observed
17/BB15/B B16	Lewis Road, 150 m north of Highway 8	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608786.10 mE 4785084.96 mN	Bobolink and Eastern meadowlark not heard or observed
18/BB17	Highway 8 and Lewis Road	May 28, 2015, July 7, 2015, August 20, 2015, June 1, 2016, July 13, 2016, June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	608805.49 mE 4784958.67 mN	Bobolink and Eastern meadowlark not heard or observed
19	75 m south of Barton Street	June 5, 2017, July 7, 2017, June 26, 2019, July 3, 2019, July 10, 2019	609265.75 mE 4785263.38 mN	Bobolink and Eastern meadowlark not heard or observed

Bobolink Survey Methodology (also applicable to Eastern Meadowlark)

Qualifications: Observers should be familiar with Bobolink identification by sight and sound. This includes being able to separate males from females and knowledge of Bobolink behaviour during breeding to allow it to be categorized (e.g. singing, carrying food or nesting material, foraging, territorial displays).

Pre-Survey: Set up parallel transects crossing the fields lengthwise at approximately 250 m intervals and locate point counts along the transects, at 250 m intervals. Point counts should be located to give a good view of the surrounding fields.

Create GPS locations for each point count.

Conditions: Surveys need to be done under field conditions with no rain, no or low wind speed and good visibility. In the course of the surveys if a nest or probable nest is encountered, the surveyor is advised not to disturb it or search an area for nests. Surveys rely on observations of birds while walking along transects through the fields.

Survey: Materials needed for the survey include binoculars, notebook, GPS, compass, watch and camera.

Surveys should start 30 minutes after dawn and continue until no later than 9 am. The observer will walk the transect stopping at each point count. Undertake ten minutes of observations and listening at each point count. Record information on all Bobolink observed or heard, their sex, direction, distance, behaviour and interactions with other Bobolink or other species. On transit between point counts, record any Bobolink observed or heard if not also seen on the point counts.

Repeat visits: Complete at least three sets of point count surveys. These should take place in June or the first week of July with each survey separated by a week or more from previous surveys.

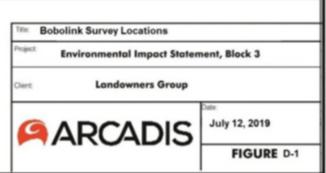
Habitat: From the transects, make notes on the general conditions of the fields that are surveyed. These would include broad habitat descriptors (type of meadow/ field/ crop), estimated height of the vegetation, general vegetation type (including predominate species if known), estimated percentage of grass versus broad-leaved plants, presence of hedgerows & fence lines, and presence of litter (i.e. thatch). Photos should be taken.

Legend

Ecological Land Classification (ELC)

CUM1-1= Dry-Moist Old Field Meadow

CUS1= Cultural Savannah


HR= Hedgerow

MAS2-1= Cattail Mineral Shallow Marsh

OR= Orchard

BB= Breeding Bird Survey location

Bobolink Survey location

APPENDIX E: FISH HABITAT ASSESSMENT

MEMO

To: Copies:

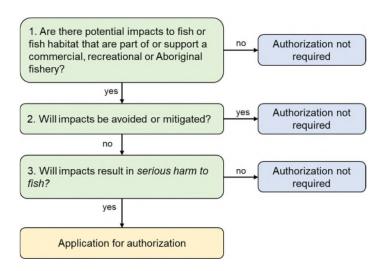
Fruitland-Winona BSS3 Landowners Group c/o Rob Merwin

From:

Sean McKee, Barbara Hard

Tel 905.764.9380

 Date:
 ARCADIS Project No.:


 December 6, 2019
 10366146

Subject:

Fruitland-Winona Secondary Plan – Block 3 – Updated Fish Habitat Self-Assessment

This memo documents the fish habitat assessment conducted as part of the Environmental Impact Statement (EIS) update in support of the Draft Plan applications for lands in Block 3 of the Fruitland-Winona Secondary Area Plan in Stoney Creek (Figure 1).

The City of Hamilton identified a requirement for a "DFO Fish Habitat Screening", therefore, prior to undertaking this assessment, Arcadis contacted Megan Lay of Fisheries and Oceans Canada (DFO), where it was clarified that compliance with the provisions of the *Fisheries Act* (1985) in regard to particular waterbodies is made on a case-by-case basis through a self-assessment tool. The self-assessment should consider the project extent (e.g., location, activities/works, size) to determine impacts to fish and fish habitat and identify appropriate mitigation measures. This habitat assessment was developed to follow the Fisheries and Oceans Canada (DFO) Self-Assessment Tool for Projects Near Water for watercourses in Block 3. The self-assessment follows these steps to determine whether authorization is required:

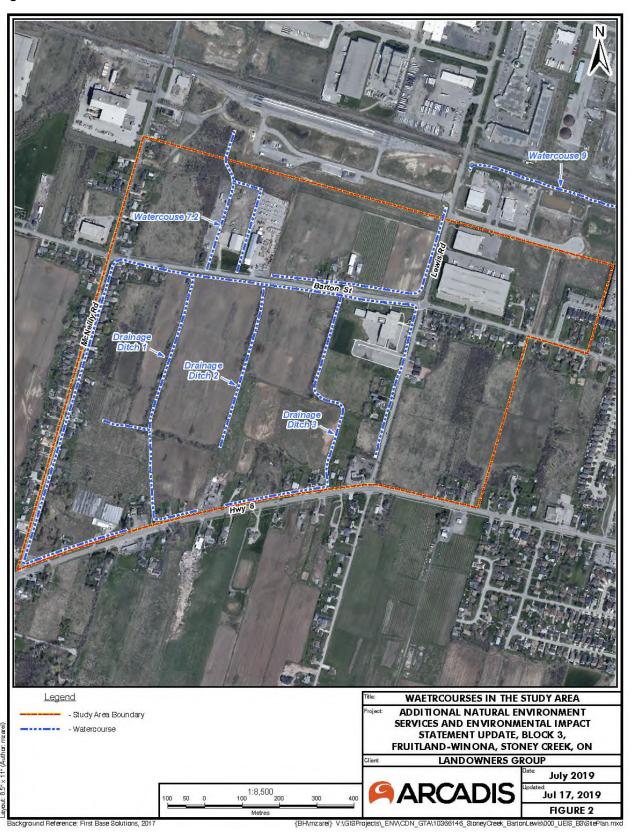
Fish and fish habitat are protected under the *Fisheries Act* (1985), and harm to fish and fish habitat is prohibited under the Act. Accordingly, there are a number of waterbody types where DFO authorization is not required, including:

- artificial waterbodies that are not connected to a waterbody that contains fish at any time during any given year, and
- any other waterbody that does not contain fish at any given time during any given year.

An approved subwatershed study was previously conducted for the watercourses in this block (Aquafor Beech 2012). This study involved stream classification, which determined that watercourses in Block 3 are either piped, altered by agricultural tile drainage, or incorporated into roadside ditches, and are ephemeral and do not comprise fish habitat. However, watercourses 7.2 and 9 were deemed to be indirect fish habitat, in that they contribute surface water to downstream sections.

Therefore, this fish habitat assessment was undertaken to verify the findings of the approved subwatershed study and to determine whether an authorization or review is required as part of the DFO Self-Assessment. Arcadis conducted fish habitat assessments for the following sites in the study area (Figure 2):

- Watercourse 7.2;
- Watercourse 9;
- Three (3) watercourses between McNeilly Road and Lewis Road;
- Ditches along Barton Street, Lewis Road, and Highway 8.


The habitat assessment was conducted based on shoreline observations of physical characteristics of the watercourse, such as: size (width and depth), flow, habitat types (pool, run, riffle), in-stream cover, degree of disturbance and modification, and substrate. The field surveys were undertaken on June 26, July 3, July 10 and November 22, 2019.

A desktop review of historic fish data was conducted using the Ministry of Natural Resources and Forestry (MNRF) Fish ON-Line tool (MNRF 2019). No fish have been reported or observed in any of the watercourses included in this fish habitat assessment. However, the nearby Fifty Creek supports a tolerant warmwater fish community consisting of golden shiner, white sucker and fathead minnow. These species were captured downstream of the QEW by Hamilton Conservation Authority. Upstream of the QEW, only fathead minnows were captured (Aquafor Beech 2012). The MNRF Fish ON-Line tool also states that pumpkinseed have been confirmed in Fifty Creek. Although not applicable to the watercourses in Block 3, Watercourses 9 or 7.2 may support a similar tolerant warmwater fish community downstream of the QEW.

Figure 1: Site Location

Figure 2: Fish Habitat Assessment Locations

1.0 WATERCOURSE 7.2

Figure 3 Watercourse 7.2, looking north

Watercourse 7.2 is north of Barton Street and East of McNeilly Road. It is a small channel (~0.2 m wide) with a narrow riparian zone, with a driveway and a lawn on either side. At the time of observation, the channels were dry, i.e., no water or flow. The watercourse is highly modified and channelized, running north along the property boundary. Watercourse 7.2 does not comprise direct fish habitat. Based on observations, any indirect habitat (i.e., surface water conveyed to downstream sections) provided by Watercourse 7.2 is limited and seasonal.

2.0 WATERCOURSE 9

Figure 4 Watercourse 9, looking east

Watercourse 9 is immediately south of the railroad tracks and east of Lewis Road, and west of Winona Road. It is a small channel with wide sloped berms on each side. The watercourse is modified, and appears to be channelized, with rip rap along the corner near Lewis road. It is bordered by railroad tracks to the north, with various land uses to the south. At the time of observation, the west end of the channel was dry, i.e., no water or flow, however further east, there were standing water sections with a wetted width of 2 m. Watercourse 9 does not comprise direct fish habitat. Based on observations, any indirect habitat (i.e., surface water conveyed to downstream sections) provided by Watercourse 9 is limited and seasonal.

3.0 DRAINAGE DITCH 1

Figure 5 Drainage Ditch 1, channel bed and substrate

Drainage Ditch 1 is south of Barton Street and east of McNeilly Road, with a western arm that branches out towards McNeilly Road. There appeared to be no connection (no culvert observed) to the north side of Barton, except at Lewis Road. At the time of observation, there was no water throughout the ditch, however the substrate was damp in some areas. The average bankfull width of the channel is roughly 0.8 m. There is a wide (~8 -25 m wide) treed riparian area, providing shade and cover. There is a vehicle crossing partway up the reach, with a culvert spanning underneath. The west arm of Drainage Ditch 1 had no wetness. Drainage Ditch 1 does not comprise fish habitat.

4.0 DRAINAGE DITCH 2

Figure 6 Drainage Ditch 2 looking south

Drainage Ditch 2 is south of Barton, approximately halfway between McNeilly Road and Lewis Road. There appeared to be no connection (no culvert observed) to the north side of Barton, except at Lewis Road. The flow in this watercourse is ephemeral, and contained no water at the time of observation, although the substrate was damp in some sections. The bankfull width was ~ 0.4 m. The riparian area is a 12 m wide treed strip with agricultural land on either side. Due to the lack of water and connection to downstream sections, this watercourse does not comprise fish habitat.

5.0 DRAINAGE DITCH 3

Figure 7 Drainage Ditch 3

Drainage Ditch 3 is south of Barton and borders the Winona Elementary Public School to the west. This watercourse was dry at the time of observation. The riparian area is treed and ranges from 7-14 m wide for most of its length. Drainage Ditch 3 does not comprise fish habitat.

Standing water in Drainage Ditch 3 in November 2019 following days of snowmelt and rainfall.

6.0 ROADSIDE DITCH (NORTH SIDE OF HWY 8)

Figure 8 Roadside ditch, North of Hwy 8

This roadside ditch runs along the north side of Highway 8. The riparian area varies, and includes landscaped grass, tall grasses and trees. The channel was dry at the time of observation and is expected to have seasonal and/or transient flow. Although the channel may exhibit seasonal/transient flow, it is expected that this roadside ditch does not comprise fish habitat or appreciable surface water conveyance to downstream sections.

7.0 ROADSIDE DITCH (SOUTH SIDE OF BARTON STREET AND EAST SIDE OF MCNEILLY)

Figure 9 Roadside ditch, south of Barton St. looking west

This roadside ditch runs along the south side of Barton Street and the east side of McNeilly Road. At the time of observation, there was no water or wetness in the ditch, and no riparian zone. The bankfull width of the channel is approximately 0.4 m. Although the channel may exhibit seasonal/transient flow, it is expected that this roadside ditch does not comprise fish habitat or appreciable surface water conveyance to downstream sections.

8.0 ROADSIDE DITCH (NORTH OF BARTON STREET AND WEST OF LEWIS ROAD)

Figure 10 Roadside ditch, north of Barton St. looking north

This roadside ditch contained water with minimal flow. This roadside ditch receives flow from across Barton Street (Section 9) via a culvert. The watercourse ranged from 0.4 to 1 m in width, with a maximum depth of 10 cm. The riparian area consists of tall grasses and some smaller wooded vegetation. There was abundant algal growth observed throughout. Under higher flow conditions, this watercourse would eventually feed into watercourse 9, however at the time of observation the watercourse was not continuous. This roadside ditch does not comprise fish habitat. Based on observations, any indirect habitat (i.e., surface water conveyance to downstream sections) provided to downstream sections is limited.

9.0 ROADSIDE DITCH (SOUTH AND WEST OF BARTON STREET AND LEWIS ROAD)

Figure 11 Roadside ditch, south of Barton St. looking west

The roadside ditch on the south and west of Barton Street and Lewis road borders Winona Public Elementary School. The ditch is connected to the roadside ditch to the north via a culvert crossing Barton Street. At the time of observation, there was some flow present, however the watercourse was generally narrow (~5 cm) and shallow (<2 cm) with some wider, deeper sections. In some sections the channel substrate is comprised of gravel and rip rap from the road grade. The ditch is connected to the roadside ditch to the north via a culvert under Barton Street. This watercourse also appears to receive direct stormwater runoff from the school parking areas. In some stretches, there is emergent and floating vegetation, and other sections contain thick algae. This roadside ditch does not comprise fish habitat. Based on observations, any indirect habitat (i.e., surface water conveyance to downstream sections) provided to downstream sections is very limited.

10.0 CONCLUSION

As part of this DFO Fish Habitat Self-Assessment in support of the Draft Plan applications for lands in Block 3 of the Fruitland-Winona Secondary Area Plan in Stoney Creek, a total of nine sites were assessed for fish habitat. Of these, it was determined that no sites comprise direct fish habitat. As noted previously (Aquafor Beech 2013), Watercourses 7.2 and 9 provide indirect habitat (i.e., surface water conveyance) to downstream sections, however there are barriers to fish passage to the watercourses in Block 3. At the time of the Site visits, the conveyance of surface water was limited and deemed to be seasonal and/or transient in nature. In general, the watercourses in the area are seasonal and have been modified/channelized, and have been incorporated into roadside drainage, built-up areas, or agricultural drainage. More water in the ditches was observed during the fall, following snow melt and rain fall.

Although these sites do not comprise fish habitat, since some locations provide surface water conveyance to downstream sections that do comprise fish habitat, there is potential for impacts to fish or fish habitat as part of the project activities. Therefore, works involving these watercourses should consider the project extent and potential impacts to the role of these watercourses in supporting downstream fish habitat. The functions of these watercourses (i.e., surface water conveyance) should be maintained (e.g., with stormwater management), and any potential disruptions should be properly mitigated (e.g., silt fencing to limit sediment loading). Consistent with the recommendations of the approved subwatershed study, the proposed stormwater management plan will replace the water quality and quantity function of the drainage features in the study area. As long as these functions are maintained, no DFO authorization is required.

REFERENCES

Aquafor Beech Limited. 2013. Stoney Creek Urban Boundary Expansion Area (SCUBE) East – Subwatershed Study, s.1.:s.n.

Fisheries Act 1985 (Canada). c. F-14. https://laws-lois.justice.gc.ca/eng/acts/f-14/.

Ontario Ministry of Natural Resources and Forestry (MNRF). 2019. Fish ON-Line. Website: <a href="https://www.gisapplication.lrc.gov.on.ca/FishONLine/Index.html?site=FishONLine&viewer=FishONLin

APPENDIX F: COMMUNICATIONS

From: Species at Risk (MECP) <SAROntario@ontario.ca>

Sent: Monday, July 15, 2019 12:37 PM

To: Hard, Barbara <Barbara.Hard@arcadis.com>

Subject: RE: SAR in Stoney Creek

Hello Dr. Hard.

Thank you for your email.

As you may know, the Ministry of the Environment, Conservations and Parks (MECP) has accepted responsibility for the administration of the Endangered Species Act (ESA). Work associated with ESA authorizations has been centralized from 25 Ministry of Natural Resources and Forestry district offices into one, newly formed Permissions and Compliance team within the new Species at Risk Branch in MECP. This branch is staffed by former MNRF employees with experience in the ESA.

To facilitate communications with our clients, the MECP has established a one-window e-mail account, SAROntario@ontario.ca, for applications, report submissions and other communications relating to applications and authorizations under the ESA. SAROntario@ontario.ca will also be the primary contact for clients who wish to determine whether their proposed activity is likely to contravene the ESA. Staff in this new branch will continue to be available to provide advice to you.

To support our new centralized model, we have been working on the attached guide to help clients work through the preliminary screening process, including providing advice to clients on how they can gather the information you have requested from publicly available information sources. Please feel free to contact us at SAROntario@ontario.ca if you think your activity is likely to contravene the ESA and if you would like further advice on authorization options.

Please see the attached guide for your use.
Thank you,
Kristina Hubert
for Permissions and Compliance Section
Species at Risk Branch
Ministry of the Environment, Conservation and Parks

From: Hard, Barbara <Barbara.Hard@arcadis.com>

Sent: July-15-19 2:23 PM

To: Species at Risk (MECP) < SAROntario@ontario.ca>

Subject: SAR in Stoney Creek

Hi there,

I am looking for information on SAR in Stoney Creek (Block 3, map attached).

Of particular interest are bobolink and meadowlark sightings.

Thanks,

Barbara

Barbara Hard, PhD, PBiol, RPBio, QP(RA) | Senior Biologist, Discipline Lead, Natural Sciences | Barbara.Hard@arcadis.com

Arcadis | Arcadis Canada 155 Frobisher Dr Suite J-101 Waterloo ON | N2V 2E1| Canada M. +1 905 516 5976 | F. +1 519 886 8398

[Connect with us! www.arcadis.com | LinkedIn | Twitter | Facebook | Connect App

Reduce your footprint.

Please consider the environment before printing this email.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Ministry of the Environment, Conservation and Parks
Species at Risk Branch, Permissions and Compliance
DRAFT - May 2019

Table of Contents

1.0 Purpose, Scope, Background and Context	
1.1 Purpose of this Guide	3
1.2 Scope	3
1.3 Background and Context	4
2.0 Roles and Responsibilities	5
3.0 Information Sources	6
3.1 Make a Map: Natural Heritage Areas	7
3.2 Land Information Ontario (LIO)	7
3.3 Additional Species at Risk Information Sources	8
3.4 Information Sources to Support Impact Assessments	8
4.0 Check-List	Q

1.0 Purpose, Scope, Background and Context

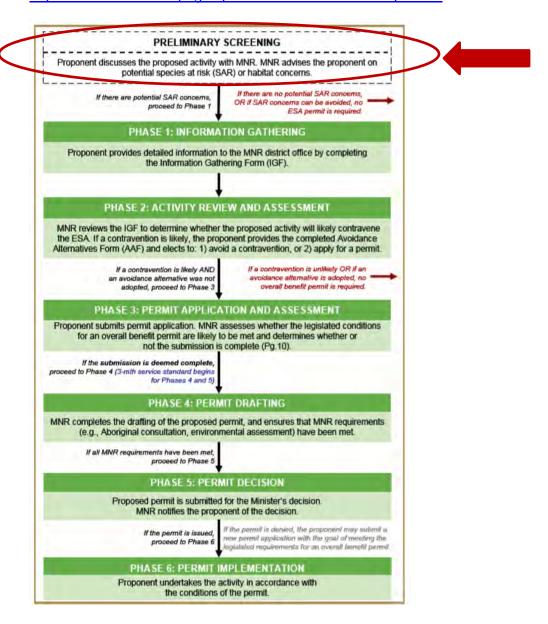
1.1 Purpose of this Guide

This guide has been created to:

- help clients better understand their obligation to gather information and complete a preliminary screening for species at risk before contacting the ministry,
- outline guidance and advice clients can expect to receive from the ministry at the preliminary screening stage,
- help clients understand how they can gather information about species at risk by accessing publicly available information housed by the Government of Ontario, and
- provide a list of other potential sources of species at risk information that exist outside the Government of Ontario.

It remains the client's responsibility to:

- carry out a preliminary screening for their projects,
- obtain best available information from all applicable information sources,
- conduct any necessary field studies or inventories to identify and confirm the presence or absence of species at risk or their habitat,
- consider any potential impacts to species at risk that a proposed activity might cause, and
- comply with the Endangered Species Act (ESA).


To provide the most efficient service, clients should initiate species at risk screenings and seek information from all applicable information sources identified in this guide, at a minimum, <u>prior to</u> contacting Government of Ontario ministry offices for further information or advice.

1.2 Scope

This guide is a resource for clients seeking to understand if their activity is likely to impact species at risk or if they are likely to trigger the need for an authorization under the ESA. It is not intended to circumvent any detailed site surveys that may be necessary to document species at risk or their habitat nor to circumvent the need to assess the impacts of a proposed activity on species at risk or their habitat. This guide is not an exhaustive list of available information sources for any given area as the availability of information on species at risk and their habitat varies across the province. This guide is intended to support projects and activities carried out on Crown and private land, by private landowners, businesses, other provincial ministries and agencies, or municipal government.

1.3 Background and Context

To receive advice on their proposed activity, clients <u>must first</u> determine whether any species at risk or their habitat exist or are likely to exist at or near their proposed activity, and whether their proposed activity is likely to contravene the ESA. Once this step is complete, client may contact the ministry at <u>SAROntario@ontario.ca</u> to discuss the main purpose, general methods, timing and location of their proposed activity as well as information obtained about species at risk and their habitat at, or near, the site. At this stage, the ministry can provide advice and guidance to the client about potential species at risk or habitat concerns, measures that the client is considering to avoid adverse effects on species at risk or their habitat and whether additional field surveys are advisable. This is referred to as the "Preliminary Screening" stage. For more information on additional phases in the diagram below, please refer to the <u>Endangered Species Act Submission Standards for Activity Review and 17(2)(c) Overall Benefit Permits policy available online at https://www.ontario.ca/page/species-risk-overall-benefit-permits</u>

2.0 Roles and Responsibilities

To provide the most efficient service, clients should initiate species at risk screenings and seek information from all applicable information sources identified in this guide <u>prior to</u> contacting Government of Ontario ministry offices for further information or advice.

Step 1: Client seeks information regarding species at risk or their habitat that exist, or are likely to exist, at or near their proposed activity by referring to all applicable information sources identified in this guide.

Step 2: Client reviews and consider guidance on whether their proposed activity is likely to contravene the ESA (see section 3.4 of this guide for guidance on what to consider).

Step 3: Client gathers information identified in the checklist in section 4 of this guide.

Step 4: Client contacts the ministry at SAROntario@ontario.ca to discuss their preliminary screening. Ministry staff will ask the client questions about the main purpose, general methods, timing and location of their proposed activity as well as information obtained about species at risk and their habitat at, or near, the site. Ministry staff will also ask the client for their interpretation of the impacts of their activity on species at risk or their habitat as well as measures the client has considered to avoid any adverse impacts.

Step 5: Ministry staff will provide advice on next steps.

Option A: Ministry staff may advise the client they can proceed with their activity without an authorization under the ESA where the ministry is confident that:

- no protected species at risk or habitats are likely to be present at or near the proposed location of the activity; or
- protected species at risk or habitats are known to be present but the activity is not likely to contravene the ESA; or
- through the adoption of avoidance measures, the modified activity is not likely to contravene the ESA.

Option B: Ministry staff may advise the client to proceed to Phase 1 of the overall benefit permitting process (i.e. Information Gathering in the previous diagram), where:

- there is uncertainty as to whether any protected species at risk or habitats are present at or near the proposed location of the activity; or
- the potential impacts of the proposed activity are uncertain; or
- ministry staff anticipate the proposed activity is likely to contravene the ESA.

3.0 Information Sources

Land Information Ontario (LIO) and the Natural Heritage Information Centre (NHIC) maintain and provide information about species at risk, as well as related information about fisheries, wildlife, crown lands, protected lands and more. This information is made available to organizations, private individuals, consultants, and developers through online sources and is often considered under various pieces of legislation or as part of regulatory approvals and planning processes.

The information available from LIO or NHIC and the sources listed in this guide should not be considered as a substitute for site visits and appropriate field surveys. Generally, this information can be regarded as a starting point from which to conduct further field surveys, if needed. While this data represents best available current information, it is important to note that a lack of information for a site does not mean that species at risk or their habitat are not present. There are many areas where the Government of Ontario does not currently have information, especially in more remote parts of the province. The absence of species at risk location data at or near your site does not necessarily mean no species at risk are present at that location. Onsite assessments can better verify site conditions, identify and confirm presence of species at risk and/or their habitats.

Information on the location (i.e. observations and occurrences) of species at risk is considered sensitive and therefore publicly available only on a 1km square grid as opposed to as a detailed point on a map. This generalized information can help you understand which species at risk are in the general vicinity of your proposed activity and can help inform field level studies you may want to undertake to confirm the presence, or absence of species at risk at or near your site.

Should you require specific and detailed information pertaining to species at risk observations and occurrences at or near your site on a finer geographic scale; you will be required to demonstrate your need to access this information, to complete data sensitivity training and to obtain a Sensitive Data Use License from the NHIC. Information on how to obtain a license can be found online at https://www.ontario.ca/page/get-natural-heritage-information.

Many organizations (e.g. other Ontario ministries, municipalities, conservation authorities) have ongoing licensing to access this data so be sure to check if your organization has this access and consult this data as part of your preliminary screening if your organization already has a license.

3.1 Make a Map: Natural Heritage Areas

The Make a Natural Heritage Area Map (available online at http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR NHLUPS NaturalHeritage e&viewer=NaturalHeritage&locale=en-US provides public access to natural heritage information, including species at risk, without the user needing to have Geographic Information System (GIS) capability. It allows users to view and identify generalized species at risk information, mark areas of interest, and create and print a custom map directly from the web application. The tool also shows topographic information such as roads, rivers, contours and municipal boundaries.

Users are advised that sensitive information has been removed from the natural areas dataset and the occurrences of species at risk has been generalized to a 1-kilometre grid to mitigate the risks to the species (e.g. illegal harvest, habitat disturbance, poaching).

The web-based mapping tool displays natural heritage data, including:

- Generalized Species at risk occurrence data (based on a 1-km square grid),
- Natural Heritage Information Centre data.

Data cannot be downloaded directly from this web map; however, information included in this application is available digitally through Land Information Ontario (LIO) at https://www.ontario.ca/page/land-information-ontario.

3.2 Land Information Ontario (LIO)

Most natural heritage data is publicly available. This data is managed in a large provincial corporate database called the LIO Warehouse and can be accessed online through the LIO Metadata Management Tool at

https://www.javacoeapp.lrc.gov.on.ca/geonetwork/srv/en/main.home. This tool provides descriptive information about the characteristics, quality and context of the data. Publicly available geospatial data can be downloaded directly from this site.

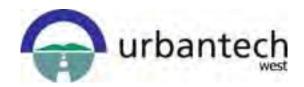
While most data are publicly available, some data may be considered highly sensitive (i.e. nursery areas for fish, species at risk observations) and as such, access to some data maybe restricted.

3.3 Additional Species at Risk Information Sources

- The Breeding Bird Atlas can be accessed online at http://www.birdsontario.org/atlas/index.jsp?lang=en
- eBird can be accessed online at https://ebird.org/home
- iNaturalist can be accessed online at https://www.inaturalist.org/
- The Ontario Reptile and Amphibian Atlas can be accessed online at https://ontarionature.org/programs/citizen-science/reptile-amphibian-atlas
- Your local Conservation Authority. Information to help you find your local Conservation
 Authority can be accessed online at https://conservationontario.ca/conservation-authority/

Local naturalist groups or other similar community-based organizations

- Local Indigenous communities
- Local land trusts or other similar Environmental Non-Government Organizations
- Field level studies to identify if species at risk, or their habitat, are likely present or absent at or near the site.
- When an activity is proposed within one of the continuous caribou ranges, please be sure to consider the caribou Range Management Policy. This policy includes figures and maps of the continuous caribou range, can be found online at https://www.ontario.ca/page/range-management-policy-support-woodland-caribou-conservation-and-recovery


3.4 Information Sources to Support Impact Assessments

- Guidance to help you understand if your activity is likely to adversely impact species at
 risk or their habitat can be found online at https://www.ontario.ca/page/categorizing-and-protecting-habitat-under-endangered-species-act
- A list of species at risk in Ontario is available online at
 https://www.ontario.ca/page/species-risk-ontario. On this webpage, you can find out more about each species, including where is lives, what threatens it and any specific habitat protections that apply to it by clicking on the photo of the species.

4.0 Check-List

Please feel free to use the check list below to help you confirm you have explored all applicable information sources and to support your discussion with Ministry staff at the preliminary screening stage.

✓	Land Information Ontario (LIO)
✓	Natural Heritage Information Centre (NHIC)
✓	The Breeding Bird Atlas
✓	eBird
✓	iNaturalist
✓	Ontario Reptile and Amphibian Atlas
✓	List Conservation Authorities you contacted:
✓	List local naturalist groups you contacted:
√	List local Indigenous communities you contacted:
√	List any other local land trusts or Environmental Non-Government Organizations you
	contacted:
✓	List and field studies that were conducted to identify species at risk, or their habitat, likel
	to be present or absent at or near the site:
✓	List what you think the likely impacts of your activity are on species at risk and their
	habitat (e.g. damage or destruction of habitat, killing, harming or harassing species at
	risk):

APPENDIX D AIR DRAINAGE

D-1 Air Drainage Analysis (Amec Foster Wheeler, May 2018)

1312733 Ontario Inc. Submission to the City of Hamilton, Fruitland-Winona Tertiary Plan Area

Air Drainage Analysis

To: 1312733 Ontario Inc.

720 Oval Court, Burlington, ON, L7L 6A9

Date March 9, 2016

From: Dr. Diar Hassan, Ron Bianchi, and Gaëtan Beauchesne (P. Eng.)

Amec Foster Wheeler, Ottawa

Dr. Kevin Ker

Research Associate and Prof. Affiliate, Brock University

1312733 Ontario Inc.

Executive Summary – Air Drainage Analysis for 1312733 Ontario Inc.

The City of Hamilton requires an Air Drainage Analysis for the Block 3 Servicing Strategy Area, Urban Hamilton Official Plan, Fruitland-Winona Tertiary Plan (hereafter referred as to the PLAN) area located within the City of Hamilton in southern Ontario, Canada.

The desktop analysis consisted in the review of the topography and the analysis of the climatology of the region.

The objective of this analysis was to study the effect of the proposed development within the PLAN to the micro-climate in the region.

The archived climate data for three nearby weather stations revealed that the predominant winds will be from the west and southwest direction. Furthermore, the data have shown December and February being the months with the highest number of fog occurrences while February is the month with the highest number of reported freezing fog.

The two types of low temperature that can cause injury conditions are advection frost and radiation frost. Such conditions occur during the growing season and advection freeze and radiation freeze during the dormant period. Advection frost is a regional frost event and it occurs when low temperature air masses which originate from northern regions move into the area. This kind of event can be understood through the analysis of climatological data and the topography of the region. Radiation frost is a micro-scale climate event and is generally site specific. Radiation frost is typically caused by cold air accumulation near the ground surface, which can occur in the spring or fall. Low temperature freeze events occur during the winter months when plants are not actively growing but are in a dormant state to survive winter conditions.

Tender fruit trees and wine grapes can be damaged in the winter due to very low temperatures that go below their acclimation points. The damage often includes cracking of trunks and branches, the death of flower and leaf buds or total death of trees and vines.

Following the desktop analysis of the microclimate and the topography in the Fruitland-Winona area, the proposed development inside the PLAN area is not expected to block the southwesterly-to-northeasterly direction air flow. The new development is not expected to impede the natural air movement and may assist in mixing the boundary air layer (a layer near the ground) by creating eddies (turbulences), thus aid in streaming any cold air descending from the Niagara Escarpment, i.e. prevent air stagnation. Meanwhile, the existing and proposed local roads and the natural open spaces outlines in the PLAN will help to channel the air downstream toward Lake Ontario.

1312733 Ontario Inc.

CONTENTS

1. lı	ntroduction	5
2.0 F	RUITLAND-WINONA AREA	6
3.0 ha	amilton fruitland-winona Tertiary Plan	7
4. ten	nperature distribution	8
5. wir	nds	10
a.	Prevailing Winds	10
b.	Prevailing Winds under Freezing and Sub-Freezing temperatures	14
C.	Probability of Frost Occurence	17
d.	Fog and Freezing Fog	23
6. T	opography	24
7. V	Vinter Injury	25
8. S	Summary and Conclusion	26
9. F	References	27
Appei	ndix - Resumes	28
Diar H	Hassan, Ph.D., P.Met.	29
Atm	nospheric Scientist	29
C	Core skills	29
P	Professional summary	29
P	Professional qualifications/registration(s)	29
Е	Education	29
N	Memberships/affiliations	29
L	anguages	29
Е	Employment history	30
P	Publications and Conferences	30
F	Project	30
Ron E	Bianchi, BSc (Hon) BCert FRMetS	31
	nior Associate – Director of Strategic DevelopmentClimate and Terrestrial Vean Services	Veather - Met-

Air Drainage Analysis (Fruitland-Winona Secondary Plan)

1312733 Ontario Inc.

Core skills

31	
31	
31	
31	
- 4	

Professional summary	31
Professional qualifications/registration(s)	31
Education	31
Memberships/affiliations	31
Languages	32
Employment history	32
Representative projects	32

Reviewer:

Gaëtan Beauchesne, P. Eng.

1312733 Ontario Inc.

1. INTRODUCTION

The City of Hamilton requires an Air Drainage Analysis for the Block 3 Servicing Strategy Area, Urban Hamilton Official Plan, Fruitland-Winona Tertiary Plan (hereafter called the PLAN) area in Ontario, Canada. The subject lands are shown in Figure 1 and are generally bounded by Barton Street to the north, Highway 8 to the south, McNeily Road to the west, and Collector Road 'D' to the east.

Amec Foster Wheeler was retained by 1312733 Ontario Inc. to conduct a desktop Air Drainage Analysis for a proposed development within the PLAN area. The analysis evaluates the effect of the proposed development on the micro-climate in the region.

Topography influences the air flow movement and microclimatology of any area. Nocturnal cooling caused by radiation (emission of longwave radiation from the ground) is the main reason for cold air draining from mountains or higher elevations into valleys or lower ground under the influence of gravity. A katabatic wind is a term used for downslope air movement. Solar et al. (2002) found that within an hour after sunset, larger variations in surface temperature developed with localized cooling were found in wind sheltered locations. The authors also found that stronger stratification conditions and weaker air flow produce deeper drainage current.

Downward heat fluxes and intermittent turbulences are expected to break down the air drainage flow few times during each night. Boundary layer flow acceleration and the reduction of Richardson number (buoyancy to flow shear ratio) are likely to increase mixing of the air near the ground with the air several meters higher (Solar et al. 2002).

New urban developments can alter the natural airflow pattern by blocking and/or affecting the air mixing and turbulence in the area. Such changes can, therefore, affect the micro-climate in that area. To study such effects, it is important to analyze the topography, current air flow, and climate conditions of the area.

Data from three nearby weather stations, namely Vineland, Burlington Piers, and Hamilton Airport, were collected for this purpose. Based on the archived data availability, the Burlington Piers and Vineland data were compiled for the period of January 2003 through the end of December 2015, whereas the Hamilton Airport data was compiled for the period of December 2011 through the end of December 2015.

The following sections will provide a geographical overview of the area, the PLAN, climatological maximum and minimum temperatures, prevailing winds, topography, and summary and conclusions of the air drainage analysis.

1312733 Ontario Inc.

2.0 FRUITLAND-WINONA AREA

The Fruitland-Winona area is located in the city of Hamilton in southern Ontario, Canada, situated between Lake Ontario to the north, the Niagara Escarpment to the south, the Hamilton city center to the west, and the Town of Grimsby to the east as shown in Figure 1 below. Due to its unique location in Ontario, the unique climate and rich soil conditions in the area are favorable for the cultivation of fruits and vegetables.

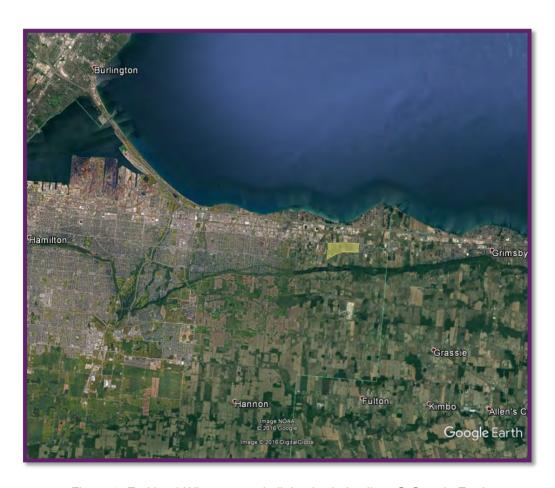


Figure 1. Fruitland-Winona area in light shaded yellow. © Google Earth.

The Niagara Escarpment and Lake Ontario play a major role in moderating the temperature during winter and summer and help in producing the almost-ideal climate conditions for wine and ice wine production in the area. In addition to the wine industry, the area is also famous for a variety of fruit and vegetable production like peaches, cherries, grapes, apples, pears, and strawberries. Figure 2 below shows the proposed development area in relation to the 2005 Greenbelt Area (dark green) produced by the Ministry of Agriculture and Food, Ministry of Municipal Affairs and Housing and Ministry of Natural Resources.

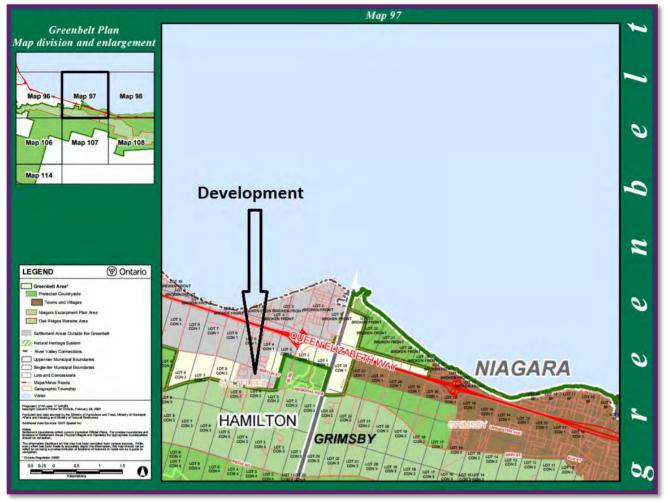


Figure 2. Map showing the Greenbelt Plan produced by the Ministry of Agriculture and Food, Ministry Affairs and Housing and Ministry of Natural Resources (2005).

3.0 HAMILTON FRUITLAND-WINONA TERTIARY PLAN

The proposed development inside the PLAN consists of dwelling development in the area bounded between Barton Street to the north, Highway 8 to the south, McNeilly Road to the west, and Collector Road 'D' to the east. The Fruitland-Winona Tertiary Plan is given in Figure 3. The major roads have a north-north-east to south-south-west alignment.

1312733 Ontario Inc.

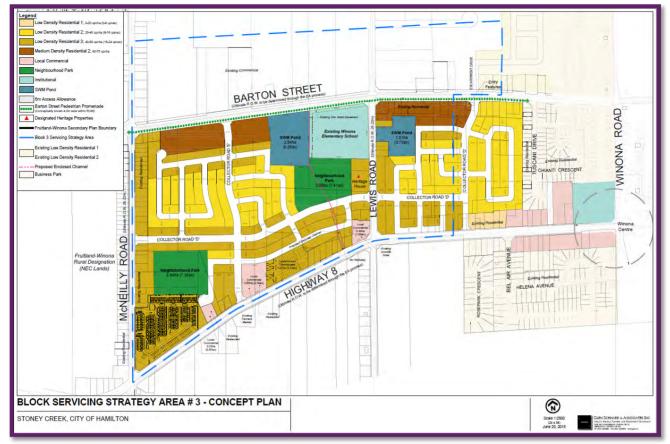
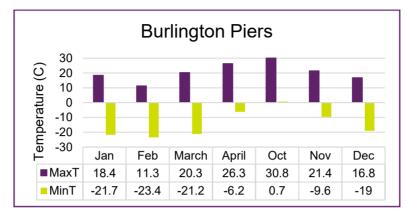
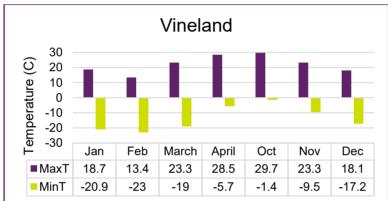


Figure 3. The Fruitland-Winona Tertiary Plan.


The proposed features to be built within the PLAN are a majority of mixed low residential density units, a small area of medium residential density units on the north side, local commercial buildings, recreational parks, institutional buildings, and Strom Water Management (SWM) ponds.


4. TEMPERATURE DISTRIBUTION

Climatological data from Environment Canada and Climate Change (ECCC) from the three weather station were used in this analysis. An Internal software was used to quality check the validity of the data and produce the several figures that are used in the analysis and presented in this document.

The landscape (the Niagara Escarpment) and the nearby large waterbody (Lake Ontario) within this region are two among several contributing factors that affect spatial temperature variation in the area. Figure 4 below depicts such spacial temperature variation during fall, winter, and spring. When comparing the data from Vineland weather station (WS) with the data from the Hamilton Airport WS, one can notice the effect of the warmer marine environment and topography on the Vineland area such that the Maximum and Minimum temperatures from the Vineland WS are, in general, warmer than those observed at the Hamilton Airport WS.

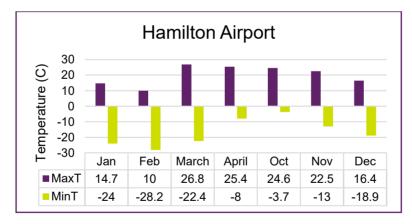


Figure 4. Maximum and Minimum Temperatures from the three weather station for the period starting January 2003 and ending December 2015.

1312733 Ontario Inc.

5. WINDS

A. PREVAILING WINDS

To determine the prevailing orientation of the wind in the area, hourly data of wind direction collected from the three weather stations were plotted for the months of October through April. Figures 5 to 7 show the prevailing winds on a monthly basis at the three locations. The prevailing winds at Burlington Piers are westerly and southwesterly, while the north to northeast is considered the second most common wind direction (Figure 5). Similarly, the Vineland prevailing winds are from the west and southwest during the winter season, while a north-to-east component of the winds become as prevalent during spring (Figure 6). The Hamilton station data also show that the prevailing winds are from the west and southwest direction (Figure 7).

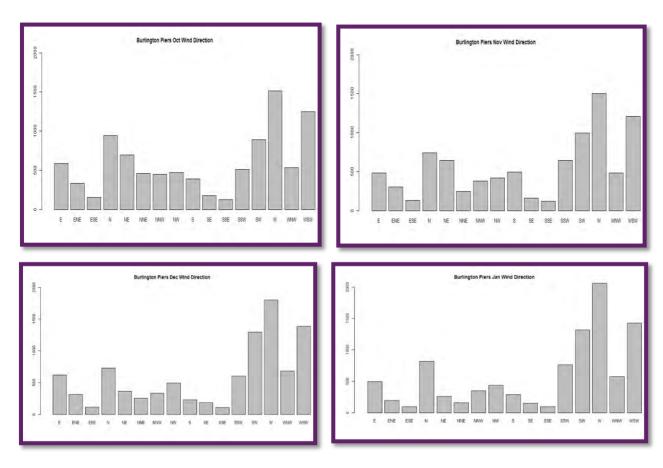


Figure 5. Continues to the next page

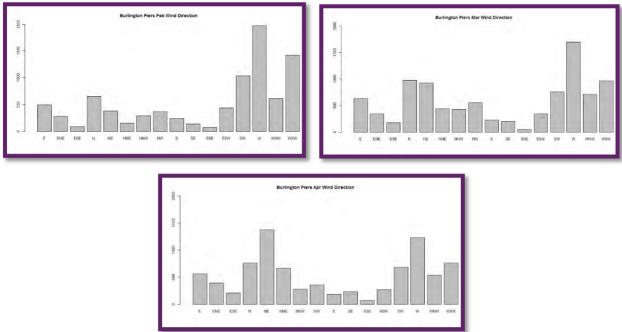


Figure 5. The prevailing winds from Burlington Piers weather station for the months of October through April (2003-2015).

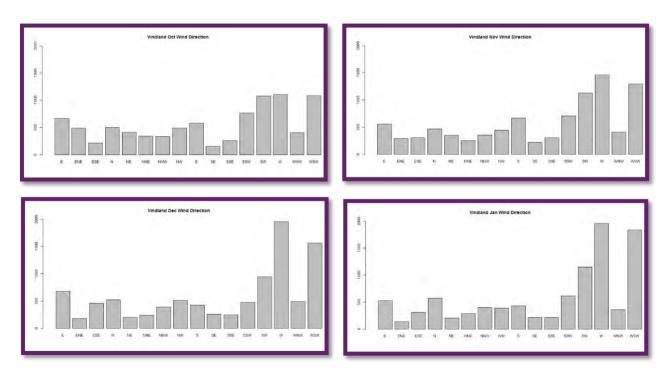


Figure 6 continues to the next page

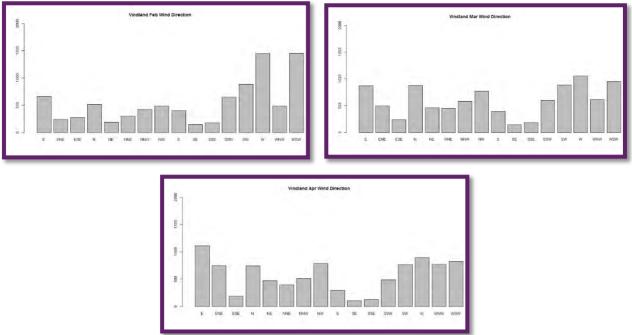


Figure 6. The prevailing winds from Vineland weather station for the months of October through April (2003-2015)

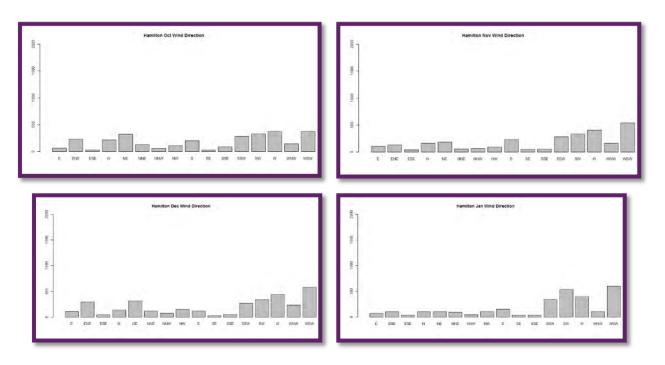


Figure 7 continues to the next page

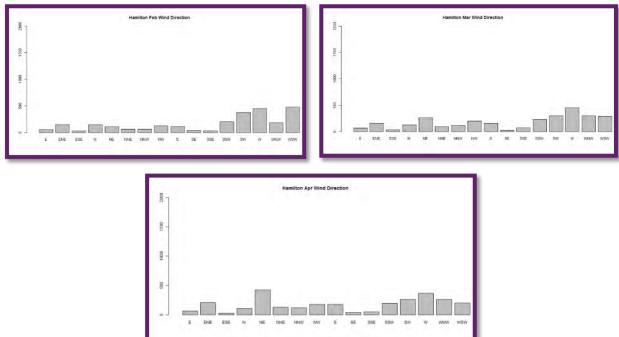


Figure 7. The prevailing winds from Hamilton Airport weather station for the months of October through April (2011-2015).

B. PREVAILING WINDS UNDER FREEZING AND SUB-FREEZING TEMPERATURES

The tender fruits in the area are mostly affected by sub-freezing temperatures. Thus, the database used in the section above were filtered for temperatures at or below freezing to show the prevailing winds during such conditions.

The monthly prevailing wind direction at or below freezing point is shown in Figure 8 below. Westerly to southwesterly winds are prevailing at Burlington Piers and Hamilton during such conditions. Meanwhile, winds from the west to west-south-west are prevailing in the Vineland area during late fall and through early spring under freezing and sub-freezing temperatures.

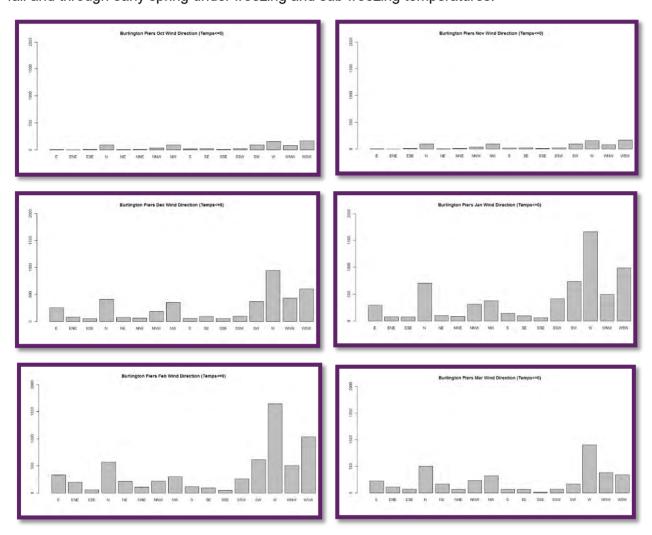


Figure 8 continues to the next page

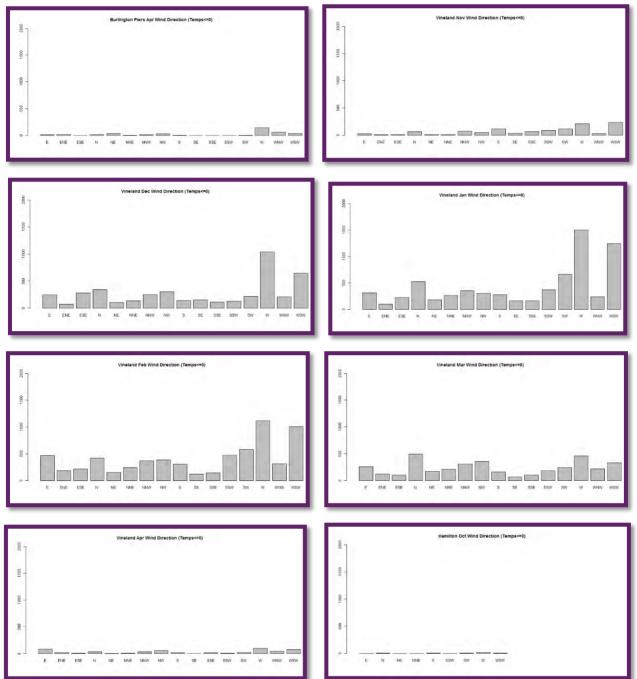
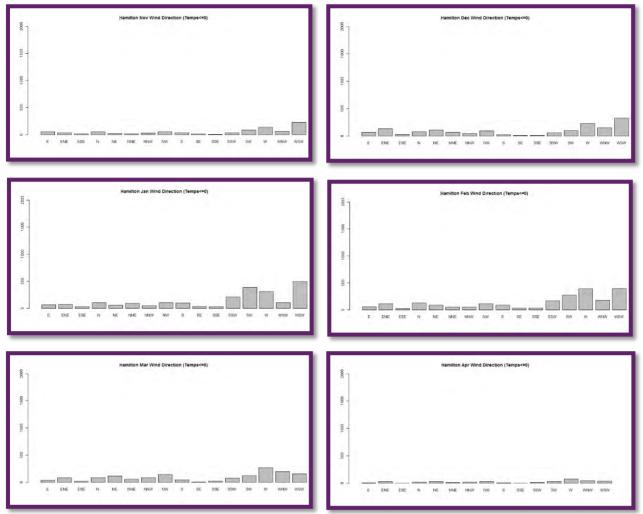
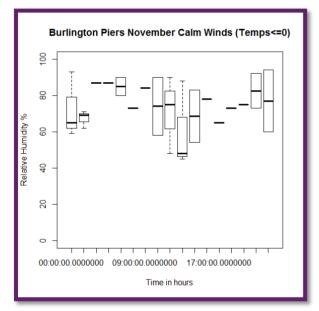


Figure 8 continues to the next page




Figure 8. Late fall, winter, and mid-spring prevailing winds from the Burlington Piers weather station (Nov-Apr), the Vineland weather station (Oct-Apr), and Hamilton Airport weather station (Oct-Apr) at or below freezing temperatures.

C. PROBABILITY OF FROST OCCURRENCE

Frost is considered one of the main causes of significant losses to fruit crops. Cloud cover plays a major role in frost development besides other weather parameters. The Burlington Piers and Vineland weather stations are automatic reporting stations and lack any reports of cloud cover or weather condition reports (e.g. precipitation type, fog, freezing fog). To draw a generalized idea about the frequency of frost occurrence in the area, data from the three weather stations were filtered using relative humidity (equal or higher than 90%), air temperature (equal or below freezing), and calm wind conditions (less or equal to 4 km h⁻¹). The database from the Hamilton Airport weather station contains hourly weather reports which will be discussed later.

Figures 9 through 11 show the time in hours versus the relative humidity at the Burlington Piers, Vinland, and Hamilton Airport weather stations. Although the results in the three figures below show that the area is prone to frost event, the Vineland region can be considered more susceptible to frost events due to its low elevation and geographical location in relation to the other sites (the median of the box and whisker plot of the Vineland area have higher frequency at or near the 90% relative humidity during evening and overnight hours). The figures also show that the frost potential extends longer at the Vineland region at the end of fall and early spring (i.e. November and March).

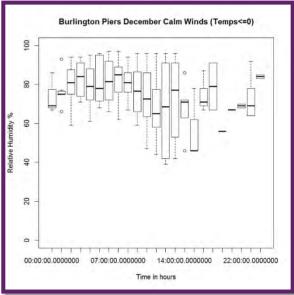
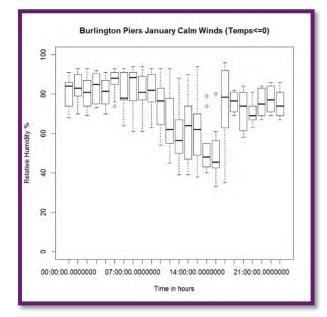
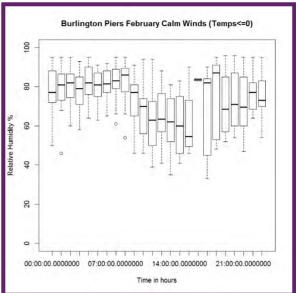
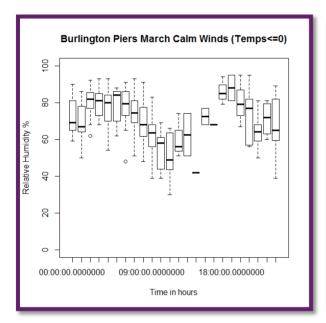





Figure 9 continues to the next page

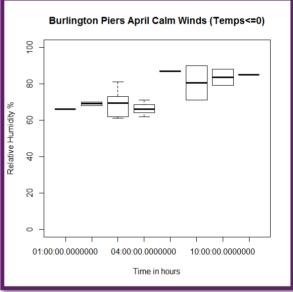
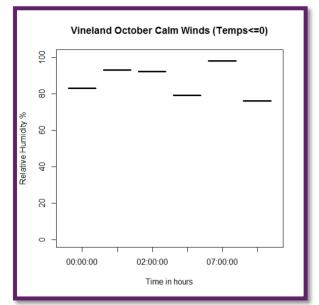
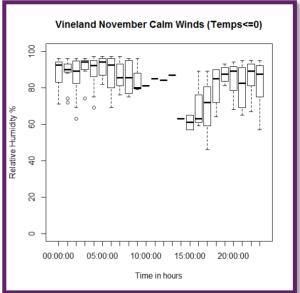
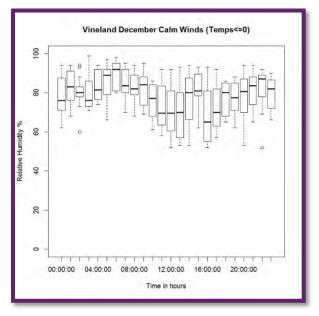





Figure 9. The temporal probability of frost occurrence for the Burlington Piers weather station (Nov-Apr) with calm winds and at or below freezing temperatures conditions.

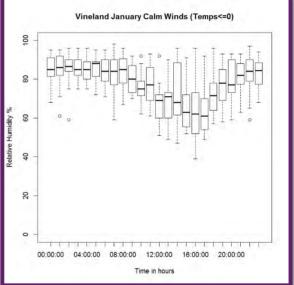
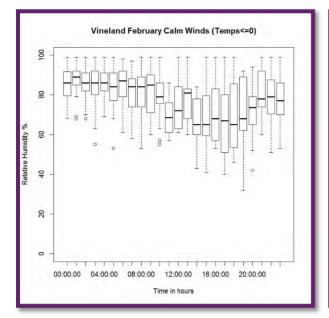
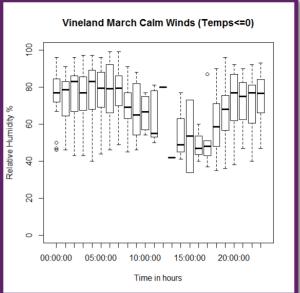




Figure 10 continues to the next page

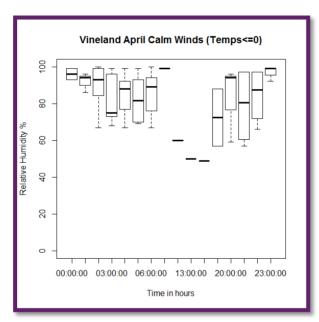
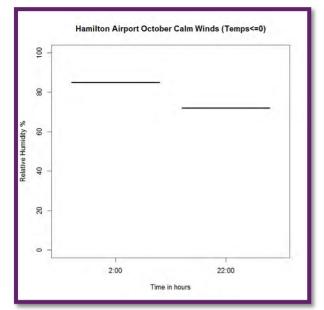
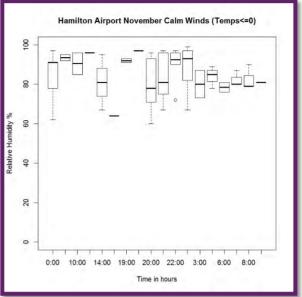
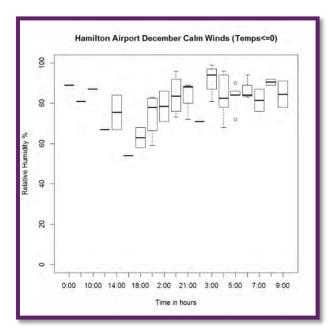





Figure 10. The temporal probability of frost occurrence for the Vineland region (Nov-Apr) with calm winds and at or below freezing temperatures conditions.

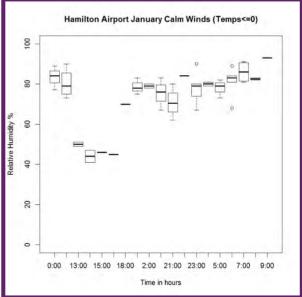
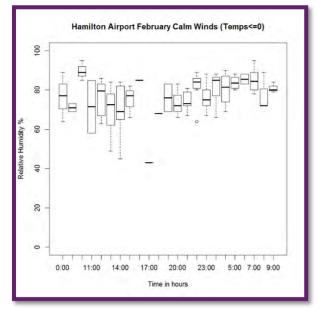



Figure 11. continues to the next page

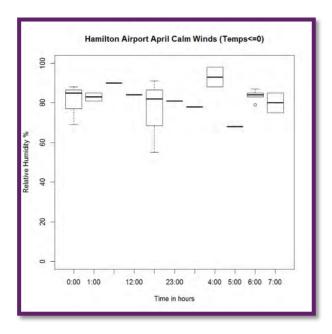
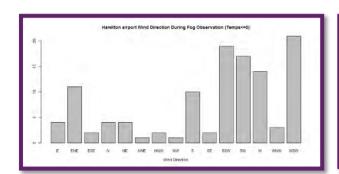



Figure 11. The temporal probability of frost occurrence for the Hamilton Airport weather station (Nov-Apr) with calm winds and at or below freezing temperatures conditions.

D. FOG AND FREEZING FOG

As mentioned earlier, the Hamilton Airport weather station reports hourly weather conditions. Figure 12 shows the westerly and southwesterly winds are more common during fog incidences. In addition to the southwesterly to west-south-west wind component, the northeasterly winds are also common during freezing fog cases as seen on the figure to the left. Higher frequency of fog was reported during December and February, then followed by November and January with lesser reports during March, April, and October, respectively, as seen in figure 13. Whereas, higher occurrences of freezing fog were recorded in February, with lesser reports during November, January, and December, respectively. The historical weather data also show that the majority of the reported fog and freezing fog incidences were associated with movement of larger weather systems and distinct air masses as indicated by the higher wind speed.

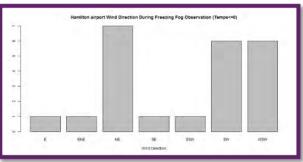
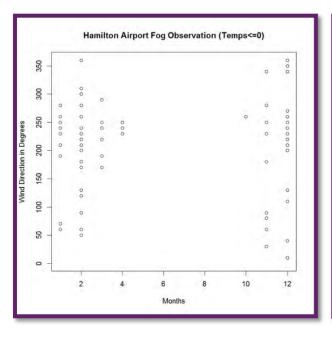



Figure 12. Wind directions during fog (right) and freezing fog (left) observations at the Hamilton Airport weather station (2011-2015).

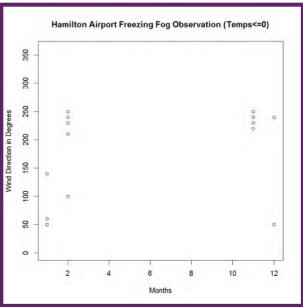


Figure 13. Fog (right) and freezing fog (left) observation during each month at the Hamilton Airport weather station (2011-2015).

6. TOPOGRAPHY

The area under proposed development in the PLAN is approximately 1 km² as shown in the grey shaded region below in Figure 14. The area is located between the Niagara Escarpment to the south and Lake Ontario to the north. The area bounded by the Niagara Escarpment and the PLAN is much steeper than the area between the development and Lake Ontario. The ground at the top of the Niagara Escarpment is standing at ~200 m above mean sea level (MSL) and the ground elevation descends steeply northward towards the PLAN area. The ground elevations within the PLAN are ranging between 89 to 98 m above MSL, whereas the steepest gradient of the landscape lies on the eastern part of the PLAN area. There is a gradual decrease in the landscape elevation starting from the northern boundary of the PLAN with heights reaching ~86 m above MSL at the railway track, and ending at ~80 m above MSL at the shorelines of Lake Ontario.

Figure 14. Topographical map of the area. ©Natural Resources Canada.

7. WINTER INJURY

As mentioned earlier in the document, damage to plants from frost events is an important factor for consideration. Due to the unique mesoclimate of the Niagara Peninsula below the escarpment, production of tender fruit and wine grapes is possible in this region of Hamilton. These types of plants are also prone to injury from severe low winter temperatures or winter freeze events.

As with frost events that may occur while the plants are actively growing, advective and radiative freeze events can occur while the plants are dormant. If the temperature reaches low enough values, bud and wood injury can occur at different times of the dormant period (from leaf fall until bud break the following spring). Plants become hardier to cold temperatures throughout the fall (acclimation) and then lose hardiness as they approach bud break in the spring (deacclimation). Ongoing information on plant hardiness status for grapes can be found at www.ccovi.ca/vine-alert and for tender fruit at www.tenderfruitalert.ca.

The location of this development should not impact the natural katabatic movement or ground flow of air during the winter months (Section 5B). The elevation drop from south to north will continue to allow for natural drainage of cold air towards Lake Ontario as has naturally occurred over time (Section 6). Road orientation will allow for ongoing natural airflow and structures should not impede natural air movement nor create new cold air pockets or pools during the winter months.

8. SUMMARY AND CONCLUSION

The requirement of the Block 3 Servicing Strategy Area (the PLAN) outlines the developed with a majority of low to medium density dwelling units, Neighbourhood Parks, SWM facilities, institutional, and local commercials.

The analysis of weather data obtained from the three nearby weather stations (Vineland, Burlington Piers, and Hamilton Airport) concluded that the prevailing winds are from the west and southwest direction and the analysis of the temperature observations obtained showed the Vineland area as the most moderate temperature-wise among the three stations. The archived observations from the Hamilton Airport weather station showed that highest fog incidences happened during December and February, while February was found to be the month with the highest number of reported freezing fog. The westerly and southwesterly winds were the dominant direction during fog events whereas northeasterly, southwesterly, and west-south-west winds were dominant during freezing fog events.

Following the desktop analysis of the microclimate in the Fruitland-Winona area, the proposed development inside the PLAN area (Figure 3) is not expected to block the southwesterly-to-northeasterly direction air flow. The development inside the PLAN area may assist in mixing the boundary air layer (a layer near the ground) by creating eddies (turbulences), thus aid in streaming any cold air descending from the Niagara Escarpment. This process would prevent air stagnation and facilitate air flow into Lake Ontario. Meanwhile, the existing and proposed local roads (McNeily Road, Collector Road "E", Lewis Road, and Collector Road "D") and the natural open spaces outlines in the PLAN will further help to channel the air downstream toward Lake Ontario.

9. REFERENCES

- Soler, M. R., C. Infante, P. Buenestado, and L. Mahrt, 2002. Observations of nocturnal drainage flow in a shallow gully, Boundary-Layer Meteorology V.105. pp. 253–273, doi:10.1023/A:1019910622806.
- Fraser, H., K. Slingerland, K. Ker, K. Fisher, and R. Brewster. 2009. Reducing cold injury to grapes through the use of wind machines, Final report: CanAdvance Project # ADV-161. Nov. 2005 - Nov. 2009. 30 pp.
- Historical Climate Data (http://climate.weather.gc.ca/)
- Natural Resources Canada (http://atlas.gc.ca/toporama/en/)
- Ontario Ministry of Municipal Affairs-Ministry of Housing (http://www.mah.gov.on.ca/Page13785.aspx)
- Google Earth (https://www.google.ca/earth/)

APPENDIX - RESUMES

1312733 Ontario Inc.

DIAR HASSAN, PH.D., P.MET.

ATMOSPHERIC SCIENTIST

CORE SKILLS

- Dual-polarimetric and conventional Radar-based Rainfall Algorithms
- Dual-polarimetric and conventional Radar-based Snow-Water Equivalent Algorithms
- Dual-polarimetric and conventional Radar-based Solid Snowfall Algorithms
- Meteorological Consultation and tailored weather forecast for an array of commercial
- Weather observation field campaigns
- Weather Forecasting
- Seasonal forecasting

PROFESSIONAL SUMMARY

Dr. Hassan is an accredited Professional Meteorologist with a decade of experience. He has served as a consultant meteorologist for an array of clients such as energy, transportation, airport ground operation, school boards, municipalities. film Industry, consultant Engineering companies, and sport and social events.

As a seasonal forecaster, Dr. Hassan possesses nine years of experience in producing and briefing the North American seasonal outlook. He was presented as an expert subject matter on different media platforms.

Challenged by the low radar-based estimation of snow-water equivalent, Dr. Hassan focused his Ph.D. project on improving such estimation through the use of conventional and dual-polarimetric weather radars. He established an algorithm that different industries, particularly to the transportation sector.

The decision to gradually upgrade the Canadian Radar Network and equip them with dual polarimetric capabilities intrigued Dr. Hassan, and he, therefore, establish new polarimetric-based algorithms that estimate rainfall rates. Moreover, he devised a logic tree that optimizes on rainfall estimation by selecting a specific algorithm based on the polarimetric radar variables.

Dr. Hassan has a wide range of academic experience as a lecturer at different academic levels up to the graduate level. He held the position of an academic supervisor for six years, during which he was responsible for the management and liaison of a wide range of academic activities.

PROFESSIONAL QUALIFICATIONS/REGISTRATION(S)

Professional Meteorologist Accreditation (Operation), ECO Canada, 2018

Professional Meteorologist Accreditation (Research), ECO Canada, 2018

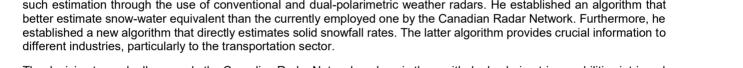
EDUCATION

Ph.D. Dual and Conventional Weather Radar-Based Precipitation Algorithms, Dept. of Earth Science and Space, York University, Toronto, Ontario, 2015

Project Management Certificate, Sheridan College, Oakville, Ontario, 2009

M.Sc. Dual-polarimetric radars, Dept. Of Meteorology, Al-Mustansiriya University, Baghdad, 1998

B.Sc. Physics/Meteorology, Dept. Physics, Al-Mustansiriya University, Baghdad, 1996


MEMBERSHIPS/AFFILIATIONS

Canadian Meteorological and Oceanographic Society (CMOS)

American Meteorological Society (AMS)

LANGUAGES

English, Kurdish, Arabic, and fair knowledge of French

1312733 Ontario Inc.

EMPLOYMENT HISTORY

Amec Foster Wheeler, Ottawa, Ontario, Atmospheric Scientist, Dec 2015 to present.

York University, Toronto, Ontario, Research Associate, Nov 2015.

Pelmorex/The Weather Network, Oakville, Ontario, Consultant Meteorologist, 2006 to 2015.

Pelmorex/The Weather Network, Oakville, Ontario, Seasonal Forecaster, 2007 to 2015.

A private entity, Abu Dhabi, UAE, Academic Supervisor, 2001 to 2006.

AIS. Abu Dhabi, UAE, Lecturer, 1999 to 2001.

Al-Mustansiriya University, Baghdad, Lecturer, 1998 to 1999.

PUBLICATIONS AND CONFERENCES

- Hassan, D., P. A. Taylor, G. A. Isaac, 2017: "Snowfall Rate Estimation Using C-Band Polarimetric Radars", Meteorol. Appl. Accepted.
- Hassan, D., P. A. Taylor, G. A. Isaac, 2017: "C-Band Polarimetric-Based Rainfall Estimation", Submitted.
- Hassan, D., P. A. Taylor, G. A. Isaac, 2017: "Solid Snowfall Rate Estimation Using a C-Band Radar", to be submitted.
- Hassan, D., G. Isaac, and P. Taylor, 2013: "Snow Liquid Water Equivalent Estimation from Polarimetric Weather Radar Perspective", Eastern Snow Conf., Huntsville, Ontario.
- Hassan, D., G. Isaac, and P. Taylor, 2012: "Estimating Snowfall Rate Using WKR Polarimetric Radar Data", CMOS Montreal, Quebec.
- Boodoo, S., D. Hudak, M. Leduc, A. Ryzhkov, N. Donaldson and D. Hassan, 2009: "Hail detection with a C-Band dual Polarization radar in southern Canada." AMS 34th Conference on Radar Meteorology, Williamsburg, VA, USA.
- Hassan, D., R. Al-Naimi, and K. Al-Jumaily, 2001: "Depolarization effects due to some atmospheric constituents".
 Al-Mustansiriya J. Sci., vol. 12, No. (2), pp 171-178.

PROJECT

- Air Drainage Analysis City of Hamilton: Fruitland-Winona (2017)
 - Study the effect of the new development of the microclimate and their subsequent effect on the tender fruits in the area.
- Borden Gold Project, Chapleau, Ontario (2017)
 - A comprehensive climate study for the area, including Temperature, Precipitation, IDF curves, Evapotranspiration, and Windrose.
- Maintenance Decision Support System (MDSS) (2016-2017)
 - Upgrade the current MDSS Maritimes client pavement treatment.
- Votgle Plant Local Intense Precipitation and Warning Time Evaluation, Southern Nuclear, United States (2016)

Investigate into extreme precipitation events in the southeastern United States, including storm identification, data collection, storm typing, and reporting.

RON BIANCHI, BSC (HON) BCERT FRMETS

SENIOR ASSOCIATE – DIRECTOR OF STRATEGIC DEVELOPMENT CLIMATE AND TERRESTRIAL WEATHER - MET-OCEAN SERVICES

CORE SKILLS

- Project Management and Application Development
- Client Relationship Development
- ▶ Expert in Meteorological Sciences and Climate Change Analysis
- Meteorological applications in Mining, Energy/Power, Insurance, Infrastructure, Aviation and Environmental Assessment

PROFESSIONAL SUMMARY

Ron Bianchi is a senior associate specializing in the fields of meteorology, atmospheric sciences, and climate change. Ron has over twenty-five years' experience managing clients and projects in many verticals including meteorological forecasting, energy, power, insurance, infrastructure, aviation, environmental assessments, air permitting, and mining. Ron specializes in developing unique meteorological services, such as technical/scientific reports and studies, specific weather forecast products, atmospheric modeling with various in-house models, baseline climate and climate change analysis reports. Additional services such as meteorological instrumentation installation and training Ron specializes in the area of applied industrial meteorology via meteorological operations, project execution, business development, and strategic planning, in both the public and private sectors.

- Over twenty-five years of forecasting experience in the private and government sectors;
- Expert knowledge of meteorological production and dissemination methods;
- Reputation for leadership within organizations and within the meteorology profession;
- Able to bridge government and private sectors to exchange technology, training, and business plans;
- A deep understanding and proficient with all meteorological models;
- Extensive experience with various meteorological monitoring observing systems and their specific applications;
- Able to quickly put new meteorological technology into operation;
- Exceptional communication and interpersonal skills that clients and internal staff;
- In-depth knowledge of principles and methods for curriculum and training design:
- Highly sophisticated analytical skills, and strong ability to assimilate complex concepts and translate them into real-world results.

Ron's position at Amec Foster Wheeler as a senior associate and Director of Strategic Development for the Met Oceans group will provide guidance to the group's growth and new business opportunities, along with applying his expertise within the Met-Ocean group and internal and external clients.

PROFESSIONAL QUALIFICATIONS/REGISTRATION(S)

Certified Project Manager, 2010

EDUCATION

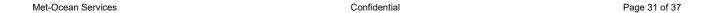
BSc (Hon) in Physics and Meteorology - University of Toronto, (1987)

Ivey School of Business, University of Western Ontario, Executive Management Program (2000)

Canada School of Public Service- Federal Service (2005)

MEMBERSHIPS/AFFILIATIONS

American Meteorological Society-Professional Member


Royal Meteorological Society - Professional Member and Fellow

Canadian Meteorological and Oceanographic Society- Past President, current member

Australian Meteorological Society-Professional Member

National Weather Association - Professional Member

American Geophysical Union-Member

1312733 Ontario Inc.

LANGUAGES

English

EMPLOYMENT HISTORY

Senior Associate, Director of Strategic Development - Climate and Terrestrial Weather - Met-Ocean Services - current

PANAM Lead Meteorologist, Sailing Venue RCYC at Toronto 2015 Pan/Parapan American Games

February 2015 to July 2015

Director of Meteorology, Atmospheric Group Manager at Golder Associates - Environmental Sciences

Division, 2007 to 2015

Vice President of Meteorology and Executive Meteorologist at The Weather Network/MeteoMedia,

1997 to 2007

Operations Manager, Ontario Storm Prediction Centre at Environment Canada - Meteorological

Service of Canada (Federal Government), 2005 to 2006 Primary Load Forecast Meteorologist - Weather Services Operations Planning & Interconnections at

Independent Electricity System Operator (IESO) 1996 to 1997

REPRESENTATIVE PROJECTS

Weather Forecasting

PANAM TO2015 Games - Toronto, Ontario, Canada

Lead meteorologist - providing detailed meteorological forecasts specifically geared to competitive sailing. Designing stateof-the-art meteorological workstation and WRF Modelling for advanced forecasting and warning capabilities. Daily briefings with venue operators, race committee, coaches, and athletes. Ensuring all involved are provided with the most accurate weather forecasts and warning system that ensured their safety and security during the games.

Chase Energy Canada Limited - Alberta, Canada

Provide weekly rolling temperature forecasts for all of Canada. The forecasts consisted of a graphical product displaying trends of warmer to cooler than normal conditions for all regions of Canada. Along with a brief commentary on current Meteorological trends that might impact energy production across the country.

City Oakville Storm Water Monitoring

Weather tracking/ high-resolution precipitation forecasts. Oakville, Ontario, Canada. Provide high-resolution precipitation forecasts specific to the city of Oakville to enable storm monitoring teams to capture stormwater and provide analysis. Forecasts were provided via email and telephone consultation along with weather briefings to provide "go-no-go" on weather events that met various City of Oakville criteria.

National Pre Olympic Qualifiers - Vancouver, Canada

Provided the Ontario provincial sailing team with high-resolution WRF model wind data (hourly and 1 km resolution) over the race area of the event. Daily weather briefings and tactical wind strategy consultation via the internet and telephone.

Canada Summer Games - PEI, Canada

Provide the Ontario provincial sailing team with high-resolution WRF model wind data (hourly and 1 km resolution) over the race area of the event. Daily weather briefings and tactical wind strategy consultation via the internet and telephone.

Alaska North Slope Liberty Geotechnical Project (Repsol) - Alaska, USA

Provided meteorological support for drilling operations. Daily weather forecasts (short and long-term), daily climatological data, atmospheric forecasted pressure trend, ice thickness and movement, tidal periods beneath the sea ice, specific surface weather forecast maps, and maintaining a continuous weather watch for warnings for a safe and secure working environment

Cliffs Natural Resources - Ontario, Canada

1312733 Ontario Inc.

Provided biological survey teams (winter track count) with local aviation forecasts for low flying helicopter surveys. Along with wind, QPF, and visibility forecasts in designated areas, defined by the client.

Sir Adam Beck, OPG Niagara Fall, Ontario, Canada

Provided daily forecasts, with special attention to QPF (rainfall) during a construction phase for major repairs at Sir Adam Beck site. The forecast is used for planning of daily construction and safety of the crew. On-call briefings were also provided on active weather days.

Mining

Adriana Resources Inc. - Lac Otelnuk Mining Ltd. - Northern Quebec, Canada

Installed weather station and set up a monitoring program. Analysis and quarterly reports were produced and provided to various disciplines in hydrology, geology, geotechnical working groups. Provided baseline regional climate summary and analysis, and climate change work for Environmental Assessment.

Aurora Energy Ltd. Newfoundland, Canada

Installed weather station and set up a monitoring program. Analysis and quarterly reports were produced and provided to various disciplines in hydrology, geology, geotechnical working groups. Provided baseline regional climate summary and analysis, and climate change work for Environmental Assessment.

AREVA Resources - Nunavut, N.W.T., Canada

Provided the Probable Maximum Precipitation (PMP) for the Kiggavik project located west of Baker Lake, Nunavut. The objective of the report is to provide a precipitation value that will serve as a conservative basis of design for various engineered structures such as tailings management areas and water treatment ponds.

Trelawney Mining and Exploration Inc.-Northern Ontario, Canada

Installed on-site weather station is to capture the local weather effects. Set up a monitoring program. Analysis and quarterly reports were produced and provided to various disciplines in hydrology, geology, geotechnical working groups. Provided baseline regional climate summary and analysis, and climate change work for future Environmental Assessment.

Cliffs Natural Resources - Ontario, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modeling northern Ontario and ferrochrome production facility. Climate baseline and climate change work for Environmental Assessment.

Focus Graphite - Quebec, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modeling western Quebec. Climate baseline and climate change work for Environmental Assessment

Ivaco Rolling Mills - Quebec, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modeling southern Quebec. Climate baseline and climate change work for Environmental Assessment

Globestar Moblan - Northern Quebec, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modeling northern Quebec. Climate baseline and climate change work for Environmental Assessment.

Walker Aggregates- Ontario, Canada

Duntron Weather station repair and calibration. Conducted micro climate study of possible effects due to expansion of the aggregate pit on a specific and rare fern plant species.

Focus Graphite - Quebec, Canada

1312733 Ontario Inc.

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modelling western Quebec. Climate baseline and climate change work for Environmental Assessment

Cliff Mine Site and Cliffs FPF Site - Northern Ontario, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modelling northern Ontario and ferrochrome production facility. Climate baseline and climate change work for Environmental Assessment

Walker Aggregates- Ontario, Canada

Duntron Weather station repair and calibration. Conducted micro climate study of possible effects due to expansion of the aggregate pit on a specific and rare fern plant species.

Hammond Reef - NW Ontario, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modelling northern Quebec. Climate baseline and climate change work for Environmental Assessment.

Barrie Landfill - Barrie, Ontario, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Developed a dust and odor mitigation process.

Prodigy Gold - NW Ontario, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Climate baseline and climate change work for Environmental Assessment

Morelos Mining Operations - Mexico

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Climate baseline and climate change work for Environmental Assessment

Kabanga Nickel - Africa

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Climate baseline and climate change work for Environmental Assessment. Particular attention to the boundary layer winds and production of wind-roses for each day and month for air dispersion modelling.

Climate Studies and Climate Change Analysis

Region of Waterloo- Ontario, Canada

Provide an overall objective of the climate analysis is to prepare a summary of climate data for the Region of Waterloo that will help it understand the current climate conditions, how this climate has changed over the past 30 years or so, and how the climate is projected to change in the near future. This detailed analysis will provide the basis for initiating discussion of an adaptation strategy; and discussion of the possible need for an improved assessment of short term weather forecasting. The focus of the report was for the hydrology group in the Region of Waterloo.

Onca Puma Microclimate Assessment - Puma, Brazil

Technical report in a micrometeorological assessment of the possible effects of the molten slag dump on the local meteorology and climate. Responsibilities included meteorological data analysis, development of several meteorological data sets for heat transfer models, local climate data analysis and assessment of potential microclimate impacts.

Town of Sombra, Ontario, Canada

Technical Memorandum will describe the severe precipitation event recorded in Sombra Ontario. The Technical memorandum described the synoptic large scale event that led to the severe precipitation event.

NWMO - Nuclear Waste Management Organization (NWMO), Ontario, Canada

1312733 Ontario Inc.

Several locations (14) studies and technical memorandums regarding baseline climate and climate change possibilities

And long term effects for the various project sites.

PIEVEC - Infrastructure Ontario Climate Change Vulnerability Assessment - Ontario, Canada

Provide an overall objective of the climate analysis is to prepare a summary of climate data that will help it understand the current climate conditions, how this climate has changed over the past 30 years or so, and how the climate is projected to change in the near future. Then developed working training sessions with various internal PIEVEC members.

Walker Aggregates - Microclimate study on plant species

Technical report in a micrometeorological assessment of the possible effects expansion on the local meteorology and climate. Responsibilities included meteorological data analysis, development of several meteorological data sets local climate data analysis and assessment of potential microclimate impacts on various plant species.

POWER/Energy

Wind Energy Inc. Galetta, Quebec

Preliminary analysis of a potential wind energy project in the Quebec region. Used existing data to assess the physical and wind characteristics of the site and forecast wind energy potential based on historical and modelled MM5 data. Responsible for CALMET modelling to downscale RUC model output, conducting wind analysis on refined spatial resolution to locate the maximum wind potential energy and comparison study using on-site surface station data.

Windfield Energy Inc. Ontario, Canada

Provided Windfield Energy Inc. to carry out a preliminary analysis of a potential wind energy project in the Ottawa region. Used existing data to assess the physical and wind characteristics of the site and forecast wind energy potential based on historical and modelled MM5 data. Responsible for CALMET modelling to downscale RUC model output, conducting wind analysis on refined spatial resolution to locate the maximum wind potential energy and comparison study using on-site surface station data.

Teck Coal - Alberta, Canada

Provided Teck Coal Limited Cardinal River (Teck Coal) to carry out a preliminary analysis of a potential wind energy project at the Cardinal River site. Used existing on-site captured data to assess the physical and wind characteristics of the site and forecast wind energy potential based on historical and modelled MM5 data. Report included forecast wind energy potential based on historical data; Develop an energy production model based on installation scenarios, and Provide a financial analysis based on estimated project costs and energy generation.

Nanticoke New Nuclear Plant Build Project – Nanticoke, Ontario, Canada

Responsible for the completion of the air quality component of the EIS for Bruce Power - Nanticoke New Build. Responsibilities included installing meteorological on-site station, data analysis, development of several meteorological data sets for dispersion modelling, climate data trend analysis and assessment of climate change on the possible project.

Westcoast Connector Gas Transmission Project - B.C. Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Conducted MM5 and CALMET modelling. Climate baseline and climate change work for Environmental Assessment. Provided Technical Report on the verification of on-site weather data to Environment Canada forecast weather data.

Modeling

Halton Region - Ontario, Canada

Conducted meteorological modelling using MM5 and CALMET for Halton Region air-shed study. The process in verifying and validating the quality of the meteorological data includes comparing with local surface stations, presenting annual, seasonal and day/night wind-roses, atmospheric stability, annual and seasonal mixing height, and average wind flow in the computational domain during Ontario smog days advisory.

Kinross Gold Operation - Chukotka Region, Russia

Conducted MM5 and CALMET modelling and provided detail analysis of MM5 and CALMET output. The analysis illustrates the model output capability to simulate down-slope and up-slope wind flows which usually occurs in mountainous region.

1312733 Ontario Inc.

Aurora Energy Ltd- Newfoundland, Canada

Installed on-site weather station for baseline data collection and providing maintenance of the station. Responsible for continued QA/QC and analysis of the recorded meteorological fields. Climate baseline and climate change work for Environmental Assessment.

Covanta/Green Island Energy - BC, Canada

Conducted MM5 and CALMET modelling and provided detail analysis of MM5 output. The analysis includes presentation of thermal induced wind flow in coastal region during high pressure system, model output verification using four surface stations in the region and wind pattern comparison to CMC model output presented by Canadian Wind Energy Atlas. The meteorological data provided to Covanta Energy to be used for air dispersion modelling has been peer reviewed by Dr. Joseph S. Scire of TRC and Dr. Li Huang of British Columbia Ministry of Environment. The reviewers have expressed great confidence for the data provided.

Xstrata - Sudbury, Ontario, Canada

The meteorological data set development to generate a three dimensional meteorological fields for 2008 to 2010 periods. The Calmet model is initialized by RUC (Rapid Update Cycle) model output and surface meteorological fields recorded at Sudbury Airport. Dr. Robert Bloxam and Dr. John Liu of Ontario Ministry of Environment reviewed and approved the use of the meteorological data for air dispersion modelling.

ExxonMobil - Halifax, Nova Scotia, Canada

Prepared meteorological dataset for air dispersion modelling and managed the air quality study for two ExxonMobil gas plants in Nova Scotia. The report of the study was well received during the presentation by ExxonMobil.

Health Canada Ottawa, Ontario, Canada

Conducted and MM5 and CALMET modelling for three Iron and Steel industries located in Ontario, Manitoba, and Alberta.

Diavik Diamond Mine- N.W.T., Canada

Responsible for MM5 modelling, conducting wind analysis on refined spatial resolution to locate the maximum wind potential energy, and developing verification methodology to increase client's confidence in modelling output

Burnco - Ontario, Canada

Conducted MM5 and CALMET modelling and provided detail analysis of MM5 and CALMET output for air dispersion modelling.

Madawaska - Ontario, Canada

Conducted meteorological modelling using MM5, CALMET, and Aermod. The process in verifying and validating the quality of the meteorological data includes comparing with local surface stations, presenting annual, seasonal and day/night windroses, atmospheric stability, annual and seasonal mixing height, and average wind flow in the computational domain.

Insurance

Frank Cowan Company - Princeton, Ontario, Canada

Provide technical due diligence for weather forecasting needs and possible use for website for all their insurance clients. Provided final approval of certified government forecasts for website use.

Various Client members of Frank Cowan Company – Princeton, Ontario, Canada

Several Client of FCC were referred to complete several technical memorandums and weather/climate summaries for the various municipalities that are members of FCC.

PMP

Barrick Gold Corporation- Ontario, Canada

Estimated the Probable Maximum Precipitation for Barrick Gold - Hemlo property.

Areva Resources Canada Inc. - Nunavut, N.W.T., Canada

1312733 Ontario Inc.


Estimated the Probable Maximum Precipitation for the area of proposed uranium mining and milling operation at Kivallik region. The probable maximum precipitation value will be used for tailing pond and dam design.

APPENDIX E FLUVIAL GEOMORPHOLOGY

E-1 Erosion Threshold Analysis (GEO Morphix, February 2020)

APPENDIX E-1 Erosion Threshold Analysis (GEO Morphix, February 2020)

12-062 Block Servicing Strategy #3 Erosion Threshold Assessment

Unnamed Tributary of Lake Ontario Hamilton, Ontario

Prepared for: Block 3 Landowners Group c/o Rob Merwin 720 Oval Court Burlington, ON L7L 5K2

February 27, 2020 PN18099

Report Prepared by: GEO Morphix Ltd.

PO Box 205, 36 Main St. N. Campbellville, ON LOP 1B0

Report Title: 12-062 Block Servicing Strategy #3

Erosion Threshold Assessment

Reach LOT-1

Project Number: PN18099

Status: Final Version: 1.1

Prepared by: Andre-Marcel Baril, M.Sc. Approved by: Paul Villard, Ph.D., P.Geo.

Approval Date: Februarly 27, 2020

Table of Contents

1	Intro	Introduction					
2	Exist	Existing Conditions					
	2.1	2.1 Geology					
3	Wate	Watercourse Characteristics1					
	3.1	Reach	Reach Delineation1				
		3.1.1	Reach Observations	2			
		3.1.2	Detailed Geomorphological Assessment	3			
4	Eros	Erosion Threshold Assessment					
	4.1	1 Methodology					
	4.2	Result	S	4			
5	Eros	Erosion Modelling5					
	5.1	Model	Overview	5			
	5.2	Model	Results	6			
6	Sum	mary an	nd Recommendations	7			
7	References						
App	oenc	lices					
Appe	endix A	A Reach	Map	A			
Appe	endix E	B Field S	heets	В			
Арре	endix (C Photo F	Record	C			
eaaA	endix E) Hydroc	graphs	D			

1 Introduction

This report summarizes an erosion assessment completed for an unnamed tributary in support of the 12-062 Block Servicing Strategy (BSS) #3 in the City of Hamilton, Ontario. An unnamed tributary of Lake Ontario was identified by the Hamilton Conservation Authority as requiring an evaluation of its erosion threshold. To do so, three reaches located downstream of the development were evaluated, and an erosion threshold and post- to pre- erosion exceedance analysis was completed for the most sensitive reach in order to understand the potential impact of development on the watercourse. The modelling approach documented here is consistent with previously completed erosion analyses for the Toronto and Region Conservation Authority, Credit Valley Conservation Authority and Conservation Halton.

The assessment included the following components:

- Desktop analysis for determining the potential zone of impact, which is the extent of the channel reaches to be assessed
- · Review of relevant background materials, including existing watershed data
- Field assessments to determine the overall stability of the drainage feature on a reachby-reach basis
- Reach-scale habitat sketch maps based on Newson and Newson (2000) outlining channel substrate, flow behaviour, geomorphological units, and riparian vegetation on the day
- A detailed geomorphological field assessment, the primary objective of which is to determine the critical flow or erosion threshold for the most sensitive reach
- Analysis of post- to pre-development time of exceedance, number of exceedances, cumulative excess discharge, and cumulative excess work index associated with the most sensitive reach.

2 Existing Conditions

2.1 Geology

Channel morphodynamics are largely governed by the flow regime and the availability and type of sediments (i.e., surficial geology) within the stream corridor. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

The study area is located within the Iroquois Plain physiographic region, which extends from the South Slope to the north to Lake Ontario. Specifically, the study area is characterized as Shale Plains, while areas upstream (north) of QEW are located on the Niagara Escarpment (Chapman and Putnam, 1984). Local surficial geology along the tributary consists of clay- to silt-textured till composed of sand, gravel, minor silt and clay (OGS, 2010).

The sediments which compose the unnamed tributary are dominated by cohesive clay materials. These materials, while small, are relatively resistant to erosion due to their cohesiveness.

3 Watercourse Characteristics

3.1 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful

characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity.

Reaches are typically delineated based on changes in the following:

- Channel planform
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology
- Historical channel modifications

Three reaches located downstream of the subject site were evaluated to determine their potential sensitivity to erosion. The criteria used to delineate the relevant reaches for our study, Reaches 1, 2 and 3 are described in Table 1. A reach map is provided within Appendix A, field observations are available within Appendix B, and a photo record is available within Appendix C.

Table 1: Reaches of the Unnamed Lake Ontario Tributary

Reach	Reach Extent	Length	Reach-defining Characteristics
1	Queen Elizabeth Way to Via Rail Crossing	470 m	Reinforced engineered channel with su- pavement composed of concrete blocks, rooted emergent aquatic vegetation
2	Via Rail Crossing upstream to culvert spanning Lewis Road	210 m	Rooted emergent aquatic, straight feature, roadside ditch.
3	Culvert spanning Lewis Road to crossing at Barton Street	250 m	Lack of aquatic vegetation, roadside ditch, narrow riparian buffer, hydromodification from additional roadside drainage inputs.
4	Lewis Road and Barton Street to the woodlot west of Winona Public School	225 m	Encroachment of riparian buffer into watercourse, no channel development, roadside ditch.

3.1.1 Reach Observations

Because the reaches in question were straightened roadside-ditch featured, the Rapid Geomorphic Assessment (RGA) and Rapid Stream Assessment Technique (RSAT) were not applied as these are designed for naturalized watercourses. However, detailed observations of channel features were documented during field visits in July of 2018 to determine channel stability and identify potentially sensitive areas.

Reach 1 is a straight engineered channel conveying flows between a commercial center and an industrial site. The reach showed minimal morphological diversity, having a poor riffle and pool development. Minimal erosion was observed within the channel, which had well vegetated banks and predominantly gravel bed materials which overlaid cement blocks. The channel had a narrow riparian buffer which was composed of herbaceous vegetation, with occasional immature trees. Average channel bankful width was 3.4 m and the average channel bankfull depth was 0.58 m.

Reach 2 is characterized as a straight-suspended load channel occupying an unconfined valley and is best described as a straightened ditch. The channel's narrow riparian buffer is continuous and dominated by established grasses and herbaceous vegetation which encroaches the channel for most of its length. The channel is heavily vegetated predominantly by rooting-emergent plants, specifically cattails and reed canary grass. The channel is intermittent, as in it is expected to go through periods in which no water is present within the feature. The channel has a low gradient and lacks a riffle pool sequence. Substrate for both bed and banks was predominantly clay. Average bankfull width was 2.22 m, and average maximum bankfull depth was 0.2 m at the time of assessment. No localized erosion was observed within the feature, nor were there any distinct areas of sediment deposition.

Reach 3 conveyed flow along the west side of Lewis Road within the Venetian Meats Lands north of Barton Avenue. The channel is a straight-suspended load channel which acts as a roadside ditch. The feature has gravel throughout its length on the bed, a low gradient and lacks a riffle-pool sequence. Herbaceous vegetation was present within the watercourse and the adjacent riparian area, and the surrounding land use was agricultural and industrial. Average bankfull width of the channel was 1.66 m and its average bankfull depth was 0.16 m. Erosion was noted at one location, in which a gabion basket at the upstream extent of the reach near Barton Avenue had been outflanked. Erosion or sedimentation was not observed elsewhere within the reach which can be considered stable.

Reach 4 is another straight-suspended load intermittent feature conveying flow eastward along the north side of Barton Avenue. No riffle-pool sequence was observed within the reach, which had a low gradient and bed material composed of clay and silt. Surrounding land-use was predominantly agricultural and residential, and the feature lacked a riparian buffer. Terrestrial vegetation was present within the channel throughout the reach, providing some reinforcement to the channel bed and banks. Average bankfull width of the feature was 2.65 m, and its average bankfull depth was 0.4 m. No localized erosion was observed within the feature, nor were there any distinct areas of sediment deposition. At the downstream extent of the reach, at Lewis Avenue, the feature received flows from roadside ditches to the west and east.

3.1.2 Detailed Geomorphological Assessment

A detailed geomorphological assessment of the channel at Reach 1 was completed to determine average bankfull channel characteristics, including cross-sectional geometry and hydraulics, for the purpose of informing erosion thresholds. Representative cross sections were surveyed in Reach 1, and a modified Wolman (1954) pebble count was completed at each cross section to characterize the bed materials. A longitudinal survey of the bed was also completed to determine slope. The channel measurements were then used to calculate bankfull flow characteristics such as discharge, average velocity, and erosion or sediment transport sensitivity. A summary of measured and computed values is presented in Table 2.

Table 2: Bankfull channel parameters for the study reaches

Channel Parameter	Reach 1
Average bankfull channel width (m)	2.22
Average bankfull channel depth (m)	0.25
Average channel gradient (m/m)	0.0073
Calculated bankfull discharge (m³/s)	0.43

Bankfull Shear Stress	17.85
D ₅₀ (mm)	2

4 Erosion Threshold Assessment

4.1 Methodology

Erosion thresholds are used to determine the magnitude of flow required to potentially entrain and transport bed and/or bank materials. As such, they may be used to inform erosion reduction strategies in channels influenced by conceptual flow management plans. The erosion threshold analysis provides a depth, velocity, or discharge at which sediment of a particular size may potentially be entrained.

The erosion threshold is the theoretical point at which entrainment of sediment would occur based on bed and bank materials. Due to the variability between bed and bank composition and structure, erosion thresholds are determined for both bed and bank materials.

Threshold targets are determined using different methods that are dependent on channel and sediment characteristics. For example, thresholds for non-cohesive sediments are commonly estimated using a shear stress approach, similar to that of Miller et al. (1977), which is based on a modified Shield's curve. A velocity approach could also be applied. For cohesive materials, a method such as that described by Komar (1987), or empirically-derived values such as those compiled by Fischenich (2001), Chow (1959) or Julien (1998), could be applied.

An erosion threshold is quantified based on the bed and bank materials and local channel geometry, in the form of a critical discharge. Theoretically, above this discharge, entrainment and transport of sediment can occur. The velocity, U is calculated at various depths, until the average velocity in the cross section slightly exceeds the critical velocity of the bed material. The **velocity is determined using a Manning's approach, where the Manning's** n value is visually estimated through a method described by Arcement and Schneider (1989) or calculated using **Limerinos's (1970) approach.** The velocity is mathematically represented as

$$U = \frac{1}{n}d^{2}/_{3}S^{1}/_{2}$$
 [Eq. 1]

where, d is depth of water, S is channel slope, and n is the Manning's roughness. The discharge is then calculated using the area of a typical cross section at that depth.

For the bank materials, following Chow (1959) in a simplified cross section, 75% of the bed shear stress acts on the channel banks. In a similar approach, the depth of flow is increased until the shear stress acting on the banks exceeds the resisting shear strength of the bank materials.

4.2 Results

Erosion thresholds were determined for the bed materials within Reach 1, as it was determined to be the most sensitive reach within the watercourse to erosion based on the field observations. It was also taken into consideration that the reach is located downstream of the confluence of both channels proposed to convey flow from the development site. This field-based methodology to identify these thresholds provides a more tailored approach to the receiving watercourse than the desktop-based approach completed in the previous Subwatershed Study (Aquafor Beech Limited, 2013).

Bed materials were selected for the erosion threshold given that bed and bank materials were equivalent based on a review of the sediment samples retrieved from the field. The critical shear stress and velocity for the materials were subsequently determined, and used to determine the threshold discharge, the point at which sediment entrainment begins to occur.

The results of the erosion assessment are provided in Table 3. The critical discharge to entrain materials within Reach 1 was determined to be $0.609~\text{m}^3/\text{s}$ based on a permissible velocity adapted from Chow's (1959) threshold for non-cohesive silt-loam. This erosion threshold was selected for post- to pre-development comparisons outlined in Section 5.

Table 3: Erosion threshold

Parameter	Reach 1
D ₅₀ (mm)	2
Critical velocity (m/s)	0.61
Critical discharge (m³/s)	0.609

5 Erosion Modelling

5.1 Model Overview

Using the results of the erosion threshold analysis, continuous hydrological modelling analyses were applied to produce hydrographs for use in the exceedance analyses. These exceedance analyses were completed using our own in-house model, based on four indices:

- 1) Cumulative time of exceedance
- 2) Number of exceedance events
- 3) Cumulative effective discharge
- 4) Cumulative effective work index (i.e., cumulative effective stream power)

They, as a product, provide an evaluation of the number of events, period of transport, and magnitude. We note that the most relevant index is the cumulative effective stream power.

Time of exceedance and number of exceedances can be simply calculated from the discharge record. For more relevant indicators, hydraulic information is required. As such, our model applies the discharge to a characteristic cross-section. Using a Manning's approach, the discharge at each time step in the continuous hydrological model provided by Urbantech is converted into a velocity, depth of flow, shear stress, and/or stream power. These parameters are calculated based on field measurements of slope, cross section and channel roughness. This provides analysis that is site appropriate and specific.

The post- and pre-development hydrological modelling reflects changes to the hydrological regime resulting from SWM measures being implemented within the catchment. Continuous flow data provided the results in 60-minute increments for the years of 1962-1992. The hydrological modeling was analyzed to calculate the various erosion indices noted above to identify potential changes in the erosive potential of the watercourse following development.

To calculate work terms for pre- and post-development scenarios, both velocity and shear stress were calculated at each time step. Through an iterative process, water depth and velocity were calculated for each discharge passing through a representative cross-section. The cross-section is divided into floodplain and bankfull sections. The cross-section is further broken into panels.

Velocity, U is calculated for each panel using the Manning's approach (equation 2). This is a conservative approach as it allows dissipation of flood energy in the floodplain.

The total discharge, Q_T at each time step is based on the summation of the discharge of all panels, Q_h such that:

$$Q_{T=}\sum Q_{i}$$
 [Eq. 2]

 Q_i is discharge through a panel (which is set at 10 percent of the cross-section). Qi is defined as:

$$Q_i = U_i w_i d_i$$
 [Eq. 3]

where, w_i and d_i are width and depth for each panel. The discharge for each panel was then summed to give a total discharge. This is more accurate than using average cross-sectional dimensions of a simple trapezoidal channel, as the bed is usually irregular, and a panel approach more accurately represents the true cross-sectional area.

For each event, the discharge is converted into a maximum depth and average velocity. The maximum depth is used to calculate a maximum bed shear stress, $\tau_{o_{max}}$ based on:

$$au_{o_{max}} = d_{max}
ho g S_{bed}$$
 [Eq. 4]

where, d_{max} is the maximum water depth, ρ is water density, g is acceleration due to gravity, and S_{bed} is the channel bed slope.

Cumulative total work, $\boldsymbol{\alpha}_{tot}$ is defined as:

$$\omega_{tot} = \sum \tau_{0_{max}} . U_{avg} . \Delta t$$
 [Eq. 5]

where, U_{avg} is average velocity (Q_{tot}/A_{tot} , where A_{tot} is wetted area), while cumulative effective work index ($\boldsymbol{\alpha}_{eff}$) is defined by:

$$\omega_{eff} = \sum \tau - \tau_{cr}.U.\Delta t, \omega < 0 = 0$$
 [Eq. 6]

where, τ_{cr} is the critical shear stress.

Time of exceedance t_{ex} defined as:

$$t_{ex} = \sum \Delta t \text{ (for } Q_T > Q_{threshold})$$
 [Eq. 7]

where, *Q*_{threshold} is the discharge at the erosion threshold.

5.2 Model Results

The full series of post- to pre-development hydrographs are included in Appendix D, and include the erosion threshold based on discharge, for reference. Table 4 provides the results of the assessment based on the hydrographs provided by Urbantech.

Table 4: Erosion targets based on post- and pre-development continuous modelling

	CD (m³/s)	CED (m3/s)	മ _{eff} (N/m)	CTW (N/m)	t _{ex} (hours)	Exceedance #
R-2 (PRE)	7292	149.2	2,350,250	1221926387	150	79.00
R-2 (POST)	7936	238.9	3,299,507	1290006655	254	134.00
Percent Change (%)	8.8	60.0	40.4	5.6	69.3	69.6

Changes to the hydrological regime resulting from the stormwater design and contributing drainage areas have increased the potential for erosion within the drainage channel. However, given the existing condition of the drainage channel this is not expected to cause extensive erosion within the watercourse. In its current state, this channel is heavily vegetated with rooted vegetation and no typical evidence of erosion such as scouring, bank slumping or undercutting was observed. The model has predicted an increase of 60% in cumulative effective discharge, the cumulative discharge which exceeds the erosion threshold, and 40% in cumulative effective work index $(\mathbf{\alpha}_{eff})$, which represents cumulative shear stress exceeding the erosion threshold. While these increases appear significant on a relative scale, we do not expect their impacts to be significant given the minimal duration of these events. For example, a typical stream is expected to experience sediment entrainment for 2 to 3 days within a year. However, in the proposed scenario there are only anticipated to be cumulatively 10.6 days in which erosion occurs during the 30 year record assessed. As well, we note that there are negligible changes to the cumulative discharge (CD), and the cumulative total work (CTW), which is the total amount of work applied to the channel over the 30 year record. This points to the difference between the existing and proposed scenario's erosion potential is tied to infrequent short duration high frequency flow events, which are not expected to cause substantial changes to the drainage feature. This is shown graphically within Appendix D.

6 Summary and Recommendations

An erosion threshold in the form of a critical discharge was defined for Reach 2 as being 0.61 m³/s based on **detailed field observations**, an **analysis of the channel's sediment's and its bankfull** geometry. This erosion threshold, and the selection of Reach 2 provide the most conservative estimates as the most sensitive reach within the watercourse from which a comparison can be made for post- to pre-development scenarios.

The work conducted in this assessment provides a site-specific strategy that incorporates a 2-year over control, with erosion thresholds defined based on field observations collected using standard geomorphological techniques. The erosion threshold was used to compare pre- and post-development exceedances based on standard erosion indices. Pre- to post-development comparisons were based on instream flows. As such, this technique accounts for cumulative inputs from associated ponds and other external sources.

Results indicate that the changes to the hydrological regime resulting from development have caused the erosive potential of Reach 2, and by proxy the entire unnamed tributary of Lake Ontario, to slightly increase. However, given the minimal duration and infrequency of erosion events in the post-development scenario, and the existing condition of the channel being a well vegetated environment, we do not foresee the requirement for systemic erosion mitigation

measures to be undertaken and expect the channel to remain stable in the post-development condition.

We trust this report meets your requirements. Should you have any questions please contact the undersigned.

Respectfully submitted,

Paul Villard, Ph.D., P.Geo., CAN-CISEC Director, Principal Geomorphologist

André-Marcel Baril, M.Sc. River Scientist

7 References

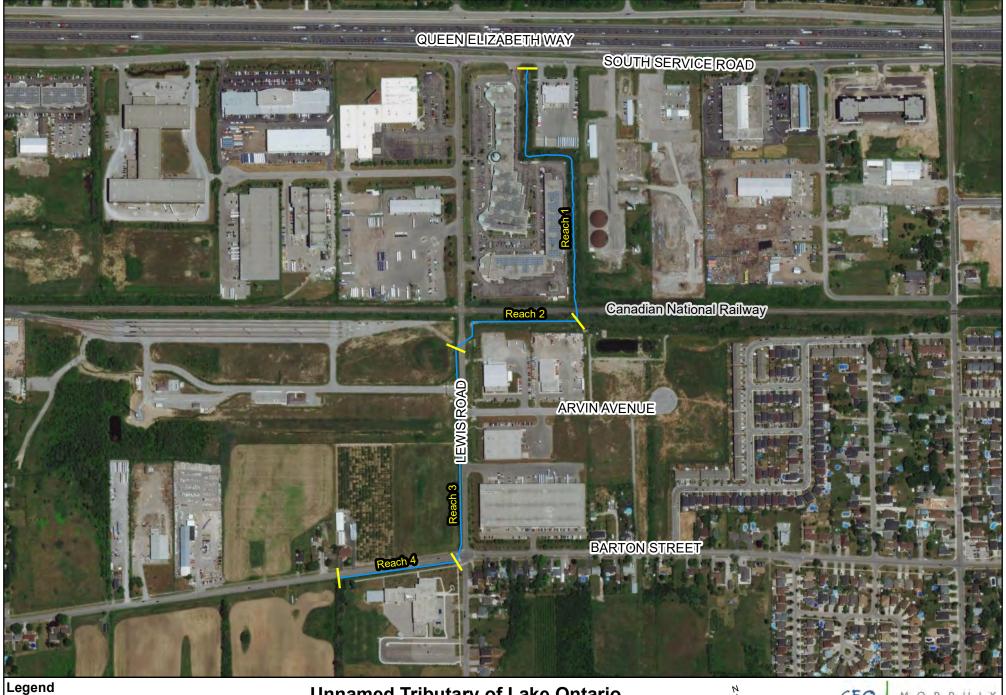
Aquafor Beech Limited. 2013. Stoney Creek Urban Boundary Expansion Area (SCUBE) East. Subwatershed Study.

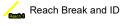
Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2, Map 226.

Chow, V.T. 1959. Open channel hydraulics. McGraw Hill, New York.

Julien, P. Y. 1998. Erosion and Sedimentation (1st ed.). Cambridge University Press.

Komar, P.D. 1987. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology, 34: 1165-1176

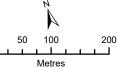

Limerino, J.T., 1970: Determination of the Manning coefficient from measured bed roughness in natural channels. United States Geological Survey Water-Supply Paper 1898B.


Miller, M.C., McCave, I.N. and Komar, P.D. 1977. Threshold of sediment erosion under unidirectional currents. Sedimentology, 24: 507-527.

Newson, M. D., Newson, C. L., and Ne, T. 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 2: 195–217.

Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario. Ontario Geological Survey. Miscellaneous Release - Data 128-REV.

Appendix A Reach Map



Watercourse

Detailed Assessment

Unnamed Tributary of Lake Ontario Reach Delineation

Hamilton, Ontario

GEO MORPHIX

Service Layer Credits: Source: Esrl, DigitalKilobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, SN, and the GIS User Community Imagery: May, 2018. Reach Break and Reach ID and Detaile d Assessment: GEO Morphix Ld Ltd., 2019. Wattercourse: GEO Morphix Ld and MNRF, 2019. Print Date: February, 2020. PN18099. Drawn By: W.B., A.M.B.

Appendix B Field Sheets

Date:				1100			
	3020-02-20		Stream/Reach:		Stoney Greek Tributury	R1	
Weather:	-4°C Sun	Sun & cloud	Location:		Stoney creek		
Field Staff:	AMB IT		Watershed/Subwatershed:	bwatershed:			
UTM (Upstream)			UTM (Downstream)	eam)			
Land Use (Table 1)	(Table 2)	Channel Type [1] C	Channel Zone (Table 4)	Flow Type (Table 5)	Groundwater	Evidence:	1
Riparian Vegetation			Aqua	Aquatic/Instream Vegetation	tation	Water Quality	
Dominant Type: Coverage: (Table 6) 3/3 □ None Species: □ Fragmented Reed Canary ⊠ Continuous	the channel widths	Age Class (yrs): Immature (<5) Established (5-30) Mature (>30)	Encroachment: Type (Table 7) Wood	Type (Table8) 6 Woody Debris □ Present in Cutbank □ Present in Channel	Coverage of Reach (%) 5 Density of WD: bank	Odour (Table 16) Turbidity (Table 17)	

☐ Moderate □ High

Not Present
 Not P

Channel Characteristics									-				
Sinuosity (Type)	Sinuosity (Degree)	ee) Gradient	nt	Number of Channels	Channels		Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9)	(Table 10)	(Table 11)	11)	(Table 12)	1	Riffle Substrate		×	M				
Entrenchment	Type of Bank Failure		Downs's Classification			Pool Substrate	×	×	×				
(Table 13)	(Table 14)	(Table 15)	15) S			Bank Material XI Peable blocks	b tocks						Ø
Bankfull Width (m)	3.5	7 3.1	Wetted Width (m)	(m)			Ban	Bank Angle	Bank Erosion	sion	Notes: Cab	ile blocks	Notes: Cable blocks reinferring
Bankfull Depth (m)	34.0		⊘, ⟨⇔ Wetted Depth (m)	(m)				09-09	☐ 5 – 30% ☐ 30 – 60%		throughout. Minimal	banks hout.	throughout. Minimal
Riffle/Pool Spacing (m)	8	% Riffles:	20 % Pools:	80 Me	O Meander Amplitude:	olitude: N/A		□ Undercut	□ 60 – 100%		evidence of erosian.	of ero	evidence of erosian. No erosian de que bend
Pool Depth (m)	Riffle	Riffle Length (m)	Undercuts (m)	S (m) S		Comments: Straight constructed chaynel, Minor	Constru	re led c	hannel,		Following Earlstructed	Stabl Stabl	Following Earstructed C: FFIE, Stable constructed
Velocity (m/s)			Wiffle ball / ADV	/ ADV / Estimated	ated	Geemor phic activity Meted	1 devel	+ ivity	M: M.		channe		

Completed by:

Checked by:

General Site Characteristics

Project Code: PN 18099

Date:	July 24, 2018	Stream/Reach: R2
Weather:	Sun + 25°C	Location: Lewis Roy Bouton St
Field Staff:	CH	Watershed/Subwatershed: Stoney CVK
Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut bank XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	cattails.	Site Sketch: DIS End of Survey X 2
Instream log/tree ** * Woody debris R Station location Vegetated island Flow Type H1 Standing water H2 Scarcely perceptible H3 Smooth surface flee H4 Upwelling H5 Rippled H6 Unbroken standing water H7 Broken standing water H8 Chute H9 Free fall	g wave	3
Substrate S1 Silt S2 Sand S3 Gravel S4 Small cobble S5 Large cobble	\$6 Small boulder \$7 Large boulder \$8 Bimodal \$9 Bedrock/till	XO VIS Start of surview X
Other BM Benchmark BS Backsight DS Downstream WDJ Woody debris jam VWC Valley wall contact BOS Bottom of slope TOS Top of slope		Additional Notes:

Completed by: _____

Reach Characteristics

Project Code/Phase: PNN8099

Date:	JU/424.	2018	Strea	Stream/Reach:	44		R2				
Weather:	SUN 4 25°C	χ.)	Location:	tion:	(Rusi	S Rd	0	arter	to		
Field staff:	J.J.		Wate	Watershed/Subwatershed:	SACO	Jell C	21,				
UTM (Upstream)			MTU	UTM (Downstream)).						
Land Use (Table 1)	Valley Type (Table 2)	Channel Type (Table 3)	Channel Zone (Table 4)	Flow Type (Table 5)	2 Gro	□Groundwater	Evide	Evidence:	10	ONE	
Riparian Vegetation				Aquatic/Instream Vegetation	getation			Water Quality	lity		
Dominant Type: Cove (Table 6)	Coverage: Channel widths None 1-4 Fragmented 4-10 Continuous >10	Age Class (yrs): Enc Immature (<5) Established (5-30) Mature (>30)	Encroachment: (Table 7)	Type (Table8) Woody Debris Present in Cutbank Present in Channel		Coverage of Reach (%) QQC Density of WD: Low WDJ/50m: Moderate MCA		societs Societ	Odour (Table 16) Turbidity (Table 17)	able 16) Fable 17)	
Channel Characteristics											
Sinuosity (Type)	Sinuosity (Degree)	Gradient	Number of Channels	Channels	Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9)	(Table 10)	(Table 11)	(Table 12)	Riffle Substrate	ate						
Entrenchment	Type of Bank Failure	e Downs's Classification	tion	Pool Substrate	ate						
(Table 13)	(Table 14)	(Table 15)		Bank Material							
Bankfull Width (m)	See des	Wetted Width	idth (m)	drets of	Ba	Bank Angle	Bank Erosion ☐ < 5%		Notes:		
Bankfull Depth (m)	0489853	SNACA Wetted Depth	epth (m)	000 UNDA	D X	030-60	X5-30%	. %	Stinic	OF White	noor
Riffle/Pool Spacing (m)	NA % Riffles:	les: NP % Pools:	2	Meander Amplitude:		Undercut	□ 60 – 100%	%0	0.40	8	5
Pool Depth (m)	MA Riffle Length (m)	47	Undercuts (m)	Comments:	O KIPPIRS	+ 53	Pools		Car	Lin	10
Veloctity (m/s)	<u>42</u>	Wiffle ball	ball / ADV / Estimated	nated Sting	FUD?			1=			
					Comp	Completed by:	+] 5	Checked by:		Ĩ

General Site Characteristics Project Code: Date: Stream/Reach: Barton + Lewis Weather: Location: Field Staff: Watershed/Subwatershed: BARTON **Features** Site Sketch: Reach break Cross-section A Flow direction N Riffle Pool WWW. Medial bar HHHHHH OR Eroded bank ---- Undercut bank OLD Rip rap/stabilization/gabion Leaning tree x---x---x Fence Culvert/outfall Swamp/wetland WWW Grasses 0 Tree Instream log/tree *** Woody debris 只 Station location VV Vegetated island Flow Type H1 Standing water Scarcely perceptible flow H2 **H3** Smooth surface flow H4 Upwelling Rippled H5 H6 Unbroken standing wave H7 Broken standing wave H8 Chute Free fall H9 Substrate S1 Silt Small boulder 56 **S2** Sand Large boulder **S3** Gravel Bimodal 58 54 Small cobble Bedrock/till 59 **S5** Large cobble Drivewa Other BM Benchmark EP Erosion pin BS Backsight Rebar RB DS Downstream US Upstream WDJ Woody debris jam TR Terrace

Additional Notes:

RR- riprap

Top of slope

Bottom of slope

Valley wall contact FC

Flood chute

Flood plain

Knick point

FP

KP

VWC

BOS

TOS

Completed by: _____

Scale:

Project Code: PH 18099

Reach Characteristics

Date:	JUL 13 2018	Stream/Reach:	23	R3
Weather:	SIN + 28°C	Location:	Rainon St + 1	PLUSKO
Field Staff:	CH + CVM	Watershed/Subwatershed:	Staned Or	
UTM (Upstream)		UTM (Downstream)		
Land Use 3/9 Valle (Table 1)	Valley Type (Table 2) (Table 3) (Table 4)	Teble 4) Tow Type (Table 5)	Groundwater	Evidence: Nane
Riparian Vegetation		Aquatic/Instream Vegetation	etation	Water Quality
Dominant Type: Coverage: (Table 6)	Coverage: Channel Age Class (yrs): Encroachment: □ None □ 1-4 □ Immature (<5) (Table 7) □ Fragmented □ 4-10 □ Established (5-30) □ Continuous □ > 10 □ Mature (>30)		Type (Table8) Nong Coverage of Reach (%) Woody Debris Density of WD: □ Present in Cutbank □ Low □ Present in Channel □ Moderate □ Aligh □ High	Odour (Table 16) Turbidity (Table 17)
Channel Characteristics		,		
Sinuosity (Type)	Sinuosity (Degree) Gradient Nur	Number of Channels	Clay/Silt Sand Gravel	Cobble Boulder Parent Rootlets
(Table 9)	(Table 10) (Table 11) (Table 11)	(Table 12) Rithe Substrate		0 0 0 0
Entrenchment	Type of Bank Failure Downs's Classification	Pool Substrate	te de la	
(Table 13)	(Table 14) (Table 15)	Bank Material	o o 汤	
Bankfull Width (m)	SPE DE TON (CO.) Wetted Width (m)	P30	Bank Angle Bank Ero	Bank Erosion Notes:
Bankfull Depth (m)	Wetted Depth (m)			30%
Riffle/Pool Spacing (m)	NA % Riffles: NA % Pools:	Weander Amplitude:	=	□ 50 - 00% □ 60 - 100%
Pool Depth (m)	NA Riffle Length (m) NA Undercuts (m)	Comments:	modside olital	
Velocity (m/s)	DRA V Estimated	V/Estimated	2-P POOLED	Waster @ U(S Xing

Completed by:

Checked by:

Philanga

Date: 10/413/18	Stream/Reach:	R4
Weather: Sun + 25°C	Location:	Barton + 1ewis
Field Staff: CH + CVM	Watershed/Subwatershed:	Stoney Cric.
Features	Site Sketch:	MS 80
Reach break		
Cross-section	Danishream	
Flow direction		N
Riffle Pool		02 17 19
Medial bar	1 1 1 1 7	KI MI
Eroded bank		
Undercut bank		
Rip rap/stabilization/gabion		
Leaning tree	5	1 1 3
xxx Fence	1 2 1	MM, 9.X
Culvert/outfall	80	THE E
Swamp/wetland		W 3 3 5
₩₩W Grasses		
C Tree		
Instream log/tree	20	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
* * * Woody debris		X S E N V
只 Station location	(D) V	5/1/901
Vegetated island		N OVIV & III
Flow Type		
H1 Standing water		WIMSIA
H2 Scarcely perceptible flow H3 Smooth surface flow	0 1 1	N' II' 'S III
H3 Smooth surface flow H4 Upwelling		
H5 Rippled	W O	
H6 Unbroken standing wave		MOCH I I I I I I I I I I I I I I I I I I I
H7 Broken standing wave	00	
H8 Chute		
H9 Free fall		
Substrate		1 1/1
S1 Silt S6 Small boulder		51 2.65m
S2 Sand S7 Large boulder		
S3 Gravel S8 Bimodal	0 1	0.41
S4 Small cobble S9 Bedrock/till	1917	
S5 Large cobble		W A CONTRACTOR OF THE CONTRACT
Other	S X	
BM Benchmark EP Erosion pin	1 2	121
BS Backsight RB Rebar		Pri de tre
DS Downstream US Upstream WDJ Woody debris jam TR Terrace	L Detroppin	N I The last of th
VWC Valley wall contact FC Flood chute	Upstream.	Scale: HN IM
BOS Bottom of slope FP Flood plain	Additional Notes:	R. Ps
TOS Top of slope KP Knick point	TO WEGS	of erosion

HW- neod (unil) RR-riprap

Completed by: _____

Vestifier: Continue Continu	William St. Co. and Co. and Co.	No. of the second secon			3	
Table 2) Channel Type Channel	Date:	Child 13/18	Stream/Reach:	K4		
Table 2) Channel Type Channel Zone Flow Type Channel Zone Channel Zon	Weather:	28	Location:	N 20		
Trable 2) Trable 3 Trable 4) Trable 4) Trable 4) Trable 4) Trable 5 Trab	Field Staff:	CH + CVM	Watershed/Subwatershed:	Storell Off		
Table 2) Channel Yope Channel	UTM (Upstream)		UTM (Downstream)			
Aquatic/instream Vegetation Nature (-53) Table 13) Type (Table 14) Type (Table 15) Table 10) Type (Table 16) Type (Table 16) Type (Table 16) Type (Table 16) Type (Table 17) Type (Table 10) Type of Bank Failure Down's's Classification Pool's whaterial Table 10) Type of Bank Failure Down's's Classification Bank Material Type of Bank Failure Down's's Classification Bank Material Type of Bank Failure Down's's Classification Down's Scale Table 15) Type of Bank Failure Down's's Classification Bank Material Down's Scale D	3/9	Channel Type (Table 3)	Flow Type (Table 5)		No	
Table 10 Age Class (tyrs): Encroachment: Type (Table 8) Age Class (tyrs): Encroachment: Type (Table 8) Age Class (tyrs): Encroachment: Type (Table 10) Age Class (tyrs): Age Class (tyrs): Encroachment: Type (Table 10) Age Class (tyrs): Age Class (tyrs): Age Class (tyrs): Age Class (trable 11) Age Class (trable 12) Age Class (trable 12) Age Class (trable 12) Age Class (trable 13) Age Class (Riparian Vegetation		Aquatic/Instream Veget	tation	Water Quality	
Sinuosity (Degree) Gradient (Table 11) Number of Channels Riffle Substrate Clay/Silt Sand Gravel Cobble Boulder Parent Type of Bank Failure Downs's Classification Pool Substrate Clay/Silt Clay/Silt <th>Type:</th> <th>channel Age Class (yrs): 1-4 Immature (<5) ented 4-10 Established (5-30) uous > 10 Imature (>30)</th> <th>Type (Table8) Woody Debris Present in C Present in C</th> <th>5 /</th> <th>Odour (Table 16) Turbidity (Table 17)</th> <th></th>	Type:	channel Age Class (yrs): 1-4 Immature (<5) ented 4-10 Established (5-30) uous > 10 Imature (>30)	Type (Table8) Woody Debris Present in C Present in C	5 /	Odour (Table 16) Turbidity (Table 17)	
Sinuosity (Degree) Gradient Number of Channels Clay/Silt Sand Gravel Cobble Boulder Parent Type of Bank Failure Downs's Classification (Table 12) (Table 12) Aiffle Substrate C	Channel Characteristics					
Type of Bank Failure Downs's Classification Pool Substrate Pool Su	Sinuosity (Type)	Gradient	mber of Channels	Sand	Boulder Parent	Rootlet
Type of Bank Failure Downs's Classification Pool Substrate	(Table 9)	(Table 11)				
(Table 14) CR (Table 15) Sank Material Bank Angle Bank Erosion Notes: 2	Entrenchment		Pool Substrate		1	9
2 . GS	(Table 13)	COR	Bank Material			
(m) NA % Riffles: NA % Pools: NA Meander Amplitude: NA Undercuts (m) NA SYAR Comments: RAASAA	Bankfull Width (m)	2 , (S) Wetted Width (m)	Do		sion	
NA % Riffles: NA % Pools: NA Meander Amplitude: NA Undercut NA Riffle Length (m) NA Undercuts (m) NG/R Comments: Road Stale Of Wiffle ball / ADV / Estimated	Bankfull Depth (m)	Wetted			%0	
NA Riffle Length (m) NA Undercuts (m) NCAC Comments: Road Side of Divide and Virile ball / ADV / Estimated	Riffle/Pool Spacing (m)	% Riffles: NP % Pools:			%001	
	Pool Depth (m)	NA	Comments:	side of		
	Velocity (m/s)	DVC) Wiffle ball / ADV	V / Estimated			

Completed by:

Checked by:

Appendix C Photo Record

Photo 1 Reach 1: Crossing at CN Rain Line upstream to Crossing at Lewis Road

Photo taken near the downstream extent of the reach. Note the dense rooted emergent aquatic vegetation stabilizing the channel. Yellow arrow denotes flow direction.

Photo 2 Reach 1: Crossing at CN Rain Line upstream to Crossing at Lewis Road

The reach had a wide corridor adjacent to Lewis Road. No erosion to the bank reinforcements was observed.

Photo 3 Reach 1: Crossing at CN Rain Line upstream to Crossing at Lewis Road

The channel was well vegetated throughout its length, and had a riparian buffer composed of herbaceous vegetation and grasses

Photo 4
Reach 1: Crossing at CN Rain Line upstream to Crossing at Lewis Road

Photo taken at the upstream extent of Reach 1. No significant scour or erosion was observed at the confluence of Reach 2 and the small ditch which conveyed flow northwardly from Arvin Avenue.

Reach 2 conveyed flow northwards along the west side of Lewis Road from the crossing to Barton Street. The majority of the reach was colonized by terrestrial herbaceous plants and grass from the riparian zone.

Within the vicinity of Barton Street, some channel development was observed which has locally reduced the coverage of vegetation within the feature but not developed banks.

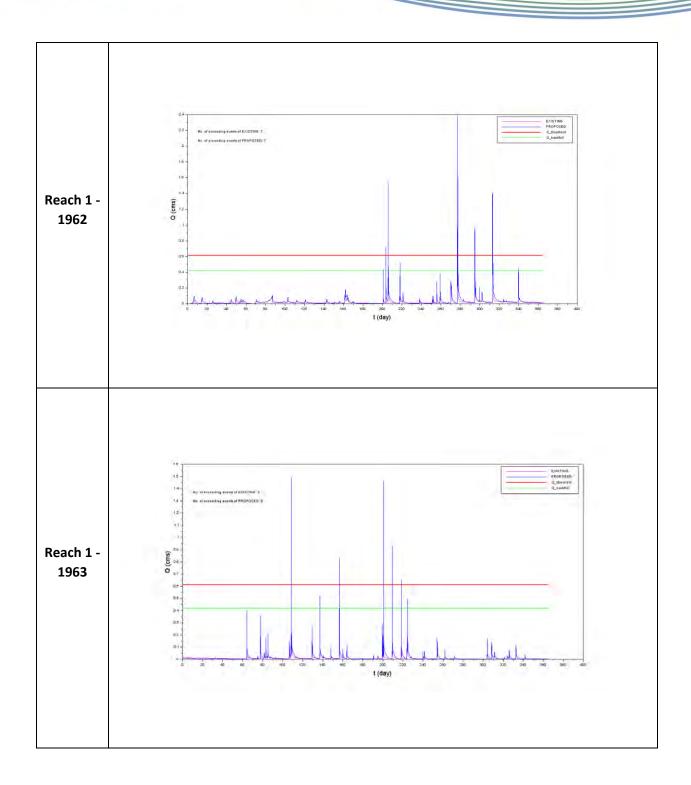
Standing water was occasionally observed within the intermittent watercourse which showed no evidence of significant erosion or sediment deposition.

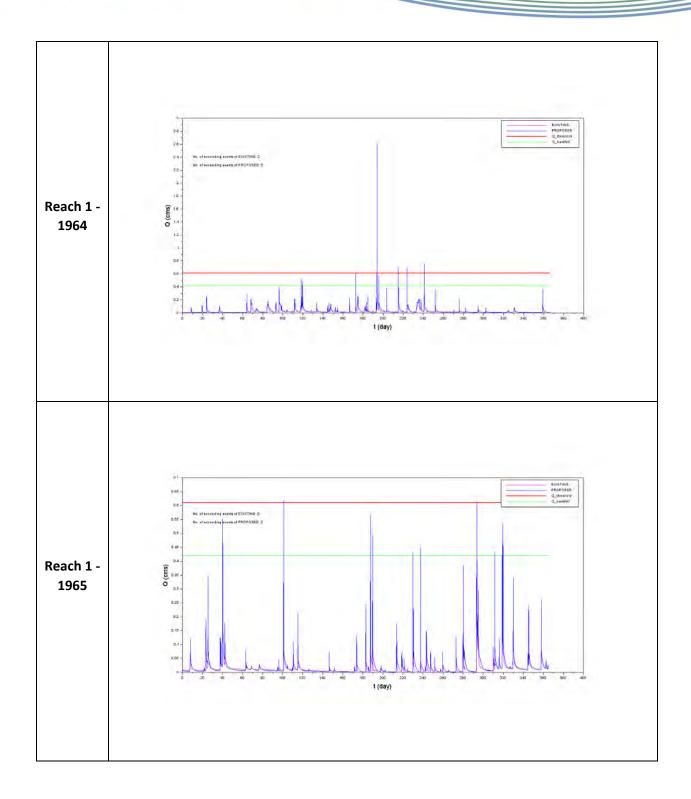
The crossing at Barton Street was a circular concrete culvert which had been partially blocked by riparian vegetation which had colonized the channel.

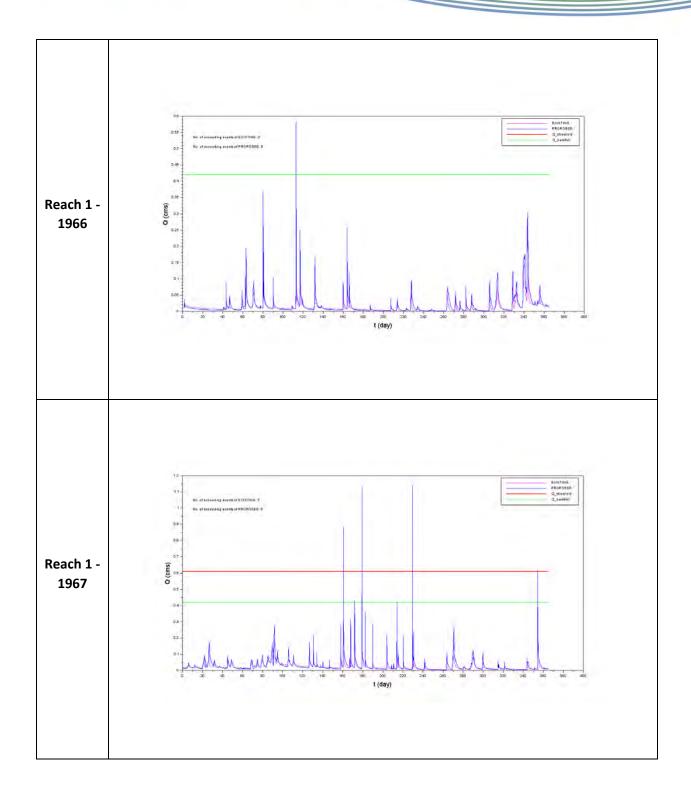
Photo 9
Reach 3: From the crossing at Lewis Street upstream to the woodlot west of Winona Public School

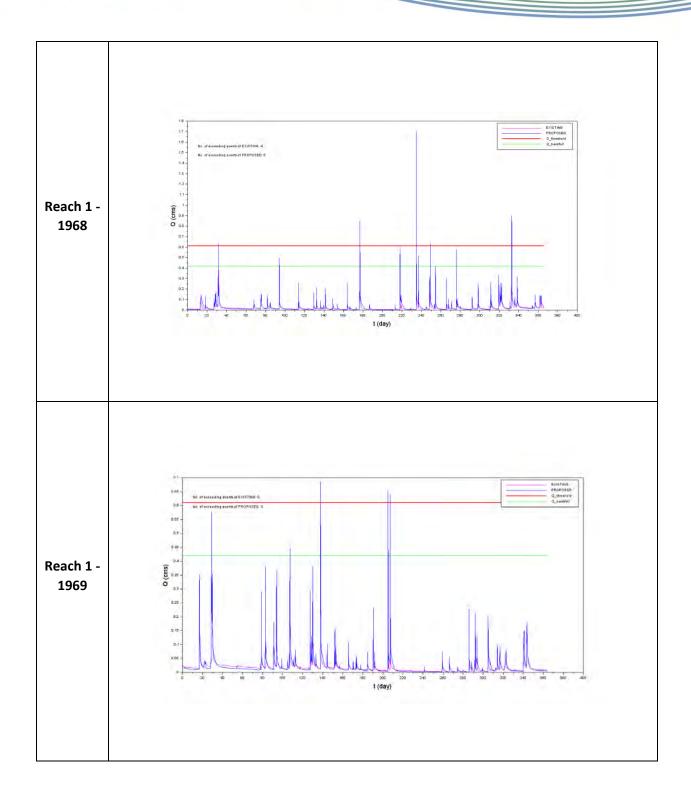
At the downstream extent of Reach 3, a culvert conveying flow from the west side of Lewis Road and a small ditch from the north formed a confluence.

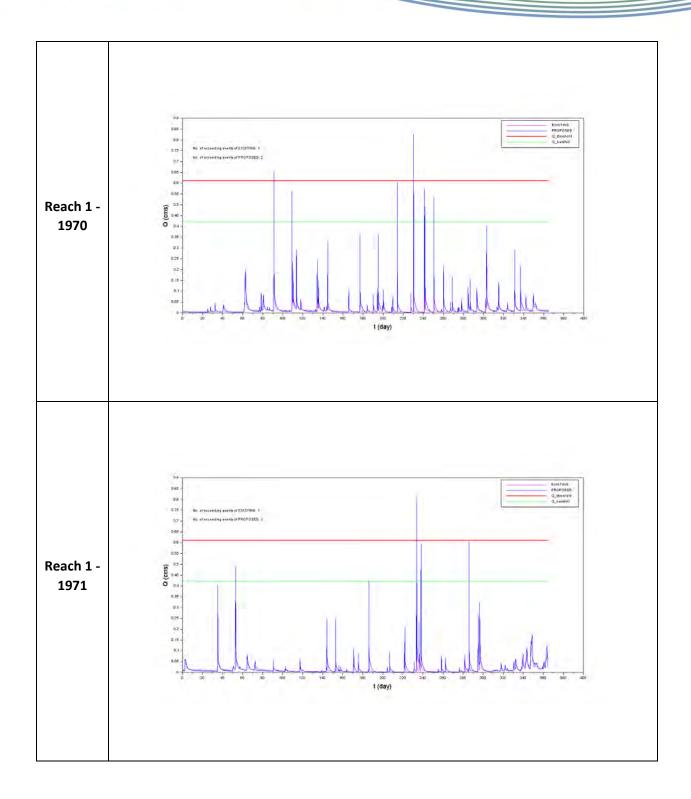
Photo 10
Reach 3: From the crossing at Lewis Street upstream to the woodlot west of Winona Public School

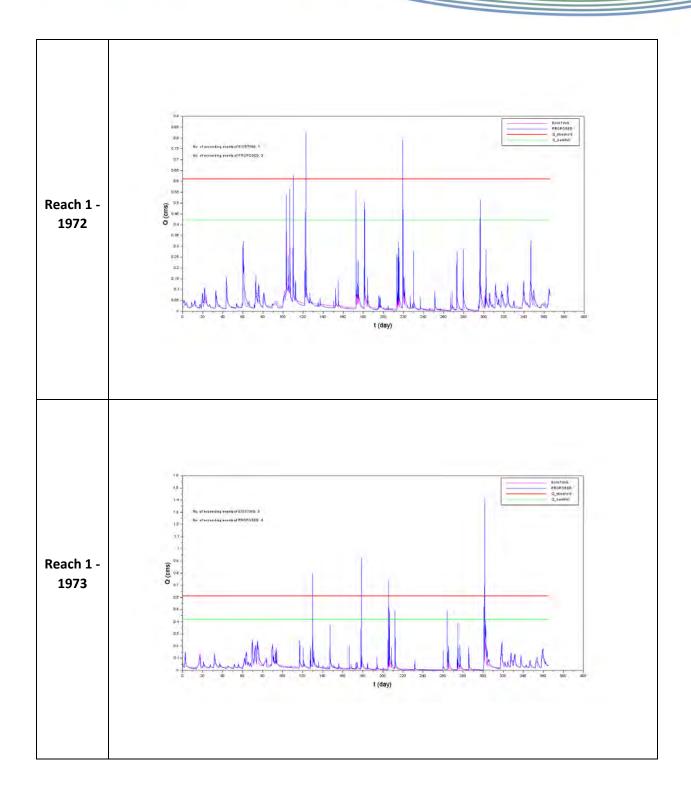

The Barton Street crossing appeared to be causing a slight backwater, as evidenced by the standing water upstream of the structure.

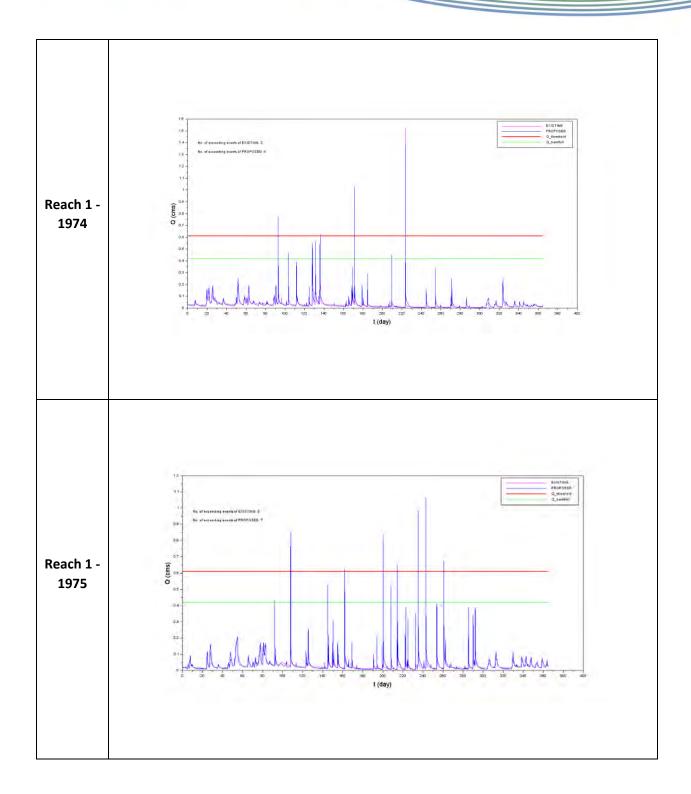

Photo 11
Reach 3: From the crossing at Lewis Street upstream to the woodlot west of Winona Public School

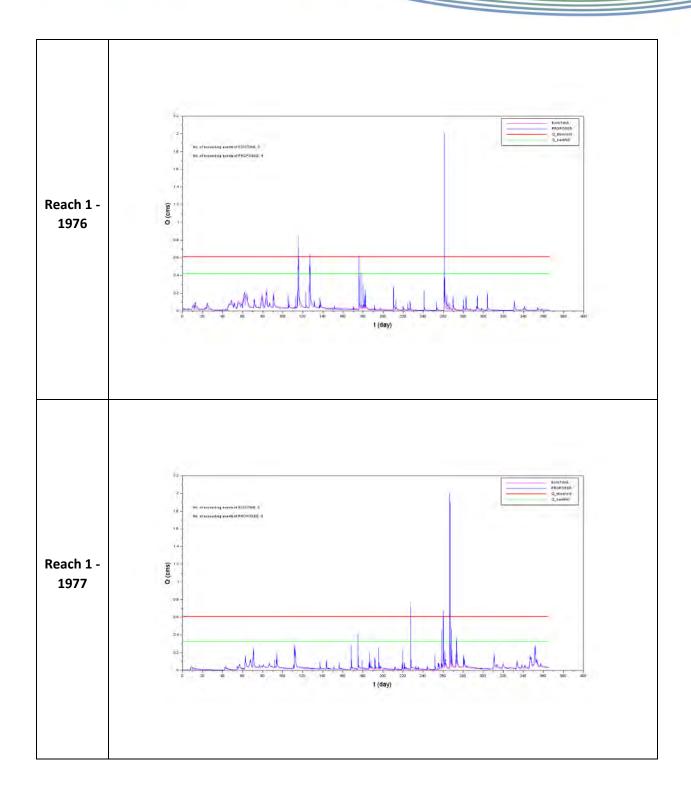


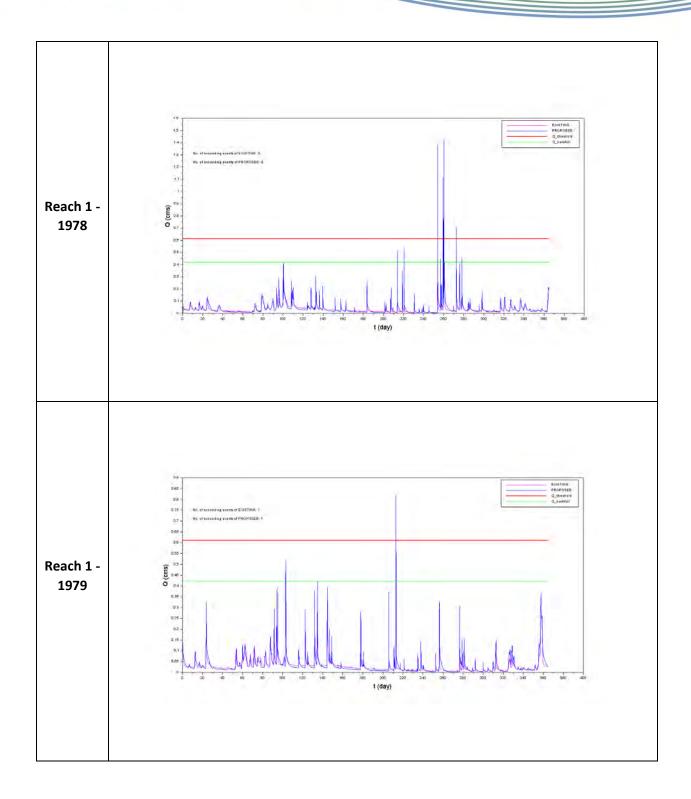

The channel was predominantly colonized by riparian vegetation, with some aquatic species such as reed canary grass also noted within the reach.

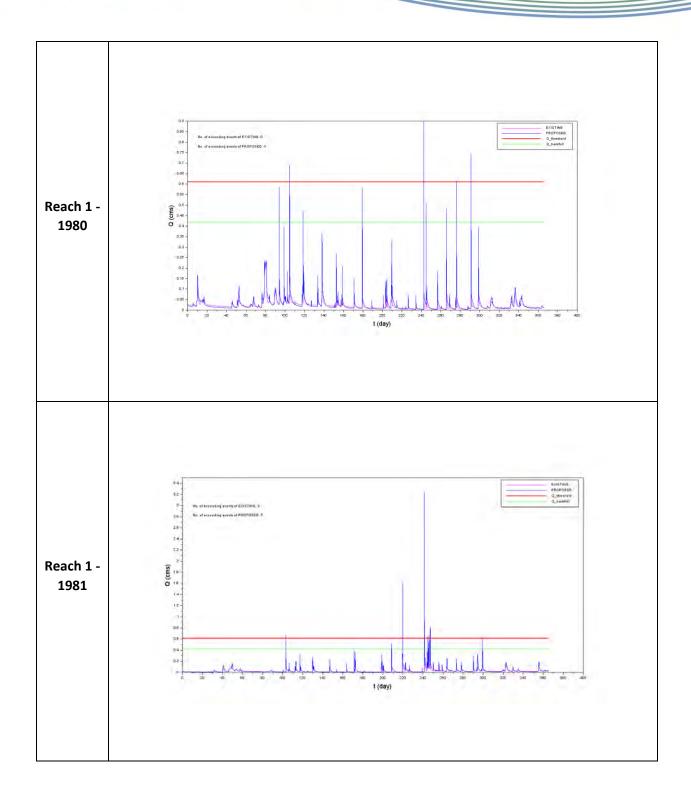

Appendix D Hydrographs

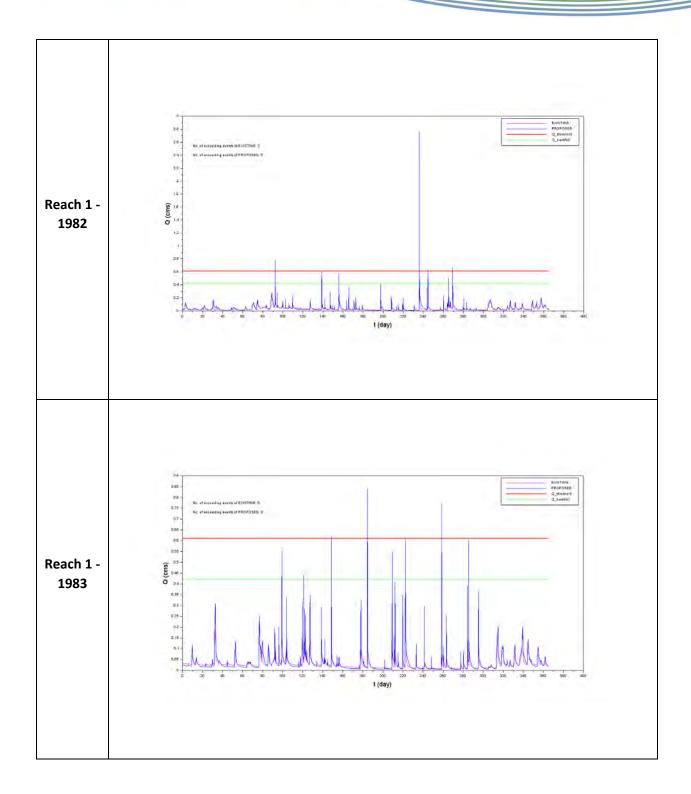


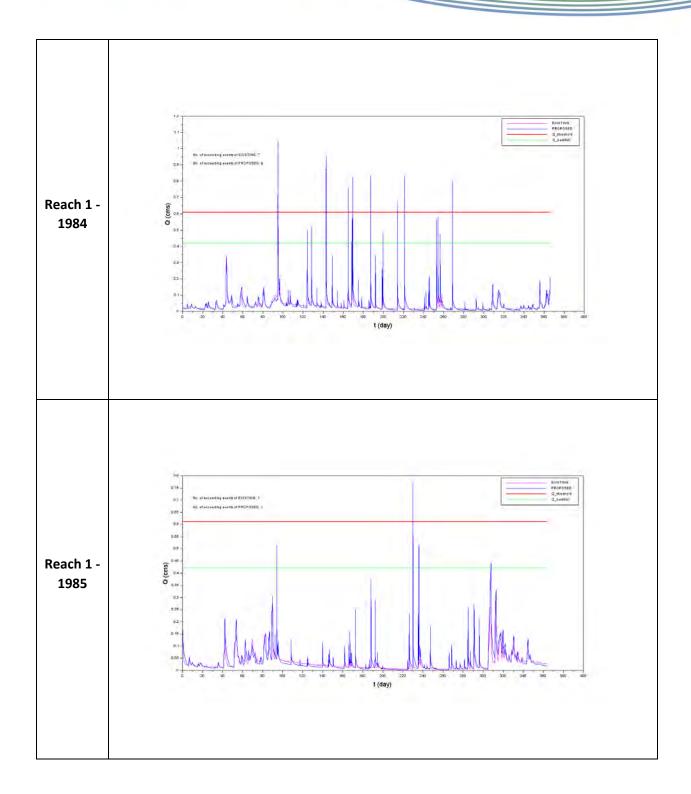


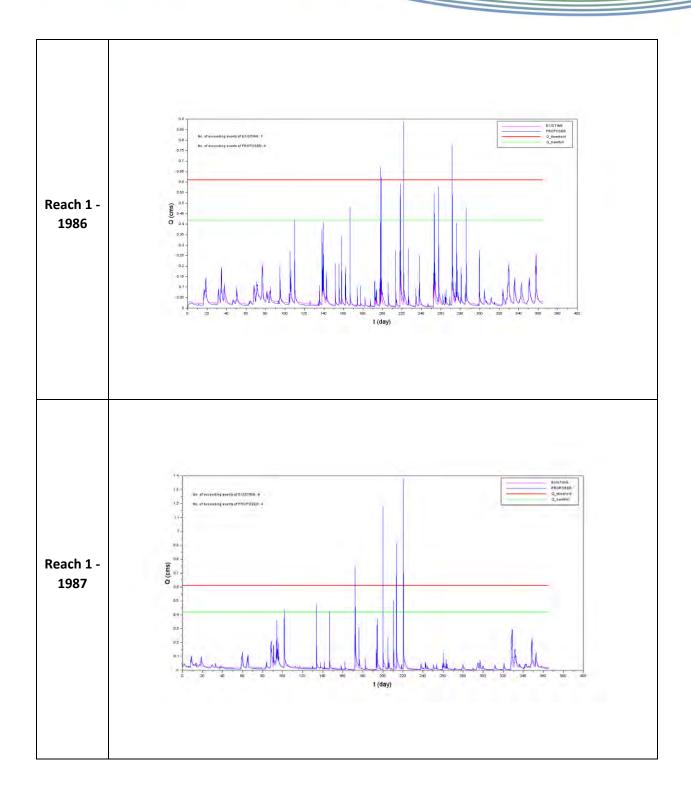


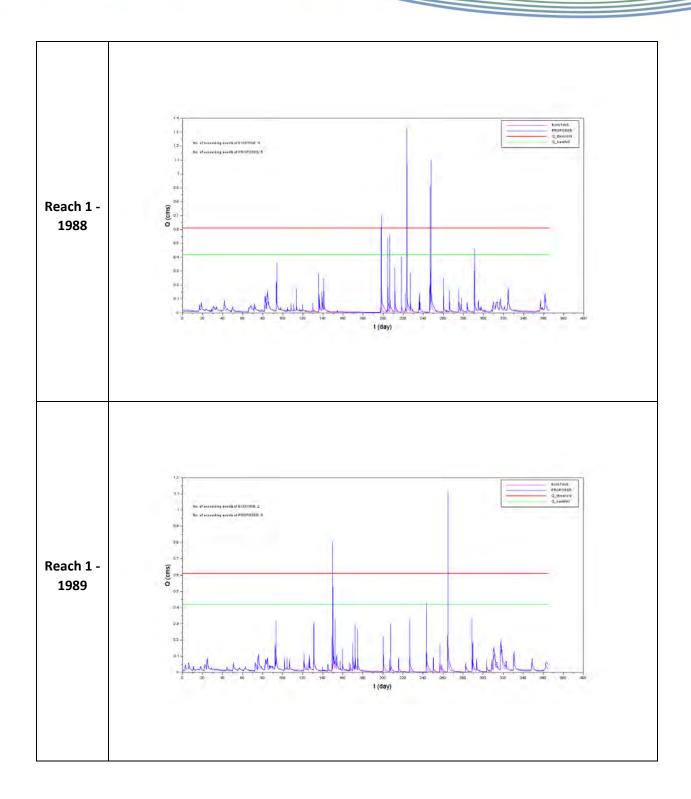


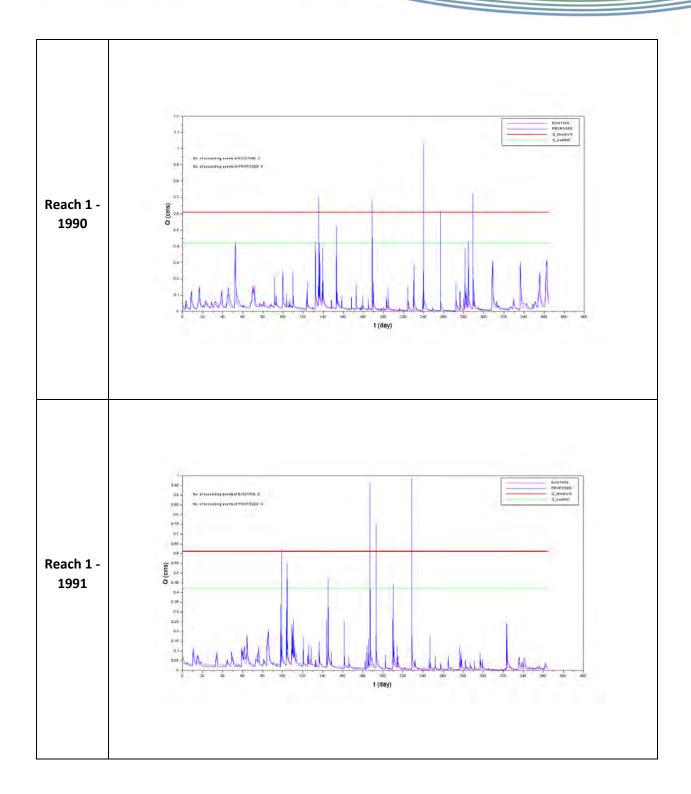


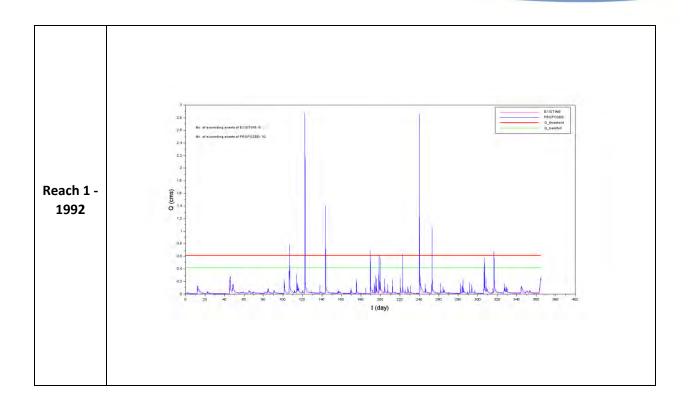


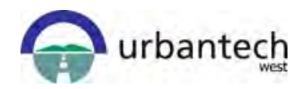












APPENDIX F HYDROLOGIC ANALYSIS

- **F-1** MIKE 11 Continuous Modelling Update Watercourse 9 BSS#3 (January 2020)
- **F-2** Revisions to SCUBE East Model (June 2018)
- F-3 VO5 Scenario Modelling Schematic and Output Files
- **F-4** Excerpts from SCUBE Study (2013) and FDRP Hydrology Report (1989)
- **F-5** SCUBE East Model Update Sensitivity Analysis (February 2020)

APPENDIX F-1
MIKE 11 Continuous Modelling Update — DHI Memo (January 2020)

MEMO

To: Janis Lobo, Urbantech West

Cc: Andrew Fata, Rob Merwin

From: Patrick Delaney

Date: 15/1/2020

Subject: Scube East Model Update 4 – Flow Frequency Analysis for

Continuous Simulations

1 Introduction

Based on comments from Hamilton Conservation Authority regarding the "Block Servicing Strategy, Fruitland-Winona Secondary Plan Area, Block 3, Second Submission, August 2019" (see Hamilton Conservation Authority memo dated September 30, 2019) DHI was asked to perform a flow frequency analysis for a continuous, 30-year simulation period from the beginning of 1962 to the end of 1992 for:

- Existing conditions
- Proposed development Scenario 2a with stormwater management ponds P2DA and P3DA
- Proposed development Scenario 2a without stormwater management ponds P2DA and P3DA

Scenario 2a included routing catchments 200, 300, 201A, 201B and P3DA through a storm sewer along Lewis Road and routing the outflow from catchment P2DA through a storm sewer along Barton Road.

2 Continuous Model Setup

For the purposes of this modelling update it was not necessary to run the continuous simulation for the Existing Conditions model since it had already been run in earlier phases of the study. This section provides an overview of the steps taken to run the continuous, 30-year simulation for Scenario 2a, with and without ponds.

2.1 Hydrology Model

The MIKE 11 continuous hydrology model setup used a combination of the NAM lumped conceptual model for simulating runoff contributions from undeveloped areas and the Kinematic Wave model for simulating runoff from developed areas of the study area. The climate inputs included a continuous time-series of hourly rainfall and reference evapotranspiration, and daily temperature data from the beginning of 1962 to the end of 1992. The climate data was provided with the original MIKE 11 model files provided by Hamilton Conservation Authority.

The Hydrology model was run for the entire 30-year simulation period and the result file containing runoff hydrographs from each catchment area was used as input to the MIKE 11 river hydraulic model.

It was not necessary to make any changes to the hydrology model for the condition where the ponds are omitted since the ponds will only affect the routing of the runoff hydrograph through the drainage channels and pipes.

2.2 Hydraulic Model

The Scenario 2a MIKE 11 hydraulic model setup was not changed from the version used in the August 2019 submission, with the exception of some minor adjustments to the stage-discharge curves used for stormwater management ponds P2DA and P3DA (see Table 1 below).

Table 1 Stage-Discharge Curves for Stormwater Management Ponds

P	2DA	P:	3DA
Stage (m)	Discharge (m³/s)	Stage (m)	Discharge (m³/s)
85.37	0	86.35	0
85.9	0.039	86.8	0.013
86.5	0.105	87.45	0.015
86.9	0.155	87.8	0.019
87.2	0.185	88	0.024
87.5	0.214	88.2	0.029
87.8	0.248	88.5	0.032
88.1	0.273	88.85	0.036

For the Scenario 2a model where the ponds are removed, the runoff hydrograph from each pond was directed to the branch immediately downstream of the pond (i.e. the runoff from

catchment P2DA was connected to Branch 9_5 at chainage 27.3 m, and the runoff from catchment P3DA was connected to Branch 9_6 at chainage 508.6 m).

Due to the length of the simulation period and the time required to run the simulation it was run as 4 separate simulation periods; 1962-1969, 1970-1977, 1978-1985, and 1986-1992.

2.3 Model Results Analysis

The MIKE 11 hydraulic model results for the Existing Conditions model and the proposed Scenario 2a models, with and without ponds, were analyzed by extracting a time-series of flows for the 30-year simulation period at the node locations shown in Figure 1 below.

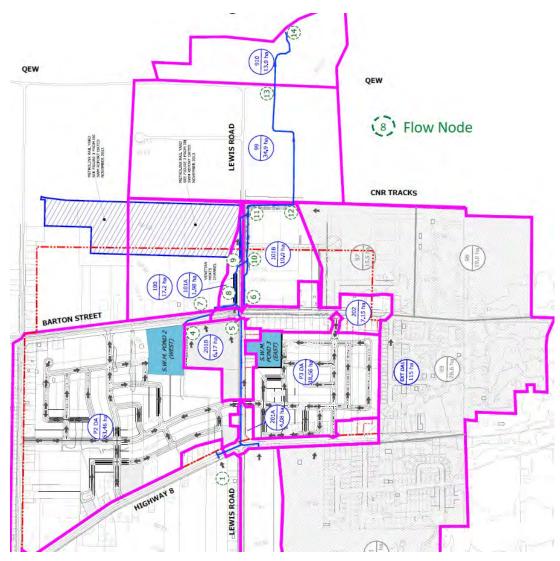


Figure 1 Map of Flow Node Locations

The annual maximum flow for each calendar year of the simulation was extracted for each flow node location and the linear moment for each time series were calculated and plotted on a Linear Moment Ratio Diagram to determine the most suitable distribution (see Figure 2). The plot indicates a Generalized Pareto (GPA) distribution provides the best fit for the data.

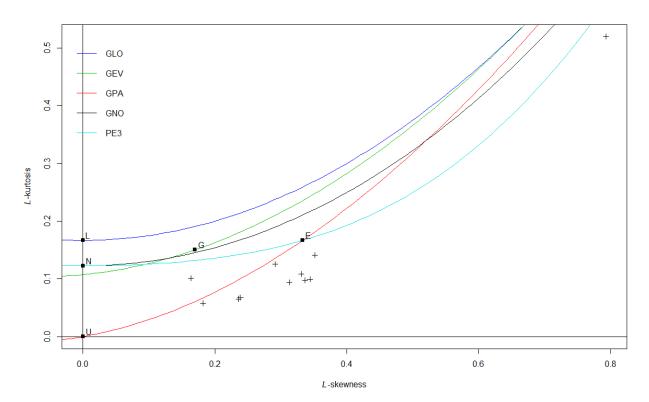


Figure 2 Linear Moment Ratio Diagram for Annual Maximum Flows (Scenario 2a - with Ponds)

The linear moments for each time-series were then used to estimate the GPA parameters and quantiles for the 2, 5, 10, 25, 50 and 100 year return periods. The flow frequency results for the Existing Condition, Scenario 2a with Ponds, and Scenario 2a without Ponds are presented in Table 2, Table 3 and Table 4, respectively. Table 5 presents a summary of the difference between Scenario 2a without Ponds vs. Scenario 2a with Ponds.

Table 2 Flow Frequency Analysis for Existing Conditions

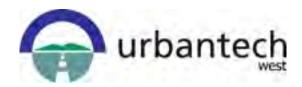
	Node_1	Node_2	Node_3	Node_4	Node_5	Node_6	Node_7	Node_8	Node_9	Node_10	Node_11	Node_12	Node_13	Node_14
	(m ³ /s)													
2-yr	0.49	0.19	0.38	0.37	0.44	0.15	0.04	0.68	0.15	0.68	1.06	1.79	3.67	3.54
5-yr	0.93	0.40	0.56	0.66	0.78	0.22	0.06	1.17	0.22	1.27	1.76	2.84	5.82	5.74
10-yr	1.29	0.61	0.64	0.92	1.02	0.26	0.06	1.50	0.25	1.77	2.20	3.45	7.04	7.04
25-yr	1.80	0.93	0.72	1.28	1.35	0.29	0.07	1.90	0.29	2.54	2.67	4.05	8.25	8.40
50-yr	2.21	1.23	0.76	1.59	1.59	0.31	0.07	2.17	0.31	3.21	2.97	4.39	8.94	9.21
100-yr	2.65	1.59	0.79	1.93	1.83	0.33	0.07	2.42	0.32	3.96	3.22	4.66	9.48	9.87

Table 3 Flow Frequency Analysis for Scenario 2a - with Ponds

	Node_1	Node_4	Node_5	Node_6	Node_7	Node_8	Node_9	Node_10	Node_11	Node_12	Node_13	Node_14
	(m ³ /s)											
2-yr	0.517	0.1	0.738	0	0.1	0.962	0.148	0.941	1.239	1.829	3.948	4.062
5-yr	0.969	0.142	1.348	0	0.142	1.686	0.217	1.66	2.089	2.892	6.27	6.453
10-yr	1.321	0.172	1.793	0	0.172	2.236	0.254	2.214	2.729	3.481	7.729	7.947
25-yr	1.804	0.208	2.36	0	0.208	2.969	0.288	2.961	3.571	4.055	9.335	9.582
50-yr	2.181	0.233	2.773	0.001	0.233	3.527	0.306	3.538	4.205	4.373	10.344	10.604
100-yr	2.569	0.257	3.173	0.001	0.257	4.088	0.32	4.123	4.837	4.617	11.205	11.472

Table 4 Flow Frequency Analysis for Scenario 2a - without Ponds

	Node_1	Node_4	Node_5	Node_6	Node_7	Node_8	Node_9	Node_10	Node_11	Node_12	Node_13	Node_14
	(m ³ /s)	(m³/s)	(m ³ /s)	(m ³ /s)								
2-yr	0.517	1.305	1.160	0	1.305	2.603	0.148	2.600	2.912	1.829	5.611	5.668
5-yr	0.968	1.903	1.986	0	1.903	4.146	0.217	4.146	4.614	2.892	8.811	8.907
10-yr	1.321	2.226	2.586	0	2.226	5.159	0.254	5.156	5.711	3.481	10.727	10.869
25-yr	1.804	2.531	3.348	0	2.531	6.323	0.288	6.311	6.946	4.055	12.735	12.949
50-yr	2.181	2.696	3.902	0.001	2.696	7.087	0.306	7.066	7.742	4.373	13.937	14.210
100-yr	2.569	2.819	4.437	0.001	2.819	7.764	0.320	7.733	8.436	4.617	14.921	15.251


Table 5 Flow Frequency Difference Analysis for Scenario 2a ('without Ponds' minus 'with Ponds')

	Node_1	Node_4	Node_5	Node_6	Node_7	Node_8	Node_9	Node_10	Node_11	Node_12	Node_13	Node_14
	(m ³ /s)											
2-yr	0.00	1.20	0.42	0.00	1.20	1.64	0.00	1.66	1.67	0.00	1.66	1.61
5-yr	0.00	1.76	0.64	0.00	1.76	2.46	0.00	2.49	2.53	0.00	2.54	2.45
10-yr	0.00	2.05	0.79	0.00	2.05	2.92	0.00	2.94	2.98	0.00	3.00	2.92
25-yr	0.00	2.32	0.99	0.00	2.32	3.35	0.00	3.35	3.38	0.00	3.40	3.37
50-yr	0.00	2.46	1.13	0.00	2.46	3.56	0.00	3.53	3.54	0.00	3.59	3.61
100-yr	0.00	2.56	1.26	0.00	2.56	3.68	0.00	3.61	3.60	0.00	3.72	3.78

Disclaimer

As with the previous SCUBE MIKE 11 model update assignments, DHI take no professional responsibility and makes no warranties regarding the accuracy or correctness of the model itself or the modelling results delivered in this assignment. DHI was not involved in the development or calibration of the original SCUBE MIKE 11 model and has only been asked to make changes to the model as instructed by Urbantech, to run the simulations, and to provide the model results for Urbantech to analyse, interpret and use as they see fit.

APPENDIX F-2
Revisions to SCUBE East Model — Revised Slopes DHI Memo
June 2018

MEMO

To: Lisa Matruska, Andrew Fata, Rob Merwin, Cory Harris

Cc: Henrik Loecke

From: Patrick Delaney

Date: 6/12/2018

Subject: Scube East Model Update – Corrected Slopes

1 Introduction

For the purposes of this memo, the following naming conventions will be used:

- Original Model: The MIKE 11 model originally developed by AquaforBeech
- Updated Model v1: The MIKE 11 model delivered by DHI to Urbantech West in January 2018
- Updated Model v2: The MIKE 11 model delivered by DHI to Urbantech West together with this memo.

This Memo documents changes made in the Updated Model v2 as a result of mistakes that were observed in the Updated Model v1 (mistakes that were embedded in the Original Model), and addresses comments received from HCA on the results from the Updated Model v1.

2 Model updates to correct urban catchment slopes

The work completed by DHI on the Updated Model v1 involved making adjustments to the Original Model to support changes requested by Urbantech West. DHI followed instructions from Urbantech West regarding the required changes to the drainage network and catchment hydrology parameters of the Original Model for 3 scenarios (Existing Conditions, Proposed Conditions without stormwater ponds).

A peer review of the Original Model was not performed and the validity of the Original Model parameters was not conducted prior to initiating the changes to the Original Model. However, during the process of addressing the comments received from HCA it was observed that the slopes of the urban catchments were unrealistically low.

The default units for slope of an urban catchment in MIKE 11's NAM hydrology model is 'per mille' rather than 'percent'. Therefore, a slope of '1%' should be expressed as a value of '10' in the NAM model. However, the model delivered by AquaforBeech used values that reflected a dimensionless ratio (e.g. a value of '1%' was expressed as a value of '0.01'). As a result, it was concluded that all of the urban catchment slope values were under-estimated by a factor of 1000. The impact of this mistake on the model results is to increase the time to peak and significantly decrease the peak value of rainfall runoff from the urban catchments.

The Original Model files were opened in the 2007 version of MIKE 11 to confirm that the slope unit issue was not something introduced by a difference in the version of MIKE 11 being used to run the model.

In order to address this mistake, DHI increased all of the urban catchment slope values in Updated Model v2 by a factor of 1000.

DHI also noted that the urban catchment drainage path length values were, in some cases, unusually long (e.g. Catchment 101B_URBAN has an area of 0.07 km² and a drainage length of 1900 m). However, there was no consistent relationship between the length values and the catchment area, and the methodology used to calculate the values was not documented, so it was not possible to determine whether this was an unintentional mistake or not.

The impact of longer drainage path lengths is to increase the time to peak and reduce the peak value of rainfall runoff. However, a sensitivity analysis performed using adjusted length values revealed it has a much smaller impact on the results than the corrected slope (see Addendum 1).

Since it was unclear whether the length values were incorrectly calculated and the impacts on the results were less significant, it was decided to leave the length values 'as is' for this version of the updated model.

2.1 Corrected NAM Area for catchment 300 NAM

A correction was made to the catchment 300 to reduce the undeveloped runoff catchment area (represented by catchment 300_NAM) from 0.587 km² under existing conditions to 0.553 km² under proposed conditions. This resulted in a total catchment area of 63.6 ha for catchment 300.

2.2 Addressing Comments

HRCA Comment:

The DHI memorandum ("Scube East Model Update" dated January 12, 2018) reports peak flow rates under future uncontrolled conditions in Watercourse 9 at the CNR, QEW and Lake Ontario outlet which are significantly lower (23 – 30 % lower for the 100 year event) compared to the findings from the SCUBE East Sub-Watershed Study (Aquafor Beech 2013).

The updated drainage area is 9.5 ha smaller, due to the fact that the updated modeling did not include the planned diversion of catchments 1011 and 1012 from Watercourse 10-2 storm sewer to the lined eastern tributary of Watercourse 9 (as was included in the SCUBE

East Sub-Watershed Study). Also, the imperviousness assumed under future uncontrolled conditions is slightly smaller in the updated modeling.

HCA staff are not confident that these changes alone justify the 23 – 30 % decrease in 100 year peak flow rates. It is also noted that the existing condition peak flow rates are quite similar between the updated modeling and SCUBE 2013 at the CNR, QEW and Lake Ontario outlet.

DHI Response:

An evaluation of the Updated Model v1 setup was inconclusive in addressing this comment so it was decided to do a comparison of the Original Model result files provided by AquaforBeech with the Original Model result files generated using MIKE 11 2017. The results of this comparison (see Addendum 2) show the results from the 2017 version of MIKE 11 produce peak flows that are significantly lower and this appears to be mainly attributed to differences in the urban runoff component. A detailed investigation of the reasons for this difference was not conducted.

HCRA Comment:

Peak Flows Comparison - At Upstream End of the Watercourse 9 Tributary That Drains Across the Site:

The DHI memorandum ("Scube East Model Update" dated January 12, 2018) reports peak flow rates in the Watercourse 9 tributary at a location just south of Highway 8 (Node $9_5 - 0$) that are significantly lower under proposed conditions with SWM, compared to existing conditions.

Given that this is external drainage flowing onto the site, it was expected that the peak flow rates would be very similar to existing conditions. Please provide rationale for this decrease in peak flow rate.

DHI Response:

An error in the Combined Catchment details was observed in Scenario 2 for Catchment 300 and Catchment 201B in the Updated Model v1. This error was corrected in the Updated Model v2.

HCA Comment:

Catchment Area ExtDA1:

The DHI memorandum ("Scube East Model Update" dated January 12, 2018) reports an area of 51.75 ha for the EXTDA1 catchment (Tables 2 & 7), however the Urbantech West report Figures 2 and 3 states an area of 115 to 116 ha.

Please confirm that the DHI modeling included the full external area draining to node 9-1871.05. Based on review of the SCUBE East Sub-Watershed Study (Aquafor Beech 2013), this total external drainage area was expected to be approximately 116 ha.

DHI Response:

Catchment EXTDA1 is represented in figures differently that how it is represented in the model. In the figures, Catchment EXTDA1 is the sum of Catchments 93, 97, 98 and 121 model minus the area of Catchment 200. In the model Catchments 93, 97 and 98 are still

present and Catchment EXTDA1 occupies the remaining area. The sum of the area of Catchments EXTDA1, 93, 97 and 98 is equal to 116 ha.

HCA Comment:

Calculated Urban Length Values Based on the Previous Length Divided by the Square Root of the Area Reduction Factor:

The DHI memorandum ("Scube East Model Update" dated January 12, 2018) reports that the calculated urban length for catchment 101B under existing and proposed conditions is 1944m.

Also, the calculated urban length for catchment P2DA and P3DA under proposed conditions is 2233m and 1457m.

These adopted model parameters seem potentially large to HCA staff, compared to the urban length adopted for the EXTDA1 catchment, which according to the Figures could be expected to have the longest urban length.

It is suggested that the sensitivity of the resultant peak flows to the urban lengths be reviewed. If peak flows are significantly sensitive to this parameter, it is requested that the urban lengths calculated by this approach be further justified.

DHI Response:

See discussion above regarding catchment drainage path lengths and Addendum 1.

HCA Comment:

Adopted Urban Slopes:

For a number of catchments, the adopted urban slope is 0, including for P2DA and P3DA. It is suggested that the sensitivity of the resultant peak flows to the urban slope be reviewed. If peak flows are significantly sensitive to this parameter, it is requested that the urban slopes of 0 value be further justified.

DHI Response:

See discussion of changes to Urban Catchment slopes above.

HCA Comment:

Catchment Area for Catchment 300, Under Proposed Conditions:

The DHI memorandum ("Scube East Model Update" dated January 12, 2018) reports a total area of 67.0 ha for catchment 300 for both existing and proposed conditions (Tables 2 & 7). However the Urbantech West report Figure 3 state an area of 63.6 ha for proposed conditions.

Please confirm the catchment area of catchment 300 under proposed conditions, and that the Figures, Tables and modeling are all consistent.

DHI Response:

See corrections to catchment 300 drainage area noted above.

Addendum 1: Sensitivity Analysis for Urban Catchment Slopes and Drainage Path Lengths

Content of Emails sent by Henrik Loecke, DHI to Lisa Maruska, Urbantech West on May 2, 2018.

Hi Lisa

We have run the sensitivity analysis for all urban catchments (NAM part excluded from this analysis, except for the Network analysis where it is included).

The attached Sensitivity.pdf shows one page per catchment.

We analysed three options (based on Scenario 1):

- 1. Original
- 2. Updated slope
- 3. Updated length and slope

For the update, we multiplied all slopes by 1000.

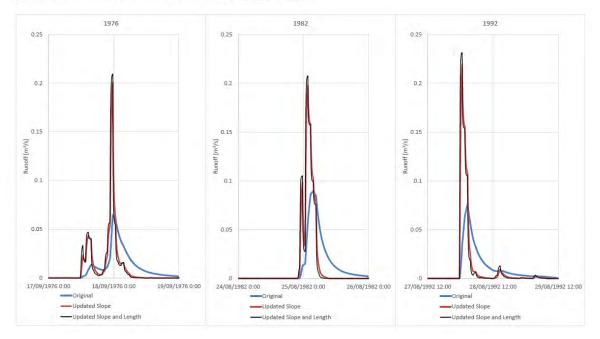
For length we adjusted to more reasonable values. We multiplied lengths up to 500 m by 0.3, 500-1000 m by 0.2 and above 1000 m by 0.1. This is only suitable for this sensitivity analysis and not for future reruns where they should be examined further.

Catchment	Area	Length Old (m)	Slope Old (o/oo)	Length Factor	Slope Factor	Length New (m)	Slope New (o/oo)
100_URBAN	3.04	550	0.009	0.2	1000	110	9
101A_URBAN	0.98	716	0.009	0.2	1000	143	9
101B_URBAN	7.23	1944	0.009	0.1	1000	194	9
200_URBAN	1.58	493	0.057	0.3	1000	148	57
201A_URBAN	2.34	452	0.005	0.3	1000	136	5
201B_URBAN	1.92	409	0.005	0.3	1000	123	5
202_URBAN	5.51	848	0.005	0.2	1000	170	5
300_URBAN	8.3	1326	0.084	0.1	1000	133	84
301_URBAN	1.68	327	0.005	0.3	1000	98	5
302B_URBAN	12.01	936	0.005	0.2	1000	187	5
EXTDA1_URBAN	19.42	1880	0.057	0.1	1000	188	57

We analysed for three events:

- 17/09/76-19/09/76
- 24/08/82-26/08/82
- 27/08/92-29/08/92

Across the catchments we see peaks 2-5 times higher for the updated model. The accumulation is mostly around 10-50% higher. It is found that the difference in slope has a much higher impact than the update of length (as it is changes by a factor of 1000)


Below I show a screendump from one of the catchment to explain how they are to be interpreted.

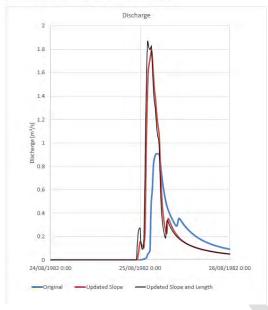
Each page contains:

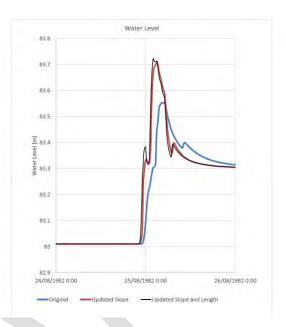
- Three graphs, one for each event (the 1992 event appears incomplete but it is not, it starts sharply at midninght).
 - o The blue line is original
 - o The red is updated slope
 - The black is updated length and slope
- One data table showing:
 - Length. In the example original and slope option length is 550 m and updated slope and length is 110 m.
 - Slope in per thousand (o/oo)
 - Peak for example the original 1976 peak is 0.065 m³/s, the updated slope peak is 0.201 m³/s and the updated slope and length is 0.209 m³/s
 - Accumulation over two days for example the original 1976 accumulation is 1808 m³, the updated slope accumulation is 1981 m³ and the updated slope and length accumulation is 2000 m³

100_URBAN

	A company	Slope	Peak	Acc.	Peak	Acc.	Peak	Acc.
	Length (m)		(m ³ c)		(m ^{3/} s)	(m ³)	(m ^{3/} s)	(m³)
	(111)	(0/00)	1976		198	32	1992	
Original	550	0.009	0.065	1808	0.090	2172	0.076	1727
Updated Slope	550	9	0.201	1981	0.198	2438	0.219	1925
Updated Slope and Length	110	9	0.209	2000	0.208	2457	0.231	1950

For Sensitivity_Network.pdf please refer to the flow node locations shown below for the three plotted locations.




The setup of this sheet is similar to the runoff sheet but has water level. It also has one comment line with additional information (row 3).

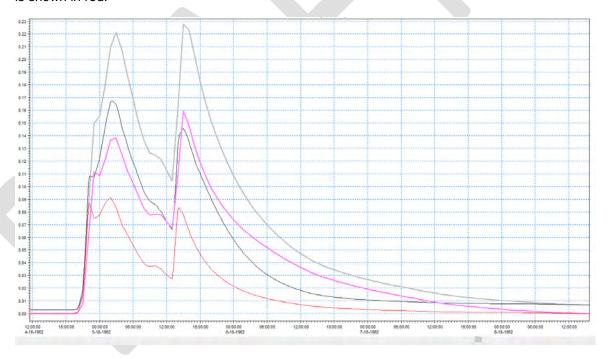
Flow Node 11 Branch 9_1 Chainage 955

	Peak	Acc.	Peak
	(m ^{3/} s) (m ³)		(m)
	Discha	Level	
Original	0.908	24675	83.55
Updated Slope	1.789	31247	83.71
Updated Slope and Length	1.870	32093	83.72

Best regards

Henrik Løcke

Tel: +1 519 650 4545, Mobile: +1 519 651 7002



Addendum 2: Comparison of Original Model Results

The comments from HCA noted a reduction in flows in the order of 20-30% when comparing the proposed condition from the AquaforBeech report to the proposed condition with the new model. While there are some differences in the model setup, those differences do not likely account for such a significant difference in peak flows.

As part of the investigation it was decided to run the model file provide by AquaforBeech with the 2017 version of MIKE 11 and compare the result files to those provided by AquaforBeech. In doing so it was observed that the results provided by AquaforBeech had significantly higher peak flows during significant events than the results obtained with the 2017 version of MIKE 11. The difference in the peak flows appears to be due to differences in the Urban runoff results.


The figure below shows a comparison between the AquaforBeech results and the 2017 version results for Catchment 92 where; the Total runoff for the AquaforBeech result file is shown in gray and the Total runoff for the 2017 version is shown in black; and the Urban runoff for AquaforBeech result file is shown in pink and the Urban runoff for the 2017 version is shown in red.

For the event depicted in the above figure, the 2017 version results show a 23% reduction in peak flow, while a comparison of the accumulated runoff from catchment 92 for the entire year in 1962 shows the 2017 version produces approximately 8% less runoff volume.

APPENDIX F-3 VO5 Scenario Modelling Schematic and Output Files


```
**********
                                                                                  1.000 4.18 | 2.000 6.29 | 3.000 3.01 | 4.00 2.14
** SIMULATION:Run 01
**********
                                                                             Unit Hyd Qpeak (cms)= 0.840
                                                                             PEAK FLOW (cms)= 0.002 (i)
  READ STORM | Filename: C:\Users\Janis Lobo\AppD
                                                                             TIME TO PEAK (hrs)= 2.167
                ata\Local\Temp\
                                                                             RUNOFF VOLUME (mm)= 0.907
              9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\f3bd6d83
                                                                             TOTAL RAINFALL (mm)= 24.996
                                                                             RUNOFF COEFFICIENT = 0.036
| Ptotal= 25.00 mm | Comments: 25 mm, 4 hr. chicago dist'n. - water qua
       TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
                                                                             (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
        hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
       0.17 | 2.07 | 1.17 | 5.70 | 2.17 | 5.19 | 3.17 | 2.80
       0.33 2.27 | 1.33 10.78 | 2.33 4.47 | 3.33 2.62
       0.50 2.52 | 1.50 50.21 | 2.50 3.95 | 3.50 2.48
                                                                           | CALIB
       0.67 2.88 | 1.67 13.37 | 2.67 3.56 | 3.67 2.35
                                                                           | NASHYD ( 0037) | Area (ha)= 28.80 Curve Number (CN)= 68.0
       0.83 3.38 | 1.83 8.29 | 2.83 3.25 | 3.83 2.23
                                                                           |ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
       1.00 4.18 | 2.00 6.30 | 3.00 3.01 | 4.00 2.14
                                                                           ----- U.H. Tp(hrs)= 1.21
                                                                             Unit Hyd Qpeak (cms)= 0.908
                                                                             PEAK FLOW (cms)= 0.025 (i)
| CALIB
                                                                             TIME TO PEAK (hrs)= 4.250
| NASHYD ( 0036)| Area (ha)= 1.98 Curve Number (CN)= 68.0
                                                                             RUNOFF VOLUME (mm)= 0.942
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                             TOTAL RAINFALL (mm)= 24.996
----- U.H. Tp(hrs)= 0.09
                                                                             RUNOFF COEFFICIENT = 0.038
    NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
                                                                             (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
              ---- TRANSFORMED HYETOGRAPH ----
       TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
                                                                           | ROUTEPIPE( 0165)| PIPE Number = 1.00
        hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                                                                           | IN= 2---> OUT= 1 | Diameter (mm)=1200.00
       0.083 2.07 | 1.083 5.70 | 2.083 5.19 | 3.08 2.80
                                                                           | DT= 5.0 min | Length (m)= 73.30
                                                                           ----- Slope (m/m)= 0.010
       0.167 2.07 | 1.167 5.70 | 2.167 5.19 | 3.17 2.80
       0.250 2.27 | 1.250 10.78 | 2.250 4.47 | 3.25 2.62
                                                                                     Manning n = 0.013
       0.333 2.27 | 1.333 10.78 | 2.333 4.47 | 3.33 2.62
       0.417 2.52 | 1.417 50.21 | 2.417 3.95 | 3.42 2.48
                                                                             <---->
       0.500 2.52 | 1.500 50.21 | 2.500 3.95 | 3.50 2.48
                                                                              DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
       0.583 2.88 | 1.583 13.37 | 2.583 3.56 | 3.58 2.35
                                                                              (m) (cu.m.) (cms) (m/s)
                                                                                                            min
                                                                              0.06 .167E+01 0.0
       0.667 2.88 | 1.667 13.37 | 2.667 3.56 | 3.67 2.35
                                                                                                    0.92
                                                                                                            1.33
       0.750 3.38 | 1.750 8.29 | 2.750 3.25 | 3.75 2.23
                                                                              0.13 .465E+01 0.1
                                                                                                     1.43
                                                                                                             0.85
       0.833 3.38 | 1.833 8.29 | 2.833 3.25 | 3.83 2.23
                                                                              0.19 .840E+01 0.2
                                                                                                     1.84
                                                                                                             0.66
```

2.19

0.56

0.25 .127E+02 0.4

0.917 4.17 | 1.917 6.30 | 2.917 3.01 | 3.92 2.14

```
0.32 .174E+02 0.6
                         2.49
                                0.49
                                                                        ----- Slope (m/m)= 0.010
  0.38 .225E+02 0.8
                         2.75
                                0.44
                                                                                   Manning n = 0.013
  0.44 .277E+02
                         2.99
                 1.1
                                0.41
  0.51 .332E+02
                                                                          <---->
                         3.19
                                0.38
                 1.4
  0.57 .387E+02
                         3.37
                                0.36
                                                                           DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                 1.8
  0.63 .442E+02
                         3.52
                                0.35
                 2.1
                                                                           (m) (cu.m.) (cms)
                                                                                                (m/s)
                                                                                                        min
  0.69 .497E+02
                 2.5
                         3.65
                                0.33
                                                                           0.07 .302E+01 0.0
                                                                                                 0.99
                                                                                                        1.76
  0.76 .552E+02
                  2.8
                         3.76
                                0.32
                                                                           0.14 .839E+01
                                                                                         0.1
                                                                                                 1.55
                                                                                                         1.13
  0.82 .604E+02
                                0.32
                                                                           0.21 .152E+02
                                                                                                 1.99
                                                                                                         0.88
                 3.2
                         3.84
                                                                                         0.3
  0.88 .655E+02
                 3.5
                         3.90
                                0.31
                                                                           0.28 .229E+02
                                                                                         0.5
                                                                                                  2.37
                                                                                                         0.74
  0.95 .702E+02
                 3.8
                         3.93
                                0.31
                                                                           0.36 .314E+02
                                                                                          0.8
                                                                                                  2.69
                                                                                                         0.65
  1.01 .745E+02 4.0
                         3.93
                                0.31
                                                                           0.43 .405E+02
                                                                                                  2.98
                                                                                                         0.58
                                                                                         1.2
  1.07 .783E+02 4.1
                         3.89
                               0.31
                                                                           0.50 .500E+02
                                                                                          1.5
                                                                                                  3.23
                                                                                                         0.54
  1.14 .812E+02 4.2
                         3.78
                                0.32
                                                                           0.57 .598E+02
                                                                                          2.0
                                                                                                  3.45
                                                                                                         0.50
  1.20 .829E+02 3.9
                         3.45
                                0.35
                                                                           0.64 .698E+02
                                                                                                  3.64
                                                                                                         0.48
                                                                                          2.4
               <---- hydrograph ----> <-pipe / channel->
                                                                           0.71 .798E+02
                                                                                         2.9
                                                                                                  3.81
                                                                                                         0.46
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                           0.78 .898E+02
                                                                                          3.4
                                                                                                  3.95
                                                                                                         0.44
            (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                           0.85 .996E+02
                                                                                          3.9
                                                                                                  4.07
                                                                                                         0.43
 INFLOW: ID= 2 (0037) 28.80 0.03 4.25 0.94 0.07 0.94
                                                                           0.92 .109E+03
                                                                                                  4.16
                                                                                                         0.42
                                                                                          4.3
 OUTFLOW: ID= 1 (0165) 28.80 0.03 4.33 0.94 0.07 0.94
                                                                           0.99 .118E+03
                                                                                         4.8
                                                                                                  4.22
                                                                                                         0.41
                                                                           1.07 .127E+03
                                                                                                  4.25
                                                                                                         0.41
                                                                                          5.2
                                                                           1.14 .134E+03 5.5
                                                                                                 4.25
                                                                                                         0.41
                                                                           1.21 .141E+03
                                                                                                 4.20
                                                                                         5.7
                                                                                                         0.41
                                                                           1.28 .147E+03 5.7
                                                                                                  4.09
                                                                                                         0.43
| CALIB
                                                                           1.35
                                                                                  NaN NaN
                                                                                                 NaN
                                                                                                         NaN
| NASHYD (0051)| Area (ha)= 69.30 Curve Number (CN)= 68.0
                                                                                       <---- hydrograph ----> <-pipe / channel->
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                                     AREA OPEAK TPEAK R.V. MAX DEPTH MAX VEL
----- U.H. Tp(hrs)= 1.45
                                                                                     (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                         INFLOW: ID= 2 (0051) 69.30 0.05 4.50 0.94 0.09 1.10
  Unit Hyd Qpeak (cms)= 1.825
                                                                         OUTFLOW: ID= 1 ( 0164) 69.30 0.05 4.50 0.94 0.09 1.10
  PEAK FLOW (cms)= 0.055 (i)
 TIME TO PEAK (hrs)= 4.500
  RUNOFF VOLUME (mm)= 0.942
  TOTAL RAINFALL (mm)= 24.996
                                                                        CALIB
  RUNOFF COEFFICIENT = 0.038
                                                                        | STANDHYD ( 0049)| Area (ha)= 4.08
                                                                        |ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                     IMPERVIOUS PERVIOUS (i)
                                                                          Surface Area (ha)= 2.73 1.35
                                                                          Dep. Storage (mm)= 1.00
                                                                                                      5.00
| ROUTEPIPE( 0164)| PIPE Number = 1.00
                                                                          Average Slope (%)= 1.00
                                                                                                     2.00
| IN= 2---> OUT= 1 | Diameter (mm)=1350.00
                                                                          Length
                                                                                  (m)= 164.92 215.00
| DT= 5.0 min | Length (m)= 104.50
                                                                          Mannings n = 0.014
                                                                                                   0.250
```

```
Max.Eff.Inten.(mm/hr)= 50.21
                             3.55
      over (min) 5.00 80.00
  Storage Coeff. (min)= 4.75 (ii) 78.38 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                            80.00
  Unit Hyd. peak (cms)= 0.22
                            0.01
                      *TOTALS*
  PEAK FLOW (cms)= 0.28
                            0.01
                                   0.283 (iii)
 TIME TO PEAK (hrs)= 1.50
                            3.17
                                   1.50
  RUNOFF VOLUME (mm)= 24.00 4.17
                                       15.06
 TOTAL RAINFALL (mm)= 25.00 25.00
                                      25.00
  RUNOFF COEFFICIENT = 0.96
                           0.17
                                     0.60
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
    CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0157)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0164): 69.30 0.055 4.50 0.94
  + ID2= 2 ( 0165): 28.80 0.025 4.33 0.94
   _____
   ID = 3 ( 0157): 98.10 0.080 4.42 0.94
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD ( 0157)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
   ID1= 3 ( 0157): 98.10 0.080 4.42 0.94
  + ID2= 2 ( 0049): 4.08 0.283 1.50 15.06
   ID = 1 ( 0157): 102.18 0.283 1.50 1.51
```

```
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
|ROUTEPIPE(0163)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
DT= 5.0 min | Length (m)= 346.00
----- Slope (m/m)= 0.007
          Manning n = 0.013
  <-----> TRAVEL TIME TABLE ----->
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms)
                        (m/s)
                                min
   0.08 .656E+02 0.2
                               21.26
                         1.18
   0.16 .131E+03
                 0.7
                         1.79 13.94
   0.24 .197E+03
                 1.3
                         2.26 11.05
   0.32 .262E+03
                 2.0
                         2.65
                                9.45
   0.39 .328E+03
                  2.8
                         2.97
                                8.42
   0.47 .393E+03
                 3.7
                         3.25
                                7.70
   0.55 .459E+03
                         3.49
                                7.17
   0.63 .524E+03
                 5.6
                         3.70
                                6.75
   0.71 .590E+03
                         3.89
                                6.42
   0.79 .656E+03
                         4.07
                 7.7
                                6.15
   0.87 .721E+03
                  8.8
                         4.22
                                5.92
   0.95 .787E+03
                 9.9
                         4.36
                                5.73
   1.03 .852E+03
                                 5.56
                 11.1
                          4.49
   1.11 .918E+03
                 12.2
                          4.61
                                 5.42
   1.18 .983E+03
                 13.4
                          4.72
                                 5.29
   1.26 .105E+04
                 14.6
                          4.82
                                 5.18
   1.34 .111E+04
                  15.8
                          4.92
                                 5.08
   1.42 .118E+04
                 17.1
                          5.01
                                 4.99
   1.50 .125E+04 18.3
                          5.09
                                 4.91
               <---- hydrograph ----> <-pipe / channel->
             AREA OPEAK TPEAK R.V. MAX DEPTH MAX VEL
             (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0157) 102.18 0.28 1.50 1.51 0.09 1.23
 OUTFLOW: ID= 1 (0163) 102.18 0.12 1.58 1.51 0.04 1.18
| CALIB
```

| STANDHYD (0106) | Area (ha) = 6.17

```
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
             IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 4.13
                              2.04
  Dep. Storage (mm)= 1.00
                                5.00
  Average Slope (%)= 1.00
                               2.00
  Length
             (m)= 202.81
                            215.00
  Mannings n
                = 0.014
                             0.250
  Max.Eff.Inten.(mm/hr) = 50.21
                                  3.55
       over (min)
                   5.00
                           80.00
  Storage Coeff. (min)= 5.38 (ii) 79.00 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                                80.00
  Unit Hyd. peak (cms)=
                        0.21
                                0.01
                           *TOTALS*
  PEAK FLOW
              (cms)=
                       0.41
                                0.01
                                        0.415 (iii)
 TIME TO PEAK (hrs)= 1.50
                                        1.50
                                3.17
  RUNOFF VOLUME (mm)= 24.00 4.17
                                             15.07
 TOTAL RAINFALL (mm)= 25.00
                               25.00
                                            25.00
  RUNOFF COEFFICIENT = 0.96
                                 0.17
                                           0.60
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
     THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD ( 0119) | Area (ha)= 18.56
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
             IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 12.81
                               5.75
  Dep. Storage (mm)= 1.00
                               5.00
  Average Slope (%)= 1.00
                               2.00
  Length
             (m)= 351.76
                            215.00
  Mannings n = 0.014
                             0.250
  Max.Eff.Inten.(mm/hr) = 50.21
       over (min)
                 5.00
                           70.00
```

Storage Coeff. (min)= 7.48 (ii) 66.48 (ii)

Unit Hyd. Tpeak (min)= 5.00 70.00
Unit Hyd. peak (cms)= 0.17 0.02
TOTALS
PEAK FLOW (cms)= 0.92 0.05 0.919 (iii)
TIME TO PEAK (hrs)= 1.50 2.83 1.50
RUNOFF VOLUME (mm)= 24.00 5.49 13.82
TOTAL RAINFALL (mm)= 25.00 25.00 25.00
RUNOFF COEFFICIENT = 0.96 0.22 0.55
KUNOFF COEFFICIENT = 0.90 0.22 0.55
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0
RESERVOIR(0133) IN= 2> OUT= 1 DT= 5.0 min
0.0000 0.0000 0.0250 1.0741
0.0140 0.2394 0.0290 1.2348
0.0150 0.6048 0.0340 1.4904
0.0210 0.8843 0.0380 1.7173
AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
INFLOW: ID= 2 (0119) 18.560 0.919 1.50 13.82
OUTFLOW: ID= 1 (0133) 18.560 0.014 5.67 13.38
PEAK FLOW REDUCTION [Qout/Qin](%)= 1.49 TIME SHIFT OF PEAK FLOW (min)=250.00 MAXIMUM STORAGE USED (ha.m.)= 0.2334
ADD HYD (0159)
1 + 2 = 3 AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
ID1=1 (0106): 6.17 0.415 1.50 15.07
+ ID2= 2 (0133): 18.56 0.014 5.67 13.38
·

5 00

70.00

Unit Hyd Theak (min)-

```
ID = 3 ( 0159): 24.73 0.418 1.50 13.80
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
-----
| ADD HYD ( 0159)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
   ID1=3 (0159): 24.73 0.418 1.50 13.80
  + ID2= 2 ( 0163): 102.18  0.125  1.58  1.51
   _____
   ID = 1 ( 0159): 126.91 0.518 1.50 3.90
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTEPIPE( 0158) | PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
DT= 5.0 min | Length (m)= 253.00
----- Slope (m/m)= 0.005
         Manning n = 0.013
  <-----> TRAVEL TIME TABLE ----->
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms) (m/s)
                            min
  0.08 .479E+02 0.2
                     0.96 26.04
  0.16 .959E+02 0.6
                      1.46 17.07
  0.24 .144E+03 1.1
                      1.85 13.53
  0.32 .192E+03
                      2.16 11.57
               1.6
  0.39 .240E+03
               2.3
                      2.42
                           10.32
  0.47 .288E+03
               3.0
                      2.65
                            9.44
  0.55 .336E+03
               3.8
                      2.85
                             8.78
  0.63 .384E+03
                      3.02
                             8.27
               4.6
  0.71 .431E+03
               5.4
                      3.18
                             7.86
  0.79 .479E+03
                      3.32
                             7.53
               6.3
  0.87 .527E+03
               7.2
                      3.45
                             7.25
  0.95 .575E+03
               8.1
                      3.56
                             7.02
  1.03 .623E+03
               9.0
                      3.67
                             6.82
  1.11 .671E+03
               10.0
                       3.77
                             6.64
  1.18 .719E+03 11.0
                       3.86
                             6.48
```

CALIB	1.34 .815E+03 12.9 4.02 6.23 1.42 .863E+03 13.9 4.09 6.12 1.50 .911E+03 15.0 4.15 6.02 < hydrograph> <-pipe / channel-> AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL (ha) (cms) (hrs) (mm) (m) (m/s) INFLOW: ID= 2 (0159) 126.91 0.52 1.50 3.90 0.15 1.39 OUTFLOW: ID= 1 (0158) 126.91 0.24 1.67 3.90 0.09 1.02
Surface Area (ha)= 4.79 2.36 Dep. Storage (mm)= 1.00 13.90 Average Slope (%)= 1.00 2.00 Length (m)= 218.33 215.00 Mannings n = 0.014 0.250 Max.Eff.Inten.(mm/hr)= 50.21 1.50 over (min) 5.00 110.00 Storage Coeff. (min)= 5.62 (ii) 109.36 (ii) Unit Hyd. Tpeak (min)= 5.00 110.00 Unit Hyd. peak (cms)= 0.20 0.01 *TOTALS* PEAK FLOW (cms)= 0.47 0.00 0.474 (iii) TIME TO PEAK (hrs)= 1.50 4.42 1.50 RUNOFF VOLUME (mm)= 24.00 2.14 14.15 TOTAL RAINFALL (mm)= 25.00 25.00 25.00 RUNOFF COEFFICIENT = 0.96 0.09 0.57 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	CALIB STANDHYD (0136) Area (ha)= 7.15
CN* = 68.0 la = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	Surface Area (ha)= 4.79 2.36 Dep. Storage (mm)= 1.00 13.90 Average Slope (%)= 1.00 2.00 Length (m)= 218.33 215.00 Mannings n = 0.014 0.250 Max.Eff.Inten.(mm/hr)= 50.21 1.50 over (min) 5.00 110.00 Storage Coeff. (min)= 5.62 (ii) 109.36 (ii) Unit Hyd. Tpeak (min)= 5.00 110.00 Unit Hyd. peak (cms)= 0.20 0.01 *TOTALS* PEAK FLOW (cms)= 0.47 0.00 0.474 (iii) TIME TO PEAK (hrs)= 1.50 4.42 1.50 RUNOFF VOLUME (mm)= 24.00 2.14 14.15 TOTAL RAINFALL (mm)= 25.00 25.00 25.00 RUNOFF COEFFICIENT = 0.96 0.09 0.57
	CN* = 68.0 la = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

3.94

6.35

1.26 .767E+03 11.9

```
INFLOW: ID= 2 (0160) 134.06 0.65 1.50 4.45 0.20 1.30
                                                                         OUTFLOW: ID= 1 (0161) 134.06 0.30 1.83 4.45 0.12 0.92
| ADD HYD ( 0160)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1=1 (0136): 7.15 0.474 1.50 14.15
  + ID2= 2 ( 0158): 126.91 0.243 1.67 3.90
   _____
                                                                        CALIB
                                                                        | STANDHYD ( 0132) | Area (ha)= 53.46
   ID = 3 ( 0160): 134.06 0.652 1.50 4.45
                                                                        |ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                     IMPERVIOUS PERVIOUS (i)
                                                                          Surface Area (ha)= 36.89
                                                                                                     16.57
                                                                          Dep. Storage (mm)= 1.00
                                                                                                      5.00
| ROUTEPIPE( 0161)| PIPE Number = 1.00
                                                                          Average Slope (%)= 1.00
                                                                                                     2.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1800.00
                                                                                    (m)= 596.99 215.00
                                                                          Length
| DT= 5.0 min | Length (m)= 43.50
                                                                                     = 0.014
                                                                          Mannings n
                                                                                                   0.250
----- Slope (m/m)= 0.003
          Manning n = 0.013
                                                                          Max.Eff.Inten.(mm/hr)= 50.21 6.17
                                                                               over (min) 10.00 70.00
  <-----> TRAVEL TIME TABLE ----->
                                                                          Storage Coeff. (min)= 10.28 (ii) 69.28 (ii)
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                          Unit Hyd. Tpeak (min)= 10.00
                                                                                                     70.00
                                                                          Unit Hyd. peak (cms)= 0.11
   (m) (cu.m.) (cms)
                        (m/s)
                               min
                                                                                                      0.02
  0.09 .989E+01 0.2
                               36.02
                                                                                                 *TOTALS*
                         0.83
  0.19 .198E+02 0.6
                         1.26
                               23.78
                                                                          PEAK FLOW (cms)= 2.08
                                                                                                      0.14
                                                                                                             2.090 (iii)
  0.28 .297E+02 1.1
                         1.58
                              18.97
                                                                          TIME TO PEAK (hrs)= 1.58
                                                                                                      2.83
                                                                                                              1.58
  0.38 .396E+02 1.7
                               16.32
                                                                          RUNOFF VOLUME (mm)= 24.00 5.49
                         1.84
                                                                                                                 13.82
  0.47 .495E+02 2.3
                                                                          TOTAL RAINFALL (mm)= 25.00
                                                                                                                 25.00
                         2.05
                              14.62
                                                                                                        25.00
  0.57 .593E+02
                3.0
                         2.23
                               13.43
                                                                          RUNOFF COEFFICIENT = 0.96
                                                                                                        0.22
                                                                                                                0.55
  0.66 .692E+02
                3.8
                         2.39
                              12.55
  0.76 .791E+02
                         2.53
                               11.86
                 4.6
  0.85 .890E+02
                5.4
                         2.65
                               11.32
                                                                           (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
  0.95 .989E+02
                         2.76
                               10.87
                                                                             CN^* = 68.0 Ia = Dep. Storage (Above)
                  6.3
  1.04 .109E+03
                 7.1
                         2.86
                               10.50
                                                                          (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
  1.14 .119E+03
                  8.0
                         2.95
                                10.19
                                                                             THAN THE STORAGE COEFFICIENT.
  1.23 .129E+03
                  8.9
                         3.03
                                9.92
                                                                          (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  1.33 .138E+03
                 9.9
                         3.10
                                9.68
  1.42 .148E+03
                10.8
                          3.17
                                 9.48
  1.52 .158E+03
                          3.23
                                 9.29
                11.7
  1.61 .168E+03 12.7
                          3.28
                                 9.13
                                                                        | RESERVOIR( 0131)|
  1.71 .178E+03 13.7
                                                                        | IN= 2---> OUT= 1 |
                          3.34
                                 8.99
  1.80 .188E+03 14.6
                          3.39
                                 8.86
                                                                        | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
                                                                        ----- (cms) (ha.m.) | (cms) (ha.m.)
               <---- hydrograph ----> <-pipe / channel->
```

AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL

(ha) (cms) (hrs) (mm) (m) (m/s)

0.0000 0.0000 | 0.1700 2.5907

0.0550 0.7098 0.2155 3.1239
0.1004 1.5249 0.2600 3.5865 0.1400 2.1680 0.3014 4.0085
AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW: ID= 2 (0132) 53.460 2.090 1.58 13.82 OUTFLOW: ID= 1 (0131) 53.460 0.051 5.42 13.68 PEAK FLOW REDUCTION [Qout/Qin](%)= 2.44 TIME SHIFT OF PEAK FLOW (min)=230.00 MAXIMUM STORAGE USED (ha.m.)= 0.6574
ID = 3 (0117): 187.52 0.325 1.92 7.08
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
ADD HYD (0117) 3 + 2 = 1
ID = 1 (0117): 189.50 0.327 1.92 7.01
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
ROUTE CHN(0166) IN= 2> OUT= 1 Routing time step (min)'= 5.00

```
<----> DATA FOR SECTION ( 2.0) ----->
      Distance Elevation Manning
        0.00
              100.20
                       0.0400
               101.25 0.0400 /0.0350 Main Channel
       46.50
       52.50
               99.25
                      0.0350 Main Channel
       61.50
               101.25 0.0350 /0.0400 Main Channel
       105.00
               102.00 0.0400
  <----->
   DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (m) (cu.m.) (cms)
                             (m/s) (min)
   0.05 99.30 .328E+01 0.0
                              0.23 25.78
   0.10 99.35 .131E+02 0.0
                              0.36 16.24
  0.15 99.40 .295E+02 0.0
                              0.47 12.39
  0.20 99.45 .525E+02 0.1
                               0.57 10.23
  0.25 99.50 .820E+02 0.2
                               0.66 8.82
  0.30 99.55 .118E+03 0.3
                               0.75 7.81
  0.35 99.60 .161E+03 0.4
                               0.83 7.04
  0.40 99.65 .210E+03
                       0.5
                               0.91 6.44
  0.45 99.70 .266E+03 0.7
                               0.98 5.96
  0.50 99.75 .328E+03
                                     5.55
                       1.0
                               1.05
  0.55 99.80 .397E+03 1.3
                               1.12
                                     5.21
  0.60 99.85 .472E+03
                                     4.92
                       1.6
                               1.19
  0.65 99.90 .554E+03
                      2.0
                                     4.66
                               1.25
  0.70 99.95 .643E+03
                       2.4
                               1.31
                                     4.44
  0.75 100.00 .738E+03
                       2.9
                               1.38
                                     4.24
  0.80 100.05 .840E+03
                        3.4
                               1.44
                                     4.06
  0.85 100.10 .948E+03
                        4.1
                               1.50
                                     3.90
  0.90 100.15 .106E+04
                        4.7
                               1.55
                                     3.75
   0.95 100.20 .118E+04
                        5.5
                               1.61 3.62
               <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 ( 0117) 189.50  0.33  1.92  7.01  0.33  0.79
 OUTFLOW: ID= 1 (0166) 189.50 0.32 2.00 7.01 0.33 0.79
-----
I CALIB
| NASHYD ( 0120)| Area (ha)= 10.00 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.44
```

```
Unit Hyd Qpeak (cms)= 0.868
  PEAK FLOW (cms)= 0.011 (i)
 TIME TO PEAK (hrs)= 3.083
  RUNOFF VOLUME (mm)= 0.942
 TOTAL RAINFALL (mm)= 24.996
  RUNOFF COEFFICIENT = 0.038
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0121)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0120): 10.00 0.011 3.08 0.94
  + ID2= 2 ( 0166): 189.50 0.323 2.00 7.01
   ID = 3 ( 0121): 199.50 0.328 2.08 6.71
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
I CALIB |
| NASHYD ( 0046) | Area (ha)= 17.20 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.47
  Unit Hyd Qpeak (cms)= 1.398
  PEAK FLOW (cms)= 0.019 (i)
 TIME TO PEAK (hrs)= 3.167
  RUNOFF VOLUME (mm)= 0.942
 TOTAL RAINFALL (mm)= 24.996
  RUNOFF COEFFICIENT = 0.038
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

```
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1=1 (0121): 199.50 0.328 2.08 6.71
  + ID2= 2 ( 0046): 17.20 0.019 3.17 0.94
   _____
   ID = 3 ( 0114): 216.70 0.336 2.08 6.25
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
** SIMULATION:Run 02
**********
| READ STORM | Filename: C:\Users\Janis Lobo\AppD
  | ata\Local\Temp\
              9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\998e761b
| Ptotal= 53.10 mm | Comments: 2-year - 24-h SCS RBG
       TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
       hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
       0.33  0.58 | 6.50  1.06 | 12.67  7.65 | 18.83  0.96
       0.67  0.58 | 6.83  1.06 | 13.00  3.93 | 19.17  0.96
       1.00 0.58 | 7.17 1.06 | 13.33 0.74 | 19.50 0.96
       1.17 0.58 | 7.33 1.06 | 13.50 0.74 | 19.67 0.96
       1.33 0.58 | 7.50 1.06 | 13.67 0.74 | 19.83 0.96
       1.50 0.58 | 7.67 1.06 | 13.83 4.35 | 20.00 0.96
       1.67 0.58 | 7.83 1.06 | 14.00 4.35 | 20.17 0.96
       1.83 0.58 | 8.00 1.06 | 14.17 4.35 | 20.33 0.64
       2.00 0.58 | 8.17 1.06 | 14.33 1.59 | 20.50 0.64
       2.17  0.58 | 8.33  1.43 | 14.50  1.59 | 20.67  0.64
       2.33 0.69 | 8.50 1.43 | 14.67 1.59 | 20.83 0.64
       2.50 0.69 | 8.67 1.43 | 14.83 1.59 | 21.00 0.64
       2.67  0.69 | 8.83  1.43 | 15.00  1.59 | 21.17  0.64
       2.83 0.69 | 9.00 1.43 | 15.17 1.59 | 21.33 0.64
       3.00 0.69 | 9.17 1.43 | 15.33 1.59 | 21.50 0.64
       3.17  0.69 | 9.33  1.70 | 15.50  1.59 | 21.67  0.64
       3.33 0.69 | 9.50 1.70 | 15.67 1.59 | 21.83 0.64
       3.50 0.69 | 9.67 1.70 | 15.83 1.59 | 22.00 0.64
```

| ADD HYD (0114)|

----- U.H. Tp(hrs)= 0.09

1.167 0.58 | 7.250 1.06 | 13.333 0.74 | 19.42 0.96 1.250 0.58 | 7.333 1.06 | 13.417 0.74 | 19.50 0.96 1.333 0.58 | 7.417 1.06 | 13.500 0.74 | 19.58 0.96 1.417 0.58 | 7.500 1.06 | 13.583 0.74 | 19.67 0.96 1.500 0.58 | 7.583 1.06 | 13.667 0.74 | 19.75 0.96 1.583 0.58 | 7.667 1.06 | 13.750 4.35 | 19.83 0.96 1.667 0.58 | 7.750 1.06 | 13.833 4.35 | 19.92 0.96 1.750 0.58 | 7.833 1.06 | 13.917 4.35 | 20.00 0.96 1.833 0.58 | 7.917 1.06 | 14.000 4.35 | 20.08 0.96 1.917 0.58 | 8.000 1.06 | 14.083 4.35 | 20.17 0.96 2.000 0.58 | 8.083 1.06 | 14.167 4.35 | 20.25 0.64 2.083 0.58 | 8.167 1.06 | 14.250 1.59 | 20.33 0.64 2.167 0.58 | 8.250 1.43 | 14.333 1.59 | 20.42 0.64 2.250 0.69 | 8.333 1.43 | 14.417 1.59 | 20.50 0.64 2.333 0.69 | 8.417 1.43 | 14.500 1.59 | 20.58 0.64 2.417 0.69 | 8.500 1.43 | 14.583 1.59 | 20.67 0.64 2.500 0.69 | 8.583 1.43 | 14.667 1.59 | 20.75 0.64 2.583 0.69 | 8.667 1.43 | 14.750 1.59 | 20.83 0.64

```
4.833 0.85 | 10.917 3.29 | 17.000 0.96 | 23.08 0.64
4.917  0.85 | 11.000  3.29 | 17.083  0.96 | 23.17  0.64
5.000 0.85 | 11.083 3.29 | 17.167 0.96 | 23.25 0.64
5.167  0.85 | 11.250  5.10 | 17.333  0.96 | 23.42  0.64
5.333 0.85 | 11.417 5.10 | 17.500 0.96 | 23.58 0.64
5.417  0.85 | 11.500  5.10 | 17.583  0.96 | 23.67  0.64
5.500 0.85 | 11.583 5.10 | 17.667 0.96 | 23.75 0.64
5.667  0.85 | 11.750  22.09 | 17.833  0.96 | 23.92  0.64
5.750  0.85 | 11.833  22.09 | 17.917  0.96 | 24.00  0.64
5.917  0.85 | 12.000  40.36 | 18.083  0.96 | 24.17  0.64
6.000 0.85 | 12.083 58.62 | 18.167 0.96 |
```

Unit Hyd Qpeak (cms)= 0.840

PEAK FLOW (cms)= 0.065 (i)
TIME TO PEAK (hrs)= 12.167
RUNOFF VOLUME (mm)= 9.317
TOTAL RAINFALL (mm)= 53.103
RUNOFF COEFFICIENT = 0.175

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Unit Hyd Qpeak (cms)= 0.908

PEAK FLOW (cms)= 0.165 (i)
TIME TO PEAK (hrs)= 13.500
RUNOFF VOLUME (mm)= 9.682
TOTAL RAINFALL (mm)= 53.103
RUNOFF COEFFICIENT = 0.182

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| ROUTEPIPE( 0165)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Diameter (mm)=1200.00
| DT= 5.0 min | Length (m)= 73.30
----- Slope (m/m)= 0.010
          Manning n = 0.013
  <-----> TRAVEL TIME TABLE ----->
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms)
                        (m/s)
                                min
   0.06 .167E+01 0.0
                         0.92
                                1.33
   0.13 .465E+01 0.1
                         1.43
                                0.85
   0.19 .840E+01 0.2
                         1.84
                                0.66
   0.25 .127E+02
                         2.19
                                0.56
                 0.4
   0.32 .174E+02
                         2.49
                                0.49
                 0.6
   0.38 .225E+02
                 0.8
                         2.75
                                0.44
   0.44 .277E+02
                 1.1
                         2.99
                                0.41
   0.51 .332E+02
                         3.19
                                0.38
                 1.4
   0.57 .387E+02
                 1.8
                         3.37
                                0.36
   0.63 .442E+02
                         3.52
                                0.35
                  2.1
   0.69 .497E+02
                 2.5
                         3.65
                                0.33
   0.76 .552E+02
                  2.8
                         3.76
                                0.32
   0.82 .604E+02
                         3.84
                                0.32
                 3.2
   0.88 .655E+02
                 3.5
                         3.90
                                0.31
   0.95 .702E+02
                 3.8
                         3.93
                                0.31
   1.01 .745E+02
                         3.93
                                0.31
                 4.0
   1.07 .783E+02 4.1
                         3.89
                                0.31
   1.14 .812E+02 4.2
                         3.78
                                0.32
   1.20 .829E+02 3.9
                         3.45
                                0.35
               <---- hydrograph ----> <-pipe / channel->
             AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
             (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0037) 28.80 0.16 13.50 9.68 0.17 1.66
 OUTFLOW: ID= 1 (0165) 28.80 0.16 13.50 9.68 0.16 1.65
_____
| CALIB
| NASHYD (0051)| Area (ha)= 69.30 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 1.45
```

```
| ADD HYD ( 0157)|
```

PEAK FLOW (cms)= 0.341 (i) TIME TO PEAK (hrs)= 13.750 RUNOFF VOLUME (mm)= 9.682 TOTAL RAINFALL (mm)= 53.103 RUNOFF COEFFICIENT = 0.182

Unit Hyd Qpeak (cms)= 1.825

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

<------ TRAVEL TIME TABLE ----->

| ROUTEPIPE(0164) | PIPE Number = 1.00 | IN= 2---> OUT= 1 | Diameter (mm)=1350.00 | DT= 5.0 min | Length (m)= 104.50 ----- Slope (m/m)= 0.010 | Manning n = 0.013

DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME (m) (cu.m.) (cms) (m/s) min 0.07 .302E+01 0.0 0.99 1.76 0.14 .839E+01 0.1 1.55 1.13 0.21 .152E+02 0.3 1.99 0.88 0.28 .229E+02 0.5 2.37 0.74 0.36 .314E+02 0.8 2.69 0.65 0.43 .405E+02 1.2 2.98 0.58 0.50 .500E+02 1.5 3.23 0.54 0.57 .598E+02 2.0 3.45 0.50 0.64 .698E+02 2.4 3.64 0.48 0.71 .798E+02 3.81 0.46 2.9 0.78 .898E+02 3.4 3.95 0.44 0.85 .996E+02 4.07 0.43 3.9 0.92 .109E+03 4.3 4.16 0.42 0.99 .118E+03 4.8 4.22 0.41 1.07 .127E+03 5.2 4.25 0.41 1.14 .134E+03 4.25 0.41 5.5 1.21 .141E+03 5.7 4.20 0.41 1.28 .147E+03 5.7 4.09 0.43 1.35 NaN NaN NaN NaN

```
______
  ID = 3 ( 0157): 98.10 0.503 13.67 9.68
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD ( 0157)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
  ID1= 3 ( 0157): 98.10 0.503 13.67 9.68
  + ID2= 2 ( 0049): 4.08 0.362 12.17 36.67
   _____
  ID = 1 ( 0157): 102.18  0.539  13.83  10.76
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTEPIPE( 0163)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
| DT= 5.0 min | Length (m)= 346.00
----- Slope (m/m)= 0.007
         Manning n = 0.013
  <-----> TRAVEL TIME TABLE ----->
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
  (m) (cu.m.) (cms) (m/s)
                            min
  0.08 .656E+02 0.2
                      1.18
                           4.90
  0.16 .131E+03 0.7
                      1.79 3.22
  0.24 .197E+03 1.3
                      2.26
                           2.55
  0.32 .262E+03 2.0
                      2.65
                            2.18
  0.39 .328E+03 2.8
                      2.97 1.94
  0.47 .393E+03
               3.7
                      3.25
                            1.78
  0.55 .459E+03 4.6
                      3.49
                           1.65
  0.63 .524E+03
                      3.70
                            1.56
               5.6
  0.71 .590E+03 6.6
                      3.89
                           1.48
  0.79 .656E+03
               7.7
                      4.07
                           1.42
  0.87 .721E+03 8.8
                      4.22
                            1.37
  0.95 .787E+03 9.9
                      4.36
                            1.32
  1.03 .852E+03 11.1
                       4.49
                             5.56
  1.11 .918E+03 12.2
                       4.61
                             5.42
  1.18 .983E+03 13.4
                       4.72
                             5.29
```

```
1.26 .105E+04 14.6
                          4.82
                                 5.18
  1.34 .111E+04 15.8
                          4.92
                                 5.08
  1.42 .118E+04 17.1
                          5.01
                                 4.99
  1.50 .125E+04 18.3
                          5.09 4.91
               <---- hydrograph ----> <-pipe / channel->
             AREA OPEAK TPEAK R.V. MAX DEPTH MAX VEL
             (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 ( 0157) 102.18  0.54  13.83  10.76  0.13  1.54
 OUTFLOW: ID= 1 (0163) 102.18 0.54 13.83 10.76 0.13 1.54
| CALIB |
| STANDHYD ( 0106) | Area (ha)= 6.17
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
            IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 4.13 2.04
  Dep. Storage (mm)= 1.00 5.00
  Average Slope (%)= 1.00 2.00
  Length
         (m)= 202.81 215.00
  Mannings n = 0.014 0.250
  Max.Eff.Inten.(mm/hr)= 58.62 14.42
       over (min) 5.00 50.00
  Storage Coeff. (min)= 5.05 (ii) 47.06 (ii)
  Unit Hyd. Tpeak (min)= 5.00 50.00
  Unit Hyd. peak (cms)= 0.21
                              0.02
                       *TOTALS*
  PEAK FLOW (cms)= 0.53
                              0.05
                                     0.541 (iii)
  TIME TO PEAK (hrs)= 12.17 12.83
                                      12.17
  RUNOFF VOLUME (mm)= 52.10 17.83
                                          36.67
  TOTAL RAINFALL (mm)= 53.10 53.10
                                         53.10
  RUNOFF COEFFICIENT = 0.98 0.34
                                        0.69
   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

```
INFLOW: ID= 2 (0119) 18.560 1.330 12.17 35.27
                                                                       OUTFLOW: ID= 1 (0133) 18.560 0.015 24.33 32.70
I CALIB
| STANDHYD ( 0119) | Area (ha)= 18.56
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
                                                                              PEAK FLOW REDUCTION [Qout/Qin](%)= 1.12
                                                                              TIME SHIFT OF PEAK FLOW
                                                                                                      (min)=730.00
                                                                              MAXIMUM STORAGE USED (ha.m.)= 0.5770
            IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 12.81
                            5.75
  Dep. Storage (mm)= 1.00
                           5.00
  Average Slope (%)= 1.00
                            2.00
          (m)= 351.76 215.00
 Length
 Mannings n = 0.014
                         0.250
                                                                      | ADD HYD ( 0159)|
                                                                      1 + 2 = 3 AREA QPEAK TPEAK R.V.
  Max.Eff.Inten.(mm/hr)= 58.62 27.33
                                                                      ----- (ha) (cms) (hrs) (mm)
      over (min) 5.00 40.00
                                                                         ID1=1 (0106): 6.17 0.541 12.17 36.67
  Storage Coeff. (min)= 7.03 (ii) 39.56 (ii)
                                                                        + ID2= 2 ( 0133): 18.56 0.015 24.33 32.70
 Unit Hyd. Tpeak (min)= 5.00
                                                                         _____
                             40.00
  Unit Hyd. peak (cms)= 0.17
                            0.03
                                                                         ID = 3 ( 0159): 24.73 0.555 12.17 33.69
                        *TOTALS*
  PEAK FLOW (cms)= 1.23
                            0.25
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                    1.330 (iii)
 TIME TO PEAK (hrs)= 12.17 12.67
                                     12.17
  RUNOFF VOLUME (mm)= 52.10 21.49
                                        35.27
 TOTAL RAINFALL (mm)= 53.10 53.10
                                       53.10
  RUNOFF COEFFICIENT = 0.98
                            0.40
                                      0.66
                                                                      | ADD HYD ( 0159)|
                                                                      | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                                                                      ----- (ha) (cms) (hrs) (mm)
    CN^* = 68.0 Ia = Dep. Storage (Above)
                                                                         ID1=3 (0159): 24.73 0.555 12.17 33.69
                                                                        + ID2= 2 ( 0163): 102.18  0.540  13.83  10.76
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
                                                                         _____
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                         ID = 1 ( 0159): 126.91 0.909 12.17 15.23
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR( 0133)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
                                                                      | ROUTEPIPE( 0158)| PIPE Number = 1.00
----- (cms) (ha.m.) | (cms) (ha.m.)
                                                                      | IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
          0.0000 0.0000 | 0.0250 1.0741
                                                                      DT= 5.0 min | Length (m)= 253.00
                                                                      ----- Slope (m/m)= 0.005
          0.0140 0.2394 | 0.0290 1.2348
          0.0150  0.6048 | 0.0340  1.4904
                                                                                Manning n = 0.013
          0.0210  0.8843 | 0.0380  1.7173
                                                                        <-----> TRAVEL TIME TABLE ----->
             AREA QPEAK TPEAK R.V.
                                                                         DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
             (ha) (cms) (hrs) (mm)
                                                                         (m) (cu.m.) (cms) (m/s) min
```

```
0.08 .479E+02
                         0.96
                                4.39
                                                                                                  *TOTALS*
                 0.2
  0.16 .959E+02
                         1.46
                                2.88
                                                                          PEAK FLOW (cms)= 0.61
                                                                                                      0.04
                                                                                                              0.614 (iii)
  0.24 .144E+03
                                2.28
                                                                          TIME TO PEAK (hrs)= 12.17
                                                                                                               12.17
                  1.1
                         1.85
                                                                                                      13.00
  0.32 .192E+03
                                                                          RUNOFF VOLUME (mm)= 52.10 14.10
                  1.6
                         2.16
                                1.95
                                                                                                                  35.00
  0.39 .240E+03
                         2.42
                                1.74
                                                                          TOTAL RAINFALL (mm)= 53.10
                                                                                                        53.10
                                                                                                                 53.10
                  2.3
  0.47 .288E+03
                         2.65
                                1.59
                                                                          RUNOFF COEFFICIENT = 0.98
                                                                                                        0.27
                                                                                                                0.66
                  3.0
  0.55 .336E+03
                         2.85
                                1.48
  0.63 .384E+03
                  4.6
                         3.02
                                1.40
  0.71 .431E+03
                                                                           (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                  5.4
                         3.18
                                1.33
  0.79 .479E+03
                         3.32
                                1.27
                                                                             CN^* = 68.0 Ia = Dep. Storage (Above)
                  6.3
  0.87 .527E+03
                  7.2
                         3.45
                                1.22
                                                                          (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
  0.95 .575E+03
                  8.1
                         3.56
                                1.18
                                                                             THAN THE STORAGE COEFFICIENT.
  1.03 .623E+03
                  9.0
                         3.67
                                6.82
                                                                          (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  1.11 .671E+03 10.0
                         3.77
                                 6.64
  1.18 .719E+03
                 11.0
                         3.86
                                 6.48
  1.26 .767E+03 11.9
                         3.94
                                 6.35
  1.34 .815E+03 12.9
                         4.02
                                 6.23
  1.42 .863E+03 13.9
                         4.09
                                 6.12
                                                                        | ADD HYD ( 0160)|
  1.50 .911E+03 15.0
                         4.15
                                 6.02
                                                                        1 + 2 = 3 AREA OPEAK TPEAK R.V.
                                                                        -----
               <---- hydrograph ----> <-pipe / channel->
                                                                                       (ha) (cms) (hrs) (mm)
                                                                           ID1= 1 ( 0136): 7.15 0.614 12.17 35.00
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                          + ID2= 2 ( 0158): 126.91 0.870 12.17 15.23
 INFLOW: ID= 2 (0159) 126.91 0.91 12.17 15.23 0.21 1.72
                                                                           _____
 OUTFLOW: ID= 1 ( 0158) 126.91  0.87 12.17 15.23  0.21  1.68
                                                                          ID = 3 ( 0160): 134.06 1.484 12.17 16.28
                                                                          NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| CALIB
| STANDHYD ( 0136) | Area (ha) = 7.15
                                                                        | ROUTEPIPE( 0161)| PIPE Number = 1.00
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
                                                                        | IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1800.00
                                                                        | DT= 5.0 min | Length (m)= 43.50
                                                                        ----- Slope (m/m)= 0.003
            IMPERVIOUS PERVIOUS (i)
 Surface Area (ha)= 4.79
                            2.36
                                                                                   Manning n = 0.013
 Dep. Storage (mm)= 1.00
                           13.90
 Average Slope (%)= 1.00
                            2.00
                                                                          <---->
 Length
           (m)= 218.33 215.00
                                                                           DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
 Mannings n = 0.014
                          0.250
                                                                           (m) (cu.m.) (cms)
                                                                                                (m/s)
                                                                                                        min
                                                                           0.09 .989E+01 0.2
                                                                                                 0.83
                                                                                                         0.87
 Max.Eff.Inten.(mm/hr) = 58.62
                              10.45
                                                                           0.19 .198E+02 0.6
                                                                                                 1.26
                                                                                                         0.57
      over (min) 5.00 55.00
                                                                           0.28 .297E+02 1.1
                                                                                                 1.58
                                                                                                         0.46
 Storage Coeff. (min)= 5.28 (ii) 53.06 (ii)
                                                                           0.38 .396E+02
                                                                                         1.7
                                                                                                  1.84
                                                                                                         0.39
 Unit Hyd. Tpeak (min)= 5.00
                             55.00
                                                                           0.47 .495E+02
                                                                                         2.3
                                                                                                  2.05
                                                                                                         0.35
 Unit Hyd. peak (cms)= 0.21
                                                                           0.57 .593E+02 3.0
                                                                                                  2.23
                             0.02
                                                                                                         0.32
```

```
0.66 .692E+02 3.8
                        2.39
                               0.30
  0.76 .791E+02 4.6
                               0.29
                        2.53
  0.85 .890E+02
                        2.65
                               0.27
                                                                         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                 5.4
  0.95 .989E+02
                                                                            CN^* = 68.0 Ia = Dep. Storage (Above)
                 6.3
                        2.76
                               0.26
  1.04 .109E+03
                        2.86
                               10.50
                                                                         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                 7.1
  1.14 .119E+03
                        2.95
                               10.19
                                                                           THAN THE STORAGE COEFFICIENT.
                8.0
  1.23 .129E+03
                 8.9
                        3.03
                               9.92
                                                                        (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  1.33 .138E+03
                9.9
                        3.10
                               9.68
  1.42 .148E+03
                10.8
                         3.17
                                9.48
  1.52 .158E+03 11.7
                         3.23
                                9.29
  1.61 .168E+03 12.7
                         3.28
                                9.13
                                                                      | RESERVOIR( 0131)|
  1.71 .178E+03 13.7
                                8.99
                                                                      | IN= 2---> OUT= 1 |
                         3.34
                                                                      | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
  1.80 .188E+03 14.6
                         3.39
                                8.86
                                                                      ----- (cms) (ha.m.) | (cms) (ha.m.)
              <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                                 0.0000 0.0000 | 0.1700 2.5907
            (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                                 0.0550 0.7098 | 0.2155 3.1239
INFLOW: ID= 2 (0160) 134.06 1.48 12.17 16.28 0.35 1.75
                                                                                 0.1004 1.5249 | 0.2600 3.5865
0.1400 2.1680 | 0.3014 4.0085
                                                                                    AREA QPEAK TPEAK R.V.
                                                                                    (ha) (cms) (hrs) (mm)
                                                                       INFLOW: ID= 2 (0132) 53.460 3.278 12.17 35.27
                                                                       OUTFLOW: ID= 1 (0131) 53.460 0.097 20.50 34.72
I CALIB
| STANDHYD ( 0132) | Area (ha)= 53.46
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
                                                                               PEAK FLOW REDUCTION [Qout/Qin](%)= 2.95
                                                                              TIME SHIFT OF PEAK FLOW
                                                                                                      (min)=500.00
            IMPERVIOUS PERVIOUS (i)
                                                                               MAXIMUM STORAGE USED (ha.m.)= 1.4592
 Surface Area (ha)= 36.89
                          16.57
 Dep. Storage (mm)= 1.00
                           5.00
 Average Slope (%)= 1.00
                            2.00
 Length
         (m)= 596.99 215.00
 Mannings n = 0.014 0.250
                                                                      | ADD HYD ( 0117)|
                                                                      | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
 Max.Eff.Inten.(mm/hr)= 58.62 27.33
                                                                      -----
                                                                                     (ha) (cms) (hrs) (mm)
      over (min) 10.00 45.00
                                                                          ID1=1 (0131): 53.46 0.097 20.50 34.72
                                                                         + ID2= 2 ( 0161): 134.06 1.493 12.17 16.28
 Storage Coeff. (min)= 9.66 (ii) 42.19 (ii)
                                                                          _____
 Unit Hyd. Tpeak (min)= 10.00
                            45.00
 Unit Hyd. peak (cms)= 0.11
                             0.03
                                                                          ID = 3 ( 0117): 187.52 1.539 12.17 21.54
                        *TOTALS*
 PEAK FLOW (cms)= 3.03
                            0.68
                                    3.278 (iii)
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 TIME TO PEAK (hrs)= 12.17 12.75
                                     12.17
 RUNOFF VOLUME (mm)= 52.10 21.49
                                         35.27
 TOTAL RAINFALL (mm)= 53.10 53.10
                                       53.10
 RUNOFF COEFFICIENT = 0.98
                              0.40
                                      0.66
```

```
0.95 100.20 .118E+04 5.5 1.61 3.62
| ADD HYD ( 0117)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
                                                                                   <---- hydrograph ----> <-pipe / channel->
   ID1=3 ( 0117): 187.52 1.539 12.17 21.54
                                                                                 AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
  + ID2= 2 ( 0036): 1.98 0.065 12.17 9.32
                                                                                 (ha) (cms) (hrs) (mm) (m) (m/s)
   ID = 1 ( 0117): 189.50 1.604 12.17 21.41
                                                                     OUTFLOW: ID= 1 (0166) 189.50 1.39 12.25 21.41 0.57 1.14
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                    l CALIB
| ROUTE CHN( 0166)|
                                                                    | NASHYD ( 0120) | Area (ha)= 10.00 Curve Number (CN)= 68.0
| IN= 2---> OUT= 1 | Routing time step (min)'= 5.00
                                                                    |ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                    ----- U.H. Tp(hrs)= 0.44
      <----> DATA FOR SECTION ( 2.0) ----->
      Distance Elevation Manning
                                                                      Unit Hyd Qpeak (cms)= 0.868
       0.00
              100.20
                      0.0400
       46.50
             101.25 0.0400 /0.0350 Main Channel
                                                                      PEAK FLOW (cms)= 0.119 (i)
       52.50
              99.25 0.0350 Main Channel
                                                                      TIME TO PEAK (hrs)= 12.583
       61.50
              101.25 0.0350 /0.0400 Main Channel
                                                                       RUNOFF VOLUME (mm)= 9.681
       105.00
             102.00 0.0400
                                                                      TOTAL RAINFALL (mm)= 53.103
                                                                      RUNOFF COEFFICIENT = 0.182
  <-----> TRAVEL TIME TABLE ----->
  DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                      (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   (m) (m) (cu.m.) (cms)
                           (m/s) (min)
  0.05 99.30 .328E+01 0.0
                             0.23 25.78
  0.10 99.35 .131E+02 0.0
                             0.36 16.24
  0.15 99.40 .295E+02 0.0
                             0.47 12.39
  0.20 99.45 .525E+02 0.1
                             0.57 10.23
                                                                    | ADD HYD ( 0121)|
  0.25 99.50 .820E+02 0.2
                             0.66 8.82
                                                                    | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
                                                                    ---- (ha) (cms) (hrs) (mm)
  0.30 99.55 .118E+03
                     0.3
                             0.75
                                   7.81
  0.35 99.60 .161E+03
                                                                       ID1=1 (0120): 10.00 0.119 12.58 9.68
                                   7.04
                     0.4
                             0.83
  0.40 99.65 .210E+03
                     0.5
                             0.91
                                   6.44
                                                                       + ID2= 2 ( 0166): 189.50 1.389 12.25 21.41
  0.45 99.70 .266E+03
                                                                        _____
                     0.7
                             0.98
                                   5.96
  0.50 99.75 .328E+03
                                   5.55
                                                                       ID = 3 ( 0121): 199.50 1.469 12.25 20.82
                             1.05
  0.55 99.80 .397E+03
                                   5.21
                     1.3
                             1.12
  0.60 99.85 .472E+03
                     1.6
                             1.19
                                   4.92
                                                                      NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
  0.65 99.90 .554E+03
                                   4.66
                      2.0
                             1.25
  0.70 99.95 .643E+03
                             1.31
                                   4.44
  0.75 100.00 .738E+03
                     2.9
                             1.38 4.24
  0.80 100.05 .840E+03
                     3.4
                             1.44 4.06
                                                                    I CALIB
                                                                    | NASHYD ( 0046)| Area (ha)= 17.20 Curve Number (CN)= 68.0
  0.85 100.10 .948E+03
                     4.1
                           1.50 3.90
  0.90 100.15 .106E+04 4.7
                                                                    |ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                             1.55 3.75
```

```
----- U.H. Tp(hrs)= 0.47
                                                                               1.17 0.79 | 7.33 1.44 | 13.50 1.01 | 19.67 1.29
                                                                               1.33 0.79 | 7.50 1.44 | 13.67 1.01 | 19.83 1.29
  Unit Hyd Qpeak (cms)= 1.398
                                                                               1.50 0.79 | 7.67 1.44 | 13.83 5.89 | 20.00 1.29
                                                                               1.67 0.79 | 7.83 1.44 | 14.00 5.89 | 20.17 1.29
  PEAK FLOW (cms)= 0.196 (i)
                                                                               1.83 0.79 | 8.00 1.44 | 14.17 5.89 | 20.33 0.86
 TIME TO PEAK (hrs)= 12.583
                                                                               2.00 0.79 | 8.17 1.44 | 14.33 2.15 | 20.50 0.86
  RUNOFF VOLUME (mm)= 9.682
                                                                               2.17 0.79 | 8.33 1.94 | 14.50 2.15 | 20.67 0.86
 TOTAL RAINFALL (mm)= 53.103
                                                                               2.33 0.93 | 8.50 1.94 | 14.67 2.15 | 20.83 0.86
  RUNOFF COEFFICIENT = 0.182
                                                                               2.50 0.93 | 8.67 1.94 | 14.83 2.15 | 21.00 0.86
                                                                               2.67  0.93 | 8.83  1.94 | 15.00  2.15 | 21.17  0.86
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                               2.83 0.93 | 9.00 1.94 | 15.17 2.15 | 21.33 0.86
                                                                               3.00 0.93 | 9.17 1.94 | 15.33 2.15 | 21.50 0.86
                                                                               3.17  0.93 | 9.33  2.30 | 15.50  2.15 | 21.67  0.86
                                                                               3.33 0.93 | 9.50 2.30 | 15.67 2.15 | 21.83 0.86
                                                                               3.50 0.93 | 9.67 2.30 | 15.83 2.15 | 22.00 0.86
_____
                                                                               3.67 0.93 | 9.83 2.58 | 16.00 2.15 | 22.17 0.86
| ADD HYD ( 0114)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
                                                                               3.83 0.93 | 10.00 2.58 | 16.17 2.15 | 22.33 0.86
----- (ha) (cms) (hrs) (mm)
                                                                               4.00 0.93 | 10.17 2.58 | 16.33 1.29 | 22.50 0.86
   ID1=1 (0121): 199.50 1.469 12.25 20.82
                                                                               4.17  0.93 | 10.33  3.30 | 16.50  1.29 | 22.67  0.86
  + ID2= 2 ( 0046): 17.20 0.196 12.58 9.68
                                                                               4.33 1.15 | 10.50 3.30 | 16.67 1.29 | 22.83 0.86
   _____
                                                                               4.50 1.15 | 10.67 3.30 | 16.83 1.29 | 23.00 0.86
   ID = 3 ( 0114): 216.70 1.593 12.25 19.94
                                                                               4.67 1.15 | 10.83 4.45 | 17.00 1.29 | 23.17 0.86
                                                                               NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                               5.00 1.15 | 11.17 4.45 | 17.33 1.29 | 23.50 0.86
                                                                               5.33 1.15 | 11.50 6.89 | 17.67 1.29 | 23.83 0.86
**********
                                                                               5.50 1.15 | 11.67 6.89 | 17.83 1.29 | 24.00 0.86
** SIMULATION:Run 03
                                                                               5.67 1.15 | 11.83 29.87 | 18.00 1.29 | 24.17 0.86
**********
                                                                               5.83 1.15 | 12.00 54.57 | 18.17 1.29 |
                                                                               6.00 1.15 | 12.17 79.27 | 18.33 1.29 |
                                                                               READ STORM | Filename: C:\Users\Janis Lobo\AppD
             ata\Local\Temp\
       9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\93c7028f
| Ptotal= 71.78 mm | Comments: 5-year - 24-h SCS RBG
_____
                                                                       | CALIB
       TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
                                                                       | NASHYD ( 0036) | Area (ha)= 1.98 Curve Number (CN)= 68.0
       hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                                                                       |ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                       ----- U.H. Tp(hrs)= 0.09
       0.17  0.00 | 6.33  1.44 | 12.50  10.34 | 18.67  1.29
       0.50 0.79 | 6.67 1.44 | 12.83 5.31 | 19.00 1.29
                                                                           NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
       0.67 0.79 | 6.83 1.44 | 13.00 5.31 | 19.17 1.29
       0.83 0.79 | 7.00 1.44 | 13.17 5.31 | 19.33 1.29
       1.00 0.79 | 7.17 1.44 | 13.33 1.01 | 19.50 1.29
                                                                                     ---- TRANSFORMED HYETOGRAPH ----
```

TIME	RAIN	TIME	RAIN	' TIME	RAIN	I TIME	RAIN
	nm/hr	•	mm/hr		mm/h	•	mm/hr
0.083	-	6.167		12.250	-	18.33	1.29
0.167		6.250		12.333		18.42	1.29
0.250		6.333		12.417		18.50	1.29
0.333		6.417		12.500		18.58	1.29
0.417		6.500		12.583		18.67	1.29
0.500		6.583		12.667		18.75	1.29
0.583		6.667		12.750		18.83	1.29
0.667		6.750		12.833		18.92	1.29
0.750	0.79	6.833	1.44	12.917		19.00	1.29
0.833		6.917	1.44	13.000	5.31	19.08	1.29
0.917	0.79	7.000	1.44	13.083	5.31	19.17	1.29
1.000	0.79	7.083	1.44	13.167	5.31	19.25	1.29
1.083	0.79	7.167	1.44	13.250	1.01	19.33	1.29
1.167	0.79	7.250	1.44	13.333	1.01	19.42	1.29
1.250	0.79	7.333	1.44	13.417	1.01	19.50	1.29
1.333	0.79	7.417	1.44	13.500	1.01	19.58	1.29
1.417	0.79	7.500	1.44	13.583	1.01	19.67	1.29
1.500	0.79	7.583	1.44	13.667	1.01	19.75	1.29
1.583	0.79	7.667	1.44	13.750	5.89	19.83	1.29
1.667	0.79	7.750	1.44	13.833	5.89	19.92	1.29
1.750	0.79	7.833	1.44	13.917	5.89	20.00	1.29
1.833	0.79	7.917	1.44	14.000	5.89	20.08	1.29
1.917	0.79	8.000	1.44	14.083	5.89	20.17	1.29
2.000	0.79	8.083	1.44	14.167	5.89	20.25	0.86
2.083	0.79	8.167	1.44	14.250	2.15	20.33	0.86
2.167	0.79	8.250	1.94	14.333	2.15	20.42	0.86
2.250	0.93	8.333	1.94	14.417	2.15	20.50	0.86
2.333	0.93	8.417	1.94	14.500	2.15	20.58	0.86
2.417	0.93	8.500	1.94	14.583	2.15	20.67	0.86
2.500	0.93	8.583	1.94	14.667	2.15	20.75	0.86
2.583	0.93	8.667	1.94	14.750	2.15	20.83	0.86
2.667	0.93	8.750	1.94	14.833	2.15	20.92	0.86
2.750		8.833		14.917	2.15	21.00	0.86
2.833	0.93	8.917	1.94	15.000		21.08	0.86
2.917	0.93	9.000		15.083		21.17	0.86
3.000		9.083		15.167		21.25	0.86
3.083		9.167		15.250		21.33	0.86
3.167		9.250		15.333		21.42	0.86
3.250		9.333		15.417		21.50	0.86
3.333		9.417		15.500		21.58	0.86
3.417		9.500		15.583	-	21.67	0.86
3.500	0.93	9.583	2.30	15.667	2.15	21.75	0.86

3.583	0.93 9.667	2.30 15.750	2.15 21.83	0.86
3.667	0.93 9.750	2.58 15.833	2.15 21.92	0.86
3.750	0.93 9.833	2.58 15.917	2.15 22.00	0.86
3.833	0.93 9.917	2.58 16.000	2.15 22.08	0.86
3.917	0.93 10.000	2.58 16.083	2.15 22.17	0.86
4.000	0.93 10.083	2.58 16.167	2.15 22.25	0.86
4.083	0.93 10.167	2.58 16.250	1.29 22.33	0.86
4.167	0.93 10.250	3.30 16.333	1.29 22.42	0.86
4.250	1.15 10.333	3.30 16.417	1.29 22.50	0.86
4.333	1.15 10.417	3.30 16.500	1.29 22.58	0.86
4.417	1.15 10.500	3.30 16.583	1.29 22.67	0.86
4.500	1.15 10.583	3.30 16.667	1.29 22.75	0.86
4.583	1.15 10.667	3.30 16.750	1.29 22.83	0.86
4.667	1.15 10.750	4.45 16.833	1.29 22.92	0.86
4.750	1.15 10.833	4.45 16.917	1.29 23.00	0.86
4.833	1.15 10.917	4.45 17.000	1.29 23.08	0.86
4.917	1.15 11.000	4.45 17.083	1.29 23.17	0.86
5.000	1.15 11.083	4.45 17.167	1.29 23.25	0.86
5.083	1.15 11.167	4.45 17.250	1.29 23.33	0.86
5.167	1.15 11.250	6.89 17.333	1.29 23.42	0.86
5.250	1.15 11.333	6.89 17.417	1.29 23.50	0.86
5.333	1.15 11.417	6.89 17.500	1.29 23.58	0.86
5.417	1.15 11.500	6.89 17.583	1.29 23.67	0.86
5.500	1.15 11.583	6.89 17.667	1.29 23.75	0.86
5.583	1.15 11.667	6.89 17.750	1.29 23.83	0.86
5.667	1.15 11.750	29.87 17.833	1.29 23.92	0.86
5.750	1.15 11.833	29.87 17.917	1.29 24.00	0.86
5.833	1.15 11.917	54.57 18.000	1.29 24.08	0.86
5.917	1.15 12.000	54.57 18.083	1.29 24.17	0.86
6.000	1.15 12.083	79.27 18.167	•	
6.083	1.15 12.167	79.27 18.250	1.29	

Unit Hyd Qpeak (cms)= 0.840

PEAK FLOW (cms)= 0.131 (i)
TIME TO PEAK (hrs)= 12.167
RUNOFF VOLUME (mm)= 18.170
TOTAL RAINFALL (mm)= 71.780
RUNOFF COEFFICIENT = 0.253

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

._____

```
I CALIB
                                                                           1.20 .829E+02 3.9 3.45 0.35
| NASHYD (0037)| Area (ha)= 28.80 Curve Number (CN)= 68.0
                                                                                        <---- hydrograph ----> <-pipe / channel->
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                                     AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
----- U.H. Tp(hrs)= 1.21
                                                                                     (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                         INFLOW: ID= 2 (0037) 28.80 0.35 13.42 18.88 0.24 2.12
                                                                         OUTFLOW: ID= 1 (0165) 28.80 0.35 13.42 18.88 0.24 2.11
  Unit Hyd Qpeak (cms)= 0.908
  PEAK FLOW (cms)= 0.350 (i)
  TIME TO PEAK (hrs)= 13.417
  RUNOFF VOLUME (mm)= 18.883
  TOTAL RAINFALL (mm)= 71.780
                                                                        CALIB
  RUNOFF COEFFICIENT = 0.263
                                                                        | NASHYD ( 0051)| Area (ha)= 69.30 Curve Number (CN)= 68.0
                                                                        | ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                        ----- U.H. Tp(hrs)= 1.45
                                                                          Unit Hyd Qpeak (cms)= 1.825
| ROUTEPIPE( 0165)| PIPE Number = 1.00
                                                                          PEAK FLOW (cms)= 0.725 (i)
| IN= 2---> OUT= 1 | Diameter (mm)=1200.00
                                                                          TIME TO PEAK (hrs)= 13.667
| DT= 5.0 min | Length (m)= 73.30
                                                                          RUNOFF VOLUME (mm)= 18.883
----- Slope (m/m)= 0.010
                                                                          TOTAL RAINFALL (mm)= 71.780
          Manning n = 0.013
                                                                          RUNOFF COEFFICIENT = 0.263
  <------ TRAVEL TIME TABLE ----->
                                                                          (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms)
                       (m/s)
                                min
   0.06 .167E+01 0.0
                        0.92
                               1.33
   0.13 .465E+01 0.1
                                                                        | ROUTEPIPE( 0164) | PIPE Number = 1.00
                         1.43
                               0.85
   0.19 .840E+01 0.2
                         1.84
                               0.66
                                                                        | IN= 2---> OUT= 1 | Diameter (mm)=1350.00
                                                                        | DT= 5.0 min | Length (m)= 104.50
  0.25 .127E+02 0.4
                         2.19
                               0.56
   0.32 .174E+02 0.6
                         2.49
                                0.49
                                                                        ----- Slope (m/m)= 0.010
  0.38 .225E+02 0.8
                         2.75
                                0.44
                                                                                  Manning n = 0.013
   0.44 .277E+02
                         2.99
                                0.41
                1.1
   0.51 .332E+02 1.4
                         3.19
                                0.38
                                                                          <-----> TRAVEL TIME TABLE ----->
                                                                           DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   0.57 .387E+02
                 1.8
                         3.37
                                0.36
   0.63 .442E+02
                 2.1
                         3.52
                                0.35
                                                                           (m) (cu.m.) (cms)
                                                                                                (m/s)
                                                                                                        min
   0.69 .497E+02
                 2.5
                         3.65
                                0.33
                                                                           0.07 .302E+01 0.0
                                                                                                  0.99
                                                                                                        1.76
   0.76 .552E+02
                 2.8
                         3.76
                                0.32
                                                                           0.14 .839E+01 0.1
                                                                                                  1.55
                                                                                                         1.13
   0.82 .604E+02
                         3.84
                                0.32
                                                                           0.21 .152E+02 0.3
                                                                                                  1.99
                                                                                                         0.88
                 3.2
  0.88 .655E+02
                3.5
                         3.90
                                0.31
                                                                           0.28 .229E+02 0.5
                                                                                                  2.37
                                                                                                         0.74
   0.95 .702E+02
                                                                           0.36 .314E+02
                                                                                                  2.69
                 3.8
                         3.93
                                0.31
                                                                                         0.8
                                                                                                         0.65
                                                                                                  2.98
   1.01 .745E+02 4.0
                         3.93
                                0.31
                                                                           0.43 .405E+02 1.2
                                                                                                         0.58
  1.07 .783E+02 4.1
                         3.89
                                0.31
                                                                           0.50 .500E+02 1.5
                                                                                                  3.23
                                                                                                         0.54
  1.14 .812E+02 4.2
                                                                           0.57 .598E+02 2.0
                                                                                                  3.45
                         3.78
                                0.32
                                                                                                         0.50
```

```
0.64 .698E+02 2.4
                               0.48
                        3.64
  0.71 .798E+02 2.9
                        3.81
                               0.46
                                                                        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
  0.78 .898E+02
                        3.95
                                                                           CN^* = 68.0 Ia = Dep. Storage (Above)
                               0.44
  0.85 .996E+02 3.9
                                                                        (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                        4.07
                               0.43
  0.92 .109E+03
                        4.16
                               0.42
                                                                          THAN THE STORAGE COEFFICIENT.
                4.3
  0.99 .118E+03 4.8
                        4.22
                                                                        (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                               0.41
  1.07 .127E+03 5.2
                        4.25
                               0.41
  1.14 .134E+03 5.5
                        4.25
                               0.41
  1.21 .141E+03 5.7
                        4.20
                              0.41
  1.28 .147E+03 5.7
                        4.09 0.43
  1.35
          NaN NaN
                        NaN
                               NaN
                                                                      | ADD HYD ( 0157)|
               <---- hydrograph ----> <-pipe / channel->
                                                                     1 + 2 = 3 AREA OPEAK TPEAK R.V.
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                      ----- (ha) (cms) (hrs) (mm)
            (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                         ID1=1 (0164): 69.30 0.725 13.67 18.88
 INFLOW: ID= 2 (0051) 69.30 0.72 13.67 18.88 0.33 2.59
                                                                        + ID2= 2 ( 0165): 28.80 0.350 13.42 18.88
 OUTFLOW: ID= 1 ( 0164) 69.30 0.72 13.67 18.88 0.33 2.58
                                                                         _____
                                                                         ID = 3 ( 0157): 98.10 1.068 13.58 18.88
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
I CALIB
| STANDHYD ( 0049) | Area (ha)= 4.08
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
                                                                      | ADD HYD ( 0157)|
                                                                      | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
            IMPERVIOUS PERVIOUS (i)
 Surface Area (ha)= 2.73
                           1.35
                                                                      ----- (ha) (cms) (hrs) (mm)
  Dep. Storage (mm)= 1.00 5.00
                                                                         ID1= 3 ( 0157): 98.10 1.068 13.58 18.88
  Average Slope (%)= 1.00 2.00
                                                                        + ID2= 2 ( 0049): 4.08 0.508 12.17 52.33
                                                                         Length
         (m)= 164.92 215.00
 Mannings n = 0.014 0.250
                                                                         ID = 1 ( 0157): 102.18 1.110 13.75 20.22
  Max.Eff.Inten.(mm/hr) = 79.27
                             29.21
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
      over (min) 5.00 40.00
  Storage Coeff. (min)= 3.96 (ii) 35.63 (ii)
  Unit Hyd. Tpeak (min)= 5.00 40.00
  Unit Hyd. peak (cms)= 0.24
                            0.03
                                                                      | ROUTEPIPE( 0163)| PIPE Number = 1.00
                       *TOTALS*
                                                                      | IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
                                                                      | DT= 5.0 min | Length (m)= 346.00
  PEAK FLOW (cms)= 0.48
                            0.07
                                    0.508 (iii)
                                                                      ----- Slope (m/m)= 0.007
 TIME TO PEAK (hrs)= 12.17 12.67
                                     12.17
  RUNOFF VOLUME (mm)= 70.78 29.78
                                        52.33
                                                                                Manning n = 0.013
 TOTAL RAINFALL (mm)= 71.78 71.78
                                       71.78
  RUNOFF COEFFICIENT = 0.99
                              0.41
                                      0.73
                                                                        <-----> TRAVEL TIME TABLE ----->
                                                                         DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                                                                         (m) (cu.m.) (cms) (m/s) min
```

```
0.08 .656E+02
                                 4.90
                  0.2
                         1.18
  0.16 .131E+03
                                 3.22
                  0.7
                         1.79
  0.24 .197E+03
                         2.26
                                2.55
                  1.3
  0.32 .262E+03
                  2.0
                         2.65
                                2.18
  0.39 .328E+03
                  2.8
                         2.97
                                1.94
  0.47 .393E+03
                         3.25
                                1.78
                  3.7
  0.55 .459E+03
                         3.49
                                1.65
                  4.6
  0.63 .524E+03
                  5.6
                         3.70
                                1.56
  0.71 .590E+03
                         3.89
                                1.48
                  6.6
  0.79 .656E+03
                 7.7
                         4.07
                                1.42
  0.87 .721E+03
                  8.8
                         4.22
                                1.37
  0.95 .787E+03
                  9.9
                                1.32
                         4.36
  1.03 .852E+03
                          4.49
                                 5.56
                 11.1
  1.11 .918E+03
                 12.2
                          4.61
                                 5.42
  1.18 .983E+03
                 13.4
                          4.72
                                 5.29
  1.26 .105E+04 14.6
                          4.82
                                 5.18
  1.34 .111E+04 15.8
                          4.92
                                 5.08
  1.42 .118E+04 17.1
                          5.01
                                 4.99
  1.50 .125E+04 18.3
                          5.09
                                 4.91
               <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0157) 102.18 1.11 13.75 20.22 0.21 2.10
 | CALIB
| STANDHYD ( 0106) | Area (ha) = 6.17
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
            IMPERVIOUS PERVIOUS (i)
 Surface Area (ha)= 4.13
                            2.04
 Dep. Storage (mm)= 1.00
                            5.00
 Average Slope (%)= 1.00
                             2.00
 Length
            (m)= 202.81
                          215.00
 Mannings n = 0.014
                           0.250
 Max.Eff.Inten.(mm/hr) = 79.27
                               29.21
      over (min)
                         40.00
                5.00
 Storage Coeff. (min)= 4.48 (ii) 36.15 (ii)
 Unit Hyd. Tpeak (min)= 5.00
                              40.00
 Unit Hyd. peak (cms)=
                      0.23
                              0.03
```

```
*TOTALS*
  PEAK FLOW (cms)= 0.72
                                0.10
                                        0.760 (iii)
  TIME TO PEAK (hrs)= 12.17
                                12.67
                                         12.17
  RUNOFF VOLUME (mm)= 70.78
                                  29.78
                                             52.33
  TOTAL RAINFALL (mm)= 71.78
                                  71.78
                                           71.78
  RUNOFF COEFFICIENT = 0.99
                                  0.41
                                          0.73
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
     THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD ( 0119) | Area (ha)= 18.56
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
-----
             IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 12.81
                               5.75
  Dep. Storage (mm)= 1.00
                               5.00
  Average Slope (%)= 1.00
                               2.00
  Length
             (m)= 351.76 215.00
                 = 0.014
                             0.250
  Mannings n
  Max.Eff.Inten.(mm/hr) = 79.27
                                 56.67
       over (min) 5.00
                          35.00
  Storage Coeff. (min)= 6.23 (ii) 30.53 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                                35.00
  Unit Hyd. peak (cms)=
                       0.19
                                0.04
                           *TOTALS*
  PEAK FLOW (cms)= 1.70
                                0.48
                                        1.926 (iii)
  TIME TO PEAK (hrs)= 12.17
                               12.58
                                         12.17
  RUNOFF VOLUME (mm)= 70.78 34.88
                                             51.04
  TOTAL RAINFALL (mm)= 71.78
                                  71.78
                                           71.78
  RUNOFF COEFFICIENT = 0.99
                                  0.49
                                          0.71
   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
```

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| RESERVOIR( 0133)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
----- (cms) (ha.m.) | (cms) (ha.m.)
         0.0000 0.0000 | 0.0250 1.0741
         0.0140 0.2394 | 0.0290 1.2348
         0.0150 0.6048 | 0.0340 1.4904
         AREA QPEAK TPEAK R.V.
            (ha) (cms) (hrs) (mm)
 INFLOW: ID= 2 (0119) 18.560 1.926 12.17 51.04
 OUTFLOW: ID= 1 (0133) 18.560 0.020 24.33 44.59
       PEAK FLOW REDUCTION [Qout/Qin](%)= 1.05
       TIME SHIFT OF PEAK FLOW (min)=730.00
       MAXIMUM STORAGE USED (ha.m.)= 0.8486
_____
| ADD HYD ( 0159)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
  ID1= 1 ( 0106): 6.17 0.760 12.17 52.33
  + ID2= 2 ( 0133): 18.56 0.020 24.33 44.59
  _____
  ID = 3 ( 0159): 24.73 0.774 12.17 46.52
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
_____
| ADD HYD ( 0159)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
  ID1= 3 ( 0159): 24.73 0.774 12.17 46.52
  + ID2= 2 ( 0163): 102.18 1.106 13.83 20.22
```

```
______
   ID = 1 ( 0159): 126.91 1.363 12.17 25.34
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTEPIPE( 0158)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
DT= 5.0 min | Length (m)= 253.00
----- Slope (m/m)= 0.005
        Manning n = 0.013
 <---->
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms) (m/s) min
  0.08 .479E+02 0.2
                      0.96
                             4.39
  0.16 .959E+02 0.6
                       1.46 2.88
  0.24 .144E+03
                       1.85
                             2.28
               1.1
  0.32 .192E+03 1.6
                       2.16
                             1.95
  0.39 .240E+03
                       2.42
                             1.74
               2.3
  0.47 .288E+03
                       2.65
                             1.59
  0.55 .336E+03
                3.8
                       2.85
                             1.48
  0.63 .384E+03
                       3.02
               4.6
                             1.40
  0.71 .431E+03
                       3.18
                             1.33
               5.4
  0.79 .479E+03 6.3
                       3.32
                             1.27
  0.87 .527E+03
                             1.22
               7.2
                       3.45
  0.95 .575E+03
               8.1
                       3.56
                             1.18
  1.03 .623E+03
                9.0
                       3.67
                              6.82
  1.11 .671E+03
               10.0
                        3.77
                              6.64
  1.18 .719E+03
                        3.86
                              6.48
                11.0
  1.26 .767E+03
               11.9
                        3.94
                              6.35
  1.34 .815E+03
               12.9
                        4.02
                              6.23
  1.42 .863E+03 13.9
                        4.09
                              6.12
  1.50 .911E+03 15.0
                        4.15
                              6.02
              <---- hydrograph ----> <-pipe / channel->
           AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
           (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0159) 126.91 1.36 12.17 25.34 0.28 2.00
 OUTFLOW: ID= 1 (0158) 126.91 1.32 12.17 25.34 0.27 1.98
```

```
I CALIB
| STANDHYD ( 0136)| Area (ha)= 7.15
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
                                                                         | ROUTEPIPE( 0161)| PIPE Number = 1.00
                                                                         | IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1800.00
                                                                         | DT= 5.0 min | Length (m)= 43.50
            IMPERVIOUS PERVIOUS (i)
                                                                         ----- Slope (m/m)= 0.003
  Surface Area (ha)= 4.79
                            2.36
  Dep. Storage (mm)= 1.00
                            13.90
                                                                                    Manning n = 0.013
  Average Slope (%)= 1.00
                             2.00
  Length
            (m)= 218.33 215.00
                                                                           <-----> TRAVEL TIME TABLE ----->
  Mannings n
             = 0.014
                          0.250
                                                                            DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                            (m) (cu.m.) (cms)
                                                                                                  (m/s)
                                                                                                          min
  Max.Eff.Inten.(mm/hr)= 79.27
                                                                            0.09 .989E+01
                                                                                          0.2
                                                                                                   0.83
                                                                                                          0.87
                               24.74
      over (min)
                 5.00
                         40.00
                                                                            0.19 .198E+02
                                                                                                   1.26
                                                                                                          0.57
                                                                                            0.6
  Storage Coeff. (min)= 4.68 (ii) 38.53 (ii)
                                                                            0.28 .297E+02
                                                                                           1.1
                                                                                                   1.58
                                                                                                          0.46
  Unit Hyd. Tpeak (min)= 5.00
                             40.00
                                                                            0.38 .396E+02
                                                                                           1.7
                                                                                                   1.84
                                                                                                          0.39
  Unit Hyd. peak (cms)=
                      0.22
                              0.03
                                                                            0.47 .495E+02
                                                                                          2.3
                                                                                                   2.05
                                                                                                          0.35
                         *TOTALS*
                                                                            0.57 .593E+02
                                                                                                          0.32
                                                                                           3.0
                                                                                                   2.23
  PEAK FLOW (cms)= 0.83
                              0.09
                                      0.865 (iii)
                                                                            0.66 .692E+02
                                                                                                   2.39
                                                                                                          0.30
 TIME TO PEAK (hrs)= 12.17
                             12.75
                                                                            0.76 .791E+02
                                                                                                   2.53
                                                                                                          0.29
                                       12.17
                                                                                           4.6
  RUNOFF VOLUME (mm)= 70.78 25.41
                                                                            0.85 .890E+02
                                          50.36
                                                                                           5.4
                                                                                                   2.65
                                                                                                          0.27
 TOTAL RAINFALL (mm)= 71.78
                               71.78
                                         71.78
                                                                            0.95 .989E+02
                                                                                                   2.76
                                                                                                          0.26
                                                                                            6.3
  RUNOFF COEFFICIENT = 0.99
                               0.35
                                        0.70
                                                                            1.04 .109E+03
                                                                                           7.1
                                                                                                   2.86
                                                                                                          10.50
                                                                            1.14 .119E+03
                                                                                                          10.19
                                                                                            8.0
                                                                                                   2.95
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                                                                            1.23 .129E+03
                                                                                                   3.03
                                                                                                          9.92
                                                                                           8.9
                                                                            1.33 .138E+03
                                                                                            9.9
                                                                                                   3.10
                                                                                                          9.68
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                                                                            1.42 .148E+03
                                                                                          10.8
                                                                                                    3.17
                                                                                                           9.48
    CN^* = 68.0 Ia = Dep. Storage (Above)
                                                                            1.52 .158E+03
                                                                                                    3.23
                                                                                                           9.29
                                                                                           11.7
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                                                                            1.61 .168E+03
                                                                                          12.7
                                                                                                    3.28
                                                                                                           9.13
    THAN THE STORAGE COEFFICIENT.
                                                                            1.71 .178E+03 13.7
                                                                                                    3.34
                                                                                                           8.99
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                            1.80 .188E+03 14.6
                                                                                                    3.39
                                                                                                           8.86
                                                                                         <---- hydrograph ----> <-pipe / channel->
                                                                                      AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                                      (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                          INFLOW: ID= 2 (0160) 134.06 2.18 12.17 26.68 0.45 2.00
                                                                          OUTFLOW: ID= 1 (0161) 134.06 2.20 12.17 26.68 0.46 2.01
| ADD HYD ( 0160)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0136): 7.15 0.865 12.17 50.36
  + ID2= 2 ( 0158): 126.91 1.320 12.17 25.34
   | CALIB
                                                                         | STANDHYD ( 0132)| Area (ha)= 53.46
   ID = 3 ( 0160): 134.06 2.184 12.17 26.68
                                                                         |ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                         -----
```

IMPERVIOUS PERVIOUS (i)

Surface Area (ha)= 36.89 16.57	
Dep. Storage (mm)= 1.00 5.00	
Average Slope (%)= 1.00 2.00	
Length (m)= 596.99 215.00	
Mannings n = 0.014 0.250	ADD HYD (0117)
Mary Eff Internal (1999 / 1991 - 70.27 FG G7	1 + 2 = 3
Max.Eff.Inten.(mm/hr)= 79.27 56.67	(ha) (cms) (
over (min) 10.00 35.00	ID1= 1 (0131): 53.46 0.138
Storage Coeff. (min)= 8.56 (ii) 32.86 (ii)	+ ID2= 2 (0161): 134.06 2.19
Unit Hyd. Tpeak (min)= 10.00 35.00	
Unit Hyd. peak (cms)= 0.12 0.03	ID = 3 (0117): 187.52 2.260
TOTALS	
PEAK FLOW (cms)= 4.24 1.33 4.876 (iii)	NOTE: PEAK FLOWS DO NOT INC
TIME TO PEAK (hrs)= 12.17 12.58 12.17	
RUNOFF VOLUME (mm)= 70.78 34.88 51.04	
TOTAL RAINFALL (mm)= 71.78 71.78 71.78	
RUNOFF COEFFICIENT = 0.99 0.49 0.71	
	ADD HYD (0117)
	3 + 2 = 1 AREA QPEAK
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	(ha) (cms) (
CN* = 68.0 Ia = Dep. Storage (Above)	ID1= 3 (0117): 187.52 2.260
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	+ ID2= 2 (0036): 1.98 0.131
THAN THE STORAGE COEFFICIENT.	=======================================
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	ID = 1 (0117): 189.50 2.391
	NOTE: PEAK FLOWS DO NOT IN
RESERVOIR(0131)	
IN= 2> OUT= 1	
DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE	ROUTE CHN(0166)
(cms) (ha.m.) (cms) (ha.m.)	IN= 2> OUT= 1 Routing time
0.0000	
0.0550 0.7098 0.2155 3.1239	< DATA FOR SECTION
0.1004 1.5249 0.2600 3.5865	Distance Elevation N
0.1400 2.1680 0.3014 4.0085	0.00 100.20 0.04
'	46.50 101.25 0.040
AREA QPEAK TPEAK R.V.	52.50 99.25 0.03
(ha) (cms) (hrs) (mm)	61.50 101.25 0.035
INFLOW: ID= 2 (0132) 53.460 4.876 12.17 51.04	105.00 102.00 0.0
OUTFLOW: ID= 1 (0131) 53.460 0.138 20.50 50.18	103.00 102.00 0.0
001110W.1B=1 (0131)	< TRAVEL TIME
PEAK FLOW REDUCTION [Qout/Qin](%)= 2.82	DEPTH ELEV VOLUME FLO
TIME SHIFT OF PEAK FLOW (min)=500.00	
· · · ·	
MAXIMUM STORAGE USED (ha.m.)= 2.1276	0.05 99.30 .328E+01 0.0

```
AK TPEAK R.V.
                    (hrs) (mm)
                    88 20.50 50.18
                    196 12.17 26.68
                    _____
                    50 12.17 33.38
                    NCLUDE BASEFLOWS IF ANY.
                    ----
                    K TPEAK R.V.
                    (hrs) (mm)
                    60 12.17 33.38
                    31 12.17 18.17
                    -----
                    12.17 33.22
                    NCLUDE BASEFLOWS IF ANY.
                    .....
                    me step (min)'= 5.00
                    l ( 2.0) ---->
                    Manning
                    )400
                    400 /0.0350 Main Channel
                    0350 Main Channel
                    350 /0.0400 Main Channel
                    .0400
                    E TABLE ---->
                    LOW RATE VELOCITY TRAV.TIME
                       (m/s) (min)
                  0.0 0.23 25.78
0.05 99.30 .328E+01
```

```
0.10 99.35 .131E+02 0.0
                           0.36 16.24
0.15 99.40 .295E+02 0.0
                           0.47 12.39
0.20 99.45 .525E+02 0.1
                           0.57 10.23
0.25 99.50 .820E+02 0.2
                           0.66 8.82
0.30 99.55 .118E+03 0.3
                                 7.81
                           0.75
0.35 99.60 .161E+03 0.4
                                 7.04
                           0.83
0.40 99.65 .210E+03 0.5
                           0.91
                                 6.44
0.45 99.70 .266E+03 0.7
                           0.98
                                 5.96
0.50 99.75 .328E+03
                                 5.55
                   1.0
                           1.05
0.55 99.80 .397E+03 1.3
                                 5.21
                           1.12
0.60 99.85 .472E+03
                           1.19
                                 4.92
                   1.6
0.65 99.90 .554E+03 2.0
                           1.25
                                 4.66
0.70 99.95 .643E+03 2.4
                           1.31
                                 4.44
0.75 100.00 .738E+03 2.9
                           1.38 4.24
0.80 100.05 .840E+03 3.4
                           1.44 4.06
0.85 100.10 .948E+03 4.1
                          1.50 3.90
0.90 100.15 .106E+04 4.7
                          1.55 3.75
0.95 100.20 .118E+04 5.5
                          1.61 3.62
            <---- hydrograph ----> <-pipe / channel->
```

| CALIB |

| NASHYD (0120) | Area (ha)= 10.00 Curve Number (CN)= 68.0 | ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= 0.44

Unit Hyd Qpeak (cms)= 0.868

PEAK FLOW (cms)= 0.256 (i)
TIME TO PEAK (hrs)= 12.500
RUNOFF VOLUME (mm)= 18.882
TOTAL RAINFALL (mm)= 71.780
RUNOFF COEFFICIENT = 0.263

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| ADD HYD ( 0121)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0120): 10.00 0.256 12.50 18.88
  + ID2= 2 ( 0166): 189.50 2.065 12.17 33.21
   _____
  ID = 3 ( 0121): 199.50 2.247 12.25 32.49
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| CALIB |
| NASHYD ( 0046)| Area (ha)= 17.20 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.47
 Unit Hyd Qpeak (cms)= 1.398
 PEAK FLOW (cms)= 0.418 (i)
 TIME TO PEAK (hrs)= 12.583
 RUNOFF VOLUME (mm)= 18.882
 TOTAL RAINFALL (mm)= 71.780
  RUNOFF COEFFICIENT = 0.263
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0114)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1=1 (0121): 199.50 2.247 12.25 32.49
  + ID2= 2 ( 0046): 17.20 0.418 12.58 18.88
   _____
  ID = 3 ( 0114): 216.70 2.540 12.25 31.41
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
**********
```

```
** SIMULATION:Run 04
*********
  READ STORM | Filename: C:\Users\Janis Lobo\AppD
            ata\Local\Temp\
             9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\29860050
| Ptotal= 84.21 mm | Comments: 10-year - 24-h SCS RBG
      TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
      hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
      0.50 0.93 | 6.67 1.68 | 12.83 6.23 | 19.00 1.52
      1.00 0.93 | 7.17 1.68 | 13.33 1.18 | 19.50 1.52
      1.17 0.93 | 7.33 1.68 | 13.50 1.18 | 19.67 1.52
      1.33 0.93 | 7.50 1.68 | 13.67 1.18 | 19.83 1.52
      1.50 0.93 | 7.67 1.68 | 13.83 6.90 | 20.00 1.52
      1.67 0.93 | 7.83 1.68 | 14.00 6.90 | 20.17 1.52
      1.83 0.93 | 8.00 1.68 | 14.17 6.90 | 20.33 1.01
      2.00 0.93 | 8.17 1.68 | 14.33 2.53 | 20.50 1.01
      2.17 0.93 | 8.33 2.27 | 14.50 2.53 | 20.67 1.01
      2.33 1.09 | 8.50 2.27 | 14.67 2.53 | 20.83 1.01
      2.50 1.09 | 8.67 2.27 | 14.83 2.53 | 21.00 1.01
      2.83 1.09 | 9.00 2.27 | 15.17 2.53 | 21.33 1.01
      3.00 1.09 | 9.17 2.27 | 15.33 2.53 | 21.50 1.01
      3.17 1.09 | 9.33 2.69 | 15.50 2.53 | 21.67 1.01
      3.33 1.09 | 9.50 2.69 | 15.67 2.53 | 21.83 1.01
      3.50 1.09 | 9.67 2.69 | 15.83 2.53 | 22.00 1.01
      3.67 1.09 | 9.83 3.03 | 16.00 2.53 | 22.17 1.01
      3.83 1.09 | 10.00 3.03 | 16.17 2.53 | 22.33 1.01
      4.00 1.09 | 10.17 3.03 | 16.33 1.52 | 22.50 1.01
      4.33 1.35 | 10.50 3.87 | 16.67 1.52 | 22.83 1.01
      4.50 1.35 | 10.67 3.87 | 16.83 1.52 | 23.00 1.01
      5.00 1.35 | 11.17 5.22 | 17.33 1.52 | 23.50 1.01
```

5.33 1.35 | 11.50 8.08 | 17.67 1.52 | 23.83 1.01

5.50 1.35 | 11.67 8.08 | 17.83 1.52 | 24.00 1.01

```
5.67 1.35 | 11.83 35.03 | 18.00 1.52 | 24.17 1.01
       5.83 1.35 | 12.00 63.99 | 18.17 1.52 |
       6.00 1.35 | 12.17 92.96 | 18.33 1.52 |
       l CALIB
| NASHYD ( 0036)| Area (ha)= 1.98 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.09
    NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
             ---- TRANSFORMED HYETOGRAPH ----
       TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
       hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
       0.167  0.00 | 6.250  1.68 | 12.333  12.12 | 18.42  1.52
       0.250 0.93 | 6.333 1.68 | 12.417 12.12 | 18.50 1.52
       0.417  0.93 | 6.500  1.68 | 12.583  12.12 | 18.67  1.52
       0.500 0.93 | 6.583 1.68 | 12.667 12.12 | 18.75 1.52
       0.667  0.93 | 6.750  1.68 | 12.833  6.23 | 18.92  1.52
       0.750 0.93 | 6.833 1.68 | 12.917 6.23 | 19.00 1.52
       0.917  0.93 | 7.000  1.68 | 13.083  6.23 | 19.17  1.52
       1.000 0.93 | 7.083 1.68 | 13.167 6.23 | 19.25 1.52
       1.083 0.93 | 7.167 1.68 | 13.250 1.18 | 19.33 1.52
       1.167 0.93 | 7.250 1.68 | 13.333 1.18 | 19.42 1.52
       1.250 0.93 | 7.333 1.68 | 13.417 1.18 | 19.50 1.52
       1.333 0.93 | 7.417 1.68 | 13.500 1.18 | 19.58 1.52
       1.417 0.93 | 7.500 1.68 | 13.583 1.18 | 19.67 1.52
       1.500 0.93 | 7.583 1.68 | 13.667 1.18 | 19.75 1.52
       1.583 0.93 | 7.667 1.68 | 13.750 6.90 | 19.83 1.52
       1.667 0.93 | 7.750 1.68 | 13.833 6.90 | 19.92 1.52
```

1.750 0.93 | 7.833 1.68 | 13.917 6.90 | 20.00 1.52

1.833 0.93 | 7.917 1.68 | 14.000 6.90 | 20.08 1.52

1.917 0.93 | 8.000 1.68 | 14.083 6.90 | 20.17 1.52

2.000 0.93 | 8.083 1.68 | 14.167 6.90 | 20.25 1.01

2.083 0.93 | 8.167 1.68 | 14.250 2.53 | 20.33 1.01

```
2.167 0.93 | 8.250 2.27 | 14.333 2.53 | 20.42 1.01
                                                                    5.833 1.35 | 11.917 63.99 | 18.000 1.52 | 24.08 1.01
2.250 1.09 | 8.333 2.27 | 14.417 2.53 | 20.50 1.01
                                                                    5.917 1.35 | 12.000 63.99 | 18.083 1.52 | 24.17 1.01
2.333 1.09 | 8.417 2.27 | 14.500 2.53 | 20.58 1.01
                                                                    6.000 1.35 | 12.083 92.96 | 18.167 1.52 |
                                                                    2.417 1.09 | 8.500 2.27 | 14.583 2.53 | 20.67 1.01
Unit Hvd Opeak (cms)= 0.840
2.667 1.09 | 8.750 2.27 | 14.833 2.53 | 20.92 1.01
PEAK FLOW (cms)= 0.181 (i)
2.833 1.09 | 8.917 2.27 | 15.000 2.53 | 21.08 1.01
                                                                TIME TO PEAK (hrs)= 12.167
2.917 1.09 | 9.000 2.27 | 15.083 2.53 | 21.17 1.01
                                                                RUNOFF VOLUME (mm)= 25.055
3.000 1.09 | 9.083 2.27 | 15.167 2.53 | 21.25 1.01
                                                                TOTAL RAINFALL (mm)= 84.207
3.083 1.09 | 9.167 2.27 | 15.250 2.53 | 21.33 1.01
                                                                RUNOFF COEFFICIENT = 0.298
3.167 1.09 | 9.250 2.69 | 15.333 2.53 | 21.42 1.01
3.250 1.09 | 9.333 2.69 | 15.417 2.53 | 21.50 1.01
                                                                (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
3.333 1.09 | 9.417 2.69 | 15.500 2.53 | 21.58 1.01
3.417 1.09 | 9.500 2.69 | 15.583 2.53 | 21.67 1.01
3.500 1.09 | 9.583 2.69 | 15.667 2.53 | 21.75 1.01
3.583 1.09 | 9.667 2.69 | 15.750 2.53 | 21.83 1.01
                                                              | CALIB
3.667 1.09 | 9.750 3.03 | 15.833 2.53 | 21.92 1.01
                                                              | NASHYD ( 0037)| Area (ha)= 28.80 Curve Number (CN)= 68.0
3.750 1.09 | 9.833 3.03 | 15.917 2.53 | 22.00 1.01
                                                              |ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                              ----- U.H. Tp(hrs)= 1.21
3.833 1.09 | 9.917 3.03 | 16.000 2.53 | 22.08 1.01
3.917 1.09 | 10.000 3.03 | 16.083 2.53 | 22.17 1.01
4.000 1.09 | 10.083 3.03 | 16.167 2.53 | 22.25 1.01
                                                                Unit Hyd Qpeak (cms)= 0.908
4.167 1.09 | 10.250 3.87 | 16.333 1.52 | 22.42 1.01
                                                                PEAK FLOW (cms)= 0.496 (i)
4.250 1.35 | 10.333 3.87 | 16.417 1.52 | 22.50 1.01
                                                                TIME TO PEAK (hrs)= 13.417
4.333 1.35 | 10.417 3.87 | 16.500 1.52 | 22.58 1.01
                                                                RUNOFF VOLUME (mm)= 26.038
4.417 1.35 | 10.500 3.87 | 16.583 1.52 | 22.67 1.01
                                                                TOTAL RAINFALL (mm)= 84.207
4.500 1.35 | 10.583 3.87 | 16.667 1.52 | 22.75 1.01
                                                                RUNOFF COEFFICIENT = 0.309
4.583 1.35 | 10.667 3.87 | 16.750 1.52 | 22.83 1.01
                                                                (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
4.667 1.35 | 10.750 5.22 | 16.833 1.52 | 22.92 1.01
4.750 1.35 | 10.833 5.22 | 16.917 1.52 | 23.00 1.01
4.833 1.35 | 10.917 5.22 | 17.000 1.52 | 23.08 1.01
4.917 1.35 | 11.000 5.22 | 17.083 1.52 | 23.17 1.01
5.000 1.35 | 11.083 5.22 | 17.167 1.52 | 23.25 1.01
                                                              | ROUTEPIPE( 0165)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Diameter (mm)=1200.00
| DT= 5.0 min | Length (m)= 73.30
                                                              ----- Slope (m/m)= 0.010
Manning n = 0.013
5.333 1.35 | 11.417 8.08 | 17.500 1.52 | 23.58 1.01
5.500 1.35 | 11.583 8.08 | 17.667 1.52 | 23.75 1.01
                                                              <----->
5.583 1.35 | 11.667 8.08 | 17.750 1.52 | 23.83 1.01
                                                                DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
5.667 1.35 | 11.750 35.03 | 17.833 1.52 | 23.92 1.01
                                                               (m) (cu.m.) (cms) (m/s) min
5.750 1.35 | 11.833 35.03 | 17.917 1.52 | 24.00 1.01
                                                                0.06 .167E+01 0.0 0.92 1.33
```

```
0.13 .465E+01
                                 0.85
                                                                          | ROUTEPIPE( 0164)| PIPE Number = 1.00
                 0.1
                          1.43
  0.19 .840E+01
                                                                          | IN= 2---> OUT= 1 | Diameter (mm)=1350.00
                  0.2
                          1.84
                                 0.66
   0.25 .127E+02
                          2.19
                                 0.56
                                                                          | DT= 5.0 min | Length (m)= 104.50
                   0.4
  0.32 .174E+02
                          2.49
                                                                          ----- Slope (m/m)= 0.010
                   0.6
                                 0.49
  0.38 .225E+02
                   0.8
                          2.75
                                 0.44
                                                                                    Manning n = 0.013
   0.44 .277E+02
                          2.99
                                 0.41
                  1.1
   0.51 .332E+02
                          3.19
                                 0.38
                                                                            <---->
  0.57 .387E+02
                  1.8
                          3.37
                                 0.36
                                                                             DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   0.63 .442E+02
                          3.52
                                 0.35
                  2.1
                                                                             (m) (cu.m.) (cms)
                                                                                                   (m/s)
                                                                                                          min
   0.69 .497E+02
                  2.5
                          3.65
                                 0.33
                                                                             0.07 .302E+01
                                                                                           0.0
                                                                                                    0.99
                                                                                                           1.76
   0.76 .552E+02
                  2.8
                          3.76
                                 0.32
                                                                             0.14 .839E+01
                                                                                            0.1
                                                                                                    1.55
                                                                                                           1.13
   0.82 .604E+02
                  3.2
                          3.84
                                 0.32
                                                                             0.21 .152E+02
                                                                                           0.3
                                                                                                    1.99
                                                                                                           0.88
   0.88 .655E+02
                  3.5
                          3.90
                                 0.31
                                                                             0.28 .229E+02
                                                                                            0.5
                                                                                                    2.37
                                                                                                           0.74
   0.95 .702E+02
                  3.8
                          3.93
                                 0.31
                                                                             0.36 .314E+02
                                                                                            0.8
                                                                                                    2.69
                                                                                                           0.65
   1.01 .745E+02
                          3.93
                                0.31
                                                                             0.43 .405E+02
                                                                                            1.2
                                                                                                    2.98
                                                                                                           0.58
                  4.0
   1.07 .783E+02
                 4.1
                          3.89
                                0.31
                                                                            0.50 .500E+02
                                                                                            1.5
                                                                                                    3.23
                                                                                                           0.54
   1.14 .812E+02 4.2
                          3.78
                                 0.32
                                                                            0.57 .598E+02
                                                                                                           0.50
                                                                                            2.0
                                                                                                    3.45
   1.20 .829E+02 3.9
                          3.45
                                 0.35
                                                                            0.64 .698E+02
                                                                                            2.4
                                                                                                    3.64
                                                                                                           0.48
                <---- hvdrograph ----> <-pipe / channel->
                                                                            0.71 .798E+02
                                                                                            2.9
                                                                                                    3.81
                                                                                                           0.46
             AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                            0.78 .898E+02
                                                                                           3.4
                                                                                                    3.95
                                                                                                           0.44
             (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                            0.85 .996E+02
                                                                                             3.9
                                                                                                    4.07
                                                                                                           0.43
 INFLOW: ID= 2 (0037) 28.80 0.50 13.42 26.04 0.29 2.34
                                                                            0.92 .109E+03
                                                                                            4.3
                                                                                                    4.16
                                                                                                           0.42
 OUTFLOW: ID= 1 ( 0165) 28.80 0.50 13.42 26.04 0.29 2.34
                                                                            0.99 .118E+03
                                                                                                    4.22
                                                                                            4.8
                                                                                                           0.41
                                                                            1.07 .127E+03
                                                                                                    4.25
                                                                                                           0.41
                                                                                           5.2
                                                                            1.14 .134E+03
                                                                                            5.5
                                                                                                    4.25
                                                                                                           0.41
                                                                            1.21 .141E+03 5.7
                                                                                                    4.20
                                                                                                           0.41
                                                                            1.28 .147E+03 5.7
                                                                                                    4.09
                                                                                                           0.43
                                                                            1.35
| CALIB
                                                                                    NaN NaN
                                                                                                   NaN
                                                                                                           NaN
| NASHYD ( 0051)| Area (ha)= 69.30 Curve Number (CN)= 68.0
                                                                                         <---- hydrograph ----> <-pipe / channel->
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                                       AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
----- U.H. Tp(hrs)= 1.45
                                                                                       (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                           INFLOW: ID= 2 (0051) 69.30 1.03 13.67 26.04 0.40 2.87
                                                                           OUTFLOW: ID= 1 (0164) 69.30 1.03 13.67 26.04 0.40 2.87
  Unit Hyd Qpeak (cms)= 1.825
  PEAK FLOW (cms)= 1.028 (i)
  TIME TO PEAK (hrs)= 13.667
  RUNOFF VOLUME (mm)= 26.038
  TOTAL RAINFALL (mm)= 84.207
                                                                          I CALIB
  RUNOFF COEFFICIENT = 0.309
                                                                          | STANDHYD ( 0049)| Area (ha)= 4.08
                                                                          |ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                       IMPERVIOUS PERVIOUS (i)
                                                                            Surface Area (ha)= 2.73 1.35
                                                                            Dep. Storage (mm)= 1.00
                                                                                                        5.00
```

```
Average Slope (%)= 1.00
                            2.00
  Length
            (m)= 164.92 215.00
  Mannings n
             = 0.014
                         0.250
  Max.Eff.Inten.(mm/hr)= 92.96 42.77
      over (min) 5.00 35.00
  Storage Coeff. (min)= 3.71 (ii) 30.90 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                             35.00
  Unit Hyd. peak (cms)= 0.25
                             0.04
                         *TOTALS*
  PEAK FLOW (cms)= 0.57
                             0.09
                                     0.611 (iii)
                                      12.17
 TIME TO PEAK (hrs)= 12.17 12.58
  RUNOFF VOLUME (mm)= 83.21 38.57
                                         63.11
 TOTAL RAINFALL (mm)= 84.21 84.21
                                        84.21
  RUNOFF COEFFICIENT = 0.99
                               0.46
                                       0.75
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0157)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0164): 69.30 1.028 13.67 26.04
  + ID2= 2 ( 0165): 28.80 0.496 13.42 26.04
   _____
   ID = 3 ( 0157): 98.10 1.515 13.58 26.04
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD ( 0157)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 3 ( 0157): 98.10 1.515 13.58 26.04
```

```
+ ID2= 2 ( 0049): 4.08 0.611 12.17 63.11
   _____
   ID = 1 ( 0157): 102.18 1.555 13.75 27.52
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
|ROUTEPIPE(0163)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
| DT= 5.0 min | Length (m)= 346.00
----- Slope (m/m)= 0.007
         Manning n = 0.013
  <---->
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms)
                      (m/s)
                              min
  0.08 .656E+02 0.2
                        1.18
                              4.90
  0.16 .131E+03
                        1.79
                              3.22
                0.7
  0.24 .197E+03 1.3
                        2.26
                              2.55
  0.32 .262E+03
                2.0
                        2.65
                               2.18
  0.39 .328E+03
                2.8
                        2.97
                              1.94
  0.47 .393E+03
                 3.7
                        3.25
                              1.78
  0.55 .459E+03
                        3.49
                               1.65
  0.63 .524E+03
                        3.70
                              1.56
                 5.6
  0.71 .590E+03
                6.6
                        3.89
                               1.48
  0.79 .656E+03
                        4.07
                              1.42
                7.7
  0.87 .721E+03
                 8.8
                        4.22
                               1.37
  0.95 .787E+03
                 9.9
                        4.36
                               1.32
  1.03 .852E+03
                11.1
                        4.49
                               5.56
  1.11 .918E+03
                 12.2
                               5.42
                        4.61
  1.18 .983E+03
                13.4
                        4.72
                               5.29
  1.26 .105E+04
                        4.82
                               5.18
                 14.6
  1.34 .111E+04
                15.8
                        4.92
                               5.08
  1.42 .118E+04 17.1
                               4.99
                        5.01
  1.50 .125E+04 18.3
                        5.09
                               4.91
              <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0157) 102.18 1.56 13.75 27.52 0.27 2.39
 OUTFLOW: ID= 1 (0163) 102.18 1.55 13.58 27.52 0.27 2.39
```

```
I CALIB
| STANDHYD ( 0106) | Area (ha) = 6.17
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
              IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 4.13
                               2.04
  Dep. Storage (mm)= 1.00
                                5.00
  Average Slope (%)= 1.00
                                2.00
  Length
             (m)= 202.81
                             215.00
  Mannings n
                 = 0.014
                             0.250
  Max.Eff.Inten.(mm/hr) = 92.96
                                  42.77
       over (min)
                   5.00
                           35.00
  Storage Coeff. (min)=
                       4.20 (ii) 31.39 (ii)
  Unit Hyd. Tpeak (min)=
                                 35.00
                       5.00
  Unit Hyd. peak (cms)=
                                 0.03
                        0.24
                            *TOTALS*
  PEAK FLOW
                        0.85
              (cms)=
                                0.14
                                         0.915 (iii)
 TIME TO PEAK (hrs)= 12.17
                                12.58
                                          12.17
  RUNOFF VOLUME (mm)= 83.21
                                    38.57
                                              63.12
 TOTAL RAINFALL (mm)= 84.21
                                   84.21
                                            84.21
  RUNOFF COEFFICIENT = 0.99
                                           0.75
                                  0.46
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
     THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD ( 0119) | Area (ha)= 18.56
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
              IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 12.81
                               5.75
  Dep. Storage (mm)= 1.00
                                5.00
  Average Slope (%)= 1.00
                                2.00
  Length
             (m)= 351.76
                             215.00
  Mannings n
              = 0.014
                             0.250
```

```
Max.Eff.Inten.(mm/hr) = 92.96
                                72.67
       over (min)
                   5.00
                          30.00
  Storage Coeff. (min)=
                       5.85 (ii) 27.85 (ii)
  Unit Hyd. Tpeak (min)=
                        5.00
                               30.00
  Unit Hyd. peak (cms)=
                               0.04
                       0.20
                           *TOTALS*
  PEAK FLOW (cms)=
                       2.01
                               0.66
                                       2.379 (iii)
  TIME TO PEAK (hrs)= 12.17
                                        12.17
                               12.50
  RUNOFF VOLUME (mm)= 83.21
                                  44.53
                                            61.93
  TOTAL RAINFALL (mm)= 84.21
                                 84.21
                                          84.21
  RUNOFF COEFFICIENT = 0.99
                                 0.53
                                          0.74
   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
     THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
RESERVOIR( 0133)
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
----- (cms) (ha.m.) | (cms) (ha.m.)
           0.0000 0.0000 | 0.0250 1.0741
           0.0140 0.2394 | 0.0290 1.2348
           0.0150  0.6048 | 0.0340  1.4904
           0.0210 0.8843 | 0.0380 1.7173
              AREA QPEAK TPEAK R.V.
              (ha) (cms) (hrs) (mm)
 INFLOW: ID= 2 (0119) 18.560 2.379 12.17 61.93
 OUTFLOW: ID= 1 (0133) 18.560 0.024 24.33 51.46
        PEAK FLOW REDUCTION [Qout/Qin](%)= 1.01
        TIME SHIFT OF PEAK FLOW
                                  (min)=730.00
        MAXIMUM STORAGE USED (ha.m.)= 1.0327
```

| ADD HYD (0159)|

```
1 + 2 = 3 AREA OPEAK TPEAK R.V.
                                                                      0.95 .575E+03 8.1
                                                                                           3.56
                                                                                                 1.18
---- (ha) (cms) (hrs) (mm)
                                                                      1.03 .623E+03 9.0
                                                                                                  6.82
                                                                                           3.67
   ID1= 1 ( 0106): 6.17 0.915 12.17 63.12
                                                                      1.11 .671E+03 10.0
                                                                                           3.77
                                                                                                  6.64
                                                                      1.18 .719E+03 11.0
  + ID2= 2 ( 0133): 18.56 0.024 24.33 51.46
                                                                                           3.86
                                                                                                  6.48
   _____
                                                                      1.26 .767E+03
                                                                                   11.9
                                                                                           3.94
                                                                                                  6.35
   ID = 3 ( 0159): 24.73 0.930 12.17 54.37
                                                                      1.34 .815E+03 12.9
                                                                                           4.02
                                                                                                  6.23
                                                                      1.42 .863E+03 13.9
                                                                                           4.09
                                                                                                  6.12
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                      1.50 .911E+03 15.0
                                                                                           4.15
                                                                                                  6.02
                                                                                 <---- hydrograph ----> <-pipe / channel->
                                                                               AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                               (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                    INFLOW: ID= 2 (0159) 126.91 1.72 12.17 32.75 0.33 2.19
                                                                    OUTFLOW: ID= 1 (0158) 126.91 1.66 12.17 32.75 0.32 2.17
| ADD HYD ( 0159)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
   ID1= 3 ( 0159): 24.73 0.930 12.17 54.37
  + ID2= 2 ( 0163): 102.18 1.555 13.58 27.52
   _____
                                                                   | CALIB |
   ID = 1 ( 0159): 126.91 1.717 12.17 32.75
                                                                   | STANDHYD ( 0136) | Area (ha) = 7.15
                                                                   |ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                   -----
                                                                               IMPERVIOUS PERVIOUS (i)
                                                                     Surface Area (ha)= 4.79 2.36
                                                                     Dep. Storage (mm)= 1.00 13.90
| ROUTEPIPE( 0158) | PIPE Number = 1.00
                                                                     Average Slope (%)= 1.00 2.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
                                                                     Length (m)= 218.33 215.00
| DT= 5.0 min | Length (m)= 253.00
                                                                     Mannings n = 0.014 0.250
----- Slope (m/m)= 0.005
         Manning n = 0.013
                                                                     Max.Eff.Inten.(mm/hr)= 92.96 37.59
                                                                         over (min) 5.00 35.00
  <-----> TRAVEL TIME TABLE ----->
                                                                     Storage Coeff. (min)= 4.39 (ii) 33.03 (ii)
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                     Unit Hyd. Tpeak (min) = 5.00 35.00
   (m) (cu.m.) (cms) (m/s)
                                                                     Unit Hyd. peak (cms)= 0.23
                                                                                               0.03
                             min
  0.08 .479E+02 0.2
                       0.96 4.39
                                                                                         *TOTALS*
  0.16 .959E+02 0.6
                       1.46 2.88
                                                                     PEAK FLOW (cms)= 0.98
                                                                                               0.14
                                                                                                      1.041 (iii)
  0.24 .144E+03 1.1
                       1.85 2.28
                                                                     TIME TO PEAK (hrs)= 12.17 12.58 12.17
  0.32 .192E+03 1.6
                       2.16 1.95
                                                                     RUNOFF VOLUME (mm)= 83.21 33.88 61.01
  0.39 .240E+03 2.3
                       2.42 1.74
                                                                     TOTAL RAINFALL (mm)= 84.21 84.21
                                                                                                         84.21
  0.47 .288E+03 3.0
                       2.65
                            1.59
                                                                     RUNOFF COEFFICIENT = 0.99 0.40
                                                                                                        0.72
  0.55 .336E+03 3.8
                       2.85 1.48
  0.63 .384E+03 4.6
                       3.02 1.40
                                                                   ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  0.71 .431E+03 5.4
                       3.18 1.33
  0.79 .479E+03 6.3
                       3.32 1.27
                                                                      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
  0.87 .527E+03 7.2
                       3.45 1.22
                                                                        CN^* = 68.0 Ia = Dep. Storage (Above)
```

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	1.61 .168E+03 12.7 3.28 9.13 1.71 .178E+03 13.7 3.34 8.99 1.80 .188E+03 14.6 3.39 8.86 < hydrograph> <-pipe / channel-> AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL		
	(ha) (cms) (hrs) (mm) (m) (m/s) INFLOW: ID= 2 (0160) 134.06 2.71 12.17 34.26 0.52 2.14 OUTFLOW: ID= 1 (0161) 134.06 2.73 12.17 34.26 0.53 2.15		
ID1= 1 (0136): 7.15 1.041 12.17 61.01 + ID2= 2 (0158): 126.91 1.665 12.17 32.75			
ID = 3 (0160): 134.06 2.706 12.17 34.26 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	CALIB STANDHYD (0132) Area (ha)= 53.46 ID=1 DT=5.0 min Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00 		
ROUTEPIPE(0161) PIPE Number = 1.00 IN= 2> OUT= 1 Width (mm)=2400.00 Height (mm)=1800.00 DT= 5.0 min Length (m)= 43.50			
Slope (m/m)= 0.003 Manning n = 0.013	Max.Eff.Inten.(mm/hr)= 92.96 72.67 over (min) 10.00 35.00		
<pre><travel table<="" td="" time=""><td>Storage Coeff. (min)= 8.03 (ii) 30.03 (ii) Unit Hyd. Tpeak (min)= 10.00 35.00 Unit Hyd. peak (cms)= 0.13 0.04 *TOTALS* PEAK FLOW (cms)= 5.06 1.78 5.929 (iii) TIME TO PEAK (hrs)= 12.17 12.58 12.17 RUNOFF VOLUME (mm)= 83.21 44.53 61.93 TOTAL RAINFALL (mm)= 84.21 84.21 RUNOFF COEFFICIENT = 0.99 0.53 0.74</td></travel></pre>	Storage Coeff. (min)= 8.03 (ii) 30.03 (ii) Unit Hyd. Tpeak (min)= 10.00 35.00 Unit Hyd. peak (cms)= 0.13 0.04 *TOTALS* PEAK FLOW (cms)= 5.06 1.78 5.929 (iii) TIME TO PEAK (hrs)= 12.17 12.58 12.17 RUNOFF VOLUME (mm)= 83.21 44.53 61.93 TOTAL RAINFALL (mm)= 84.21 84.21 RUNOFF COEFFICIENT = 0.99 0.53 0.74		
0.85	 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0		

```
| RESERVOIR( 0131)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
----- (cms) (ha.m.) | (cms) (ha.m.)
          0.0000 0.0000 | 0.1700 2.5907
          0.0550 0.7098 | 0.2155 3.1239
          0.1004 1.5249 | 0.2600 3.5865
          0.1400 2.1680 | 0.3014 4.0085
            AREA QPEAK TPEAK R.V.
            (ha) (cms) (hrs) (mm)
 INFLOW: ID= 2 (0132) 53.460 5.929 12.17 61.93
 OUTFLOW: ID= 1 (0131) 53.460 0.169 20.42 60.86
       PEAK FLOW REDUCTION [Qout/Qin](%)= 2.85
       TIME SHIFT OF PEAK FLOW
                           (min)=495.00
       MAXIMUM STORAGE USED (ha.m.)= 2.5803
| ADD HYD ( 0117)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
  ID1= 1 ( 0131): 53.46 0.169 20.42 60.86
  + ID2= 2 ( 0161): 134.06 2.727 12.17 34.26
   ______
  ID = 3 ( 0117): 187.52 2.801 12.17 41.84
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD ( 0117)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
  ID1= 3 ( 0117): 187.52 2.801 12.17 41.84
  + ID2= 2 ( 0036): 1.98 0.181 12.17 25.06
  ID = 1 ( 0117): 189.50 2.982 12.17 41.67
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
| ROUTE CHN( 0166)|
| IN= 2---> OUT= 1 | Routing time step (min)'= 5.00
      <----> DATA FOR SECTION ( 2.0) ---->
      Distance Elevation Manning
        0.00
              100.20
                      0.0400
       46.50
              101.25 0.0400 /0.0350 Main Channel
       52.50 99.25
                     0.0350 Main Channel
       61.50
              101.25 0.0350 /0.0400 Main Channel
       105.00 102.00 0.0400
  <----->
   DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (m) (cu.m.) (cms)
                            (m/s) (min)
   0.05 99.30 .328E+01 0.0
                              0.23 25.78
   0.10 99.35 .131E+02 0.0
                              0.36 16.24
   0.15 99.40 .295E+02 0.0
                              0.47 12.39
   0.20 99.45 .525E+02 0.1
                              0.57 10.23
   0.25 99.50 .820E+02 0.2
                              0.66 8.82
   0.30 99.55 .118E+03 0.3
                              0.75 7.81
   0.35 99.60 .161E+03 0.4
                              0.83 7.04
  0.40 99.65 .210E+03 0.5
                              0.91 6.44
  0.45 99.70 .266E+03
                      0.7
                              0.98 5.96
  0.50 99.75 .328E+03 1.0
                              1.05
                                    5.55
  0.55 99.80 .397E+03
                              1.12 5.21
                      1.3
  0.60 99.85 .472E+03
                      1.6
                              1.19
                                    4.92
  0.65 99.90 .554E+03
                      2.0
                              1.25
                                    4.66
  0.70 99.95 .643E+03 2.4
                              1.31
                                    4.44
   0.75 100.00 .738E+03
                      2.9
                              1.38
                                    4.24
   0.80 100.05 .840E+03
                      3.4
                              1.44
                                    4.06
   0.85 100.10 .948E+03
                                    3.90
                       4.1
                              1.50
   0.90 100.15 .106E+04
                      4.7
                             1.55 3.75
   0.95 100.20 .118E+04
                        5.5
                              1.61 3.62
               <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
```

```
I CALIB
| NASHYD ( 0120)| Area (ha)= 10.00 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.44
  Unit Hyd Qpeak (cms)= 0.868
  PEAK FLOW (cms)= 0.362 (i)
  TIME TO PEAK (hrs)= 12.500
  RUNOFF VOLUME (mm)= 26.036
  TOTAL RAINFALL (mm)= 84.207
  RUNOFF COEFFICIENT = 0.309
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0121)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0120): 10.00 0.362 12.50 26.04
  + ID2= 2 ( 0166): 189.50 2.597 12.17 41.66
   ID = 3 ( 0121): 199.50 2.842 12.25 40.87
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| CALIB
| NASHYD ( 0046)| Area (ha)= 17.20 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.47
  Unit Hyd Qpeak (cms)= 1.398
  PEAK FLOW (cms)= 0.593 (i)
  TIME TO PEAK (hrs)= 12.500
  RUNOFF VOLUME (mm)= 26.037
  TOTAL RAINFALL (mm)= 84.207
  RUNOFF COEFFICIENT = 0.309
```

```
| ADD HYD ( 0114)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
 ID1=1 (0121): 199.50 2.842 12.25 40.87
 + ID2= 2 ( 0046): 17.20 0.593 12.50 26.04
 _____
 ID = 3 ( 0114): 216.70 3.270 12.25 39.70
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
**********
** SIMULATION:Run 05
**********
READ STORM | Filename: C:\Users\Janis Lobo\AppD
        ata\Local\Temp\
    9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\89f4cd38
| Ptotal= 97.47 mm | Comments: 25-year - 24-h SCS RBG
    TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
    hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
    0.33 1.10 | 6.50 2.00 | 12.67 7.39 | 18.83 1.80
    0.50 1.10 | 6.67 2.00 | 12.83 7.39 | 19.00 1.80
    1.00 1.10 | 7.17 2.00 | 13.33 8.18 | 19.50 1.80
    1.33 1.10 | 7.50 2.00 | 13.67 8.18 | 19.83 1.80
```

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

----- U.H. Tp(hrs)= 0.09

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

0.833 1.10 | 6.917 2.00 | 13.000 1.40 | 19.08 1.80 0.917 1.10 | 7.000 2.00 | 13.083 1.40 | 19.17 1.80 1.000 1.10 | 7.083 2.00 | 13.167 1.40 | 19.25 1.80 1.250 1.10 | 7.333 2.00 | 13.417 8.18 | 19.50 1.80 1.333 1.10 | 7.417 2.00 | 13.500 8.18 | 19.58 1.80 1.417 1.10 | 7.500 2.00 | 13.583 8.18 | 19.67 1.80 1.500 1.10 | 7.583 2.00 | 13.667 8.18 | 19.75 1.80 1.833 1.10 | 7.917 2.00 | 14.000 2.99 | 20.08 1.80 1.917 1.10 | 8.000 2.00 | 14.083 2.99 | 20.17 1.80 2.250 1.30 | 8.333 2.69 | 14.417 2.99 | 20.50 1.20 2.333 1.30 | 8.417 2.69 | 14.500 2.99 | 20.58 1.20 2.500 1.30 | 8.583 2.69 | 14.667 2.99 | 20.75 1.20 2.750 1.30 | 8.833 2.69 | 14.917 2.99 | 21.00 1.20 2.833 1.30 | 8.917 2.69 | 15.000 2.99 | 21.08 1.20 2.917 1.30 | 9.000 2.69 | 15.083 2.99 | 21.17 1.20 3.000 1.30 | 9.083 2.69 | 15.167 2.99 | 21.25 1.20

```
4.500 1.60 | 10.583 4.59 | 16.667 1.80 | 22.75 1.20
    4.583 1.60 | 10.667 4.59 | 16.750 1.80 | 22.83 1.20
    5.000 1.60 | 11.083 6.19 | 17.167 1.80 | 23.25 1.20
    5.500 1.60 | 11.583 9.58 | 17.667 1.80 | 23.75 1.20
    5.583 1.60 | 11.667 9.58 | 17.750 1.80 | 23.83 1.20
    5.917 1.60 | 12.000 75.85 | 18.083 1.80 | 24.17 1.20
    6.000 1.60 | 12.083 110.18 | 18.167 1.80 |
    Unit Hyd Qpeak (cms)= 0.840
 PEAK FLOW (cms)= 0.250 (i)
 TIME TO PEAK (hrs)= 12.167
 RUNOFF VOLUME (mm)= 33.089
 TOTAL RAINFALL (mm)= 97.470
 RUNOFF COEFFICIENT = 0.339
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| NASHYD (0037)| Area (ha)= 28.80 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 1.21
 Unit Hyd Qpeak (cms)= 0.908
```

PEAK FLOW (cms)= 0.666 (i) TIME TO PEAK (hrs)= 13.333 RUNOFF VOLUME (mm)= 34.387

```
RUNOFF COEFFICIENT = 0.353
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ROUTEPIPE( 0165)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Diameter (mm)=1200.00
| DT= 5.0 min | Length (m)= 73.30
----- Slope (m/m)= 0.010
         Manning n = 0.013
  <---->
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms)
                       (m/s)
                               min
   0.06 .167E+01 0.0
                         0.92
                               1.33
   0.13 .465E+01 0.1
                         1.43
                                0.85
   0.19 .840E+01
                 0.2
                         1.84
                                0.66
   0.25 .127E+02
                0.4
                         2.19
                                0.56
   0.32 .174E+02
                         2.49
                                0.49
                 0.6
   0.38 .225E+02
                 0.8
                         2.75
                                0.44
   0.44 .277E+02
                         2.99
                 1.1
                                0.41
   0.51 .332E+02
                         3.19
                                0.38
                 1.4
   0.57 .387E+02
                         3.37
                                0.36
                 1.8
   0.63 .442E+02
                 2.1
                         3.52
                                0.35
   0.69 .497E+02
                 2.5
                                0.33
                         3.65
   0.76 .552E+02
                 2.8
                         3.76
                                0.32
   0.82 .604E+02
                 3.2
                         3.84
                                0.32
   0.88 .655E+02
                 3.5
                         3.90
                                0.31
   0.95 .702E+02
                 3.8
                         3.93
                                0.31
   1.01 .745E+02
                 4.0
                         3.93
                                0.31
   1.07 .783E+02
                         3.89
                                0.31
                 4.1
   1.14 .812E+02
                4.2
                         3.78
                                0.32
   1.20 .829E+02 3.9
                         3.45
                                0.35
               <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0037) 28.80 0.67 13.33 34.39 0.33 2.56
 OUTFLOW: ID= 1 (0165) 28.80 0.67 13.33 34.39 0.33 2.56
```

TOTAL RAINFALL (mm)= 97.470

```
I CALIB
                                                                             1.35
                                                                                                    NaN
                                                                                                            NaN
                                                                                     NaN NaN
| NASHYD (0051)| Area (ha)= 69.30 Curve Number (CN)= 68.0
                                                                                          <---- hydrograph ----> <-pipe / channel->
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                                       AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
----- U.H. Tp(hrs)= 1.45
                                                                                       (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                           INFLOW: ID= 2 (0051) 69.30 1.39 13.67 34.39 0.47 3.12
                                                                           OUTFLOW: ID= 1 ( 0164) 69.30 1.39 13.67 34.39 0.47 3.12
  Unit Hyd Qpeak (cms)= 1.825
  PEAK FLOW (cms)= 1.386 (i)
 TIME TO PEAK (hrs)= 13.667
  RUNOFF VOLUME (mm)= 34.387
 TOTAL RAINFALL (mm)= 97.470
                                                                          | CALIB
  RUNOFF COEFFICIENT = 0.353
                                                                          | STANDHYD ( 0049) | Area (ha)= 4.08
                                                                          |ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                       IMPERVIOUS PERVIOUS (i)
                                                                            Surface Area (ha)= 2.73 1.35
                                                                            Dep. Storage (mm)= 1.00
                                                                                                        5.00
| ROUTEPIPE( 0164)| PIPE Number = 1.00
                                                                            Average Slope (%)= 1.00
                                                                                                        2.00
| IN= 2---> OUT= 1 | Diameter (mm)=1350.00
                                                                            Length
                                                                                       (m)= 164.92 215.00
| DT= 5.0 min | Length (m)= 104.50
                                                                            Mannings n = 0.014 0.250
----- Slope (m/m)= 0.010
          Manning n = 0.013
                                                                            Max.Eff.Inten.(mm/hr)= 110.18 62.92
                                                                                 over (min) 5.00
                                                                                                   30.00
  <-----> TRAVEL TIME TABLE ----->
                                                                            Storage Coeff. (min)= 3.47 (ii) 26.77 (ii)
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                            Unit Hyd. Tpeak (min)= 5.00
                                                                                                        30.00
   (m) (cu.m.) (cms)
                        (m/s)
                                min
                                                                            Unit Hyd. peak (cms)= 0.26
                                                                                                         0.04
  0.07 .302E+01 0.0
                         0.99
                                1.76
                                                                                                   *TOTALS*
  0.14 .839E+01 0.1
                          1.55
                                1.13
                                                                            PEAK FLOW (cms)= 0.67
                                                                                                        0.14
                                                                                                                0.750 (iii)
  0.21 .152E+02 0.3
                          1.99
                                 0.88
                                                                            TIME TO PEAK (hrs)= 12.17 12.50
                                                                                                                 12.17
  0.28 .229E+02 0.5
                          2.37
                                 0.74
                                                                            RUNOFF VOLUME (mm)= 96.47 48.49
  0.36 .314E+02 0.8
                          2.69
                                 0.65
                                                                            TOTAL RAINFALL (mm)= 97.47 97.47
                                                                                                                    97.47
  0.43 .405E+02 1.2
                          2.98
                                 0.58
                                                                            RUNOFF COEFFICIENT = 0.99
                                                                                                          0.50
                                                                                                                   0.77
  0.50 .500E+02
                          3.23
                                 0.54
                 1.5
  0.57 .598E+02
                 2.0
                          3.45
                                 0.50
                                                                          **** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  0.64 .698E+02
                 2.4
                          3.64
                                 0.48
  0.71 .798E+02
                 2.9
                          3.81
                                 0.46
                                                                             (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
  0.78 .898E+02
                          3.95
                                 0.44
                                                                               CN^* = 68.0 Ia = Dep. Storage (Above)
                  3.4
  0.85 .996E+02
                  3.9
                          4.07
                                 0.43
                                                                            (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
  0.92 .109E+03
                  4.3
                          4.16
                                 0.42
                                                                               THAN THE STORAGE COEFFICIENT.
  0.99 .118E+03
                 4.8
                          4.22
                                 0.41
                                                                            (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  1.07 .127E+03
                 5.2
                          4.25
                                 0.41
  1.14 .134E+03 5.5
                          4.25
                                 0.41
  1.21 .141E+03 5.7
                          4.20
                                 0.41
  1.28 .147E+03 5.7
                          4.09
                                 0.43
```

74.88

```
0.87 .721E+03 8.8
                                                                                             4.22
| ADD HYD ( 0157)|
                                                                                                    1.37
                                                                        0.95 .787E+03 9.9
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
                                                                                             4.36
                                                                                                    1.32
----- (ha) (cms) (hrs) (mm)
                                                                        1.03 .852E+03
                                                                                                     5.56
                                                                                      11.1
                                                                                              4.49
                                                                        1.11 .918E+03
   ID1=1 (0164): 69.30 1.386 13.67 34.39
                                                                                      12.2
                                                                                                     5.42
                                                                                              4.61
  + ID2= 2 ( 0165): 28.80 0.666 13.33 34.39
                                                                        1.18 .983E+03
                                                                                      13.4
                                                                                              4.72
                                                                                                     5.29
   _____
                                                                        1.26 .105E+04
                                                                                              4.82
                                                                                     14.6
                                                                                                     5.18
   ID = 3 ( 0157): 98.10 2.033 13.50 34.39
                                                                        1.34 .111E+04
                                                                                              4.92
                                                                                                     5.08
                                                                                      15.8
                                                                        1.42 .118E+04 17.1
                                                                                              5.01
                                                                                                     4.99
                                                                        1.50 .125E+04 18.3
                                                                                              5.09
                                                                                                     4.91
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                    <---- hydrograph ----> <-pipe / channel->
                                                                                 AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                                 (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                      INFLOW: ID= 2 (0157) 102.18 2.12 13.50 36.00 0.33 2.69
| ADD HYD ( 0157)|
                                                                      OUTFLOW: ID= 1 (0163) 102.18 2.12 13.58 36.00 0.33 2.69
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
---- (ha) (cms) (hrs) (mm)
   ID1= 3 ( 0157): 98.10 2.033 13.50 34.39
  + ID2= 2 ( 0049): 4.08 0.750 12.17 74.88
   _____
                                                                     I CALIB
   ID = 1 ( 0157): 102.18 2.117 13.50 36.00
                                                                     | STANDHYD ( 0106) | Area (ha) = 6.17
                                                                     | ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                     -----
                                                                                 IMPERVIOUS PERVIOUS (i)
                                                                       Surface Area (ha)= 4.13
                                                                                                2.04
                                                                       Dep. Storage (mm)= 1.00
                                                                                                 5.00
| ROUTEPIPE( 0163)| PIPE Number = 1.00
                                                                       Average Slope (%)= 1.00
                                                                                                 2.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
                                                                       Length (m)= 202.81 215.00
| DT= 5.0 min | Length (m)= 346.00
                                                                       Mannings n = 0.014 0.250
----- Slope (m/m)= 0.007
          Manning n = 0.013
                                                                       Max.Eff.Inten.(mm/hr)= 110.18 62.92
                                                                           over (min) 5.00 30.00
  <-----> TRAVEL TIME TABLE ----->
                                                                       Storage Coeff. (min)= 3.93 (ii) 27.23 (ii)
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                       Unit Hyd. Tpeak (min)= 5.00
                                                                                                 30.00
   (m) (cu.m.) (cms)
                       (m/s)
                              min
                                                                       Unit Hyd. peak (cms)= 0.24
                                                                                                  0.04
  0.08 .656E+02 0.2
                                                                                            *TOTALS*
                        1.18
                              4.90
  0.16 .131E+03 0.7
                        1.79
                             3.22
                                                                       PEAK FLOW (cms)= 1.01
                                                                                                 0.20
                                                                                                         1.125 (iii)
  0.24 .197E+03 1.3
                        2.26
                              2.55
                                                                       TIME TO PEAK (hrs)= 12.17
                                                                                                12.50
                                                                                                          12.17
  0.32 .262E+03 2.0
                        2.65
                             2.18
                                                                       RUNOFF VOLUME (mm)= 96.47 48.49
                                                                                                             74.88
  0.39 .328E+03
                        2.97
                             1.94
                                                                       TOTAL RAINFALL (mm)= 97.47 97.47
                                                                                                            97.47
                2.8
  0.47 .393E+03 3.7
                        3.25
                             1.78
                                                                       RUNOFF COEFFICIENT = 0.99
                                                                                                   0.50
                                                                                                           0.77
  0.55 .459E+03
                4.6
                        3.49
                             1.65
  0.63 .524E+03 5.6
                        3.70 1.56
                                                                     ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  0.71 .590E+03 6.6
                        3.89 1.48
  0.79 .656E+03 7.7
                        4.07
                               1.42
                                                                        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
```

```
0.0140 0.2394 | 0.0290 1.2348
     CN^* = 68.0 Ia = Dep. Storage (Above)
                                                                                   0.0150 0.6048 | 0.0340 1.4904
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                                                                                  0.0210 0.8843 | 0.0380 1.7173
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                     AREA QPEAK TPEAK R.V.
                                                                                     (ha) (cms) (hrs) (mm)
                                                                        INFLOW: ID= 2 (0119) 18.560 3.019 12.17 73.82
| CALIB
                                                                        OUTFLOW: ID= 1 (0133) 18.560 0.029 24.33 57.92
| STANDHYD ( 0119) | Area (ha)= 18.56
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
                                                                                PEAK FLOW REDUCTION [Qout/Qin](%)= 0.96
                                                                               TIME SHIFT OF PEAK FLOW
                                                                                                        (min)=730.00
                                                                                MAXIMUM STORAGE USED (ha.m.)= 1.2320
            IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 12.81
                            5.75
  Dep. Storage (mm)= 1.00
                           5.00
  Average Slope (%)= 1.00
                            2.00
           (m)= 351.76 215.00
 Length
 Mannings n = 0.014
                         0.250
                                                                       | ADD HYD ( 0159)|
                                                                       | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
  Max.Eff.Inten.(mm/hr)= 110.18 107.58
                                                                       -----
                                                                                      (ha) (cms) (hrs) (mm)
      over (min) 5.00 25.00
                                                                           ID1= 1 ( 0106): 6.17 1.125 12.17 74.88
 Storage Coeff. (min)= 5.46 (ii) 24.27 (ii)
                                                                          + ID2= 2 ( 0133): 18.56 0.029 24.33 57.92
  Unit Hyd. Tpeak (min)= 5.00
                            25.00
                                                                           _____
  Unit Hyd. peak (cms)= 0.20
                             0.05
                                                                          ID = 3 ( 0159): 24.73 1.140 12.17 62.15
                         *TOTALS*
  PEAK FLOW (cms)= 2.40
                             0.94
                                                                         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                     3.019 (iii)
 TIME TO PEAK (hrs)= 12.17 12.42
                                      12.17
  RUNOFF VOLUME (mm)= 96.47 55.29
                                         73.82
 TOTAL RAINFALL (mm)= 97.47 97.47
                                        97.47
  RUNOFF COEFFICIENT = 0.99 0.57
                                       0.76
                                                                       | ADD HYD ( 0159)|
                                                                       | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                                                                       ----- (ha) (cms) (hrs) (mm)
                                                                           ID1=3 ( 0159): 24.73 1.140 12.17 62.15
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                                                                          + ID2= 2 ( 0163): 102.18 2.117 13.58 36.00
                                                                           _____
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                           ID = 1 ( 0159): 126.91 2.266 13.50 41.10
                                                                         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR( 0133)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
                                                                       | ROUTEPIPE( 0158) | PIPE Number = 1.00
----- (cms) (ha.m.) | (cms) (ha.m.)
                                                                       | IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
          0.0000 0.0000 | 0.0250 1.0741
                                                                       | DT= 5.0 min | Length (m)= 253.00
```

```
----- Slope (m/m)= 0.005
Manning n = 0.013
```

		5	0.020			
<	TRA\	/FI TIMI	F TARI F		>	
					TRAV.TIME	
	(cu.m.)					
	.479E+02			4.39		
0.16			1.46	2.88		
0.24	.144E+03	1.1	1.85	2.28		
0.32	.192E+03	1.6	2.16	1.95		
0.39	.240E+03	2.3	2.42	1.74		
0.47	.288E+03	3.0	2.65	1.59		
0.55	.336F+03	3.8	2.85	1.48		
0.63	.384E+03	4.6	3.02	1.40		
0.71	.431E+03	5.4	3.18	1.33		
0.79		6.3	3.32	1.27		
0.87	.527E+03	7.2 8.1	3.45	1.22		
0.95			3.56	1.18		
1.03			3.67			
1.11			3.77	6.64		
1.18	.719E+03	11.0	3.86	6.48		
1.26	.767E+03	11.9	3.94	6.35		
	.815E+03					
	.863E+03					
1.50						
					/ channel->	
					X DEPTH MAX VE	L
	(ha) (cms) (hrs) (mm) (m) (m/s)					
INFLOW: ID= 2 (0159) 126.91 2.27 13.50 41.10 0.39 2.41 OUTFLOW: ID= 1 (0158) 126.91 2.27 13.58 41.10 0.39 2.41						
OUTFLO	W: ID= 1 (0	158) 12	26.91 2.2	27 13.58	41.10 0.39 2	.41
-	ı IYD (0136)	Area	(ha)- 7	15		
-					Conn.(%)= 55.00	
	- 3.0 111111	TOtal III	ip(70)- 07	.00 Dii. C	20111.(70)= 33.00	
IMPERVIOUS PERVIOUS (i)						
Surface Area (ha)= 4.79 2.36						
	orage (mr					
	e Slope (%					
	(m)=					
Mannii	ngs n =	0.014	4 0.25	0		

```
Max.Eff.Inten.(mm/hr) = 110.18
                              57.53
      over (min) 5.00
                        30.00
  Storage Coeff. (min)= 4.10 (ii) 28.25 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                            30.00
  Unit Hyd. peak (cms)= 0.24
                             0.04
                        *TOTALS*
  PEAK FLOW (cms)= 1.17
                            0.21
                                    1.280 (iii)
                                     12.17
  TIME TO PEAK (hrs)= 12.17
                            12.50
  RUNOFF VOLUME (mm)= 96.47 43.54
                                        72.65
  TOTAL RAINFALL (mm)= 97.47 97.47
                                       97.47
  RUNOFF COEFFICIENT = 0.99
                              0.45
                                      0.75
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0160)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
-----
              (ha) (cms) (hrs) (mm)
   ID1=1 (0136): 7.15 1.280 12.17 72.65
  + ID2= 2 ( 0158): 126.91 2.267 13.58 41.10
   _____
   ID = 3 ( 0160): 134.06 3.410 12.17 42.78
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTEPIPE( 0161)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1800.00
| DT= 5.0 min | Length (m)= 43.50
----- Slope (m/m)= 0.003
          Manning n = 0.013
  <---->
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
```

```
Unit Hvd. Tpeak (min)= 10.00
   (m) (cu.m.) (cms)
                         (m/s)
                                                                                                           30.00
                                 min
                                                                             Unit Hyd. peak (cms)= 0.13
  0.09 .989E+01 0.2
                          0.83
                                 0.87
                                                                                                          0.04
  0.19 .198E+02
                                 0.57
                                                                                                     *TOTALS*
                   0.6
                          1.26
  0.28 .297E+02
                 1.1
                          1.58
                                 0.46
                                                                             PEAK FLOW (cms)= 6.10
                                                                                                          2.52
                                                                                                                  7.543 (iii)
  0.38 .396E+02
                          1.84
                                 0.39
                                                                             TIME TO PEAK (hrs)= 12.17
                                                                                                          12.50
                                                                                                                   12.17
                  1.7
                                                                             RUNOFF VOLUME (mm)= 96.47
  0.47 .495E+02
                          2.05
                                 0.35
                                                                                                             55.29
                 2.3
                                                                                                                       73.82
  0.57 .593E+02
                          2.23
                                 0.32
                                                                             TOTAL RAINFALL (mm)= 97.47
                                                                                                            97.47
                                                                                                                     97.47
                   3.0
  0.66 .692E+02
                   3.8
                          2.39
                                 0.30
                                                                             RUNOFF COEFFICIENT = 0.99
                                                                                                            0.57
                                                                                                                    0.76
  0.76 .791E+02
                          2.53
                                 0.29
                  4.6
  0.85 .890E+02
                          2.65
                                 0.27
                  5.4
  0.95 .989E+02
                          2.76
                                 0.26
                                                                              (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                   6.3
  1.04 .109E+03
                                 10.50
                                                                                CN^* = 68.0 Ia = Dep. Storage (Above)
                  7.1
                          2.86
  1.14 .119E+03
                          2.95
                                 10.19
                                                                             (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                   8.0
  1.23 .129E+03
                  8.9
                          3.03
                                 9.92
                                                                                THAN THE STORAGE COEFFICIENT.
  1.33 .138E+03
                  9.9
                          3.10
                                 9.68
                                                                             (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  1.42 .148E+03 10.8
                          3.17
                                  9.48
  1.52 .158E+03
                 11.7
                          3.23
                                  9.29
  1.61 .168E+03 12.7
                          3.28
                                  9.13
  1.71 .178E+03 13.7
                          3.34
                                  8.99
                                                                           RESERVOIR( 0131)
  1.80 .188E+03 14.6
                                                                           | IN= 2---> OUT= 1 |
                          3.39
                                  8.86
               <---- hydrograph ----> <-pipe / channel->
                                                                          DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
             AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                          ----- (cms) (ha.m.) | (cms) (ha.m.)
                                                                                      0.0000 0.0000 | 0.1700 2.5907
             (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0160) 134.06 3.41 12.17 42.78 0.61 2.31
                                                                                      0.0550 0.7098 | 0.2155 3.1239
 OUTFLOW: ID= 1 (0161) 134.06 3.43 12.17 42.78 0.62 2.31
                                                                                      0.1004 1.5249 | 0.2600 3.5865
                                                                                      0.1400 2.1680 | 0.3014 4.0085
  **** WARNING: COMPUTATIONS FAILED TO CONVERGE.
                                                                                         AREA QPEAK TPEAK R.V.
                                                                                         (ha) (cms) (hrs) (mm)
                                                                            INFLOW: ID= 2 (0132) 53.460 7.543 12.17 73.82
                                                                            OUTFLOW: ID= 1 (0131) 53.460 0.209 20.33 72.53
| CALIB
| STANDHYD ( 0132) | Area (ha)= 53.46
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
                                                                                   PEAK FLOW REDUCTION [Qout/Qin](%)= 2.77
                                                                                   TIME SHIFT OF PEAK FLOW
                                                                                                             (min)=490.00
                                                                                   MAXIMUM STORAGE USED (ha.m.)= 3.0517
             IMPERVIOUS PERVIOUS (i)
 Surface Area (ha)= 36.89
                             16.57
 Dep. Storage (mm)= 1.00
                              5.00
 Average Slope (%)= 1.00
                             2.00
 Length
            (m)= 596.99
                           215.00
                                                                           _____
 Mannings n = 0.014
                          0.250
                                                                           | ADD HYD ( 0117)|
                                                                           | 1 + 2 = 3 |
                                                                                           AREA QPEAK TPEAK R.V.
 Max.Eff.Inten.(mm/hr)= 110.18 107.58
                                                                                           (ha) (cms) (hrs) (mm)
      over (min) 10.00
                          30.00
                                                                              ID1=1 (0131): 53.46 0.209 20.33 72.53
 Storage Coeff. (min)= 7.51 (ii) 26.31 (ii)
                                                                             + ID2= 2 ( 0161): 134.06 3.434 12.17 42.78
```

```
0.55 99.80 .397E+03 1.3
                                                                                                 1.12 5.21
   ______
                                                                       0.60 99.85 .472E+03 1.6
   ID = 3 ( 0117): 187.52 3.523 12.17 51.26
                                                                                                 1.19
                                                                                                       4.92
                                                                       0.65 99.90 .554E+03 2.0
                                                                                                 1.25
                                                                                                       4.66
                                                                       0.70 99.95 .643E+03 2.4
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                                 1.31
                                                                                                       4.44
                                                                       0.75 100.00 .738E+03 2.9
                                                                                                 1.38
                                                                                                       4.24
                                                                       0.80 100.05 .840E+03 3.4
                                                                                                  1.44 4.06
                                                                       0.85 100.10 .948E+03 4.1
                                                                                                  1.50
                                                                                                       3.90
                                                                       0.90 100.15 .106E+04 4.7
                                                                                                  1.55 3.75
                                                                       0.95 100.20 .118E+04
| ADD HYD ( 0117)|
                                                                                          5.5
                                                                                                  1.61 3.62
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
                                                                                  <---- hydrograph ----> <-pipe / channel->
   ID1= 3 ( 0117): 187.52 3.523 12.17 51.26
                                                                                AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
  + ID2= 2 ( 0036): 1.98 0.250 12.17 33.09
                                                                                (ha) (cms) (hrs) (mm) (m) (m/s)
   INFLOW: ID= 2 ( 0117) 189.50 3.77 12.17 51.07 0.83 1.47
   ID = 1 ( 0117): 189.50 3.773 12.17 51.07
                                                                     OUTFLOW: ID= 1 (0166) 189.50 3.33 12.17 51.06 0.79 1.42
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                    l CALIB
                                                                    | NASHYD ( 0120) | Area (ha)= 10.00 Curve Number (CN)= 68.0
| ROUTE CHN( 0166)|
| IN= 2---> OUT= 1 | Routing time step (min)'= 5.00
                                                                    |ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
                                                                    ----- U.H. Tp(hrs)= 0.44
     <----- DATA FOR SECTION ( 2.0) ----->
     Distance Elevation Manning
                                                                      Unit Hyd Qpeak (cms)= 0.868
       0.00
             100.20
                      0.0400
       46.50 101.25 0.0400 /0.0350 Main Channel
                                                                      PEAK FLOW (cms)= 0.511 (i)
                                                                      TIME TO PEAK (hrs)= 12.500
       52.50
             99.25 0.0350 Main Channel
       61.50
             101.25 0.0350 /0.0400 Main Channel
                                                                      RUNOFF VOLUME (mm)= 34.384
      105.00
             102.00 0.0400
                                                                      TOTAL RAINFALL (mm)= 97.470
                                                                      RUNOFF COEFFICIENT = 0.353
  <-----> TRAVEL TIME TABLE ----->
  DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                      (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   (m) (m) (cu.m.) (cms)
                           (m/s) (min)
  0.05 99.30 .328E+01 0.0
                             0.23 25.78
  0.10 99.35 .131E+02 0.0
                             0.36 16.24
  0.15 99.40 .295E+02 0.0
                             0.47 12.39
  0.20 99.45 .525E+02 0.1
                             0.57 10.23
                                                                    | ADD HYD ( 0121)|
  0.25 99.50 .820E+02 0.2
                                                                    | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
                             0.66 8.82
  0.30 99.55 .118E+03 0.3
                             0.75
                                  7.81
                                                                    ----- (ha) (cms) (hrs) (mm)
  0.35 99.60 .161E+03 0.4
                             0.83 7.04
                                                                       ID1= 1 ( 0120): 10.00 0.511 12.50 34.38
  0.40 99.65 .210E+03 0.5
                             0.91 6.44
                                                                      + ID2= 2 ( 0166): 189.50 3.328 12.17 51.06
  0.45 99.70 .266E+03 0.7
                             0.98 5.96
                                                                       ______
  0.50 99.75 .328E+03 1.0
                            1.05 5.55
                                                                       ID = 3 ( 0121): 199.50 3.661 12.25 50.23
```

```
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
I CALIB
| NASHYD ( 0046) | Area (ha)= 17.20 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.47
  Unit Hyd Qpeak (cms)= 1.398
  PEAK FLOW (cms)= 0.838 (i)
 TIME TO PEAK (hrs)= 12.500
  RUNOFF VOLUME (mm)= 34.385
 TOTAL RAINFALL (mm)= 97.470
  RUNOFF COEFFICIENT = 0.353
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0114)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1=1 (0121): 199.50 3.661 12.25 50.23
  + ID2= 2 ( 0046): 17.20 0.838 12.50 34.38
   ID = 3 ( 0114): 216.70 4.280 12.25 48.97
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
**********
** SIMULATION:Run 06
*********
 READ STORM | Filename: C:\Users\Janis Lobo\AppD
              ata\Local\Temp\
              9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\90aa799a
| Ptotal=110.43 mm | Comments: 50-year - 24-h SCS RBG
```

```
TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
0.33 1.23 | 6.50 2.23 | 12.67 16.04 | 18.83 1.34
0.50 1.23 | 6.67 2.23 | 12.83 8.24 | 19.00 1.34
1.00 1.23 | 7.17 2.23 | 13.33 1.56 | 19.50 1.34
1.50 1.23 | 7.67 2.23 | 13.83 9.13 | 20.00 1.34
3.00 1.45 | 9.17 3.01 | 15.33 3.34 | 21.50 1.34
3.33 1.45 | 9.50 3.56 | 15.67 3.34 | 21.83 1.34
3.50 1.45 | 9.67 3.56 | 15.83 3.34 | 22.00 1.34
3.83 1.45 | 10.00 4.01 | 16.17 3.34 | 22.33 1.34
4.00 1.45 | 10.17 4.01 | 16.33 2.01 | 22.50 1.34
4.33 1.78 | 10.50 5.12 | 16.67 2.01 | 22.83 1.34
4.50 1.78 | 10.67 5.12 | 16.83 2.01 | 23.00 1.34
4.83 1.78 | 11.00 6.91 | 17.17 2.01 | 23.33 1.34
5.00 1.78 | 11.17 6.91 | 17.33 2.01 | 23.50 1.34
5.33 1.78 | 11.50 10.69 | 17.67 2.01 | 23.83 1.34
5.67 1.78 | 11.83 46.34 | 18.00 2.01 | 24.17 1.34
5.83 1.78 | 12.00 84.66 | 18.17 2.01 |
6.00 1.78 | 12.17 122.99 | 18.33 2.01 |
```

| CALIB |

```
| NASHYD ( 0036)| Area (ha)= 1.98 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
------ U.H. Tp(hrs)= 0.09
```

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.167 0.00 | 6.250 2.23 | 12.333 16.04 | 18.42 2.01 0.750 1.23 | 6.833 2.23 | 12.917 8.24 | 19.00 1.34 0.833 1.23 | 6.917 2.23 | 13.000 8.24 | 19.08 1.34 1.083 1.23 | 7.167 2.23 | 13.250 1.56 | 19.33 1.34 1.250 1.23 | 7.333 2.23 | 13.417 1.56 | 19.50 1.34 1.333 1.23 | 7.417 2.23 | 13.500 1.56 | 19.58 1.34 1.417 1.23 | 7.500 2.23 | 13.583 1.56 | 19.67 1.34 1.500 1.23 | 7.583 2.23 | 13.667 1.56 | 19.75 1.34 1.667 1.23 | 7.750 2.23 | 13.833 9.13 | 19.92 1.34 2.833 1.45 | 8.917 3.01 | 15.000 3.34 | 21.08 1.34

```
2.917 1.45 | 9.000 3.01 | 15.083 3.34 | 21.17 1.34
3.000 1.45 | 9.083 3.01 | 15.167 3.34 | 21.25 1.34
3.333 1.45 | 9.417 3.56 | 15.500 3.34 | 21.58 1.34
3.500 1.45 | 9.583 3.56 | 15.667 3.34 | 21.75 1.34
3.833 1.45 | 9.917 4.01 | 16.000 3.34 | 22.08 1.34
4.000 1.45 | 10.083 4.01 | 16.167 3.34 | 22.25 1.34
4.083 1.45 | 10.167 4.01 | 16.250 2.01 | 22.33 1.34
4.250 1.78 | 10.333 5.12 | 16.417 2.01 | 22.50 1.34
4.333 1.78 | 10.417 5.12 | 16.500 2.01 | 22.58 1.34
4.500 1.78 | 10.583 5.12 | 16.667 2.01 | 22.75 1.34
4.667 1.78 | 10.750 6.91 | 16.833 2.01 | 22.92 1.34
4.750 1.78 | 10.833 6.91 | 16.917 2.01 | 23.00 1.34
4.833 1.78 | 10.917 6.91 | 17.000 2.01 | 23.08 1.34
4.917 1.78 | 11.000 6.91 | 17.083 2.01 | 23.17 1.34
5.000 1.78 | 11.083 6.91 | 17.167 2.01 | 23.25 1.34
5.167 1.78 | 11.250 10.69 | 17.333 2.01 | 23.42 1.34
5.333 1.78 | 11.417 10.69 | 17.500 2.01 | 23.58 1.34
5.500 1.78 | 11.583 10.69 | 17.667 2.01 | 23.75 1.34
5.750 1.78 | 11.833 46.34 | 17.917 2.01 | 24.00 1.34
5.833 1.78 | 11.917 84.66 | 18.000 2.01 | 24.08 1.34
6.000 1.78 | 12.083 122.99 | 18.167 2.01 |
6.083 1.78 | 12.167 122.99 | 18.250 2.01 |
```

Unit Hyd Qpeak (cms)= 0.840

PEAK FLOW (cms)= 0.305 (i) TIME TO PEAK (hrs)= 12.167

RUNOFF VOLUME (mm)= 41.497	0.69 .497E+02 2.5 3.65 0.33			
TOTAL RAINFALL (mm)= 110.427	0.76 .552E+02 2.8 3.76 0.32			
RUNOFF COEFFICIENT = 0.376	0.82 .604E+02 3.2 3.84 0.32			
	0.88 .655E+02 3.5 3.90 0.31			
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0.95 .702E+02 3.8 3.93 0.31			
	1.01 .745E+02 4.0 3.93 0.31			
	1.07 .783E+02 4.1 3.89 0.31			
	1.14 .812E+02 4.2 3.78 0.32			
CALIB	1.20 .829E+02 3.9 3.45 0.35			
NASHYD (0037) Area (ha)= 28.80 Curve Number (CN)= 68.0	< hydrograph> <-pipe / channel->			
ID= 1 DT= 5.0 min Ia (mm)= 13.90 # of Linear Res.(N)= 3.00	AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL			
U.H. Tp(hrs)= 1.21	(ha) (cms) (hrs) (mm) (m) (m/s)			
	INFLOW: ID= 2 (0037) 28.80 0.86 13.42 43.12 0.38 2.77			
Unit Hyd Qpeak (cms)= 0.908	OUTFLOW: ID= 1 (0165) 28.80 0.86 13.42 43.12 0.38 2.76			
, , , ,	,			
PEAK FLOW (cms)= 0.863 (i)				
TIME TO PEAK (hrs)= 13.417				
RUNOFF VOLUME (mm)= 43.125				
TOTAL RAINFALL (mm)= 110.427	CALIB			
RUNOFF COEFFICIENT = 0.391	NASHYD (0051) Area (ha)= 69.30 Curve Number (CN)= 68.0			
	ID= 1 DT= 5.0 min Ia (mm)= 13.90 # of Linear Res.(N)= 3.00			
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	U.H. Tp(hrs)= 1.45			
	Unit Hyd Qpeak (cms)= 1.825			
	DEAK ELOM (2002) 1 705 (:)			
ROUTEPIPE(0165) PIPE Number = 1.00	PEAK FLOW (cms)= 1.795 (i)			
IN= 2> OUT= 1 Diameter (mm)=1200.00	TIME TO PEAK (hrs)= 13.583			
DT= 5.0 min	RUNOFF VOLUME (mm)= 43.125			
Slope (m/m)= 0.010	TOTAL RAINFALL (mm)= 110.427			
Manning n = 0.013	RUNOFF COEFFICIENT = 0.391			
<>	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.			
DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME	(I) I LAKTEOW BOLS NOT INCLODE BASELLOW II ANT.			
(m) (cu.m.) (cms) (m/s) min				
0.06 .167E+01 0.0 0.92 1.33				
0.13 .465E+01 0.1 1.43 0.85	ROUTEPIPE(0164) PIPE Number = 1.00			
0.19 .840E+01 0.2 1.84 0.66	IN= 2> OUT= 1 Diameter (mm)=1350.00			
0.25 .127E+02 0.4 2.19 0.56	DT= 5.0 min Length (m)= 104.50			
0.25 .127E+02 0.4 2.19 0.36 0.32 .174E+02 0.6 2.49 0.49				
	• • • •			
	Manning n = 0.013			
0.44 .277E+02 1.1 2.99 0.41	TDAVELTIME TABLE			
0.51 .332E+02 1.4 3.19 0.38	< TRAVEL TIME TABLE>			
0.57 .387E+02 1.8 3.37 0.36	DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME			
0.63 .442E+02 2.1 3.52 0.35	(m) (cu.m.) (cms) (m/s) min			

```
0.07 .302E+01 0.0
                        0.99
                                                                                               *TOTALS*
                               1.76
  0.14 .839E+01 0.1
                        1.55
                               1.13
                                                                        PEAK FLOW (cms)= 0.75
                                                                                                   0.17
                                                                                                           0.848 (iii)
  0.21 .152E+02
                        1.99
                               0.88
                                                                        TIME TO PEAK (hrs)= 12.17 12.50
                 0.3
                                                                                                          12.17
  0.28 .229E+02
                        2.37
                                                                        RUNOFF VOLUME (mm)= 109.43 58.62
                0.5
                               0.74
                                                                                                                86.56
  0.36 .314E+02
                 0.8
                        2.69
                               0.65
                                                                        TOTAL RAINFALL (mm)= 110.43 110.43
                                                                                                              110.43
  0.43 .405E+02
                        2.98
                               0.58
                                                                        RUNOFF COEFFICIENT = 0.99
                                                                                                     0.53
                                                                                                             0.78
                1.2
  0.50 .500E+02
                        3.23
                               0.54
                                                                      ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  0.57 .598E+02
                2.0
                        3.45
                               0.50
  0.64 .698E+02
                        3.64
                               0.48
                2.4
  0.71 .798E+02
                        3.81
                               0.46
                                                                         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
  0.78 .898E+02
                        3.95
                               0.44
                                                                           CN^* = 68.0 Ia = Dep. Storage (Above)
  0.85 .996E+02
                        4.07
                                                                         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                3.9
                               0.43
  0.92 .109E+03
                        4.16
                               0.42
                                                                           THAN THE STORAGE COEFFICIENT.
                4.3
  0.99 .118E+03
                4.8
                        4.22
                               0.41
                                                                        (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
  1.07 .127E+03
                        4.25
                               0.41
                5.2
  1.14 .134E+03 5.5
                        4.25
                              0.41
  1.21 .141E+03 5.7
                        4.20
                              0.41
  1.28 .147E+03 5.7
                        4.09
                               0.43
  1.35
                        NaN
                               NaN
         NaN NaN
                                                                      | ADD HYD ( 0157)|
              <---- hydrograph ----> <-pipe / channel->
                                                                      | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
                                                                      ----- (ha) (cms) (hrs) (mm)
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                       ID1= 1 ( 0164): 69.30 1.794 13.67 43.12
INFLOW: ID= 2 (0051) 69.30 1.79 13.58 43.13 0.54 3.35
                                                                       + ID2= 2 ( 0165): 28.80 0.863 13.42 43.12
                                                                         _____
OUTFLOW: ID= 1 ( 0164) 69.30 1.79 13.67 43.12 0.54 3.35
                                                                         ID = 3 ( 0157): 98.10 2.642 13.50 43.12
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| CALIB
| STANDHYD ( 0049) | Area (ha)= 4.08
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
                                                                      | ADD HYD ( 0157)|
                                                                      | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
            IMPERVIOUS PERVIOUS (i)
 Surface Area (ha)= 2.73
                           1.35
                                                                      -----
                                                                                     (ha) (cms) (hrs) (mm)
 Dep. Storage (mm)= 1.00 5.00
                                                                         ID1= 3 ( 0157): 98.10 2.642 13.50 43.12
                                                                         + ID2= 2 ( 0049): 4.08 0.848 12.17 86.56
 Average Slope (%)= 1.00
                            2.00
 Length
         (m)= 164.92 215.00
                                                                         _____
 Mannings n = 0.014 0.250
                                                                         ID = 1 ( 0157): 102.18 2.696 13.50 44.86
 Max.Eff.Inten.(mm/hr)= 122.99 74.57
                                                                        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
      over (min) 5.00 30.00
 Storage Coeff. (min)= 3.32 (ii) 25.09 (ii)
 Unit Hyd. Tpeak (min)= 5.00
                            30.00
 Unit Hyd. peak (cms)= 0.26
                             0.04
                                                                      | ROUTEPIPE( 0163)| PIPE Number = 1.00
```

```
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
                                                                             Length
                                                                                        (m)= 202.81 215.00
| DT= 5.0 min | Length (m)= 346.00
                                                                             Mannings n
                                                                                         = 0.014
                                                                                                        0.250
----- Slope (m/m)= 0.007
           Manning n = 0.013
                                                                              Max.Eff.Inten.(mm/hr)= 122.99 74.57
                                                                                  over (min)
                                                                                              5.00
                                                                                                      30.00
  <-----> TRAVEL TIME TABLE ----->
                                                                             Storage Coeff. (min)= 3.76 (ii) 25.53 (ii)
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                              Unit Hyd. Tpeak (min)= 5.00
                                                                                                          30.00
   (m) (cu.m.) (cms)
                         (m/s)
                                                                              Unit Hyd. peak (cms)= 0.25
                                                                                                           0.04
                                 min
   0.08 .656E+02 0.2
                                  4.90
                                                                                                      *TOTALS*
                          1.18
   0.16 .131E+03 0.7
                          1.79
                                  3.22
                                                                              PEAK FLOW (cms)= 1.13
                                                                                                          0.25
                                                                                                                  1.273 (iii)
   0.24 .197E+03
                  1.3
                          2.26
                                  2.55
                                                                             TIME TO PEAK (hrs)= 12.17
                                                                                                          12.50
                                                                                                                   12.17
                 2.0
   0.32 .262E+03
                          2.65
                                  2.18
                                                                              RUNOFF VOLUME (mm)= 109.43 58.62
                                                                                                                        86.56
   0.39 .328E+03
                  2.8
                          2.97
                                  1.94
                                                                             TOTAL RAINFALL (mm)= 110.43 110.43
                                                                                                                      110.43
   0.47 .393E+03
                   3.7
                          3.25
                                  1.78
                                                                              RUNOFF COEFFICIENT = 0.99
                                                                                                            0.53
                                                                                                                     0.78
   0.55 .459E+03
                          3.49
                                 1.65
                   4.6
   0.63 .524E+03
                          3.70
                                1.56
                                                                           **** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                   5.6
   0.71 .590E+03
                   6.6
                          3.89
                                 1.48
   0.79 .656E+03
                  7.7
                          4.07
                                  1.42
                                                                              (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
   0.87 .721E+03
                          4.22
                                  1.37
                                                                                 CN^* = 68.0 Ia = Dep. Storage (Above)
                   8.8
   0.95 .787E+03
                  9.9
                          4.36
                                  1.32
                                                                              (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
   1.03 .852E+03
                           4.49
                                  5.56
                                                                                THAN THE STORAGE COEFFICIENT.
                  11.1
   1.11 .918E+03 12.2
                           4.61
                                  5.42
                                                                             (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   1.18 .983E+03 13.4
                           4.72
                                  5.29
   1.26 .105E+04 14.6
                                  5.18
                           4.82
   1.34 .111E+04 15.8
                           4.92
                                  5.08
   1.42 .118E+04 17.1
                           5.01
                                  4.99
                                                                           I CALIB
   1.50 .125E+04 18.3
                           5.09
                                  4.91
                                                                           | STANDHYD ( 0119) | Area (ha)= 18.56
                <---- hydrograph ----> <-pipe / channel->
                                                                           | ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
             AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                           -----
             (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                                         IMPERVIOUS PERVIOUS (i)
 INFLOW: ID= 2 (0157) 102.18 2.70 13.50 44.86 0.38 2.92
                                                                             Surface Area (ha)= 12.81
                                                                                                          5.75
 OUTFLOW: ID= 1 ( 0163) 102.18  2.69  13.50  44.86  0.38  2.91
                                                                             Dep. Storage (mm)= 1.00
                                                                                                          5.00
                                                                             Average Slope (%)= 1.00
                                                                                                          2.00
                                                                             Length
                                                                                        (m)= 351.76 215.00
                                                                             Mannings n = 0.014
                                                                                                        0.250
_____
I CALIB
                                                                              Max.Eff.Inten.(mm/hr)= 122.99 126.02
| STANDHYD ( 0106) | Area (ha) = 6.17
                                                                                  over (min) 5.00
                                                                                                     25.00
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
                                                                              Storage Coeff. (min)= 5.23 (ii) 22.88 (ii)
                                                                              Unit Hyd. Tpeak (min)= 5.00
                                                                                                          25.00
                                                                              Unit Hyd. peak (cms)= 0.21
             IMPERVIOUS PERVIOUS (i)
                                                                                                          0.05
  Surface Area (ha)= 4.13
                             2.04
                                                                                                      *TOTALS*
  Dep. Storage (mm)= 1.00
                             5.00
                                                                              PEAK FLOW (cms)= 2.70
                                                                                                          1.13
                                                                                                                   3.449 (iii)
  Average Slope (%)= 1.00
                              2.00
                                                                             TIME TO PEAK (hrs)= 12.17
                                                                                                          12.42
                                                                                                                   12.17
```

```
RUNOFF VOLUME (mm)= 109.43 66.18
                                        85.64
 TOTAL RAINFALL (mm)= 110.43 110.43
                                      110.43
  RUNOFF COEFFICIENT = 0.99
                             0.60
                                     0.78
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
    CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| RESERVOIR( 0133)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
----- (cms) (ha.m.) | (cms) (ha.m.)
          0.0000 0.0000 | 0.0250 1.0741
          0.0140 0.2394 | 0.0290 1.2348
          0.0210 0.8843 | 0.0380 1.7173
            AREA QPEAK TPEAK R.V.
             (ha) (cms) (hrs) (mm)
 INFLOW: ID= 2 (0119) 18.560 3.449 12.17 85.64
 OUTFLOW: ID= 1 (0133) 18.560 0.033 24.33 64.79
       PEAK FLOW REDUCTION [Qout/Qin](%)= 0.95
       TIME SHIFT OF PEAK FLOW (min)=730.00
       MAXIMUM STORAGE USED (ha.m.)= 1.4307
| ADD HYD ( 0159)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0106): 6.17 1.273 12.17 86.56
  + ID2= 2 ( 0133): 18.56 0.033 24.33 64.79
   ______
   ID = 3 ( 0159): 24.73 1.288 12.17 70.22
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

```
_____
| ADD HYD ( 0159)|
| 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
-----
              (ha) (cms) (hrs) (mm)
   ID1= 3 ( 0159): 24.73 1.288 12.17 70.22
  + ID2= 2 ( 0163): 102.18 2.695 13.50 44.86
   _____
   ID = 1 ( 0159): 126.91 2.805 13.75 49.80
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTEPIPE( 0158) | PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
| DT= 5.0 min | Length (m)= 253.00
----- Slope (m/m)= 0.005
         Manning n = 0.013
  <----> TRAVEL TIME TABLE ----->
   DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms) (m/s)
                              min
   0.08 .479E+02 0.2
                        0.96
                               4.39
   0.16 .959E+02 0.6
                        1.46
                               2.88
   0.24 .144E+03
                               2.28
                1.1
                        1.85
   0.32 .192E+03 1.6
                        2.16
                               1.95
   0.39 .240E+03
                2.3
                        2.42
                               1.74
   0.47 .288E+03
                3.0
                        2.65
                               1.59
   0.55 .336E+03
                 3.8
                        2.85
                               1.48
   0.63 .384E+03
                4.6
                        3.02
                               1.40
   0.71 .431E+03
                        3.18
                               1.33
                 5.4
   0.79 .479E+03
                6.3
                        3.32
                               1.27
   0.87 .527E+03
                 7.2
                        3.45
                               1.22
   0.95 .575E+03
                 8.1
                        3.56
                               1.18
   1.03 .623E+03
                 9.0
                        3.67
                               6.82
   1.11 .671E+03
                 10.0
                         3.77
                               6.64
  1.18 .719E+03
                         3.86
                 11.0
                                6.48
  1.26 .767E+03
                11.9
                         3.94
                               6.35
  1.34 .815E+03
                 12.9
                         4.02
                               6.23
  1.42 .863E+03
                13.9
                         4.09
                                6.12
  1.50 .911E+03 15.0
                         4.15
                                6.02
               <---- hydrograph ----> <-pipe / channel->
```

```
(ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID=2 (0159) 126.91 2.81 13.75 49.80 0.45 2.58
 OUTFLOW: ID= 1 ( 0158) 126.91  2.81  13.83  49.80  0.45  2.58
I CALIB
| STANDHYD ( 0136) | Area (ha) = 7.15
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
             IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 4.79
                              2.36
  Dep. Storage (mm)= 1.00
                             13.90
  Average Slope (%)= 1.00
                              2.00
          (m)= 218.33 215.00
  Length
  Mannings n = 0.014 0.250
  Max.Eff.Inten.(mm/hr)= 122.99 69.26
       over (min)
                 5.00 30.00
  Storage Coeff. (min)= 3.93 (ii) 26.35 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                               30.00
  Unit Hyd. peak (cms)= 0.24
                               0.04
                          *TOTALS*
  PEAK FLOW (cms)= 1.31
                               0.26
                                       1.451 (iii)
 TIME TO PEAK (hrs)= 12.17 12.50
                                        12.17
  RUNOFF VOLUME (mm)= 109.43 53.47
                                            84.24
 TOTAL RAINFALL (mm)= 110.43 110.43
                                           110.43
  RUNOFF COEFFICIENT = 0.99
                                 0.48
                                         0.76
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
     THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0160)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
```

AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL

```
(ha) (cms) (hrs) (mm)
ID1= 1 ( 0136): 7.15 1.451 12.17 84.24
 + ID2= 2 ( 0158): 126.91 2.807 13.83 49.80
   _____
  ID = 3 ( 0160): 134.06 3.926 12.17 51.64
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTEPIPE( 0161)| PIPE Number = 1.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1800.00
| DT= 5.0 min | Length (m)= 43.50
----- Slope (m/m)= 0.003
          Manning n = 0.013
  <-----> TRAVEL TIME TABLE ----->
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms) (m/s)
                               min
  0.09 .989E+01 0.2
                        0.83
                               0.87
  0.19 .198E+02 0.6
                        1.26
                               0.57
  0.28 .297E+02 1.1
                        1.58
                               0.46
  0.38 .396E+02
                1.7
                        1.84
                               0.39
  0.47 .495E+02 2.3
                        2.05
                               0.35
  0.57 .593E+02
                3.0
                        2.23
                               0.32
  0.66 .692E+02 3.8
                        2.39
                               0.30
  0.76 .791E+02
                        2.53
                               0.29
                4.6
  0.85 .890E+02
                        2.65
                               0.27
                5.4
  0.95 .989E+02
                 6.3
                        2.76
                               0.26
  1.04 .109E+03
                7.1
                        2.86
                               10.50
  1.14 .119E+03
                 8.0
                        2.95
                               10.19
  1.23 .129E+03
                 8.9
                        3.03
                               9.92
  1.33 .138E+03
                 9.9
                        3.10
                               9.68
  1.42 .148E+03
                10.8
                         3.17
                                9.48
  1.52 .158E+03
                 11.7
                         3.23
                                9.29
  1.61 .168E+03 12.7
                         3.28
                                9.13
  1.71 .178E+03 13.7
                         3.34
                                8.99
  1.80 .188E+03 14.6
                         3.39
                                8.86
              <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0160) 134.06 3.93 12.17 51.64 0.68 2.41
 OUTFLOW: ID= 1 (0161) 134.06 3.95 12.17 51.64 0.68 2.41
```

```
**** WARNING: COMPUTATIONS FAILED TO CONVERGE.
                                                                                     AREA QPEAK TPEAK R.V.
                                                                                     (ha) (cms) (hrs) (mm)
                                                                         INFLOW: ID= 2 (0132) 53.460 9.452 12.17 85.64
                                                                        OUTFLOW: ID= 1 (0131) 53.460 0.257 18.75 84.14
I CALIB
| STANDHYD ( 0132) | Area (ha)= 53.46
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
                                                                                PEAK FLOW REDUCTION [Qout/Qin](%)= 2.71
                                                                               TIME SHIFT OF PEAK FLOW
                                                                                                        (min)=395.00
            IMPERVIOUS PERVIOUS (i)
                                                                                MAXIMUM STORAGE USED (ha.m.)= 3.5507
 Surface Area (ha)= 36.89
                            16.57
  Dep. Storage (mm)= 1.00
                           5.00
 Average Slope (%)= 1.00
                            2.00
 Length
           (m)= 596.99 215.00
 Mannings n = 0.014
                         0.250
                                                                       | ADD HYD ( 0117)|
                                                                       | 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
  Max.Eff.Inten.(mm/hr)= 122.99 126.02
                                                                       ----- (ha) (cms) (hrs) (mm)
                                                                          ID1=1 (0131): 53.46 0.257 18.75 84.14
      over (min)
                5.00 25.00
 Storage Coeff. (min)= 7.18 (ii) 24.83 (ii)
                                                                          + ID2= 2 ( 0161): 134.06 3.952 12.17 51.64
  Unit Hyd. Tpeak (min)= 5.00
                                                                           _____
                            25.00
  Unit Hyd. peak (cms)= 0.17
                             0.05
                                                                          ID = 3 ( 0117): 187.52 4.061 12.17 60.90
                         *TOTALS*
  PEAK FLOW (cms)= 7.39
                             3.14
                                     9.452 (iii)
                                                                         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 TIME TO PEAK (hrs)= 12.17 12.42
                                      12.17
  RUNOFF VOLUME (mm)= 109.43 66.18
                                          85.64
 TOTAL RAINFALL (mm)= 110.43 110.43
                                        110.43
  RUNOFF COEFFICIENT = 0.99
                               0.60
                                       0.78
                                                                       | ADD HYD ( 0117)|
                                                                       | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                                                                       ----- (ha) (cms) (hrs) (mm)
     CN^* = 68.0 Ia = Dep. Storage (Above)
                                                                          ID1=3 (0117): 187.52 4.061 12.17 60.90
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                                                                          + ID2= 2 ( 0036): 1.98 0.305 12.17 41.50
                                                                           _____
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                          ID = 1 ( 0117): 189.50 4.366 12.17 60.70
                                                                         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR( 0131)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
                                                                       | ROUTE CHN( 0166)|
----- (cms) (ha.m.) | (cms) (ha.m.)
                                                                       | IN= 2---> OUT= 1 | Routing time step (min)'= 5.00
          0.0000 0.0000 | 0.1700 2.5907
          0.0550 0.7098 | 0.2155 3.1239
                                                                              <----> DATA FOR SECTION ( 2.0) ----->
           0.1004 1.5249 | 0.2600 3.5865
                                                                              Distance Elevation Manning
           0.1400 2.1680 | 0.3014 4.0085
                                                                               0.00
                                                                                      100.20
                                                                                            0.0400
```

46.50 101.25 0.0400 /0.0350 Main Channel 52.50 99.25 0.0350 Main Channel 61.50 101.25 0.0350 /0.0400 Main Channel 105.00 102.00 0.0400	PEAK FLOW (cms)= 0.630 (i) TIME TO PEAK (hrs)= 12.500 RUNOFF VOLUME (mm)= 43.121 TOTAL RAINFALL (mm)= 110.427 RUNOFF COEFFICIENT = 0.390
<> DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
(m) (m) (cu.m.) (cms) (m/s) (min)	
0.05 99.30 .328E+01 0.0 0.23 25.78	
0.10 99.35 .131E+02 0.0 0.36 16.24	
0.15 99.40 .295E+02 0.0 0.47 12.39	
0.20 99.45 .525E+02 0.1 0.57 10.23	ADD HYD (0121)
0.25 99.50 .820E+02 0.2 0.66 8.82	1 + 2 = 3 AREA QPEAK TPEAK R.V.
0.30 99.55 .118E+03 0.3 0.75 7.81	(ha) (cms) (hrs) (mm)
0.35 99.60 .161E+03 0.4 0.83 7.04	ID1= 1 (0120): 10.00 0.630 12.50 43.12
0.40 99.65 .210E+03 0.5 0.91 6.44	+ ID2= 2 (0166): 189.50 3.879 12.17 60.69
0.45 99.70 .266E+03 0.7 0.98 5.96	
0.50 99.75 .328E+03 1.0 1.05 5.55	ID = 3 (0121): 199.50 4.280 12.25 59.81
0.55 99.80 .397E+03 1.3 1.12 5.21	
0.60 99.85 .472E+03 1.6 1.19 4.92	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
0.65 99.90 .554E+03 2.0 1.25 4.66	
0.70 99.95 .643E+03 2.4 1.31 4.44	
0.75 100.00 .738E+03 2.9 1.38 4.24	
0.80 100.05 .840E+03 3.4 1.44 4.06	CALIB
0.85 100.10 .948E+03 4.1 1.50 3.90	NASHYD (0046) Area (ha)= 17.20 Curve Number (CN)= 68.0
0.90 100.15 .106E+04 4.7 1.55 3.75	ID= 1 DT= 5.0 min Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
0.95 100.20 .118E+04 5.5 1.61 3.62	U.H. Tp(hrs)= 0.47
< hydrograph> <-pipe / channel-> AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL	Unit Hyd Qpeak (cms)= 1.398
(ha) (cms) (hrs) (mm) (m) (m/s)	PEAK FLOW (cms)= 1.034 (i)
INFLOW: ID= 2 (0117) 189.50 4.37 12.17 60.70 0.87 1.52	TIME TO PEAK (hrs)= 12.500
OUTFLOW: ID= 1 (0166) 189.50 3.88 12.17 60.69 0.83 1.48	RUNOFF VOLUME (mm)= 43.122
	TOTAL RAINFALL (mm)= 110.427
	RUNOFF COEFFICIENT = 0.391
	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB	
D = 1 D = 5.0 min la (mm) = 13.90 # of Linear Res.(N) = 3.00	
	ADD HYD(0114)
Unit Hyd Qpeak (cms)= 0.868	1 + 2 = 3 AREA QPEAK TPEAK R.V.
onit hyd apeak (tilis)- 0.000	(ha) (cms) (hrs) (mm)
	(11a) (1113) (11111)

```
ID1= 1 ( 0121): 199.50 4.280 12.25 59.81
 + ID2= 2 ( 0046): 17.20 1.034 12.50 43.12
                                     4.33 1.97 | 10.50 5.65 | 16.67 2.21 | 22.83 1.47
 ID = 3 ( 0114): 216.70 5.054 12.25 58.48
                                     NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                     5.00 1.97 | 11.17 7.62 | 17.33 2.21 | 23.50 1.47
                                     5.50 1.97 | 11.67 11.80 | 17.83 2.21 | 24.00 1.47
** SIMULATION:Run 07
                                     *********
                                     5.83 1.97 | 12.00 93.40 | 18.17 2.21 |
                                     6.00 1.97 | 12.17 135.68 | 18.33 2.21 |
                                     READ STORM | Filename: C:\Users\Janis Lobo\AppD
       ata\Local\Temp\
      9d3c8ff4-eb6c-4319-bb26-ce62fa26e7e3\438691d7
| Ptotal=122.89 mm | Comments: 100-year - 24-h SCS RBG
_____
                                  | CALIB
   TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
   | NASHYD ( 0036)| Area (ha)= 1.98 Curve Number (CN)= 68.0
   NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
   1.00 1.35 | 7.17 2.46 | 13.33 1.72 | 19.50 2.21
                                        ---- TRANSFORMED HYETOGRAPH ----
   TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
                                     hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
   1.33 1.35 | 7.50 2.46 | 13.67 1.72 | 19.83 2.21
   2.00 1.35 | 8.17 2.46 | 14.33 3.69 | 20.50 1.47
                                     0.667 1.35 | 6.750 2.46 | 12.833 9.09 | 18.92 2.21
   3.00 1.60 | 9.17 3.32 | 15.33 3.69 | 21.50 1.47
                                     0.833 1.35 | 6.917 2.46 | 13.000 9.09 | 19.08 2.21
                                     3.33 1.60 | 9.50 3.93 | 15.67 3.69 | 21.83 1.47
                                     1.000 1.35 | 7.083 2.46 | 13.167 9.09 | 19.25 2.21
   3.50 1.60 | 9.67 3.93 | 15.83 3.69 | 22.00 1.47
                                     1.083 1.35 | 7.167 2.46 | 13.250 1.72 | 19.33 2.21
   1.250 1.35 | 7.333 2.46 | 13.417 1.72 | 19.50 2.21
```

4.00 | 1.60 | 10.17 | 4.42 | 16.33 | 2.21 | 22.50 | 1.47

```
1.500 1.35 | 7.583 2.46 | 13.667 1.72 | 19.75 2.21
                                  5.250 1.97 | 11.333 11.80 | 17.417 2.21 | 23.50 1.47
5.333 1.97 | 11.417 11.80 | 17.500 2.21 | 23.58 1.47
5.583 1.97 | 11.667 11.80 | 17.750 2.21 | 23.83 1.47
5.750 1.97 | 11.833 51.13 | 17.917 2.21 | 24.00 1.47
5.833 1.97 | 11.917 93.39 | 18.000 2.21 | 24.08 1.47
6.000 1.97 | 12.083 135.67 | 18.167 2.21 |
                                  6.083 1.97 | 12.167 135.68 | 18.250 2.21 |
Unit Hyd Qpeak (cms)= 0.840
PEAK FLOW (cms)= 0.361 (i)
TIME TO PEAK (hrs)= 12.167
RUNOFF VOLUME (mm)= 50.017
3.000 1.60 | 9.083 3.32 | 15.167 3.69 | 21.25 1.47
                                TOTAL RAINFALL (mm)= 122.887
                                RUNOFF COEFFICIENT = 0.407
3.083 1.60 | 9.167 3.32 | 15.250 3.69 | 21.33 1.47
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
l CALIB
| NASHYD ( 0037) | Area (ha)= 28.80 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
3.833 1.60 | 9.917 4.42 | 16.000 3.69 | 22.08 1.47
                               ----- U.H. Tp(hrs)= 1.21
4.000 1.60 | 10.083 4.42 | 16.167 3.69 | 22.25 1.47
                                Unit Hyd Qpeak (cms)= 0.908
PEAK FLOW (cms)= 1.034 (i)
TIME TO PEAK (hrs)= 13.333
4.333 1.97 | 10.417 5.65 | 16.500 2.21 | 22.58 1.47
                                RUNOFF VOLUME (mm)= 51.979
TOTAL RAINFALL (mm)= 122.887
4.500 1.97 | 10.583 5.65 | 16.667 2.21 | 22.75 1.47
                                RUNOFF COEFFICIENT = 0.423
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
4.750 1.97 | 10.833 7.62 | 16.917 2.21 | 23.00 1.47
4.833 1.97 | 10.917 7.62 | 17.000 2.21 | 23.08 1.47
-----
5.000 1.97 | 11.083 7.62 | 17.167 2.21 | 23.25 1.47
                              |ROUTEPIPE(0165)| PIPE Number = 1.00
```

```
| DT= 5.0 min | Length (m)= 73.30
----- Slope (m/m)= 0.010
          Manning n = 0.013
  <-----> TRAVEL TIME TABLE ----->
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (cu.m.) (cms)
                      (m/s)
                              min
  0.06 .167E+01 0.0
                       0.92
                              1.33
  0.13 .465E+01 0.1
                        1.43 0.85
  0.19 .840E+01 0.2
                        1.84
                             0.66
  0.25 .127E+02 0.4
                        2.19
                             0.56
  0.32 .174E+02 0.6
                        2.49
                              0.49
  0.38 .225E+02 0.8
                        2.75
                              0.44
  0.44 .277E+02 1.1
                        2.99
                              0.41
  0.51 .332E+02 1.4
                        3.19
                               0.38
  0.57 .387E+02 1.8
                        3.37
                               0.36
  0.63 .442E+02 2.1
                        3.52
                               0.35
  0.69 .497E+02 2.5
                        3.65
                              0.33
  0.76 .552E+02 2.8
                             0.32
                        3.76
  0.82 .604E+02 3.2
                        3.84
                              0.32
  0.88 .655E+02 3.5
                        3.90 0.31
  0.95 .702E+02 3.8
                        3.93
                             0.31
  1.01 .745E+02 4.0
                        3.93 0.31
  1.07 .783E+02 4.1
                        3.89 0.31
  1.14 .812E+02 4.2
                        3.78 0.32
  1.20 .829E+02 3.9
                        3.45
                             0.35
              <---- hydrograph ----> <-pipe / channel->
            AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
            (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0037) 28.80 1.03 13.33 51.98 0.42 2.90
 OUTFLOW: ID= 1 (0165) 28.80 1.03 13.33 51.98 0.42 2.90
I CALIB
| NASHYD (0051)| Area (ha)= 69.30 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 1.45
  Unit Hyd Qpeak (cms)= 1.825
  PEAK FLOW (cms)= 2.151 (i)
```

| IN= 2---> OUT= 1 | Diameter (mm)=1200.00

TIME TO PEAK (hrs)= 13.583 RUNOFF VOLUME (mm)= 51.979 TOTAL RAINFALL (mm)= 122.887 RUNOFF COEFFICIENT = 0.423

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ROUTEPIPE(0164) | PIPE Number = 1.00 | IN= 2---> OUT= 1 | Diameter (mm)=1350.00 | DT= 5.0 min | Length (m)= 104.50 ------ Slope (m/m)= 0.010 | Manning n = 0.013

<	TRA	VEL TIM	E TABLE -		>
DEPTH	I VOLUM	1E FLOV	N RATE	VELOCITY	TRAV.TIME
(m)	(cu.m.)	(cms)	(m/s)	min	
0.07	.302E+01	0.0	0.99	1.76	
0.14	.839E+01	0.1	1.55	1.13	
0.21	.152E+02	0.3	1.99	0.88	
0.28	.229E+02	0.5	2.37	0.74	
0.36	.314E+02	0.8	2.69	0.65	
0.43	.405E+02	1.2	2.98	0.58	
0.50	.500E+02	1.5	3.23	0.54	
0.57	.598E+02	2.0	3.45	0.50	
0.64	.698E+02	2.4	3.64	0.48	
0.71	.798E+02	2.9	3.81	0.46	
0.78	.898E+02	3.4	3.95	0.44	
0.85	.996E+02	3.9	4.07	0.43	
0.92	.109E+03	4.3	4.16	0.42	
0.99	.118E+03	4.8	4.22	0.41	
1.07	.127E+03	5.2	4.25	0.41	
1.14	.134E+03	5.5	4.25	0.41	
1.21	.141E+03	5.7	4.20	0.41	
1.28	.147E+03	5.7	4.09	0.43	
1.35	NaN	NaN	NaN	NaN	

```
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
CALIB
| STANDHYD ( 0049)| Area (ha)= 4.08
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
                                                                       | ADD HYD ( 0157)|
            IMPERVIOUS PERVIOUS (i)
                                                                       | 3 + 2 = 1 | AREA QPEAK TPEAK R.V.
  Surface Area (ha)= 2.73
                           1.35
                                                                       -----
                                                                                      (ha) (cms) (hrs) (mm)
  Dep. Storage (mm)= 1.00
                           5.00
                                                                          ID1=3 (0157): 98.10 3.166 13.50 51.98
 Average Slope (%)= 1.00
                            2.00
                                                                         + ID2= 2 ( 0049): 4.08 0.971 12.17 97.95
 Length
            (m)= 164.92 215.00
                                                                          _____
 Mannings n = 0.014
                         0.250
                                                                          ID = 1 ( 0157): 102.18 3.219 13.50 53.81
  Max.Eff.Inten.(mm/hr)= 135.68 99.22
                                                                         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
      over (min) 5.00 25.00
  Storage Coeff. (min)= 3.19 (ii) 22.61 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                             25.00
  Unit Hyd. peak (cms)= 0.27
                             0.05
                                                                       | ROUTEPIPE( 0163)| PIPE Number = 1.00
                        *TOTALS*
                                                                       | IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1500.00
                                                                       DT= 5.0 min | Length (m)= 346.00
  PEAK FLOW (cms)= 0.83
                             0.21
                                    0.971 (iii)
                                                                       ----- Slope (m/m)= 0.007
 TIME TO PEAK (hrs)= 12.17 12.42
                                     12.17
  RUNOFF VOLUME (mm)= 121.89 68.70
                                          97.95
                                                                                 Manning n = 0.013
 TOTAL RAINFALL (mm)= 122.89 122.89
                                        122.89
  RUNOFF COEFFICIENT = 0.99 0.56
                                       0.80
                                                                         <-----> TRAVEL TIME TABLE ----->
                                                                          DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                                                                          (m) (cu.m.) (cms)
                                                                                               (m/s)
                                                                                                      min
                                                                          0.08 .656E+02 0.2
                                                                                                1.18
                                                                                                       4.90
                                                                          0.16 .131E+03
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                                                                                       0.7
                                                                                                1.79
                                                                                                       3.22
     CN^* = 68.0 Ia = Dep. Storage (Above)
                                                                          0.24 .197E+03
                                                                                        1.3
                                                                                                2.26
                                                                                                       2.55
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                                                                          0.32 .262E+03
                                                                                        2.0
                                                                                                2.65
                                                                                                       2.18
    THAN THE STORAGE COEFFICIENT.
                                                                          0.39 .328E+03
                                                                                         2.8
                                                                                                2.97
                                                                                                       1.94
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                          0.47 .393E+03
                                                                                         3.7
                                                                                                3.25
                                                                                                       1.78
                                                                          0.55 .459E+03
                                                                                                3.49
                                                                                                       1.65
                                                                                         4.6
                                                                          0.63 .524E+03
                                                                                         5.6
                                                                                                3.70
                                                                                                       1.56
                                                                          0.71 .590E+03
                                                                                         6.6
                                                                                                3.89
                                                                                                       1.48
                                                                          0.79 .656E+03
                                                                                                4.07
                                                                                                       1.42
-----
                                                                                         7.7
                                                                          0.87 .721E+03
                                                                                         8.8
                                                                                                4.22
                                                                                                       1.37
| ADD HYD ( 0157)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
                                                                          0.95 .787E+03
                                                                                         9.9
                                                                                                4.36
                                                                                                       1.32
---- (ha) (cms) (hrs) (mm)
                                                                          1.03 .852E+03
                                                                                                4.49
                                                                                                       5.56
                                                                                        11.1
   ID1= 1 ( 0164): 69.30 2.150 13.58 51.98
                                                                          1.11 .918E+03
                                                                                        12.2
                                                                                                       5.42
                                                                                                4.61
  + ID2= 2 ( 0165): 28.80 1.034 13.33 51.98
                                                                          1.18 .983E+03
                                                                                        13.4
                                                                                                4.72
                                                                                                        5.29
   ______
                                                                          1.26 .105E+04
                                                                                         14.6
                                                                                                4.82
                                                                                                        5.18
   ID = 3 ( 0157): 98.10 3.166 13.50 51.98
                                                                          1.34 .111E+04
                                                                                        15.8
                                                                                                4.92
                                                                                                        5.08
```

1.42 .118E+04

17.1

5.01

4.99

```
1.50 .125E+04 18.3
                          5.09
                                  4.91
               <---- hydrograph ----> <-pipe / channel->
             AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
             (ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID= 2 (0157) 102.18 3.22 13.50 53.81 0.43 3.09
 OUTFLOW: ID= 1 (0163) 102.18 3.22 13.50 53.81 0.43 3.09
| CALIB
| STANDHYD ( 0106) | Area (ha) = 6.17
|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00
             IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 4.13
                           2.04
  Dep. Storage (mm)= 1.00 5.00
  Average Slope (%)= 1.00 2.00
 Length
            (m)= 202.81 215.00
 Mannings n = 0.014 0.250
  Max.Eff.Inten.(mm/hr)= 135.68 99.22
       over (min) 5.00 25.00
  Storage Coeff. (min)= 3.61 (ii) 23.03 (ii)
  Unit Hyd. Tpeak (min)= 5.00 25.00
  Unit Hyd. peak (cms)= 0.25
                              0.05
                        *TOTALS*
  PEAK FLOW (cms)= 1.25
                              0.31
                                      1.458 (iii)
 TIME TO PEAK (hrs)= 12.17 12.42
                                       12.17
  RUNOFF VOLUME (mm)= 121.89 68.70
                                            97.95
 TOTAL RAINFALL (mm)= 122.89 122.89
                                          122.89
  RUNOFF COEFFICIENT = 0.99 0.56
                                         0.80
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
```

```
|ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
            IMPERVIOUS PERVIOUS (i)
  Surface Area (ha)= 12.81
                             5.75
  Dep. Storage (mm)= 1.00
                             5.00
  Average Slope (%)= 1.00
                             2.00
  Length
           (m)= 351.76 215.00
             = 0.014 0.250
  Mannings n
  Max.Eff.Inten.(mm/hr)= 135.68 144.66
      over (min) 5.00 25.00
  Storage Coeff. (min)= 5.03 (ii) 21.73 (ii)
  Unit Hyd. Tpeak (min)= 5.00
                            25.00
  Unit Hyd. peak (cms)= 0.21
                             0.05
                         *TOTALS*
  PEAK FLOW (cms)= 2.99
                             1.33
                                     3.884 (iii)
  TIME TO PEAK (hrs)= 12.17 12.42
                                      12.17
  RUNOFF VOLUME (mm)= 121.89 76.91
                                          97.15
  TOTAL RAINFALL (mm)= 122.89 122.89
                                         122.89
  RUNOFF COEFFICIENT = 0.99
                               0.63
                                       0.79
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| RESERVOIR( 0133)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
----- (cms) (ha.m.) | (cms) (ha.m.)
           0.0000 0.0000 | 0.0250 1.0741
           0.0140 0.2394 | 0.0290 1.2348
           0.0150  0.6048 | 0.0340  1.4904
           AREA QPEAK TPEAK R.V.
             (ha) (cms) (hrs) (mm)
 INFLOW: ID= 2 (0119) 18.560 3.884 12.17 97.15
 OUTFLOW: ID= 1 (0133) 18.560 0.036 24.33 71.87
```

| STANDHYD (0119) | Area (ha)= 18.56

PEAK FLOW REDUCTION [Qout/Qin](%)= 0.94 TIME SHIFT OF PEAK FLOW (min)=730.00 0.32						2.20
TIME SHIFT OF PEAK FLOW (min)=730.00 MAXIMUM STORAGE USED (ha.m.)= 1.6273 0.47 288E403 3.8 2.85 1.49 0.55 3.36E403 3.8 2.85 1.48 0.63 3.34E403 4.6 3.02 1.40 0.63 3.34E403 5.4 3.18 1.33 0.79 4.79E403 6.3 3.32 1.77 ADD HYD (0159) 0.79 4.79E403 6.3 3.32 1.77 ADD HYD (0159) 1.1 2 3 AREA QPEAK TPEAK R.V. 0.95 .575E403 7.2 3.45 1.22 1.1 2 2 1.1 2 3 AREA QPEAK TPEAK R.V. 0.95 .575E403 8.1 3.56 1.18 0.10 3.623E403 9.0 3.67 6.682 1.10 1.11 6.71E403 10.0 3.67 6.682 1.11 6.71E403 10.0 3.67 6.682 1.12 1.11 6.71E403 10.0 3.67 6.682 1.13 5.6 1.18 1.13 5.6 1.18 1.13 5.6 1.18 1.14 7.99E403 1.0 3.67 6.682 1.15 7.99E403 1.0 3.67 6.682 1.15 7.99E403 1.0 3.67 6.682 1.16 2.10 3.86 6.48 1.17 4.99E403 1.0 3.67 6.682 1.18 7.99E403 1.0 3.67 6.682 1.19 3.0 1.0 3.67 6.682 1.10 3.6 6.48 1.11 6.71E403 1.0 3.86 6.48 1.12 6.76E403 1.0 3.86 6.48 1.13 5.6 1.18 1.14 7.99E403 1.0 3.86 6.48 1.15 7.99E403 1.0 3.86 6.48 1.18 7.99E403 1.0 3.86 6.48 1.18 7.99E403 1.0 3.86 6.48 1.18 7.99E403 1.0 3.86 6.48 1.19 4.0 4.0 6.12 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 1.10 3.10 9.91E403 1.0 4.15 6.02		0.52		1 6	216	1 05
MAXIMUM STORAGE USED (ha.m.) = 1.6273	111VIE 3111 1 OF 1 EAR 1 EOV (11111)-730.00	U 30				
0.55 336E-03 3.8 2.85 1.48 1.40	MAXIMUM STORAGE LISED (ham)= 1.6273					
0.63 384E+03 5.4 3.18 1.33 3.2 1.40 3.4 3.18 1.33 3.32 1.27 3.45 3.18 1.33 3.32 1.27 3.45 3.18 3.33 3.32 1.27 3.45 3.18 3.33 3.32 1.27 3.45 3.18 3.33 3.32 3.27 3.45 3.18 3.33 3.28	(10.1111) = 1.0273					
A31E+03						
ADD HYD (0159)						
ADD HYD (0159) 1 + 2 = 3						
1 + 2 = 3 AREA OPEAK TPEAK R.V.	ADD HYD (0159)					
Chair (cms) (hrs) (mm)						
ID1=1 (0106):	·					
HID2=2 (0133): 18.56						
1.26	` ,					
ID = 3 (0159): 24.73						
1.42	ID = 3 (0159): 24.73 1.474 12.17 78.37					
AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL (ha) (cms) (hrs) (mm) (m) (m/s) (ms) (hrs) (mm) (m) (m/s) (ms) (hrs) (mm) (m) (m/s) (ms) (hrs) (mm) (ms) (hrs) (hrs)		1.42	.863E+03	13.9	4.09	
AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL (ha) (cms) (hrs) (mm) (m) (m/s) INFLOW: ID= 2 (0159) 126.91 3.33 13.50 58.60 0.51 2.73 ADD HYD (0159) OUTFLOW: ID= 1 (0158) 126.91 3.33 13.50 58.60 0.51 2.73 APEA QPEAK TPEAK R.V. (hrs) (mm) (m) (m/s) 3 + 2 = 1 AREA QPEAK TPEAK R.V. (hrs) (mm) ID1=3 (0159): 24.73 1.474 12.17 78.37	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	1.50	.911E+03	15.0	4.15	6.02
Manning n = 0.013			<-	hydro	graph	> <-pipe / channel->
ADD HYD (0159) AREA QPEAK TPEAK R.V.			AREA	QPEA	TPEAK	R.V. MAX DEPTH MAX VEL
ADD HYD (0159)			(ha)	(cms) (hrs) (mn	n) (m) (m/s)
3 + 2 = 1		INFLOW	: ID= 2 (01	59) 126.	91 3.33	13.50 58.60 0.51 2.73
	ADD HYD (0159)	OUTFLO	W: ID= 1 (0	158) 12	5.91 3.3	33 13.50 58.60 0.51 2.73
ID1= 3 (0159): 24.73	3 + 2 = 1 AREA QPEAK TPEAK R.V.					
+ ID2= 2 (0163): 102.18 3.219 13.50 53.81						
CALIB ID = 1 (0159): 126.91 3.330 13.50 58.60 STANDHYD (0136) Area (ha)= 7.15 ID = 1 (0159): 126.91 3.330 13.50 58.60 STANDHYD (0136) Area (ha)= 7.15 ID = 1 DT = 5.0 min Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00 ID = 1 DT = 5.0 min Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00 ID = 1 DT = 5.0 min Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00 ID = 1 DT = 5.0 min Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 4.79 2.36 Dep. Storage (mm)= 1.00 13.90 Average Slope (%)= 1.00 2.00 IN = 2> OUT = 1 Width (mm)=2400.00 Height (mm)=1500.00 DT = 5.0 min Length (m)= 253.00 DT = 5.0 min Length (m)= 253.00 DT = 5.0 min Length (m)= 253.00 Manning n = 0.013 Max.Eff.Inten.(mm/hr)= 135.68 93.68						
STANDHYD (0136) Area (ha) = 7.15	+ ID2= 2 (0163): 102.18 3.219 13.50 53.81					
ID= 1 DT= 5.0 min Total Imp(%)= 67.00 Dir. Conn.(%)= 55.00	=======================================	•				
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 4.79 2.36 Dep. Storage (mm)= 1.00 13.90 ROUTEPIPE(0158) PIPE Number = 1.00 Average Slope (%)= 1.00 2.00 IN= 2> OUT= 1 Width (mm)=2400.00 Height (mm)=1500.00 Length (m)= 218.33 215.00 DT= 5.0 min Length (m)= 253.00 Mannings n = 0.014 0.250	ID = 1 (0159): 126.91 3.330 13.50 58.60	-				
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 4.79 2.36		ID= 1 DT	= 5.0 min	Total Im	p(%)= 67.	.00 Dir. Conn.(%)= 55.00
	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.					
ROUTEPIPE(0158) PIPE Number = 1.00						
IN= 2> OUT= 1 Width (mm)=2400.00 Height (mm)=1500.00 Length (m)= 218.33 215.00 DT= 5.0 min Length (m)= 253.00 Mannings n = 0.014 0.250 Manning n = 0.013 Max.Eff.Inten.(mm/hr)= 135.68 93.68	L DOUTEDIDE (0450) L DIDE W. J	=				
DT= 5.0 min Length (m)= 253.00		_		•		
Slope (m/m)= 0.005 Manning n = 0.013 Max.Eff.Inten.(mm/hr)= 135.68 93.68		_				
Manning n = 0.013 Max.Eff.Inten.(mm/hr)= 135.68 93.68		Mannıı	ngs n =	0.014	0.250	J
			· · · · /	// \ 4	25.60	02.60
	Manning n = 0.013		•			93.68
< TRAVEL TIME TABLE> Storage Coeff. (min)= 3.78 (ii) 23.65 (ii)	<>	Storage	e Coeff. (mir	n)= 3.	78 (ii) 23	.65 (ii)
DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME Unit Hyd. Tpeak (min)= 5.00 25.00	DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME	Unit Hy	/d. Tpeak (m	in)= 5	5.00 2	5.00
(m) (cu.m.) (cms) (m/s) min Unit Hyd. peak (cms)= 0.25 0.05	(m) (cu.m.) (cms) (m/s) min	Unit Hy	/d. peak (cm	is)= 0	.25 0.	.05
0.08 .479E+02 0.2 0.96 4.39 *TOTALS*	0.08 .479E+02 0.2 0.96 4.39				*TOTAL	_S*
0.16 .959E+02 0.6 1.46 2.88 PEAK FLOW (cms)= 1.45 0.34 1.661 (iii)	0.16 .959E+02 0.6 1.46 2.88	PEAK F	LOW (cm	s)= 1	.45 0.	34 1.661 (iii)

```
TIME TO PEAK (hrs)= 12.17 12.42 12.17
                                                                          0.76 .791E+02 4.6
                                                                                                2.53
                                                                                                        0.29
  RUNOFF VOLUME (mm)= 121.89 63.39
                                                                          0.85 .890E+02
                                          95.56
                                                                                        5.4
                                                                                                2.65
                                                                                                        0.27
 TOTAL RAINFALL (mm)= 122.89 122.89
                                        122.89
                                                                          0.95 .989E+02
                                                                                                2.76
                                                                                                        0.26
  RUNOFF COEFFICIENT = 0.99
                             0.52
                                       0.78
                                                                          1.04 .109E+03
                                                                                         7.1
                                                                                                2.86
                                                                                                       10.50
                                                                          1.14 .119E+03
                                                                                         8.0
                                                                                                2.95
                                                                                                       10.19
                                                                                        8.9
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
                                                                          1.23 .129E+03
                                                                                                3.03
                                                                                                        9.92
                                                                          1.33 .138E+03
                                                                                         9.9
                                                                                                3.10
                                                                                                        9.68
  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                                                                          1.42 .148E+03
                                                                                         10.8
                                                                                                 3.17
                                                                                                        9.48
     CN^* = 68.0 Ia = Dep. Storage (Above)
                                                                          1.52 .158E+03
                                                                                                 3.23
                                                                                                        9.29
                                                                                         11.7
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                                                                          1.61 .168E+03 12.7
                                                                                                 3.28
                                                                                                        9.13
    THAN THE STORAGE COEFFICIENT.
                                                                          1.71 .178E+03 13.7
                                                                                                 3.34
                                                                                                        8.99
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                          1.80 .188E+03 14.6
                                                                                                 3.39
                                                                                                        8.86
                                                                                      <---- hydrograph ----> <-pipe / channel->
                                                                                    AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL
                                                                                    (ha) (cms) (hrs) (mm) (m) (m/s)
                                                                        INFLOW: ID= 2 (0160) 134.06 4.56 12.17 60.57 0.75 2.52
                                                                        OUTFLOW: ID= 1 (0161) 134.06 4.59 12.17 60.57 0.76 2.53
| ADD HYD ( 0160)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
                                                                         **** WARNING: COMPUTATIONS FAILED TO CONVERGE.
   ID1= 1 ( 0136): 7.15 1.661 12.17 95.56
  + ID2= 2 ( 0158): 126.91 3.332 13.50 58.60
   _____
   ID = 3 ( 0160): 134.06 4.565 12.17 60.57
                                                                       CALIB
                                                                       | STANDHYD ( 0132) | Area (ha)= 53.46
                                                                       | ID= 1 DT= 5.0 min | Total Imp(%)= 69.00 Dir. Conn.(%)= 45.00
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                    IMPERVIOUS PERVIOUS (i)
                                                                         Surface Area (ha)= 36.89 16.57
| ROUTEPIPE( 0161)| PIPE Number = 1.00
                                                                         Dep. Storage (mm)= 1.00
                                                                                                    5.00
| IN= 2---> OUT= 1 | Width (mm)=2400.00 Height (mm)=1800.00
                                                                         Average Slope (%)= 1.00
                                                                                                    2.00
| DT= 5.0 min | Length (m)= 43.50
                                                                         Length
                                                                                 (m)= 596.99 215.00
----- Slope (m/m)= 0.003
                                                                         Mannings n = 0.014 0.250
          Manning n = 0.013
                                                                         Max.Eff.Inten.(mm/hr)= 135.68 144.66
  <-----> TRAVEL TIME TABLE ----->
                                                                              over (min) 5.00 25.00
  DEPTH VOLUME FLOW RATE VELOCITY TRAV.TIME
                                                                         Storage Coeff. (min)= 6.91 (ii) 23.61 (ii)
   (m) (cu.m.) (cms)
                                                                         Unit Hyd. Tpeak (min)= 5.00
                                                                                                    25.00
                       (m/s)
                               min
  0.09 .989E+01 0.2
                         0.83
                              0.87
                                                                         Unit Hyd. peak (cms)= 0.18
                                                                                                     0.05
                                                                                                *TOTALS*
  0.19 .198E+02 0.6
                         1.26
                              0.57
  0.28 .297E+02 1.1
                         1.58
                              0.46
                                                                         PEAK FLOW (cms)= 8.21
                                                                                                    3.69
                                                                                                            10.668 (iii)
  0.38 .396E+02 1.7
                                                                         TIME TO PEAK (hrs)= 12.17 12.42
                                                                                                             12.17
                         1.84
                               0.39
  0.47 .495E+02 2.3
                         2.05 0.35
                                                                         RUNOFF VOLUME (mm)= 121.89 76.91
                                                                                                                 97.15
  0.57 .593E+02 3.0
                         2.23
                                0.32
                                                                         TOTAL RAINFALL (mm)= 122.89 122.89
                                                                                                                122.89
  0.66 .692E+02 3.8
                         2.39
                                0.30
                                                                         RUNOFF COEFFICIENT = 0.99
                                                                                                      0.63
                                                                                                               0.79
```

```
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN^* = 68.0 Ia = Dep. Storage (Above)
  (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
    THAN THE STORAGE COEFFICIENT.
  (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| RESERVOIR( 0131)|
| IN= 2---> OUT= 1 |
| DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
----- (cms) (ha.m.) | (cms) (ha.m.)
          0.0000 0.0000 | 0.1700 2.5907
          0.0550 0.7098 | 0.2155 3.1239
          0.1004 1.5249 | 0.2600 3.5865
          0.1400 2.1680 | 0.3014 4.0085
             AREA QPEAK TPEAK R.V.
             (ha) (cms) (hrs) (mm)
 INFLOW: ID= 2 (0132) 53.460 10.668 12.17 97.15
 OUTFLOW: ID= 1 (0131) 53.460 0.298 20.17 95.45
       PEAK FLOW REDUCTION [Qout/Qin](%)= 2.79
       TIME SHIFT OF PEAK FLOW
                               (min)=480.00
       MAXIMUM STORAGE USED (ha.m.)= 3.9706
| ADD HYD ( 0117)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1= 1 ( 0131): 53.46 0.298 20.17 95.45
  + ID2= 2 ( 0161): 134.06 4.593 12.17 60.57
   ID = 3 ( 0117): 187.52 4.716 12.17 70.51
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

```
| 3 + 2 = 1 |
            AREA QPEAK TPEAK R.V.
              (ha) (cms) (hrs) (mm)
-----
   ID1=3 ( 0117): 187.52 4.716 12.17 70.51
  + ID2= 2 ( 0036): 1.98 0.361 12.17 50.02
   _____
   ID = 1 ( 0117): 189.50 5.077 12.17 70.30
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ROUTE CHN( 0166)|
| IN= 2---> OUT= 1 | Routing time step (min)'= 5.00
_____
      <----> DATA FOR SECTION ( 2.0) ----->
      Distance Elevation Manning
       0.00
             100.20
                      0.0400
       46.50
             101.25 0.0400 /0.0350 Main Channel
             99.25
                     0.0350 Main Channel
       52.50
       61.50
              101.25 0.0350 /0.0400 Main Channel
       105.00 102.00 0.0400
  <---->
  DEPTH ELEV VOLUME FLOW RATE VELOCITY TRAV.TIME
   (m) (m) (cu.m.) (cms)
                            (m/s) (min)
  0.05 99.30 .328E+01 0.0
                             0.23 25.78
  0.10 99.35 .131E+02 0.0
                             0.36 16.24
  0.15 99.40 .295E+02 0.0
                             0.47 12.39
  0.20 99.45 .525E+02 0.1
                             0.57 10.23
  0.25 99.50 .820E+02 0.2
                             0.66 8.82
  0.30 99.55 .118E+03 0.3
                             0.75
                                  7.81
  0.35 99.60 .161E+03
                             0.83
                                  7.04
                      0.4
  0.40 99.65 .210E+03
                      0.5
                             0.91
                                   6.44
  0.45 99.70 .266E+03
                      0.7
                             0.98
                                   5.96
  0.50 99.75 .328E+03
                             1.05
                                   5.55
                      1.0
  0.55 99.80 .397E+03
                      1.3
                                   5.21
                             1.12
  0.60 99.85 .472E+03
                      1.6
                             1.19
                                   4.92
  0.65 99.90 .554E+03
                       2.0
                                   4.66
                             1.25
  0.70 99.95 .643E+03
                       2.4
                             1.31
                                   4.44
  0.75 100.00 .738E+03
                       2.9
                             1.38 4.24
  0.80 100.05 .840E+03
                       3.4
                              1.44 4.06
  0.85 100.10 .948E+03
                       4.1
                              1.50 3.90
  0.90 100.15 .106E+04
                       4.7
                              1.55 3.75
```

| ADD HYD (0117)|

```
0.95 100.20 .118E+04 5.5 1.61 3.62
```

<---- hydrograph ----> <-pipe / channel->

AREA QPEAK TPEAK R.V. MAX DEPTH MAX VEL

```
(ha) (cms) (hrs) (mm) (m) (m/s)
 INFLOW: ID=2 (0117) 189.50 5.08 12.17 70.30 0.92 1.58
 OUTFLOW: ID= 1 ( 0166) 189.50  4.52  12.17  70.29  0.88  1.53
I CALIB
| NASHYD ( 0120) | Area (ha)= 10.00 Curve Number (CN)= 68.0
|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.44
  Unit Hyd Qpeak (cms)= 0.868
  PEAK FLOW (cms)= 0.754 (i)
  TIME TO PEAK (hrs)= 12.500
  RUNOFF VOLUME (mm)= 51.975
  TOTAL RAINFALL (mm)= 122.887
  RUNOFF COEFFICIENT = 0.423
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD ( 0121)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1=1 (0120): 10.00 0.754 12.50 51.97
  + ID2= 2 ( 0166): 189.50 4.522 12.17 70.29
   _____
   ID = 3 ( 0121): 199.50 5.015 12.25 69.37
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
I CALIB
| NASHYD ( 0046)| Area (ha)= 17.20 Curve Number (CN)= 68.0
```

|ID= 1 DT= 5.0 min | Ia (mm)= 13.90 # of Linear Res.(N)= 3.00

```
----- U.H. Tp(hrs)= 0.47
  Unit Hyd Qpeak (cms)= 1.398
  PEAK FLOW (cms)= 1.238 (i)
  TIME TO PEAK (hrs)= 12.500
  RUNOFF VOLUME (mm)= 51.976
  TOTAL RAINFALL (mm)= 122.887
  RUNOFF COEFFICIENT = 0.423
  (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
_____
| ADD HYD ( 0114)|
| 1 + 2 = 3 | AREA QPEAK TPEAK R.V.
----- (ha) (cms) (hrs) (mm)
   ID1=1 (0121): 199.50 5.015 12.25 69.37
  + ID2= 2 ( 0046): 17.20 1.238 12.50 51.98
   _____
   ID = 3 ( 0114): 216.70 5.951 12.25 67.99
  NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```


APPENDIX F-4
Excerpts from SCUBE Study (2013) and DFRP Hdyrology
Report (1989)

Rob Merwin

From: Bastien, Jonathan < Jonathan.Bastien@conservationhamilton.ca>

Sent: January 14, 2020 11:41 AM
To: Andrew Fata; Rob Merwin

Cc:Stone, Mike; Janis Lobo; Rob Merwin; Patrick DelaneySubject:RE: BSS 3 - Next Steps Suggestions for Urban Tech

Good morning Andrew,

Preliminary results from our ongoing FPM study compared satisfactorily to the Watercourse 9 peak flow rates determined by your latest Block 3 modeling (Oct 2019 version). But given that our study has not yet been finalized, I would suggest not including our study's preliminary results in your report.

Feel free to call to discuss further.

Jonathan Bastien

Water Resources Engineering
Hamilton Conservation Authority
838 Mineral Springs Road, P.O. Box 81067

Ancaster, ON L9G 4X1

Phone: 905-525-2181 Ext. 138

Mobile: 905-515-3087

Email: jbastien@conservationhamilton.ca

A Healthy Watershed for Everyone

The contents of this e-mail and any attachments are intended for the named recipient(s). This e-mail may contain information that is privileged and confidential. If you have received this message in error or are not the named recipient(s), please notify the sender and permanently delete this message without reviewing, copying, forwarding, disclosing or otherwise using it or any part of it in any form whatsoever.

From: Andrew Fata <afata@urbantech.com>

Sent: January 13, 2020 10:15 AM

To: Bastien, Jonathan <Jonathan.Bastien@conservationhamilton.ca>; Rob Merwin <rmerwin@urbantech.com> **Cc:** Stone, Mike <Mike.Stone@conservationhamilton.ca>; Janis Lobo <jlobo@urbantech.com>; Rob Merwin

<rmerwin@urbantech.com>; Patrick Delaney <pad@dhigroup.com>

Subject: RE: BSS 3 - Next Steps Suggestions for Urban Tech

Hi Jonathan,

Hope you've had a great start to the new year.

We are wrapping up our final BSS 3 submission and would like to include the results of the FPM study you referenced below. I'm not sure where HCA and DHI (Patrick) left off with respect to the sensitivity analysis and comparison of the unit rates from the MIKE 11 BSS model to the FPM study.

Let me know if you are able to share these results or any conclusions you have reached with DHI regarding the model validity.

Thank you!

Andrew Fata, M.Sc., P.Eng. Associate, Water Resources

Urbantech® Consulting, A Division of Leighton-Zec Ltd. 3760 14th Avenue , Suite 301 • Markham • ON • L3R 3T7

EMAIL: <u>afata@urbantech.com</u> WEBSITE: <u>www.urbantech.com</u>

TEL: 905-946-9461 Ext.415, MOB: 416-278-0118, DIR: 905.946.4176

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From: Bastien, Jonathan < Jonathan.Bastien@conservationhamilton.ca>

Sent: November 4, 2019 5:11 PM

To: Rob Merwin <rmerwin@urbantech.com>; Andrew Fata <afata@urbantech.com>

Cc: Stone, Mike < Mike < Mike < Mike < Mike.Stone@conservationhamilton.ca>
Subject: BSS 3 - Next Steps Suggestions for Urban Tech

Good afternoon Rob and Andrew.

As discussed at the recent meeting, HCA suggests moving forward with the BSS designs and assessments based on the continuous modeling (as per the first submission).

As part of a revised first submission report, it is suggested that the following be included:

- 1. An assessment confirming that the proposed with SWM peak flow rates under the scenario with Catchment 300 flows bypassing the site will not result in any adverse flooding or erosion impacts on downstream channel sections or culverts (Nodes 5 14).
- 2. Updates to the modeling, designs and assessments, and reporting to account for Catchment 300 flows bypassing the site.

- 3. An explanation as to the reasons for the reduction in peak flow rates between Node 1 and Node 5, as explained in the second submission report.
- 4. Include tables and discussion comparing revised peak flow rates at Nodes 1 14 for the existing conditions, proposed development with SWM conditions, and future uncontrolled development conditions, in a similar manner to what was provided in the second submission for the design event model results.
- 5. Include tables and discussion comparing revised peak flow rates at Nodes 5 14 for the proposed development with SWM conditions and future uncontrolled development conditions TO the existing channel and culvert capacities, in a similar manner to what was provided in the second submission for the design event model results..
- 6. Summarize and identify tasks to be completed at the detailed design stages, as per the second submission report.

In addition, please note that HCA is in the process of developing future uncontrolled development peak flow rates for its FPM study. As part of this review, HCA staff will confirm that the Block 3 BSS proposed percent imperviousness will not have adverse impacts on the downstream updated official flood plain.

I am available to discuss in further detail. Thank you in advance for your consideration of these comments.

Have a nice day,

Jonathan Bastien

Water Resources Engineering
Hamilton Conservation Authority
838 Mineral Springs Road, P.O. Box 81067

Ancaster, ON L9G 4X1

Phone: 905-525-2181 Ext. 138

Mobile: 905-515-3087

Email: jbastien@conservationhamilton.ca

A Healthy Watershed for Everyone

The contents of this e-mail and any attachments are intended for the named recipient(s). This e-mail may contain information that is privileged and confidential. If you have received this message in error or are not the named recipient(s), please notify the sender and permanently delete this message without reviewing, copying, forwarding, disclosing or otherwise using it or any part of it in any form whatsoever.

From: Rob Merwin < rmerwin@urbantech.com >

Sent: October 30, 2019 5:32 PM

To: Bastien, Jonathan < <u>Jonathan.Bastien@conservationhamilton.ca</u>>

Cc: Andrew Fata afata@urbantech.com>

Subject: BSS

Hi Jonathan,

As discussed could you please send the updated requirements for the continuous model?

Thanks, Rob

Rob Merwin, P.Eng. Sr.Associate, Land Development.

Urbantech® West, A Division of Leighton-Zec West Ltd. 2030 Bristol Circle, Suite 105 • Oakville• ON • L6H 0H2

EMAIL: rmerwin@urbantech.com WEBSITE: www.urbantech.com

TEL: 905-829-8818 Ext.1010, MOB: 416.997.0101, FAX: 905.829.4804, DIR: 905.829.6901

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

APPENDIX F-5 SCUBE East Model Update 4 – Sensitivity Analysis

MEMO

To: Janis Lobo, Urbantech West

Cc: Andrew Fata, Rob Merwin

From: Patrick Delaney

Date: 26/2/2020

Subject: Scube East Model Update 4 – Sensitivity Analysis

1 Introduction

Based on comments from Hamilton Conservation Authority regarding the "Block Servicing Strategy, Fruitland-Winona Secondary Plan Area, Block 3, Second Submission, August 2019" (see Hamilton Conservation Authority memo dated September 30, 2019) DHI was asked to perform a sensitivity analysis on the MIKE 11 model to evaluate the potential range of flows based on the reasonable ranges of uncertainty in the hydrologic model parameters.

The sensitivity analysis was performed on the most recent version (December 2019) of the Scenario 2a model that includes stormwater management ponds for P2DA and P3DA.

2 Sensitivity Analysis Parameters

For the purposes of the sensitivity analysis it was necessary to identify the hydrology model parameters that may have the most significant influence on the model results and run the simulation using an upper and lower value that is with a reasonable range of potential values. The MIKE 11 model for the BSS uses a combination of hydrology models for each catchment depending on the development within each catchment. The developed areas of each catchment use the Kinematic Wave model to simulate Urban runoff while the undeveloped areas of each catchment use the NAM model to simulate Rural runoff. The following parameters from each model were selected for the sensitivity analysis:

Rural Drainage Area Parameters

- CQOF fraction of precipitation that runs off as overland flow
- CK12 time constant for routing overland flow to the outlet
- Umax maximum surface detention storage (must be filled before overland runoff can commence)
- Lmax maximum root zone storage (can be used together with TOF, TIF and TG to trigger overland flow, interflow and groundwater percolation)
- TOF fraction threshold ratio of L/Lmax required to trigger overland flow
- TIF fraction threshold ratio of L/Lmax required to trigger interflow

Urban Drainage Area Parameters

- L drainage path length
- Imp % of area that is impervious

A total of 13 sensitivity analysis runs were completed as follows:

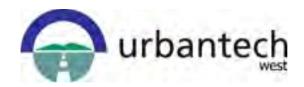
- SA1: CQOF = CQOF x 0.5
- SA2: CQOF = CQOF x 2
- SA3: CK12 = CK12 x 0.5
- SA4: CK12 = CK12 x 2
- SA5: Umax = Umax x 0.5
- SA6: Lmax = Lmax x 0.5
- SA7: Lmax = Lmax x 2
- SA8: TOF = TOF x 0.5
- SA9: TOF = TOF x 2
- SA10: TIF = TIF x 0.5
- SA11: TIF = TIF x 2
- SA12: L = L x0.5
- SA13: %Imp = %Imp 10

The Umax and L values in the Base model were already in the range of high values so the sensitivity analysis only looked at reducing these values by a factor of 2. The %Imp values can be estimated relatively accurately so the adjustment to this value was limited to reducing it by a value of 10%.

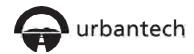
2.1 Sensitivity Analysis Results

The MIKE 11 hydrology model setup for each sensitivity analysis was run for the 100-Year Design Storm event and the runoff hydrographs generated from each catchment were used as inflow to the hydraulic network model. The results of the sensitivity analysis are summarized in the following table. The Base model is the latest Scenario 2a model with ponds.

The results show the changes in flow at the downstream end of the study area are generally within +/- 10% of the Base model for most of the sensitivity analysis runs except for the CQOF and the Length parameters.


Table 1 Summary Model Senstivity Analysis for Scenario 2a Model with Ponds

			Peak F	Flow (m3/	s) during	100-Year	Design	Storm Ev	ent for e	ach Sen	sitivity A	nalysis				
Node	Base	1	2	3	4	5	6	7	8	9	10	11	12	13	Min	Max
		CQOF/2	CQOF*2	CK12/2	CK12*2	Umax/2	Lmax/2	Lmax*2	TOF/2	TOF*2	TIF/2	TIF*2	L/2	Imp-10		
1	1.5	0.8	3.3	2.8	0.8	1.6	1.9	1.0	1.6	1.3	1.5	1.5	1.5	1.5	0.8	3.3
4	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.3
5	4.9	3.0	8.8	6.0	2.6	5.0	6.5	3.3	5.1	4.0	4.9	4.9	5.2	4.8	2.6	8.8
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.3
8	6.4	4.3	9.7	7.9	4.1	6.6	8.0	4.6	6.7	5.5	6.4	6.4	6.6	6.1	4.1	9.7
9	1.0	0.9	1.0	1.1	0.9	1.0	1.0	0.9	1.0	0.9	1.0	1.0	1.1	0.9	0.9	1.1
10	6.4	4.4	9.3	8.1	4.2	6.6	8.2	4.7	6.7	5.4	6.4	6.4	7.0	6.0	4.2	9.3
11	7.8	5.9	10.7	10.0	5.8	8.0	9.6	6.2	8.1	6.8	7.8	7.8	8.7	7.3	5.8	10.7
12	8.0	7.9	8.3	8.2	7.8	8.0	8.1	7.9	8.0	7.9	8.0	8.0	10.3	7.2	7.2	10.3
13	20.3	18.8	22.1	22.5	18.6	20.5	22.0	19.0	20.6	19.4	20.3	20.3	23.7	18.5	18.5	23.7
14	20.1	19.1	23.1	22.5	19.0	20.3	22.0	19.2	20.4	19.4	20.1	20.1	24.6	18.6	18.6	24.6



Disclaimer

As with the previous SCUBE MIKE 11 model update assignments, DHI take no professional responsibility and makes no warranties regarding the accuracy or correctness of the model itself or the modelling results delivered in this assignment. DHI was not involved in the development or calibration of the original SCUBE MIKE 11 model and has only been asked to make changes to the model as instructed by Urbantech, to run the simulations, and to provide the model results for Urbantech to analyse, interpret and use as they see fit.

APPENDIX G Storm Sewer and Overland Flow Calculations

STORM SEWER DESIGN SHEET

5Yr STORM WEST POND (Scenario 2a)

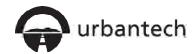
BSS

HAMILTON

PROJECT DETAILS

Project No: 12-062W

Date: 18-Jul-19


Designed by: R.MOIR

Checked by: R.MERWIN

		DESIG	N CRITERIA	
Min. Diameter =	300 0.013	mm	Rainfall Intensity = _	A (To+B)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Mannings 'n'=				(Tc+B)^c
Starting Tc =	10	min	A =	1049.5
			B =	8
Factor of Safety =	15	%	c =	0.803
				NOMINAL PIPE SIZE USEI

MH	PERCENT FULL
STREET 'P' STM.COMM 1 MH29-W 103.0 0.776 0.776 16.8 0.50 825 1.015 1.90 10.00 0.15 1	(%)
STREET 'P' STM.COMM 1 MH29-W 103.0 0.776 0.776 16.8 0.50 825 1.015 1.90 10.00 0.15 1	
STREET 'P' STM.COMM 1 MH29-W 103.0 0.776 0.776 16.8 0.50 825 1.015 1.90 10.00 0.15 1	750/
STREET 'P' STM.COMM 1 MH29-W 1.00 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.050 0.068 0.97 10.00 0.37 10.3	75%
STREET 'P' STM.COMM 1 MH29-W 1.62 0.65 1.05 1.05 10.14 0.296 1.03.0 0.057 0.057 0.057 0.057 0.050 300 0.068 0.97 10.00 0.37 10	76%
STREET 'P' STM.PARK 1 MH29-W MH5-W 1.62 0.65 1.05 1.05 1.05 101.4 0.296 1.024 1.320 248.2 0.50 975 1.585 2.12 10.37 1.95 12.32 1.024 1.320 248.2 0.50 975 1.585 2.12 10.37 1.95 12.32 1.024 1.025 1.024 1.02	7070
STREET 'P' MH29-W MH5-W 1.62 0.65 1.05 1.05 101.4 0.296 1.024 1.320 248.2 0.50 975 1.585 2.12 10.37 1.95 12.32 STREET 'O' STM.COMM 2 MH22-W MH5-W 0.42 0.65 0.27 0.27 102.4 0.078 0.227 0.227 11.8 0.50 525 0.304 1.40 10.00 0.14 10.04 10.14 1.20 COLLECTOR ROAD 'E' MH5-W MH4-W 0.18 0.65 0.12 1.97 93.5 0.511 1.250 1.762 82.5 0.50 1200 2.757 2.44 12.32 0.56 12.89 COLLECTOR ROAD 'D' MH7-W MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	84%
STREET 'P' MH29-W MH5-W 1.62 0.65 1.05 1.05 101.4 0.296 1.024 1.320 248.2 0.50 975 1.585 2.12 10.37 1.95 12.32 STREET 'O' STM.COMM 2 MH22-W MH5-W 0.42 0.65 0.27 0.27 102.4 0.078 0.227 0.227 11.8 0.50 525 0.304 1.40 10.00 0.14 10.04 10.14 1.20 COLLECTOR ROAD 'E' MH5-W MH4-W 0.18 0.65 0.12 1.97 93.5 0.511 1.250 1.762 82.5 0.50 1200 2.757 2.44 12.32 0.56 12.89 COLLECTOR ROAD 'D' MH7-W MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	
STREET 'O' STM.COMM 2 MH22-W MH5-W 0.42 0.65 0.27 0.27 102.4 0.078 0.227 0.227 0.304 97.4 0.50 600 0.434 1.54 10.14 1.06 11.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	63%
STREET 'O' MH22-W MH5-W 0.42 0.65 0.27 0.27 102.4 0.078 0.227 0.304 97.4 0.50 600 0.434 1.54 10.14 1.06 11.20 COLLECTOR ROAD 'E' MH5-W MH4-W 0.18 0.65 0.12 1.97 93.5 0.511 1.250 1.762 82.5 0.50 1200 2.757 2.44 12.32 0.56 12.89 COLLECTOR ROAD 'D' MH7-W MH4-W 2.66 0.65 1.73 1.73 103.0 0.495 0.083 0.083 0.578 350.3 0.30 825 0.786 1.47 10.00 3.97 13.97 COLLECTOR ROAD 'D' MH23W(1) MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	83%
STREET 'O' MH22-W MH5-W 0.42 0.65 0.27 0.27 102.4 0.078 0.227 0.304 97.4 0.50 600 0.434 1.54 10.14 1.06 11.20 COLLECTOR ROAD 'E' MH5-W MH4-W 0.18 0.65 0.12 1.97 93.5 0.511 1.250 1.762 82.5 0.50 1200 2.757 2.44 12.32 0.56 12.89 COLLECTOR ROAD 'D' MH7-W MH4-W 2.66 0.65 1.73 1.73 103.0 0.495 0.083 0.083 0.578 350.3 0.30 825 0.786 1.47 10.00 3.97 13.97 COLLECTOR ROAD 'D' MH23W(1) MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	75%
COLLECTOR ROAD 'D' MH23W(1) MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	70%
COLLECTOR ROAD 'D' MH23W(1) MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	
COLLECTOR ROAD 'D' MH23W(1) MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	64%
COLLECTOR ROAD 'D' MH23W(1) MH4-W 0.75 0.65 0.49 0.49 103.0 0.140 0.140 0.140 103.4 0.50 450 0.202 1.27 10.00 1.36 11.36	74%
	74%
STREET 'N' MH23-W(2) MH4-W 1.42 0.65 0.92 0.92 103.0 0.264 0.264 0.50 525 0.304 1.40 10.00 2.52 12.52	69%
STREET 'N' MH23-W(2) MH4-W 1.42 0.65 0.92 0.92 103.0 0.264 212.6 0.50 525 0.304 1.40 10.00 2.52 12.52	
	87%
	750/
COLLECTOR ROAD 'E' MH4-W MH2-W 1.49 0.65 0.97 6.08 87.8 1.482 1.334 2.816 288.8 0.50 1350 3.774 2.64 13.97 1.83 15.80	75%
STREET 'Q' MH13-W MH12-W 0.13 0.65 0.08 0.08 103.0 0.024 0.024 0.05 0.08 0.08 0.09 10.00 1.14 11.14	35%
STREET 'Q' MH12-W MH10-W 1.01 0.65 0.66 0.74 98.1 0.202 0.202 184.7 0.50 525 0.304 1.40 11.14 2.19 13.33	66%
STREET 'R' MH12-W(1) MH10-W 2.32 0.65 1.51 1.51 103.0 0.432 0.432 0.432 0.50 675 0.594 1.66 10.00 2.47 12.47	73%
CTREET ICI MULA WAY 2.12 0.65 1.20 1.20 1.20 0.20 0.20 0.20 0.20 0.20	660/
STREET 'S' MH12-W(2) MH10-W 2.12 0.65 1.38 1.38 103.0 0.394 0.394 288.4 0.50 675 0.594 1.66 10.00 2.89 12.89	66%
STREET 'L' MH10-W MH2-W 1.50 0.65 0.98 4.60 89.9 1.149 1.149 243.3 0.50 975 1.585 2.12 13.33 1.91 15.24	73%
COLLECTOR ROAD 'E' MH33-W MH2-W 0.15 0.65 0.10 0.10 103.0 0.028 0.028 0.028 0.028 0.008 0.	41%
STREET 'L' MH2-W MH1-W 0.86 0.65 0.56 11.34 82.3 2.593 1.334 3.927 140.9 0.50 1200x1800 (BOX) 5.946 2.75 15.80 0.85 16.65	66%
CTREET IOU COMM 2 MH10 W 102.0 101.0 110 11.2 0.50 4F0 0.202 1.27 10.00 0.15 10.45	E40/
STREET 'O' STM.COMM 3 MH19-W 103.0 0.110 0.110 0.110 11.3 0.50 450 0.202 1.27 10.00 0.15 10.15 STREET 'O' MH19-W MH18-W 0.28 0.65 0.18 0.18 102.4 0.052 0.033 0.143 0.195 82.5 0.50 525 0.304 1.40 10.15 0.98 11.13	54% 64%
STREET O PRILO W 0.20 0.00 0.10 0.10 102.7 0.002 0.003 0.175	0770

2030 Bristol Circle, Suite 105 Oakville, Ontario L6H 6P5 TEL: 905.829.8818 FAX: 905.829.4804 www.urbantech.com

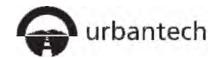
STREET	FROM MH	ТО МН	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
COLLECTOR ROAD 'D'	STM.PARK 2	MH18-W					103.0		0.193	0.193	0.193	13.4	0.50	525	0.304	1.40	10.00	0.16	10.16	64%
COLLECTOR ROAD 'D'	MH18-W	MH16-W	1.55	0.65	1.01	1.19	98.1	0.324	0.101	0.437	0.761	293.9	0.50	825	1.015	1.90	11.13	2.58	13.71	75%
STREET 'O'	MH21-W	MH20-W	1.46	0.65	0.95	0.95	103.0	0.272			0.272	184.5	0.50	600	0.434	1.54	10.00	2.00	12.00	63%
STREET 'O'	TM.CONDO EAST	MH22-W					103.0		0.138	0.138	0.138	11.1	0.50	450	0.202	1.27	10.00	0.15	10.15	68%
STREET 'O'	TM.CONDO EAST	MH22-W					103.0		0.125	0.125	0.125	11.0	0.50	450	0.202	1.27	10.00	0.14	10.14	62%
STREET 'O'	MH22-W	MH20-W	0.59	0.65	0.38	0.38	102.4	0.109		0.490	0.599	129.8	0.50	750	0.787	1.78	10.15	1.21	11.36	76%
STREET 'M'	MH20-W	MH16-W	0.39	0.65	0.30		94.7	0.109		0.490	0.399	85.1	0.50	825	1.015	1.78	12.00	0.75	12.75	85%
	-																			
STREET 'D'	MH23-W(3)	MH16-W	0.60	0.65	0.39	0.39	197.6	0.214			0.214	85.4		0						
STREET 'M'	MH16-W	MH14-W	1.53	0.65	0.99	4.00	88.7	0.986		0.927	1.913	213.5	0.50	1200	2.757	2.44	13.71	1.46	15.17	69%
STREET 'M'	MH15-W	MH14-W	0.86	0.65	0.56	0.56	103.0	0.160			0.160	123.6	0.50	450	0.202	1.27	10.00	1.63	11.63	79%
STREET 'L'	MH14-W	MH1-W	0.34	0.65	0.22	4.78	84.1	1.118		0.927	2.045	84.1	0.50	1200	2.757	2.44	15.17	0.58	15.74	74%
												-								
POND	MH1-W	HW1-W	0.00	0.00	0.00	16.12	80.1	3.585	0.000	2.261	5.845	21.6	0.50	1200x2400 (BOX)	8.504	2.95	16.65	0.12	16.77	69%
MC NEILLY	DI 27-W	MH26-W	8.08	0.90	7.27	7.27	72.7	1.469	0.948	0.948	2.417	319.9	0.30	900x1800 (BOX)	3.059	1.89	19.78	2.82	22.60	79%
COLLECTOR ROAD 'E'	STM.CONDO 3	MH28-W					103.0		0.378	0.378	0.378	11.8	0.50	675	0.594	1.66	10.00	0.12	10.12	64%
COLLECTOR ROAD 'E'	STM.CONDO 4	MH28-W					103.0		0.231	0.231	0.231	18.0	0.50	525	0.304	1.40	10.00	0.21	10.21	76%
COLLECTOR ROAD E	STM.CONDO 4	MIUZO-AA					103.0		0.231	0.231	0.231	10.0	0.50	525	0.304	1.40	10.00	0.21	10.21	70%
COLLECTOR ROAD 'E'	MH28-W	MH26-W	0.21	0.65	0.14	0.14	102.1	0.039	0.035	0.644	0.683	66.1	0.30	825	0.786	1.47	10.21	0.75	10.96	87%
BARTON STREET	MH26-W	MH24-W	0.67	0.90	0.60	8.01	67.3	1.497	0.128	1.721	3.218	171.7	0.30	1200x1800 (BOX)	4.605	2.13	22.60	1.34	23.95	70%
BARTON STREET	MH25-W	MH24-W	0.50	0.90	0.45	0.45	103.0	0.129	0.092	0.092	0.221	120.0	0.30	600	0.336	1.19	10.00	1.68	11.68	66%
BARTON STREET	MH24-W	HW2-W			1	8.46	65.0	1.528		1.812	3.340	34.3	0.25	1200x1800 (BOX)	4.204	1.95	23.95	0.29	24.24	79%
WEST POND	STM.OUTLET MH	MH32-W					103.0		0.279	0.279	0.279	18.0	0.30	825	0.786	1.47	10.00	0.20	10.20	35%
	MH32-W	MH31-W			1		102.1			0.279	0.279	20.2	0.30	825	0.786	1.47	10.20	0.23	10.43	35%
	MH31-W	MH30-W					101.1			0.279	0.279	102.8	0.30	825	0.786	1.47	10.43	1.16	11.60	35%
	MH30-W	HW3-W					96.2			0.279	0.279	36.9	0.30	825	0.786	1.47	11.60	0.42	12.02	35%

2030 Bristol Circle, Suite 105 Oakville, Ontario L6H 6P5 TEL: 905.829.8818 FAX: 905.829.4804 www.urbantech.com

STORM SEWER DESIGN SHEET
CONSTANT FLOWS (Scenario 2a - west)

PROJECT DETAILS
Title1:
Title2:
Project Name:
Municipality:
Project No:
Date:
Decigned by: BSS HAMILTON 12-062W 18-Jul-19 Designed by: Checked by: R.MOIR R.MERWIN

IDF	Parameters	for HAMIL	TON
		5-yr	100-yr
T A (/T . 1.30	A	1049.5	2317.4
I=A/(T+b) ^c	В	8	11
	С	0.803	0.836


			A #0.0	R	AR	Flour Longth	Velocity	Tc*	I5	I100	Q5	Q100	Q100-Q5	Const. flow
CAPTURE LOCATION	AREA ID	CAPTURE POINT	Area	K	AK	Flow Length	,		-			~		
			ha	0.75	2.07	m	m/s	min	mm/hr	mm/hr	m3/s	m3/s	m3/s	m3/s
WEST CONDO	VEST COND	WEST CONDO	4.09	0.75	3.07	360.00	2.00	13.00	91.0	162.6	0.776	1.386	0.610	0.610
STREET 'P'	COMM 1	COMM 1	0.23	0.90	0.21	84.00	2.00	10.70	99.9	176.9	0.057	0.102	0.044	0.044
STREET 'P'	PARK 1	PARK 1	2.94	0.25	0.74	215.00	1.50	12.39	93.2	166.2	0.190	0.339	0.149	0.149
COLLECTOR ROAD 'D'	PARK 2	PARK 2	3.00	0.25	0.75	225.00	1.50	12.50	92.8	165.5	0.193	0.345	0.151	0.151
STREET 'O'	COMM 2	COMM 2	0.93	0.90	0.84	155.00	2.00	11.29	97.5	173.0	0.227	0.402	0.176	0.176
STREET 'O'	CONDO 1	CONDO 1	0.67	0.75	0.50	118.00	2.00	10.98	98.7	175.0	0.138	0.244	0.106	0.106
STREET 'O'	CONDO 2	CONDO 2	0.61	0.75	0.46	118.00	2.00	10.98	98.7	175.0	0.125	0.222	0.097	0.097
STREET 'O'	COMM 3	COMM 3	0.44	0.90	0.40	90.00	2.00	10.75	99.7	176.6	0.110	0.194	0.085	0.085
COLLECTOR ROAD 'E'	CONDO 3	CONDO 3	1.94	0.75	1.46	275.00	2.00	12.29	93.6	166.7	0.378	0.674	0.296	0.296
COLLECTOR ROAD 'E'	CONDO 4	CONDO 4	1.15	0.75	0.86	188.00	2.00	11.57	96.4	171.2	0.231	0.410	0.179	0.179
COLLECTOR ROAD 'D'	13	MH7-W	0.61	0.65	0.40	108.00	1.50	11.20	97.8	173.6	0.108	0.191	0.083	0.083
COLLECTOR ROAD 'D'	37	MH18-W	0.17	0.65	0.11	70.00	1.50	10.78	99.6	176.4	0.031	0.054	0.024	0.024
COLLECTOR ROAD 'D'	38	MH18-W	0.27	0.65	0.18	75.00	1.50	10.83	99.4	176.0	0.048	0.086	0.037	0.037
COLLECTOR ROAD 'D'	39	MH19-W	0.07	0.65	0.05	45.50	1.50	10.51	100.8	178.2	0.013	0.023	0.010	0.010
COLLECTOR ROAD 'D'	40	MH18-W	0.29	0.65	0.19	100.00	1.50	11.11	98.2	174.1	0.051	0.091	0.040	0.040
COLLECTOR ROAD 'D'	41	MH19-W	0.17	0.65	0.11	62.00	1.50	10.69	100.0	177.0	0.031	0.054	0.024	0.024
COLLECTOR ROAD 'E'	73	MH28-W	0.17	0.65	0.11	67.00	1.50	10.74	99.7	176.6	0.031	0.054	0.024	0.024
BARTON STREET	EXT 1	MH25-W	0.49	0.90	0.44	140.00	1.50	11.56	96.4	171.3	0.118	0.210	0.092	0.092
BARTON STREET	EXT 2	MH26-W	0.49	0.90	0.44	140.00	1.50	11.56	96.4	171.3	0.118	0.210	0.092	0.092
BARTON STREET	EXT 3	MH26-W	0.19	0.90	0.17	52.00	1.50	10.58	100.5	177.7	0.048	0.084	0.037	0.037
COLLECTOR ROAD 'E'	EXT 4	MH28-W	0.08	0.65	0.05	28.00	1.50	10.31	101.6	179.6	0.015	0.026	0.011	0.011
BARTON STREET	EXT 5	DI27-W	0.25	0.90	0.23	69.00	1.50	10.77	99.6	176.4	0.062	0.110	0.048	0.048
BARTON STREET	EXT 6	DI27-W	0.49	0.90	0.44	140.00	1.50	11.56	96.4	171.3	0.118	0.210	0.092	0.092
BARTON STREET	EXT 7	DI27-W	0.84	0.65	0.55	180.00	1.50	12.00	94.7	168.5	0.144	0.256	0.112	0.112
MC NEILLY	EXT 8	DI27-W	6.50	0.65	4.23	880.00	1.50	19.78	72.7	132.1	0.854	1.550	0.697	0.697

^{*}Where available, Tc is calculated from design sheet or overland flow calculation

where Tc = starting Tc + flow length/velocity (starting Tc = 10min) Tc calcs

Assumed Velocities for Calculation of time of Concentration

Pipe Flow Velocity=
OLF Velocity=
External Flow Velocity= 2.0 m/s 1.5 m/s 0.25 m/s

STORM SEWER DESIGN SHEET 5Yr STORM EAST POND BSS

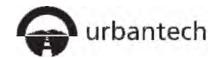
HAMILTON

PROJECT DETAILS

Project No: 12-062W

Date: 18-Jul-19

Designed by: R.MOIR


Checked by: R.MERWIN

DESIGN CRITERIA Min. Diameter = Rainfall Intensity = 300 mm (Tc+B)^c Mannings 'n'= 0.013 Starting Tc = 1049.5 10 A = min **B** = 8 Factor of Safety = 15 0.803 **c** = **NOMINAL PIPE SIZE USED**

STREET	FROM MH	ТО МН	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
CTDEET !!!	MIIIO F	M1117 F	0.20	0.65	0.25	0.25	102.0	0.072	0.025	0.025	0.000	1177	0.50	275	0.124	1 12	10.00	1 70	11 75	700/
STREET 'H'	MH18-E	MH17-E	0.39	0.65	0.25	0.25	103.0	0.073	0.025	0.025	0.098	117.7	0.50	375	0.124	1.12	10.00	1.75	11.75	79%
STREET 'L'	MH24-E	MH17-E	0.25	0.65	0.16	0.16	103.0	0.047			0.047	65.8	0.50	300	0.068	0.97	10.00	1.13	11.13	68%
COLLECTOR ROAD 'D'	MH17-E	MH16-E	0.43	0.65	0.28	0.70	95.6	0.185		0.025	0.210	165.0	0.50	525	0.304	1.40	11.75	1.96	13.71	69%
STREET 'C'	MH19-E	MH16-E	1.26	0.65	0.82	0.82	103.0	0.234			0.234	168.2	0.50	525	0.304	1.40	10.00	2.00	12.00	77%
STREET 'B'	MH16-E	MH2-E	1.13	0.65	0.73	2.25	88.7	0.554		0.025	0.579	193.0	0.50	750	0.787	1.78	13.71	1.81	15.51	74%
STREET 'F'	MH14-E	МН7-Е	0.52	0.65	0.34	0.34	103.0	0.097			0.097	102.4	0.50	375	0.124	1.12	10.00	1.52	11.52	78%
STREET 'K'	MH13-E	МН7-Е	0.62	0.65	0.40	0.40	103.0	0.115			0.115	93.7	0.50	450	0.202	1.27	10.00	1.23	11.23	57%
														0						
COLLECTOR ROAD 'D'	MH7-E	MH4-E	0.93	0.65	0.60	1.35	96.5	0.361			0.361	171.3	0.50	600	0.434	1.54	11.52	1.86	13.38	83%
STREET 'F'	MH12-E	MH11-E	0.48	0.65	0.31	0.31	103.0	0.089			0.089	120.8	0.50	375	0.124	1.12	10.00	1.79	11.79	72%
<u> </u>			00	0.00	0.01	0.01	200.0	0.000			0.000		0.00	0	V.22.					
STREET 'F'	MH10-E	MH11-E	0.32	0.65	0.21	0.21	103.0	0.060			0.060	70.2	0.50	375	0.124	1.12	10.00	1.04	11.04	48%
STREET 'G'	MH11-E	МН4-Е	0.55	0.65	0.36	0.88	95.5	0.233			0.233	111.4	0.50	525 0	0.304	1.40	11.79	1.32	13.12	77%
STREET 'F'	MH10(1)	МН9-Е	0.80	0.65	0.52	0.52	103.0	0.149			0.149	122.0	0.50	450	0.202	1.27	10.00	1.60	11.60	74%
COLLECTOR ROAD 'D'	MH9-E	МН4-Е	0.39	0.65	0.25	0.77	96.2	0.207			0.207	146.7	0.50	525	0.304	1.40	11.60	1.74	13.34	68%
CTREET IEI	MUDE	MILLA E	1 27	0.65	0.00	0.02	102.0	0.226			0.226	162.0	0.50	F2F	0.204	1.40	10.00	1.03	11.02	700/
STREET 'E' STREET 'A'	MH25-E MH4-E	MH4-E MH2-E	1.27 0.80	0.65 0.65	0.83	0.83 4.34	103.0 89.7	0.236 1.082			0.236 1.082	162.9 165.1	0.50 0.50	525 900	0.304 1.280	1.40 2.01	10.00 13.38	1.93 1.37	11.93 14.75	78% 85%
STREET 'A'	MH2-E	MH1-E	0.05	0.65	0.03	6.62	83.1	1.530		0.025	1.555	25.3	0.50	1050	1.931	2.23	15.51	0.19	15.70	81%
WINONA HILLS	MH23-E	MH22-E	2.94	0.65	1 01	1.91	103.0	0.547			0.547	350.0	0.30	825	0.786	1.47	10.00	3.97	13.97	70%
WINONA HILLS	ITINZ3-E	1111122-12	2.9 1	0.05	1.91	1.91	103.0	0.54/			U.3 1 /	330.0	0.30	025	0.700	1.4/	10.00	3.97	13.97	70%
STREET 'I'	MH21-E	MH22-E	1.72	0.65	1.12	1.12	103.0	0.320			0.320	229.2	0.50	600	0.434	1.54	10.00	2.49	12.49	74%
STREET 'J'	MH22-E	MH26-E	0.37	0.65	0.24	3.27	87.8	0.798			0.798	78.4	0.30	900	0.992	1.56	13.97	0.84	14.80	80%
COLLECTOR ROAD 'D'	MH27-E	MH26-E	0.28	0.65	0.18	0.18	103.0	0.052			0.052	110.3	0.50	300	0.068	0.97	10.00	1.90	11.90	76%
COLLECTOR ROAD D	1·11 12/-L	1-11 12U-L	0.20	0.03	0.10	0.10	103.0	0.032			0.032	110.5	0.50	0	0.000	0.37	10.00	1.90	11.90	7070

TEL: 905.946.9461 FAX: 905.946.9595

www.urbantech.com

COLLECTOR ROAD 'D'	MH16(1)	MH26-E	0.15	0.65	0.10	0.10	103.0	0.028			0.028	78.0	1.00	300	0.097	1.37	10.00	0.95	10.95	29%
STREET 'A'	MH26-E	MH1-E	1.56	0.65	1.01	4.56	85.2	1.080			1.080	241.5	0.30	1050	1.496	1.73	14.80	2.33	17.13	72%
														0						
POND	MH1-E	HW1				11.19	78.8	2.449		0.025	2.474	6.1	0.50	1350	3.774	2.64	17.13	0.04	17.17	66%
														0						
POND	EAST POND	MH51-E					103.0		0.038	0.038	0.038	30.6	3.00	300	0.167	2.37	10.00	0.22	10.22	23%
POND	MH51-E	MH52-E					102.1			0.038	0.038	56.0	0.30	300	0.053	0.75	10.22	1.25	11.46	72%
POND	MH52-E	MH3-C					96.8			0.038	0.038	15.5	0.30	300	0.053	0.75	11.46	0.34	11.81	72%

25 Royal Crest Court, Suite 201 Markham, Ontario L3R 9X4 TEL: 905.946.9461 FAX: 905.946.9595 www.urbantech.com

PROJECT DETAILS	
Title1:	STORM SEWER DESIGN SHEET
Title2:	CONSTANT FLOWS (east)
Project Name:	
Municipality:	
Project No:	
Date:	
Designed by:	
Checked by:	

IDF Parameters for HAMILTON								
		5-yr	100-yr					
* * (/* . I)	Α	1049.5	2317.4					
I=A/(T+b) ^c	В	8	11					
	С	0.803	0.836					

	Area	R	AR	Flow Length	Velocity	Tc*	I5	I100	Q5	Q100	Q100-Q5	Const. flow
CAPTURE LOCATION AREA ID CAPTURE POINT	ha			m	m/s	min	mm/hr	mm/hr	m3/s	m3/s	m3/s	m3/s
STREET 'H' 8 MH10	0.18	0.65	0.12	44.00	1.50	10.49	100.8	178.3	0.033	0.058	0.025	0.025

 $\hbox{*Where available, Tc is calculated from design sheet or overland flow calculation}\\$

where Tc = starting Tc + flow length/velocity (starting Tc = 10min) Tc calcs

Assumed Velocities for Calculation of time of Concentration
Pipe Flow Velocity= 2.0 m/s
OLF Velocity= 1.5 m/s
External Flow Velocity= 0.25 m/s

STORM SEWER DESIGN SHEET

100+5Yr STORM CHANNEL

BLOCK 3 SERVICING STUDY (BSS)

HAMILTON

PROJECT DETAILS

Project No: 12-062W

Date: 13-Jan-20

Designed by: R.MOIR

Checked by: R.MERWIN

AREA ID	STREET	FROM MH	TO MH	AREA (ha)	RUNOFF COEFFICIENT "R"	'AR'	ACCUM. 'AR'	RAINFALL INTENSITY (mm/hr)	FLOW (m3/s)	CONSTANT FLOW (m3/s)	ACCUM. CONSTANT FLOW (m3/s)	TOTAL FLOW (m3/s)	LENGTH (m)	SLOPE	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (m3/s)	FULL FLOW VELOCITY (m/s)	INITIAL Tc (min)	TIME OF CONCENTRATION (min)	ACC. TIME OF CONCENTRATION (min)	PERCENT FULL (%)
300	CHANNEL	HW2-C	MH8-C					103.0		2.648	2.648	2.648	15.7	0.94	1350	5.175	3.62	10.00	0.07	10.07	51%
	HWY8	MH8-C	MH7-C					102.7			2.648	2.648	88.7	1.00	1350	5.337	3.73	10.07	0.40	10.47	50%
	HWY8	MH7-C	MH6-C					100.9			2.648	2.648	11.4	0.50	1500	4.998	2.83	10.47	0.07	10.54	53%
200	EXTERNAL	HW3-C	MH10-C					103.0		1.474	1.474	1.474	15.9	1.00	900	1.810	2.85	10.00	0.09	10.09	81%
201A	HWY8	MH10-C	MH9-C	4.08	0.90	3.67	3.67	102.6	1.047		1.474	2.521	57.4	1.00	1200	3.899	3.45	10.09	0.28	10.37	65%
	LEWIS ROAD	MH9-C	MH6-C				3.67	101.4	1.034		1.474	2.508	12.0	0.50	1350	3.774	2.64	10.37	0.08	10.45	66%
		MH6-C	MH5-C				3.67	100.6	1.027		4.122	5.149	168.2	0.50	1500x2400 (BOX)	11.695	3.25	10.54	0.86	11.40	44%
201B		MH5-C	MH4-C	0.90	0.65	0.59	4.26	97.0	1.147		4.122	5.269	75.6	0.50	1500x2400 (BOX)	11.695	3.25	11.40	0.39	11.79	45%
201C		MH4-C	МН3-С	1.03	0.65	0.67	4.93	95.5	1.307		4.122	5.429	150.0	0.50	1500x2400 (BOX)	11.695	3.25	11.79	0.77	12.56	46%
EAST POND	POND	MH51-E	MH52-E					103.0		0.018	0.018	0.018	56.0	0.30	300	0.053	0.75	10.00	1.25	11.25	34%
	POND	MH52-E	МН3-С					97.6			0.018	0.018	13.1	0.30	300	0.053	0.75	11.25	0.29	11.54	34%
201E	LEWIS ROAD	MH3-C	MH2-C	0.50	0.65	0.33	5.25	92.6	1.351		4.140	5.491	87.6	0.30	1500x2400 (BOX)	9.059	2.52	12.56	0.58	13.14	61%
201F	LEWIS ROAD	MH2-C	MH1-C	0.49	0.90	0.44	5.69	90.6	1.432		4.140	5.572	15.1	0.30	1500x2400 (BOX)	9.059	2.52	13.14	0.10	13.24	62%
201D	LEWIS ROAD	Ex. School	MH1-C					197.6		1.144	1.144	1.144			, ,						
202	BARTON STREET	MH53-E	MH1-C					103.0		1.025	1.025	1.025	567.8	0.30	975	1.227	1.64	10.00	5.76	15.76	84%
	LEWIS ROAD	MH1-C	HW1-C	0.49			5.69	82.5	1.304		6.309	7.613	28.4	0.30	1800x2400 (BOX)	11.683	2.70	15.76	0.18	15.93	65%

TEL: 905.829.8818 FAX: 905.829.4804 www.urbantech.com

PROJECT DETAILS
Title1:
Title2:
Project Name: STORM SEWER DESIGN SHEET
CONSTANT FLOWS (Scenario 2a)
BLOCK 3 SERVICING STUDY (BSS)
100+5Yr STORM CHANNEL
12-062W
13-Jan-20
R.MOIR
13/01/2020 Municipality: Project No: Date:

IDF Parameters for HAMILTON							
I=A/(T+b) ^c		5-yr	100-yr				
	Α	1049.5	2317.4				
	В	8	11				
	C	0.803	0.836				

			Area	R	AR	Flow Length	Velocity	Tc*	I5	I100	Q5	Q100	Q100-Q5	Const. flow
CAPTURE LOCATION	AREA ID	CAPTURE POINT	ha			m	m/s	min	mm/hr	mm/hr	m3/s	m3/s	m3/s	m3/s
Lewis Road	201A	MH3-C	4.08	0.90	3.67	610.00	2.00	15.08	84.4	1500.0	0.861	15.300	14.439	14.439
								1.47						
Lewis Road	201D	MH3-C	3.75	0.65	2.44	230.00	2.00	11.92	95.0	169.0	0.643	1.144	0.501	0.501
Barton Street**	202	MH1-C	6.66	0.65	4.33	575.00	2.00	14.79	85.2	153.1	1.025			

^{*}Where available, Tc is calculated from design sheet or overland flow calculation **Barton Street Used for Tc calc, not 100YR

Designed by: Checked by:

where Tc = starting Tc + flow length/velocity (starting Tc = 10min)

Assumed Velocities for Calculation of time of Concentration Pipe Flow Velocity= 2.0 m/s
OLF Velocity= 1.5 m/s
External Flow Velocity= 0.25 m/s

OVERLAND FLOW ROUTE - ROW CAPACITY CALCULATIONS

Project Name: Fruitland Winona - BSS

Municipality: City of Hamilton Project No.: 12-062W

Date: 20-Dec-18

Prepared by: J.L

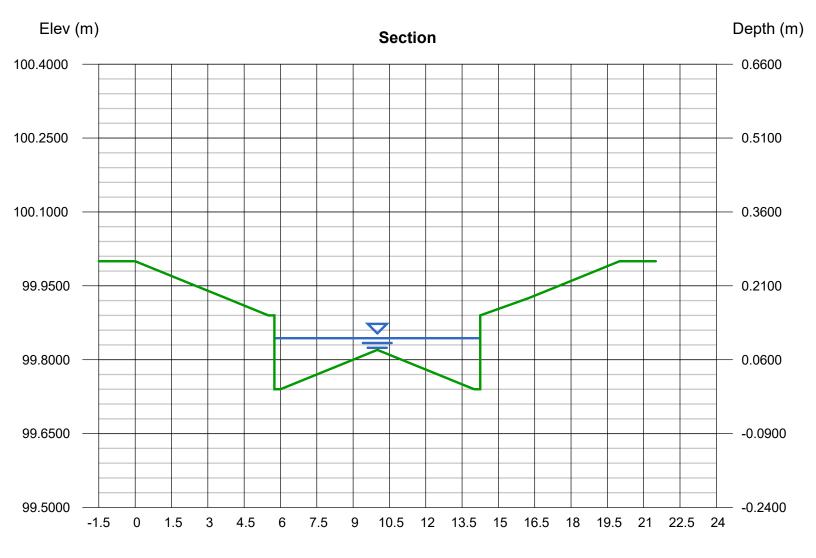
Checked by: L.M

ROW Capacity (Calculated using AutoCAD Civil 3D Tool - HYDRAFLOW Express)

Roads Checked	Location	Accumulated 'AR'	Tc*	Q _{sewer} *	I ₁₀₀	Q ₁₀₀	Overland Flow (Q ₁₀₀ -Q _{sewer})	ROW Width - Narrowest Road - just upstream of Pond	Road Slope	ROW Capacity (at d _{max} = 0.30 m; see results)	Min. Capacity Provided?
			(min)	(m³/s)	(mm/hr)	(m³/s)	(m³/s)	(m)	(%)	(m³/s)	
	Just Upstream of										
Street 'L'	West Pond	13.19	16.3	4.889	146.0	5.349	0.460	20	0.72	3.480	Yes
	Just Upstream of										
Street 'A'	East Pond	11.05	17.94	2.358	139.0	4.268	1.910	20	0.75	3.552	Yes

^{*} Refer to Storm Sewer Design Sheets for flows conveyed through sewer and Tc

Channel Report


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

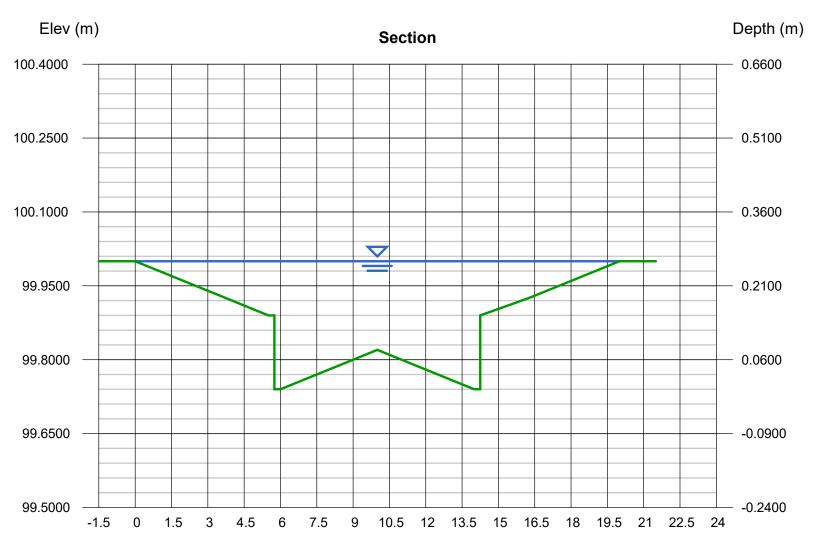
Thursday, Dec 20 2018

STREET 'L' - OVERLAND CAPACITY ANALYSIS

	Highlighted	
= 99.7400	Depth (m)	= 0.1036
= 0.7200	Q (cms)	= 0.4600
= 0.016	Area (sqm)	= 0.5608
	Velocity (m/s)	= 0.8202
	Wetted Perim (m)	= 8.7089
Known Q	Crit Depth, Yc (m)	= 0.1067
= 0.4600	Top Width (m)	= 8.5000
	EGL (m)	= 0.1379
	= 0.7200 = 0.016 Known Q	= 99.7400 Depth (m) = 0.7200 Q (cms) = 0.016 Area (sqm) Velocity (m/s) Wetted Perim (m) Known Q Crit Depth, Yc (m) = 0.4600 Top Width (m)

(Sta, El, n)-(Sta, El, n)...
(0.0000, 100.0000)-(2.2500, 99.9550, 0.013)-(3.7500, 99.9250, 0.013)-(5.5000, 99.8900, 0.020)-(5.7500, 99.8900, 0.013)-(5.7500, 99.7400, 0.013)-(6.0000, 99.7400, 0.016)-(14.0000, 99.7400, 0.016)-(14.2500, 99.7400, 0.013)-(14.2500, 99.8900, 0.013)-(16.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.8000, 0.013)-(1

Channel Report


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Dec 20 2018

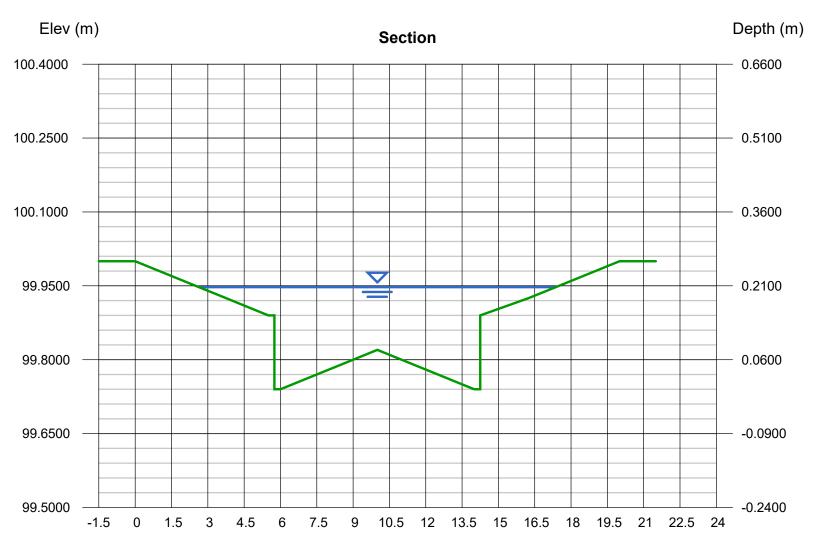
STREET 'L' - OVERLAND CAPACITY ANALYSIS

	Highlighted	
= 99.7400	Depth (m)	= 0.2600
= 0.7200	Q (cms)	= 3.4799
= Composite	Area (sqm)	= 2.5457
	Velocity (m/s)	= 1.3670
	Wetted Perim (m)	= 20.3038
Q vs Depth	Crit Depth, Yc (m)	= 0.2600
= 10	Top Width (m)	= 20.0000
	EGL (m)	= 0.3553
	= 0.7200 = Composite Q vs Depth	= 0.7200 Q (cms) = Composite Area (sqm)

(Sta, El, n)-(Sta, El, n)...
(0.0000, 100.0000)-(2.2500, 99.9550, 0.013)-(3.7500, 99.9250, 0.013)-(5.5000, 99.8900, 0.020)-(5.7500, 99.8900, 0.013)-(5.7500, 99.7400, 0.013)-(6.0000, 99.7400, 0.016)-(14.0000, 99.7400, 0.016)-(14.2500, 99.7400, 0.013)-(14.2500, 99.8900, 0.013)-(16.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.8000, 0.013)-(1

Depth	Q	Area	Veloc
(m)	(cms)	(sqm)	(m/s)
0.0260	0.015	0.047	0.3311
0.0520	0.080	0.161	0.4962
0.0780	0.218	0.343	0.6360
0.1040	0.490	0.564	0.8692
0.1300	0.848	0.785	1.0805
0.1560	1.189	1.009	1.1779
0.1820	1.428	1.290	1.1069
0.2080	1.934	1.641	1.1789
0.2340	2.618	2.059	1.2709
0.2600	3.480	2.546	1.3670

Channel Report


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

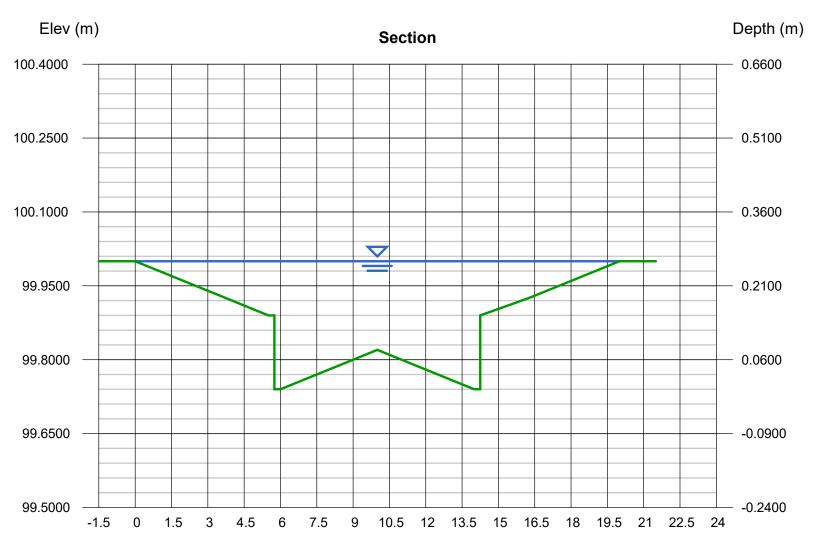
Thursday, Dec 20 2018

STREET 'A' - OVERLAND CAPACITY ANALYSIS

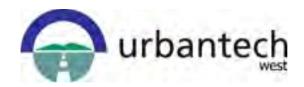
User-defined		Highlighted	
Invert Elev (m)	= 99.7400	Depth (m)	= 0.2073
Slope (%)	= 0.7500	Q (cms)	= 1.9100
N-Value	= 0.016	Area (sqm)	= 1.6299
		Velocity (m/s)	= 1.1718
Calculations		Wetted Perim (m)	= 15.0294
Compute by:	Known Q	Crit Depth, Yc (m)	= 0.2195
Known Q (cms)	= 1.9100	Top Width (m)	= 14.7267
		EGL (m)	= 0.2773

(Sta, El, n)-(Sta, El, n)...
(0.0000, 100.0000)-(2.2500, 99.9550, 0.013)-(3.7500, 99.9250, 0.013)-(5.5000, 99.8900, 0.020)-(5.7500, 99.8900, 0.013)-(5.7500, 99.7400, 0.013)-(6.0000, 99.7400, 0.016)-(14.0000, 99.7400, 0.016)-(14.2500, 99.7400, 0.013)-(14.2500, 99.8900, 0.013)-(16.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.8000, 0.013)-(1

Channel Report


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Dec 20 2018


STREET 'A' - OVERLAND CAPACITY ANALYSIS

User-defined		Highlighted	
Invert Elev (m)	= 99.7400	Depth (m)	= 0.2600
Slope (%)	= 0.7500	Q (cms)	= 3.5517
N-Value	= Composite	Area (sqm)	= 2.5457
		Velocity (m/s)	= 1.3952
Calculations		Wetted Perim (m)	= 20.3038
Compute by:	Q vs Depth	Crit Depth, Yc (m)	= 0.2600
No. Increments	= 10	Top Width (m)	= 20.0000
		EGL (m)	= 0.3593
N-Value Calculations Compute by:	= Composite Q vs Depth	Area (sqm) Velocity (m/s) Wetted Perim (m) Crit Depth, Yc (m) Top Width (m)	= 2.5457 = 1.3952 = 20.3038 = 0.2600 = 20.0000

(Sta, El, n)-(Sta, El, n)...
(0.0000, 100.0000)-(2.2500, 99.9550, 0.013)-(3.7500, 99.9250, 0.013)-(5.5000, 99.8900, 0.020)-(5.7500, 99.8900, 0.013)-(5.7500, 99.7400, 0.013)-(6.0000, 99.7400, 0.016)-(14.0000, 99.7400, 0.016)-(14.2500, 99.7400, 0.013)-(14.2500, 99.8900, 0.013)-(16.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.9250, 0.020)-(17.7500, 99.9550, 0.013)-(20.0000, 99.8000, 0.013)-(14.2500, 99.8000, 0.013)-(1

Depth	Q	Area	Veloc
(m)	(cms)	(sqm)	(m/s)
0.0260	0.016	0.047	0.3379
0.0520	0.082	0.161	0.5064
0.0780	0.223	0.343	0.6491
0.1040	0.500	0.564	0.8872
0.1300	0.866	0.785	1.1028
0.1560	1.213	1.009	1.2022
0.1820	1.457	1.290	1.1297
0.2080	1.974	1.641	1.2032
0.2340	2.671	2.059	1.2971
0.2600	3.552	2.546	1.3952

APPENDIX H STORMWATER MANAGEMENT CALCULATIONS

H-1 SWM Pond Scenario 2a Calculations

H-2 Figure 7.1 Stormwater Management Strategy

APPENDIX H-1 SWM Pond Scenario 2a Calculations

SCENARIO 2a: SWM DESIGN CALCULATIONS - POND 2 (WEST) HYRDO-0: Contributing Drainage Area and Land Use

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

POND 2 (West of Lewis)

POND 2 (West of Lewis)	From	То	Area [ha]	Runoff Coefficient	Imperviousness %IMP=100 X (C-0.2)/0.7	Imperviousness %IMP= (C-0.05)/0.009	De	sign Requirem	ent
							Conveyance	Quantity	Quality
Total Drainage Area to HW-1			38.16	0.64	62.9	65.6	•	•	•
Total Drainage Area to HW-2			12.76	0.73	75.7	75.6	•	•	•
Pond Block			2.54	0.90	100.0	94.4	•	•	•
						60.0			
Total Drainage Area (Quality Control Only)			53.46	0.67	67.7	69.3			
Total Drainage Area (Quantity Control Only)			53.46	0.67	67.7	69.3			
Total Drainage Area to Pond			53.46	0.67	67.7	69.3	53.46	53.46	53.46

SWM POND DESIGN CALCULATION - POND 2 (WEST) SWMF-1 TARGET SUMMARY

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton Project No.: 12-062W Date: 14-Jan-20 Prepared by: J.L Checked by: AF Submission #: 3rd Submission

POND 2 (West of Lewis)

Based on VO5 Model

Pond Layout

Head Wall

Number of Headwalls: Drainage Area to Headwall [ha]:

2 53.46

Elevation	Storm Event	Surface Area (m²)	Total Volume	Active Storage Volume
(m)		Surface Area (III)	(m³)	(m³)
84.00	BOTTOM WET CELL	5,385	0	0
84.00	BOTTOM FOREBAY	2,419	0	0
85.15		10,751	10,669	0
85,50		11,585	13,126	0
85.57	PERM POOL	12,465	17,142	0
85,60	1 21011 002	12,588	17,518	376
85.65		12,778	18,152	1,010
85.70		13,103	18,799	1,657
85.75		13,227	19,457	2,315
85.80		13,352	20,122	2,980
85.85			20,793	3,650
85.90		13,477	21,470	4,327
		13,602		· · · · · · · · · · · · · · · · · · ·
85.95		13,729	22,153	5,011
86.00		13,855	22,842	5,700
86.05		13,982	23,538	6,396
86.10	EXT DET	14,109	24,241	7,098
86.15		14,237	24,949	7,807
86.20		14,365	25,664	8,522
86.25		14,493	26,386	9,244
86.30		14,623	27,114	9,972
86.35		14,752	27,848	10,706
86.40		14,883	28,589	11,447
86.45		15,013	29,336	12,194
86.50		15,144	30,090	12,948
86.55		15,277	30,851	13,709
86.60		15,408	31,618	14,476
86.65	2-YR	15,541	32,392	15,249
86.70		15,673	33,172	16,030
86.75		15,807	33,959	16,817
86.80		15,941	34,753	17,611
86.85		16,076	35,553	18,411
86.90		16,210	36,360	19,218
86,95		16,346	37,174	20,032
87,00		16,482	37,995	20,853
87.05	5-YR	16,619	38,823	21,680
87.10	 	16,756	39,657	22,515
87.15		16,892	40,498	23,356
87.20		17,030	41,346	24,204
87.25		17,168	42,201	25,059
87.30	10-YR	17,306	43,063	25,921
87.35	-V IN	17,447	43,932	26,790
87.40	+	17,586	44,808	27,665
87.45	+	17,726	45,690	28,548
87.50		17,866	46,580	29,438
87.55		18,008	47,477	30,335
	25-YR			
87.60	25-1K	18,149	48,381	31,239
87.65		18,291	49,292	32,150
87.70		18,433	50,210	33,068
87.75		18,577	51,135	33,993
87.80		18,720	52,068	34,926

87.85	50-YR	18,863	53,007	35,865
87.90		19,008	53,954	36,812
87.95		19,153	54,908	37,766
88.00		19,298	55,869	38,727
88.05		19,444	56,838	39,696
88.07	100-YR	19,503	57,228	40,085
88.20		19,885	59,788	42,645
88.40		20,478	63,824	46,682
88.60	EMERGENCY	20,795	67,951	50,809
89.00		21,492	76,409	59,266

Design Target

Event	Volume	Discharge	Description
PERM POOL	183 m³/ha	-	(Modified for 69% imperv.)
EXT DET	25 mm storm event - VO5	0.155 m³/s	Revised Target - Erosion Threshold Un Rate (shown in Extended Detention Por Calculation Sheet)
ORIGINAL SCUBESS TARGETS - SUP	ERSEDED		(
EXT DET	294 m³/ha [SCUBE]	0.0006 m³/s/ha [SCUBE]	[SCUBE - 15% of 2- y]
2 YR	420 m³ /ha [SCUBE]	0.0043 m ³ /s/ha [SCUBE]	[SCUBE]
5 YR	m³	m³/s/ha	
25 YR	m³	m³/s/ha	
100 YR	1132 m³ /ha [SCUBE]	0.0174 m ³ /s/ha [SCUBE]	[SCUBE]

^{**} Quantity storage tagets include extended detention storage.

** Quant

Wet Pond	(Per MOE Stormwater Management Planning and Design Manual 2003, To	able 3.2)
----------	--	-----------

Impervious Level	Water Quality Storage Vol	Extended Detention	Permanent Pool
(%)	m³/ha	m³/ha	m³/ha
35%	140	40	100
55%	190	40	150
70%	225	40	185
85%	250	40	210

	Area [ha]	IMP%
Total Contributing Area	53.46	69%
Quantity Control Only	53.46	69%
Quality Control Only	53.46	69%

Return		Stage	Original SCUBE Required Volume	Original SCUBE Target Discharge	Revised Required Volume [Based on Scenario 2a]	Revised Target Discharge [Based on Scenario 2]	Provided
Period		[m]	[m³]	[m³/s]	[m³]	[m³/s]	[m³]
PERM POOL		85.57	9805	-	9,805	-	17,142
EXT DET		86.10	10894	0.032	6,576	0.051	7,098
2-YR		86.65	<i>15563</i>	0.230	14,498	0.100	15,249
5-YR		87.05	N/A	N/A	21,333	0.138	21,680
10-YR		87.30	N/A	N/A	25,841	0.169	25,921
25-YR		87.60	N/A	N/A	30,209	0.215	31,239
50-YR		87.85	N/A	N/A	35,303	0.256	35,865
100-YR		88.07	41947	0.930	39,612	0.301	40,085
EMERGENCY	*	88.60	-			9.93	46,682

^{*}Emergency flow target is the larger of the 100-Year uncontrolled and Regional Storm event

	100-Yr Uncontrolled Flow (m³/s)	Regional Flow (m³/s)
West Pond	9.928	6.957

EXTENDED DETENTION POND TARGET - EROSION THRESHOLD SWMF-1 TARGET SUMMARY -Part II

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

POND 2 (West of Lewis)

Extended Detention Pond Target:

To be based on the Erosion Threshold determined by the GEO Morphix studies for Node 10 (where flows merge downstream of Venetian Meats' Channel) under existing conditions, which is **0.609 m³/s**.

NODE 10:

0.609 m³/s - Erosion Threshold Target to Define Unit Flow Rates from SWM Facilities for Extended Detention Flows 193.05 ha - Existing Drainage area to Node 10

0.00315 m³/s/ha Unit Flow Rate

P2 (West):

53.12 ha (total) - 3.97 ha (additional area to pond under post-development not included under existing conditions from McNeilly and Barton ROWs)

49.15 ha

0.155 m³/s

SWM POND TARGET SCENARIOS

SWMF-1 TARGET SUMMARY - Part III

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton
Project No.: 12-062W
Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

Scenario 2a

occitatio za					
Existing Catchment 302B (Node 3)		Proposed Condition - MIKE 11 Frequency Flow Analysis (Node 4)	Pond Discharge (VO5 - revised outlet structure)	VO5 Required Storage	
Pond Level	Flow (m ³ /s)	Flow (m ³ /s)	Flow (m ³ /s)	(m³)	
ED	0.155	-	0.051	6,576	
2	0.730	0.100	0.100	14,498	
5	1.113	0.138	0.138	21,333	
10	1.396	0.169	0.169	25,841	
25	1.774	0.215	0.215	30,209	
50	2.059	0.256	0.256	35,303	
100	2.364	0.301	0.301	39,612	

Storm Event	Pond-2 (West) Area = 53.46 ha; IMP%=69%					
	Unit Volume Volume Unit Release Rates Flow					
	m³/ha	m ³	L/s/ha	m³/s		
Permanent Pool	183	9,805	-	-		
Erosion Control	177	6,576	2.900	0.155		
2-Year	391	14,498	1.878	0.100		
100-Year	1069	39,612	5.638	0.301		

SWM POND DESIGN CALCULATIONS **SWMF-2: Drawdown Time**

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton

Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission Number: 3rd Submission

POND 2 (West of Lewis)

Detention Time Calculations

 $t = (0.66C_2h^{1.5} + 2C_3h^{0.5}/2.75Ao$

(MOECC Eq'n 4.11)

t= 195905 drawdown time in seconds t= 54.4 drawdown time in hours

d = 0.2diameter of orifice (m)

cross-sectional area of the orifice (m²) $A_0 = 0.0314$ h= 0.430 maximum water elevation above orifice (m)

 $Q_{\text{ext det}} = 0.0548$ proposed extended detention release rate (m3/s)

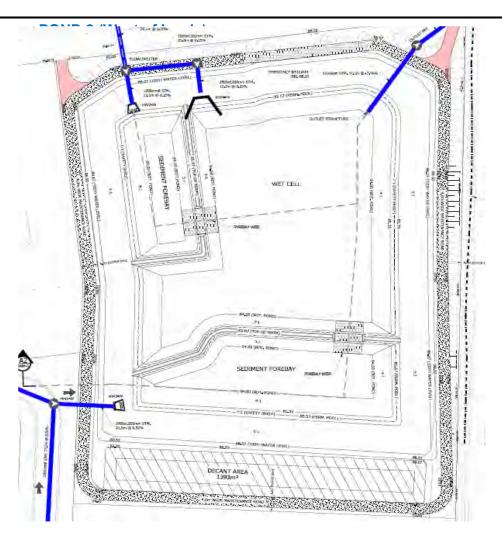
Q_{target}= 0.155 based on Erosion threshold UFR

slope coefficient from the area-depth linear regression C₂= 3102.83 $C_3 = 12465$ intercept from the area-depth linear regression

Pond area-depth relationship:

	Elevation (m)	Area (m²)	Depth (m)
PERM POOL	85.57	12465	0.00
EXT DET	86.10	14109	0.53

The drawdown time for POND 2 (West of Lewis) is 54.4 hours (2.3 days) The drawdowntime is greater than the target of 48 hours.


DESIGN CALCULATIONS SWMF-3a: Forebay Length to Width Ratio Calculation

Project Name: Fruitland Winona BSS Area #3 Prepared by: J.L Checked by:

Municipality: City of Hamilton

Project No.: 12-062W **Submission #:** 3rd Submission

2020-01-14 Date:

 m^3 Total Provided Permanent Pool Volume= 17142 m^3 Required Permanent Pool Volume= 9805

	Length Width		Ratio		Length V	/idth	Ratio
Forebay HW-1	87.0m	19.0m	4.58 : 1	Forebay HW2-2	88.0m	29.0m	3.03:1
Wet Cell	108.0m	71.0m	1.52:1	Wet Cell	102.0m	72.0m	1.42:1
Weighted Average			2.17:1				1.88 : 1

SWM POND DESIGN CALCULATIONS SWMF-3: Sediment Forebay Sizing

Project Name: Fruitland Winona BSS Area #3 Municipality: City of Hamilton Project No.: 12-062W Date: 14-Jan-20

Prepared by: J.L Checked by: AF Submission #: 3rd Submission

POND 2 (West of Lewis)

	Drainage Area (ha)			
HW-1	40.70	0.66		
HW-2	12.76	0.73		

Settling Calcs (MOECC 2003, Wet Pond)

 $Dist_{R} = (rQ_{p}/V_{s})^{0.5}$

(MOECC Eq'n 4.5)

Parameter	HW-1	HW-2	Description
r=	3.6	4.58	Proposed length-to-width ratio of forebay
Q _p =	0.055	0.055	Proposed Extended Detention Release Rate (m3/s)
V _s =	0.0003	0.0003	Settling velocity (0.0003 m/s most cases)
Dist _R =	<u> 26</u>	<u>29</u>	Forebay Length Required (m)
		_	
Dist _P =	105	87	Forebay Length Provided (m)

SUFFICIENT FOREBAY LENGTH PROVIDED.

Note: Forebay should not exceed one-third of pond surface area

Minor and Major system flow approximation (from Design Sheet)						
	Area (ha)	Q (m ³ /s)	Q100 (m ³ /s)			
HW-1	40.7	4.89	9.52			
HW-2	12.76	3.48	3.56			

Dispersion Length (MOECC 2003, Wet Pond) $\label{eq:DistR} \mbox{Dist}_{R} = 8^{\star}\mbox{Q/d/V}_{r}$

(MOECC Eq'n 4.6)

Parameter	HW-1	HW-2	Description
Q d V _r	9.52 1.50 0.5	1.50	Minor inlet flowrate (m³/s) Depth of permanent pool in forebay (m) Desired velocity of forebay (m/s)
Dist _R	<u>102</u>	<u>38</u>	Dispersion Length Required (m)
Dist _P	105	87	Dispersion Length Provided (m)

SUFFICIENT FOREBAY LENGTH PROVIDED

SWM DESIGN CALCULATIONS SWMF-5 EMERGENCY SPILLWAY WEIR

SCENARIO 2a: SWM DESIGN CALCULATIONS - POND 2 (WEST)

Project Name: Fruitland Winona BSS Area #3

Municipality: City of HamiltonChecked by: AFProject No.: 12-062WLast Revised: 3rd Submission

Date: 2020-01-14

POND 2 (West of Lewis)

Input Parameters:

Side Slope, S₁ 10 :1 (2%) Side Slope, S₂ 10 :1 (2%) Spillway Invert 88.60 m Water Level 89.00 m Flow Depth, H 0.40 m Bottom Width, B: 37.0

Weir equation: $Q = BxC_dxH^{3/2} + SxC_dxH^{5/2}$

Prepared by: J.L

 $C_d = 1.5$

where: Q=flow rate (m3/s)

H= head on the weir (m)

B=width of the weir (m)

S = side slopes of weir (H:V)

Computed Values:

Capacity, Q at 89m 15.56 m³/s

Emergency Flow Required via

Spillway 9.93 m³/s

The proposed emergency spillway provides sufficient capacity.

SWM DESIGN CALCULATIONS SWMF-6 DECANTING AREA

SCENARIO 2a: SWM DESIGN CALCULATIONS - POND 2 (WEST)

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton

Checked by: AF

Project No.: 12-062W Submission #: 3rd Submission

Date: 14-Jan-20

POND 2 (West of Lewis)

Drainage Area to POND 2 (West of Lewis) 53.46 ha

Imperviousness= 69%

Required Protection level= 70 % TSS Removal (Enhanced)

Required storage volume for Enhanced level of protection (70% TSS Removal)= m3//ha (MOECC-Table 3.2) 90 (SWMF-1) Required permanent storage volume for Normal level of protection (70% TSS Removal)= 4797 m3 (SWMF-1) Provided permanent pool storage volume 13126 m3 Required storage volume for Basic level of protection (60% TSS Removal)= 44 m3//ha (MOECC-Table 3.2)

Required storage volume for Basic level of protection (60% TSS Removal)= 44 m3/ha (MOECC-Table 3.2 Required storage volume for Basic level of protection (60% TSS Removal)= 2373 m3

Required Storage Volume for 65% TSS Removal= 67 m3//ha
Required Storage Volume for 65% TSS Removal= 3585 m3

Storage volume equivalent to 5% TSS reduction= 9542 m3

Annual Sediment Loading (from MOE-Table 6.3)=

2.79 m3/ha/yr based on %IMP

149.07 m3/yr

Theoretical Cleanout Frequency= 64 yrs

Volume provided in the decanting area= 1393 m3

Maximum Depth of Decanting Area= 1 m

Slope in Decanting Area= 4 :1

Proposed Cleanout Frequency= 9.3 yrs

SWM POND DESIGN CALCULATION - POND 3 (EAST) HYRDO-0: Contributing Drainage Area and Land Use

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

POND 3 (East of Lewis)

POND 3 (East of Lewis)	From	То	Area [ha]	Runoff Coefficient	Imperviousness %IMP=100 X (C-0.2)/0.7	Imperviousness %IMP= (C-0.05)/0.009	De	sign Requirem	ent
							Conveyance	Quantity	Quality
Total Drainage Area to HW-1			17.05	0.65	64.3	66.7	•	•	•
Pond Block			1.51	0.90	100.0	94.4	•	•	•
Total Drainage Area (Quality Control Only)			18.56	0.670	67.2	68.9			
Total Drainage Area (Quantity Control Only)			18.56	0.67	67.2	68.9			
Total Drainage Area to Pond			18.56	0.67	67.2	68.9	18.56	18.56	18.56

SWM POND DESIGN CALCULATION - POND 3 (EAST) SWMF-1 TARGET SUMMARY

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton Project No.: 12-062W **Date:** 14-Jan-20

Prepared by: J.L Checked by: AF
Submission #: 3rd Submission

POND 3 (East of Lewis)Based on VO5 Model - Scenario 2 (Defined in SWM Pond Target Scenarios Sheet)

Pond Layout

Head Wall HW1-E Number of Headwalls: Drainage Area to Headwall [ha]: 18.56

Elevation	Storm Event	Surface Area (m²)	Total Volume	Active Storage Volume
(m)			(m³)	(m ³)
84.60	BOTTOM FOREBAY	303	0	0
84.60	BOTTOM WET CELL	1,501	0	0
86.14		3,512	3,777	0
86.35	PERM POOL	3,999	4,565	0
86.56		4,529	5,463	898
86.70		5,316	6,142	1,578
86.75		5,400	6,410	1,846
86.80		5,484	6,682	2,118
86.85	EXT DET	5,569	6,959	2,394
86.90		5,654	7,239	2,675
86.95		5,740	7,524	2,959
87.00		5,826	7,813	3,249
87.05		5,912	8,107	3,542
87.10		6,000	8,404	3,840
87.15		6,087	8,707	4,142
87.20		6,175	9,013	4,448
87.25		6,263	9,324	4,759
87.30		6,352	9,639	5,075
87.35		6,442	9,959	5,395
87.40		6,531	10,284	5,719
87.45	2-YR	6,621	10,612	6,048
87.50	2-1K		10,812	
87.55		6,712	•	6,381
		6,803	11,284	6,719
87.60		6,895	11,626	7,061
87.65		6,987	11,973	7,408
87.70		7,079	12,325	7,760
87.75		7,172	12,681	8,116
87.80		7,265	13,042	8,477
87.85	5-YR	7,359	13,408	8,843
87.90		7,454	13,778	9,213
87.95		7,548	14,153	9,588
88.00		7,643	14,533	9,968
88.05		7,739	14,917	10,353
88.10	10-YR	7,835	15,307	10,742
88.15		7,932	15,701	11,136
88.20		8,028	16,100	11,535
88.25		8,126	16,504	11,939
88.30		8,224	16,912	12,348
88.35	25-YR	8,322	17,326	12,761
88.40		8,421	17,745	13,180
88.45		8,520	18,168	13,603
88.50		8,620	18,597	14,032
88.55		8,720	19,030	14,465
88.60	50-YR	8,820	19,469	14,904
88.65		8,921	19,912	15,348
88.70		9,023	20,361	15,796
88.75		9,125	20,814	16,250

88.80		9,227	21,273	16,709
88.85	100-YR	9,330	21,737	17,173
89.25		10,170	25,635	21,070
89.60	EMERGENCY	10,210	29,201	24,637
89.90		10,245	32,270	27,706

Design Target

Event	Volume	Discharge	Description
PERM POOL	182 m³/ha	-	(Modified for 68.93% imperv.)
EXT DET	25 mm storm event - VO5	0.058 m³/s	Revised Target - Erosion Threshold Unit Flow Rate (shown in Extended Detention Pond Target Calculation Sheet)
ORIGINAL SCUBESS TARGETS - SUPERSEDED			
EXT DET	296 m³ /imperv ha [SCUBI	0.0006 m ³ /s/ha [SCUBE]	[SCUBE - 15% of 2- yr]
2 YR	422 m ³ /imperv. ha [SCUE	0.0043 m ³ /s/ha [SCUBE]	[SCUBE]
100 YR	1134 m ³ /imperv. ha [SCUE	0.0174 m ³ /s/ha [SCUBE]	[SCUBE]

^{**} Quantity storage tagets include extended detention storage.

Wet Pond (Per MOE Stormwater Management Planning and Design Manual 2003, Table 3.2)

Impervious	Water Quality	Extended	Permanent
Level	Storage Vol	Detention	Pool
(%)	m³/ha	m³/ha	m³/ha
35%	140	40	100
55%	190	40	150
70% 85%	225 250	40 40	185 210
0376	250	40	210
erpolated Storage Requirement			
0.69	222	40	182

		Area [ha]	IMP%			
Total Contributing Area		18.56	68.93%			
Quantity Control Only		18.56	68.93%			
Quality Control Only		18.56	68.93%			
Return	Stage	Original SCUBE Required Volume	Original SCUBE Target Discharge	Revised Required Volume [Based on Scenario 2]	Revised Target Discharge [Based on Scenario 2]	Provided Storage
Period	[m]	[m³]	[m³/s]	[m³]	[m³/s]	[m³]
PERM POOL	86.35	3387	-	3,387	-	4,565
EXT DET	86.85	3787	0.011	2,334	0.013	2,394
2-YR	87.45	5399	0.080	5,770	0.015	6,048
5-YR	87.85	N/A	N/A	8,486	0.019	8,843
10-YR	88.10	N/A	N/A	10,327	0.024	10,742
25-YR	88.35	N/A	N/A	12,320	0.029	12,761
50-YR	88.60	N/A	N/A	14,307	0.032	14,904
100-YR	88.85	14507	0.323	16,273	0.036	17,173
EMERGENCY *	89.60					24,637

^{*}Emergency flow target is the larger of the 100-Year uncontrolled and Regional Storm even

HW#	100-Yr Uncontrolled Flow (m³/s)	Regional Flow (m³/s)
HW1	3.614	2.455

EXTENDED DETENTION POND TARGET - EROSION THRESHOLD

Project Name: Fruitland Winona BSS Area #3
Municipality: City of Hamilton

Prepared by: J.L
Checked by: AF

Project No.: 12-062W Submission #: 3rd Submission

Date: 14-Jan-20

POND 3 (East of Lewis)

Extended Detention Pond Target:

To be based on the Erosion Threshold determined by the GEO Morphix studies for Node 10 (where flows merge downstream of Venetian Meats' Channel) under existing conditions, which is <u>0.609 m³/s.</u>

NODE 10:

0.609

m³/s - Erosion Threshold Target to Define Unit Flow Rates from SWM Facilities for Extended Detention Flows 193.05 ha - Existing Drainage area to Node 10

0.00315 m³/s/ha Unit Flow Rate

P3 (East):

18.5 ha (total) [is all included within the ex. Drainage area to Node 10]:

18.5 ha

0.058 m³/s

SWM POND TARGET SCENARIOS

Project Name: Fruitland Winona BSS Area #3
Municipality: City of Hamilton
Project No.: 12-062W
Date: 14-Jan-20

Prepared by: J.L Checked by: AF Submission #: 3rd Submission

POND 3 (East of Lewis)

Scenario 2

	Existing Catchment 202 (Node 6)	Post (VO5 - revised outlet structure)	VO5 Required Storage m3
Pond Level	Flow (m ³ /s)	Flow (m ³ /s)	Storage IIIS
ED (ET)		0.013	2,334
2	0.304	0.015	5,770
5	0.473	0.019	8,486
10	0.595	0.024	10,327
25	0.759	0.029	12,320
50	0.886	0.032	14,307
100	1.016	0.036	16,273

Storm Event	Pond-2 (East) Area = 18.56 ha; IMP%=69%				
	Unit Volume m³/ha	Volume m ³	Unit Release Rates L/s/ha	Flow m ³ /s	
Permanent Pool	182	3,387	-	-	
Erosion Control	265	2,334	3.144	0.013	
2-Year	451	5,770	0.808	0.015	
100-Year	604	16,273	1.940	0.036	

SWM POND DESIGN CALCULATIONS SWMF-2: Drawdown Time

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton

Project No.: 12-062W Submission #: 3rd Submission

Date: 14-Jan-20

POND 3 (East of Lewis)

Detention Time Calculations

 $t = (0.66C_2h^{1.5} + 2C_3h^{0.5})/2.75Ao$

(MOECC Eq'n 4.11)

Prepared by: J.L Checked by: AF

t= 277372 drawdown time in seconds t= 77.0 drawdown time in hours

d= 0.1 diameter of the orifice (m)

 A_0 = 0.008 cross-sectional area of the orifice (m^2) h= 0.450 maximum water elevation above orifice (m)

Q_{ext det}= 0.014 proposed extended detention release rate (m3/s)

Q_{target}= 0.058 based on Erosion threshold UFR

 C_2 = 3140.00 slope coefficient from the area-depth linear regression C_3 = 3999 intercept from the area-depth linear regression

Pond area-depth relationship:

	Elevation (m)	Area (m²)	Depth (m)
PERM POOL	86.35	3999	0.00
EXT DET	86.85	5569	0.50

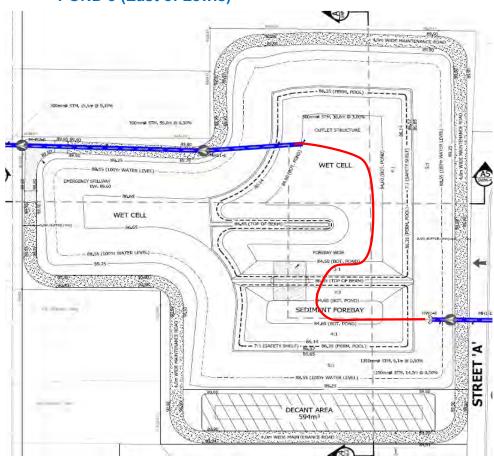
The drawdown time for POND 3 (East of Lewis) is 77 hours (3.2 days)

The drawdown time is greater than the target of 48 hours.

DESIGN CALCULATIONS SWMF-3a: Forebay Length to Width Ratio Calculation

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton


Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

POND 3 (East of Lewis)

*Flow path shown in red

Total Provided Permanent Pool Volume= 4565 m³
Required Permanent Pool Volume= 3387 m³

	Length: Width	1	Criteria	Provided Ratio
Forebay	56.0m	21.0m	2.00:1	2.67 : 1
Wet Cell	96.0m	24.8m		3.87 : 1
Weighted Average			3.00:1	3.32 : 1

SWM POND DESIGN CALCULATIONS SWMF-3: Sediment Forebay Sizing

Project Name: Fruitland Winona BSS Area #3
Municipality: City of Hamilton
Project No.: 12-062W Date: 14-Jan-20

Prepared by: J.L Checked by: AF Submission #: 3rd Submission

POND 3 (East of Lewis)

Drainage Area (ha)			
HW	17.05		

Settling Calcs (MOECC 2003, Wet Pond)

 $Dist_{R} = (rQ_{p}/V_{s})^{0.5}$

(MOECC Eq'n 4.5)

Parameter	HW	Description
	2.67	Proposed length-to-width ratio of forebay
r=		Proposed Extended Detention Release Rate (m3/s)
Q _p =		
V _{s =}	0.0003	Settling velocity (0.0003 m/s most cases)
Diet	44	Carebar Landth Daminad (m)
Dist _{R =}	<u>11</u>	Forebay Length Required (m)
Dist _P =	56	Forebay Length Provided (m)
- Бізφ ₌	30	i orebay Length Frontied (III)

SUFFICIENT FOREBAY LENGTH PROVIDED.

Note: Forebay should not exceed one-third of pond surface area

Minor and Major system flow approximation (from Design Sheet)				
Area (ha)		Q (m ³ /s)	Q100 (m ³ /s)	
HW	17.05	2.37	4.42	

Dispersion Length (MOECC 2003, Wet Pond)

 $Dist_R = 8*Q/d/V_r$

(MOECC Eq'n 4.6)

Parameter	HW		Description	
Q	4.42	l l	Major System inlet flowrate (m³/s)	
d	1.75		Depth of permanent pool in forebay (m)	
V_{r}	0.5		Desired velocity of forebay (m/s)	
D:-4			Discounting Locally Department (as)	
Dist _R	<u>40</u>		Dispersion Length Required (m)	
Dist _P	56		Dispersion Length Provided (m)	

SUFFICIENT FOREBAY LENGTH PROVIDED

SWM DESIGN CALCULATIONS SWMF-5 EMERGENCY SPILLWAY WEIR

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton

Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

POND 3 (East of Lewis)

Input Parameters:

Side Slope, S ₁	10	:1 (2%)
Side Slope, S ₂	10	:1 (2%)
Spillway Invert	89.6	m
Water Level	89.9	m
Flow Depth, H	0.30	m
Bottom Width, B:	15.0	m

Weir equation: $Q = BxC_dxH^{3/2} + SxC_dxH^{5/2}$

 $C_{d} = 1.5$

where: Q=flow rate (m3/s)

H= head on the weir (m)

B=width of the weir (m)

S = side slopes of weir (H:V)

Computed Values:

Capacity, Q at 89.9m 4.44 m³/s

Emergency Flow Required via

Spillway 3.61 m³/s

The proposed emergency spillway provides sufficient capacity.

SWM DESIGN CALCULATIONS SWMF-6 DECANTING AREA

Project Name: Fruitland Winona BSS Area #3

Municipality: City of Hamilton Project No.: 12-062W

Date: 14-Jan-20

Prepared by: J.L Checked by: AF

Submission #: 3rd Submission

(MOECC-Table 3.2)

(MOECC-Table 3.2)

(SWMF-1)

(SWMF-1)

POND 3 (East of Lewis)

Drainage Area to POND 3 (East of Lewis) 18.56 ha Imperviousness=

Required Protection level=

Required storage volume for Normal level of protection (70% TSS Removal)=

Required permanent storage volume for Normal level of protection (70% TSS Removal)= Provided permanent pool storage volume

Required storage volume for Basic level of protection (60% TSS Removal)= Required storage volume for Basic level of protection (60% TSS Removal)=

Required Storage Volume for 65% TSS Removal= Required Storage Volume for 65% TSS Removal=

Storage volume equivalent to 5% TSS reduction=

Annual Sediment Loading (from MOE-Table 6.3)=

69%

70 % TSS Removal (Normal)

89 m3/ha 1657 m3

4565 m3 44 m3/ha

819 m3

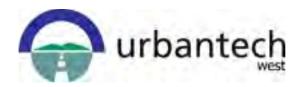
67 m3/ha 1238 m3

3327 m3

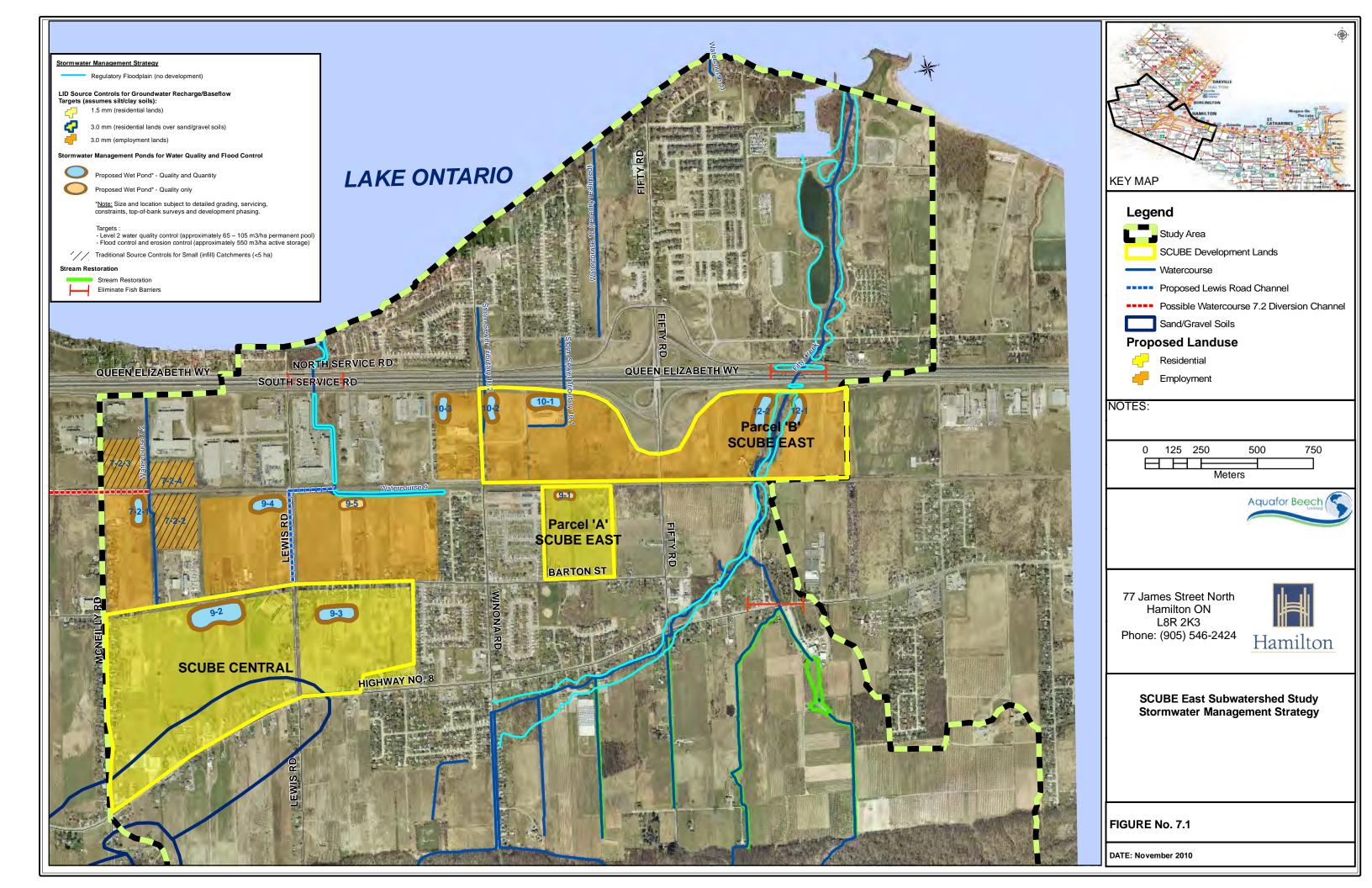
2.76 m3/ha/yr based on %IMP

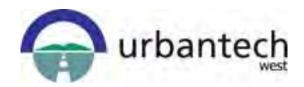
51.29 m3/yr

Theoretical Cleanout Frequency=


65 yrs

Volume provided in the decanting area= 594 m3 Maximum Depth of Decanting Area= 1 m Slope in Decanting Area= 4:1


Proposed Cleanout Frequency=


(Annual sediment loading/Storage volume)

11.6 yrs


APPENDIX H-2 Figure 7.1 Stormwater Management Strategy

APPENDIX I SANITARY SEWER DESIGN SHEETS

I-1 Sanitary Sewer Design Sheets

[EAST]

Branthaven-Fruitland Winona

[City of Hamilton]

PROJECT DETAILS

Project No: 12-062W

Date: [19-08-12]

Designed by: [RAM]

Checked by: [RBTM]

DESIGN CRITERIA

Infiltration = 0.600 l/s/ha

Avg. Domestic Flow = 360.0 I/c/d


Min Diameter = 250 mm Mannings 'n'= 0.015

Min. Velocity = 0.75 m/s Max. Velocity = 2.75 m/s

Max. Peaking Factor = 5.00 Min. Peaking Factor = 2.00

Factor of Safety = 15 %

						RESI	DENTIAL			COMME	RCIAL/INDUST	RIAL/INSTITUT	ONAL			FLOW	V CALCULATIONS						PIPE D	ATA	
																					PIPE				
AREA ID	STREET	FROM	то		ACC.				ACCUM.			FLOW EQU					G RES. COMM.	ACCUM.	TOTAL	SLOPE	DIAMETER	FULL FLOW			PERCENT
		МН	МН		AREA UNITS				RES.	AREA	AREA POP.		EQUIV.		ACCUM.	FACTOR	FLOW FLOW	COMM. FLOW	FLOW			CAPACITY	VELOCITY	VELOCITY	FULL
				(ha)	(ha) (#)	(P/ha)	(P/unit)		POP.	(ha)	(ha) (p/ha)	(l/s/ha)	POP.	(l/s)	POP.		(I/s) (I/s)	(I/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
			1											T											
8	STREET 'F'	MH13A-E	MH12A-E	1 10	1 10	60		66	66					0.7	66	5.00	1.4		2.0	1.00	250	51.5	1.05	0.49	4%
0	SIRLLI F	MITIOA-L	MITIZA-L	1.10	1.10	00		00	00					0.7	00	3.00	1.4		2.0	1.00	230	31.3	1.03	0.43	470
9	STREET 'G'	MH14A-E	MH12A-E	0.58	0.58	60		35	35					0.3	35	5.00	0.7		1.1	1.00	250	51.5	1.05	0.37	2%
10	STREET 'F-K'	MH15A-E	MH12A-E	1.04	1.04	60		63	63					0.6	63	5.00	1.3		1.9	1.00	250	51.5	1.05	0.49	4%
11	STREET 'F'	MH36A-E	MH12A-E	0.54	0.54	60		33	33					0.3	33	5.00	0.7		1.0	1.00	250	51.5	1.05	0.37	2%
7	COLLECTOR ROAD 'D'	MH12A-E	MH8A-E			60		74	271					2.7	271					0.50	250	36.4	0.74	0.59	23%
	COLLECTOR ROAD D	THILLY	THIOTE	1123	5			, ,	2,1					217		3.00	3.0		0.5	0.50	230	3011	0.7 1	0.55	2570
12	STREET 'H'	MH16A-E	МН8А-Е	0.35	0.35	60		21	21					0.2	21	5.00	0.4		0.6	1.00	250	51.5	1.05	0.33	1%
13	STREET 'L'	МН37А-Е	MH8A-E	0.24	0.24	60		15	15					0.1	15	5.00	0.3		0.5	1.00	250	51.5	1.05	0.27	1%
17	STREET 'E'	MH22A-E	MH21A-E	1 27	1 27	60		77	77					0.8	77	5.00	1.6		24	1.00	250	51.5	1.05	0.51	5%
	JIKELI E	MIZZAL	PINZIA L	1.27	1.27	00		//	//					0.0	//	5.00	1.0		2.7	1.00	230	31.3	1.05	0.51	370
16	STREET 'A'	MH21A-E	MH19A-E	0.79	2.06	60		48	125					1.2	125	5.00	2.6		3.8	1.00	250	51.5	1.05	0.60	7%
15	STREET 'C'	MH18A-E	MH19A-E			60		77	77					0.8	77					1.00	250	51.5	1.05	0.51	5%
14	STREET 'B'	MH19A-E	MH8A-E	1.13		60		68	270					2.7	270	5.00			8.3		250	36.4	0.74	0.59	23%
6	COLLECTOR ROAD 'D'	MH8A-E	MH5A-E	0.58	10.12	60		35	612					6.1	612	5.00	12.8		18.8	0.50	250	36.4	0.74	0.73	52%
18	STREET 'A'	MH35A-E	MH5A-E	1 48	1 40	60		89	89					0.9	89	5.00	1.0		2.7	1.00	250	51.5	1.05	0.55	5%
10	JIRLLI A	MINDOKE	I'IIIJA L	1.70	1.70	00		0.5	05					0.5	0,5	3.00	1.5		2.7	1.00	230	31.3	1.05	0.55	370
21	WINONA ROAD	MH25A-E	MH23A-E	3.03	3.03	83		252	252					1.8	252	5.00	5.3		7.1	0.50	250	36.4	0.74	0.56	19%
20	STREET 'I'	MH24A-E	MH23A-E			60		104	104					1.0	104	5.00				1.00	250	51.5	1.05	0.57	6%
19	STREET 'J'	MH23A-E	MH5A-E			60		17	373					3.0	373	5.00				1.00	250	51.5	1.05	0.81	21%
5	COLLECTOR ROAD 'D'	MH5A-E	MH4A-E	0.30	16.94				1074					10.2	1074	4.93	22.1		32.2	0.50	300	59.3	0.84	0.83	54%
EX2	BARTON STREET	EX.MH6A	MH4A-E	1.35	1.35	60		81	81				+	0.8	81	5.00	1.7		2.5	1.00	300	83.8	1.19	0.50	3%
4	BARTON STREET	MH4A-E	MH3A-E					0.1	1155					11.0	1155					0.50	450	174.7	1.10	0.85	20%
3	BARTON STREET	MH3A-E	MH2A-E			250		450	1605					12.1	1605	4.55				0.50	450	174.7	1.10	0.89	24%
2	BARTON STREET	MH2A-E	MH1A-E			250		305	1910					12.8	1910		35.0			0.50	450	174.7	1.10	0.91	27%
1/EX 1	BARTON STREET		EX.SMH007A			250		160	2070	3.00	3.00 250	75	750	15.0		4.06				0.50	450	174.7	1.10	0.99	36%

SANITARY SEWER DESIGN SHEET [EAST OPTION 2]

Branthaven-Fruitland Winona

[City of Hamilton]

PROJECT DETAILS

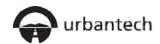
Project No: 12-062W

Date: [19-08-12]

Designed by: [RAM]

Checked by: [RBTM]

DESIGN CRITERIA


Min Diameter = 250 mm Mannings 'n'= 0.015

Min. Velocity = 0.75 m/s Max. Velocity = 2.75 m/s Avg. Domestic Flow = 360.0 1/c/d Infiltration = 0.600 1/s/ha

Max. Peaking Factor = 5.00 Min. Peaking Factor = 2.00

Factor of Safety = 15 %

						RESID	DENTIAL			СОММЕ	RCIAL/INDUSTR	IAL/INSTITUT	IONAL			FLO\	W CALCULATIONS						PIPE D	ATA	
												,									PIPE				
AREA ID	STREET	FROM	то		ACC.				ACCUM.		ACC. EQUIV.	FLOW EQU	IV. ACCU	M. INFILTRATION	TOTAL	PEAKIN	G RES. COMM.	ACCUM.	TOTAL	SLOPE	DIAMETER	FULL FLOW	FULL FLOW	ACTUAL	PERCENT
		MH	мн	AREA	AREA UNITS	DENISTY	DENSITY	POP	RES.	AREA	AREA POP.	RATE PO	P. EQUI	v.	ACCUM	. FACTO	R FLOW FLOW	COMM. FLOW	FLOW			CAPACITY	VELOCITY	VELOCITY	FULL
				(ha)	(ha) (#)	(P/ha)	(P/unit)		POP.	(ha)	(ha) (p/ha)	(I/s/ha)	POF	. (l/s)	POP.		(I/s) (I/s)	(l/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
					·		·					·		·											
8	STREET 'F'	MH13A-E	MH12A-E	1.10	1.10	150		165	165					0.7	165	5.00	3.4		4.1	1.00	250	51.5	1.05	0.62	8%
9	STREET 'G'	MH14A-E	MH12A-E	0.58	0.58	150		87	87					0.3	87	5.00	1.8		2.2	1.00	250	51.5	1.05	0.49	4%
10	STREET 'F-K'	MH15A-E	MH12A-E	1.04	1.04	150		156	156					0.6	156	5.00	3.3		3.9	1.00	250	51.5	1.05	0.62	8%
11	STREET 'F'	MH36A-E	MH12A-E			150		81	81					0.3	81	5.00				1.00	250	51.5	1.05	0.49	4%
7	COLLECTOR ROAD 'D'	MH12A-E	MH8A-E	1.23	4.49	110		136	625					2.7	625	5.00	13.0		15.7	0.50	250	36.4	0.74	0.69	43%
12	STREET 'H'	MH16A-E	MH8A-E	0.35	0.35	110		39	39					0.2	39	5.00	0.8		1.0	1.00	250	51.5	1.05	0.37	2%
13	STREET 'L'	MH37A-E	MH8A-E	0.24	0.24	110		27	27					0.1	27	5.00	0.6		0.7	1.00	250	51.5	1.05	0.33	1%
17	STREET 'E'	MH22A-E	MH21A-E	1.27	1.27	124		158	158					0.8	158	5.00	3.3		4.1	1.00	250	51.5	1.05	0.62	8%
16	STREET 'A'	MH21A-E	MH19A-E	0.79	2.06	110		87	245					1.2	245	5.00	5.1		6.3	1.00	250	51.5	1.05	0.70	12%
4.5	CTREET ICI	M11404 E	M1404 E	4.07	4 27	440		1.10	4.40					2.0	4.40	F 00	2.0		2 -	4.00	250	F4 F	4.05	0.60	70/
15	STREET 'C'	MH18A-E	MH19A-E			110		140	140					0.8	140		2.9			1.00	250	51.5	1.05	0.60	7%
14	STREET 'B'	MH19A-E	MH8A-E			110		125	510 1265					2.7	510		10.6			0.50	250	36.4	0.74	0.67	36%
6	COLLECTOR ROAD 'D'	MH8A-E	MH5A-E	0.58	10.12	110		64	1265					6.1	1265	4.//	25.1		31.2	0.50	300	59.3	0.84	0.83	53%
10	STREET 'A'	MH35A-E	MH5A-E	1.48	1.40	201		298	298					0.9	298	F 00	6.2		7.1	1.00	250	51.5	1.05	0.73	14%
18	SIREEI A	МПЭЭН-Е	MUDA-E	1.40	1.40	201		290	290					0.9	290	5.00	0.2		7.1	1.00	250	51.5	1.05	0.73	14%
21	WINONA ROAD	MH25A-E	MH23A-E	3 03	3 03	83		252	252					1.8	252	5.00	5.3		7 1	0.50	250	36.4	0.74	0.56	19%
21	WINONA ROAD	MI IZJA-L	MI IZJA-L	3.03	5.05	0.5		232	232					1.0	232	3.00	3.3		7.1	0.50	230	70.7	0.74	0.50	1970
20	STREET 'I'	MH24A-E	MH23A-E	1 73	1 73	110		191	191					1.0	191	5.00	4.0		5.0	1.00	250	51.5	1.05	0.67	10%
19	STREET 'J'	MH23A-E	MH5A-E			110		31	474					3.0	474		9.9			1.00	250	51.5	1.05	0.85	25%
5	COLLECTOR ROAD 'D'	MH5A-E	MH4A-E			110		-	2037					10.2	2037		36.8			0.50	375	107.4	0.97	0.90	44%
	COLLECTOR ROAD D	1113/12	1111111	0.55	20.01				2007					10.2	2037		23.0		17.0	0.50	3,3	10/11	0.57	0.50	1170
EX2	BARTON STREET	EX.MH6A	MH4A-E	1.35	1.35	110		149	149					0.8	149	5.00	3.1		3.9	1.00	300	83.8	1.19	0.58	5%
4	BARTON STREET	MH4A-E	MH3A-E						2186					11.0	2186		38.9			0.50	450	174.7	1.10	0.93	29%
3	BARTON STREET	MH3A-E	MH2A-E			250		450	2636					12.1	2636	_	45.2		_	0.50	450	174.7	1.10	0.96	33%
2	BARTON STREET	MH2A-E	MH1A-E			250		305	2941					12.8	2941	_				0.50	450	174.7	1.10	0.99	36%
1/EX 1	BARTON STREET		EX.SMH007A			250		160	3101	3.00	3.00 250	75	0 750		3851	_	61.3			0.50	450	174.7	1.10	1.02	44%

[WEST] OPTION 1

[Branthaven-Fruitland Winona]

[City of Hamilton]

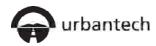
PROJECT DETAILS

Project No: 12-062W Date: [19-12-17] Designed by: [RAM] Checked by: [RBTM]

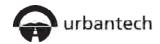
DESIGN CRITERIA

Avg. Domestic Flow = 360.0 I/c/d Infiltration = 0.600 l/s/ha

Max. Peaking Factor = 5.00 Min. Peaking Factor = 2.00


Factor of Safety = 15 %

Min Diameter = 250 mm


Min. Velocity = 0.75 m/s Max. Velocity = 2.75 m/s

Mannings 'n' = 0.015

I							RESIDEN	ΤΤΔΙ			COMM	ERCIAL/I	DUSTPT	AI /TNSTT	TUTION	ΔΙ				FI OW	CALCULAT	TONS					PIPE D	ΔΤΔ	
AREA ID	STREET	FROM MH	ТО МН	AREA (ha)	ACC. AREA (ha)			DENSITY	РОР	ACCUM. RES. POP.	AREA (ha)	ACC. AREA	EQUIV. POP.		EQUIV. POP.	ACCUM.	INFILTRATION		PEAKING FACTOR	RES.	сомм.	ACCUM. COMM. FLOW (I/s)	TOTAL FLOW (I/s)	SLOPE	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (I/s)		ACTUAL	PERCENT FULL (%)
				(IIa)	(IIa)	(#)	(F/IIa)	(F/unic)		FOF.	(lia)	(IIa)	(p/iia)	(1/3/114)		FOF.	(1/3)	ror.		(1/3)	(1/3)	(1/3)	(1/3)	(70)	(11111)	(1/5)	(111/3)	(111/3)	(70)
ECT CONDO	CTDEET IN	WEST SOUDS	MU224 W	4.22	4.22		440		477	477							2.6	477	F 00	0.0			42.5	1.00	250	F4 F	4.05	0.05	2.40/
VEST CONDO COMM 1	STREET 'P' STREET 'P'	WEST CONDO COMM 1A	MH23A-W MH23A-W	4.33	4.33		110		477	477	0.23	0.23	250		58	58	2.6 0.1	58	5.00 5.00				12.5	1.00	250 250	51.5 51.5	1.05 1.05	0.85 0.41	24% 3%
PARK 1	STREET 'P'	PARK 1A	MH23A-W	2.94	2.94		25		74	74	0.25	0.25	250		30	50	1.8		5.00				3.3	1.00	250	51.5	1.05	0.57	6%
0	CTDEET ID	MI 1224 W	MI 1124 W	1 77	0.04		60		107	CEO		0.22				F0	F.C.	716	F 00	140			20.5	0.50	250	26.4	0.74	0.75	F.CO/
8	STREET 'P'	MH23A-W	MH13A-W	1.//	9.04		60		107	658		0.23				58	5.6	/16	5.00	14.9			20.5	0.50	250	36.4	0.74	0.75	56%
7	COLLECTOR ROAD 'E' WEST	MH14A-W	MH13A-W	0.81	0.81		60		49	49							0.5	49	5.00	1.0			1.5	1.00	250	51.5	1.05	0.44	3%
9	STREET 'O'	M1117A \A/	MILITANA	0.44	0.44		60		27	27							0.2	27	F 00	0.6			0.0	0.50	250	26.4	0.74	0.20	20/
9	SIREEL O	MH17A-W	MH13A-W	0.44	0.44		60		27	2/							0.3	21	5.00	0.0			0.8	0.50	250	36.4	0.74	0.29	2%
6	COLLECTOR ROAD 'E' WEST	MH13A-W	MH12A-W	0.18	10.47					734		0.23				58	6.4	792	5.00	16.5			22.9	0.50	250	36.4	0.74	0.76	63%
19	COLLECTOR ROAD 'D' WEST	MH15A-W	MH24A-W	0.50	0.58		60		35	35							0.3	35	5.00	0.7			1.1	1.00	250	51.5	1.05	0.37	2%
	COLLECTOR ROAD 'D' WEST		MH12A-W				60		45	80							0.8		5.00				2.5	0.50	250	36.4	0.74	0.37	7%
16	STREET 'N'	MH24A-W(1)	MH12A-W	1.42	1.42		60		86	86							0.9	86	5.00	1.8			2.6	0.50	250	36.4	0.74	0.42	7%
		CONDO 2.1A	MH17A-W(1)	0.83	0.83		110		92	92							0.5	92	5.00	1.9			2.4	1.00	250	51.5	1.05	0.51	5%
			, ,																										
		CONDO 2.2A	MH17A-W(1)	0.59	0.59		110		65	65							0.4	65	5.00	1.4			1.7	1.00	250	51.5	1.05	0.47	3%
21	STREET 'O'	MH17A-W(1)	MH16A-W	0.57	1.99		60		35	192							1.2	192	5.00	4.0			5.2	1.00	250	51.5	1.05	0.67	10%
		, ,																											
22 20	STREET 'O' STREET 'M'	MH18A-W MH16A-W	MH16A-W MH15A-W		1.47 3.60		60		89	89 281							0.9 2.2	89 281	5.00				2.7 8.0	1.00 0.50	250 250	51.5 36.4	1.05 0.74	0.55 0.59	5% 22%
20	JIKELI PI	MITOA	MITISA	0.14	3.00					201							2.2	201	3.00	3.9			0.0	0.50	230	30.4	0.74	0.55	22 /0
23	STREET 'O'	MH21A-W	MH19A-W	0.28	0.28		60		17	17							0.2	17	5.00	0.4			0.5	1.00	250	51.5	1.05	0.27	1%
25	COLLECTOR ROAD 'D' WEST	MH20A-W	MH19A-W	0 44	0.44		60		27	27							0.3	27	5.00	0.6			0.8	0.50	250	36.4	0.74	0.29	2%
23	COLLECTOR ROAD D WEST	111120A-VV	I'II I JA-VV	0.77	0.11		00		27	21							0.5	27	5.00	0.0			0.0	0.50	230	30.4	0.74	0.23	270
		PARK 2A	MH19A-W		3.00		25		75	75							1.8		5.00				3.4	1.00	250	51.5	1.05	0.60	7%
24	COLLECTOR ROAD 'D' WEST	MH19A-W	MH15A-W	1.12	4.84		60		68	187							2.9	187	5.00	3.9			6.8	0.50	250	36.4	0.74	0.56	19%
17	STREET 'M'	MH15A-W	MH12-A	2.41	10.85		60		145	613							6.5	613	5.00	12.8			19.3	0.50	250	36.4	0.74	0.73	53%
-	COLLECTOR ROAD IEL WITST	MI 14 2 4 147	MUCANA	1.40	1470				00	000		0.22				F0		10.47	4.05	24.6			20.6	0.50	200	F0.2	0.04	0.03	F30/
5	COLLECTOR ROAD 'E' WEST	MH12A-W	MH9A-W	1.48	14./0		60		89	989		0.23				58	9.0	1047	4.95	21.6			30.6	0.50	300	59.3	0.84	0.83	52%
15	STREET 'L'	MH22A-W	MH9A-W	1.19	1.19		60		72	72							0.7	72	5.00	1.5			2.2	0.50	250	36.4	0.74	0.40	6%
4	COLLECTOR ROAD IS WEST	MIIOA W	MILE A 147	0.25	16.24					1001		0.22				F0	0.0	1110	4.00	22.0			22.7	0.50	275	107.4	0.07	0.05	2001
4	COLLECTOR ROAD 'E' WEST	MH9A-W	MH5A-W	0.35	16.24					1061		0.23				58	9.9	1119	4.89	22.8			32.7	0.50	375	107.4	0.97	0.85	30%
1/1.1	BARTON STREET	MH5A-W	EX.SMH007A	3.21	19.45		110		354	1415	4.23	4.46	125		529	587	14.3	2002	4.35	36.3			50.6	0.50	450	174.7	1.10	0.93	29%
																								1					
EX 15	HIGHWAY 8	EX.MH30	EX.MH28	3.44	3.44				85	85							2.1	85	5.00	1.8			3.8	1.00	250	51.5	1.05	0.60	7%
EX 14	HIGHWAY 8	EX.MH28	EX.MH25						70	155							7.9	_	5.00	_			11.1	0.50	300	59.3	0.84	0.64	19%
		COMMAA	EV MUSE								0.02	0.02	250		220	220	0.6	220	F 00	4.0			F 2	1.00	250	F1 F	1.05	0.67	100/
EX 13	HIGHWAY 8	COMM2A EX.MH25	EX.MH25 EX.MH23	11 55	24 69				70	225	0.92	0.92	250		230	230 230	0.6 15.4		5.00				5.3 24.8	1.00 0.50	250 375	51.5 107.4	1.05 0.97	0.67 0.77	10% 23%
L/\ 13	HIGHWAIO	EX.IIII23	27.111123	11.55	21.03				, 0	223	1	0.52			1	230	13.1	133	3.00	ر.ر			21.0	0.50	3/3	107.7	0.57	0.77	2570

						RESIDENTIAL		СОММ	ERCIAL/	INDUSTR	IAL/IN:	STITUTIONA	L				FLOW	CALCULATIO	ONS					PIPE DA	ATA	
AREA ID	STREET	FROM MH	то мн	AREA	ACC. AREA	UNITS DENISTY DENSITY PO		ACCUM. RES. AREA	ACC.	_	FLOV	-	ACCUM. EQUIV.	INFILTRATION					ACCUM. COMM. FLOW	TOTAL FLOW	SLOPE	PIPE DIAMETER	FULL FLOW	FULL FLOW VELOCITY		PERCENT FULL
				(ha)	(ha)	(#) (P/ha) (P/unit)		POP. (ha)	(ha)	(p/ha)	(l/s/h		POP.	(l/s)	POP.		(l/s)	(l/s)	(I/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
									,		,									_						
		СОММЗА	EX.MH23					0.47	0.47	250		118	118	0.3	118	5.00	2.5			2.7	1.00	250	51.5	1.05	0.55	5%
EX 12	HIGHWAY 8	EX.MH23	EX.MH10	16.50	41.19	7:	5	300	1.39				348	25.5	648	5.00	13.5			39.0	0.50	375	107.4	0.97	0.88	36%
EX 11	LEWIS ROAD	EX.MH11	EX.MH10	7.80	7.80	12	0	120						4.7	120	5.00	2.5			7.2	0.60	300	64.9	0.92	0.61	11%
EX 10		HWY 8	EX.MH10	20.45	20.45	70)	70						12.3	70	5.00	1.5			13.7	0.50	250	36.4	0.74	0.67	38%
EX 5	LEWIS ROAD	EX.MH10	EX.MH9	0.66	70.10	60 40)	530	1.39				348	42.9	878	5.00	18.3			61.2	0.60	450	191.4	1.20	1.05	32%
EX 6	LEWIS ROAD	EX.MH9	EX.MH8	0.84	70.94	60 5:	L	581	1.39				348	43.4	929	5.00	19.4			62.8	0.60	450	191.4	1.20	1.05	33%
EX 7	LEWIS ROAD	EX.MH8	EX.SMH005A	1.07	72.01	60 69	5	646	1.39				348	44.0	994	5.00	20.7			64.7	0.60	450	191.4	1.20	1.05	34%
EX 8	LEWIS ROAD	EX.SMH005A	EX.SMH006A	0.52	72.53	60 32	2	678	1.39				348	44.4	1026	4.97	21.3			65.6	0.82	450	223.8	1.41	1.20	29%
EX 9	LEWIS ROAD	EX.SMH006A	EX.SMH007A		72.53			678 4.13	5.52	125		517	865	46.8	1543	4.58	29.5			76.3	1.02	450	249.6	1.57	1.37	31%
	BARTON STREET	EAST	EX.SMH007A	25.00	25.00	282	20	2820						15.0	2820	4.06	47.7			62.7		450				
EX 0	LEWIS ROAD	EX.SMH007A	EX.SMH010A	10.10	127.08	15	0	5063	9.98				1452	82.2	6515	3.44	93.3			175.5	0.40	600	336.6	1.19	1.18	52%
		ARVIN AVE	EX.SMH010A	16.91	16.91	300	59	3069						6.8	3069	4.00	51.1			57.9		600				
	LEWIS ROAD	EX.SMH010A	SOUTH LEWIS		143.99			8132	9.98				1452	92.4	9584	3.18	127.1			219.4	0.40	600	336.6	1.19	1.25	65%

[WEST] OPTION 2

[Branthaven-Fruitland Winona]

[City of Hamilton]

PROJECT DETAILS

Project No: 12-062W

Date: [19-12-17]

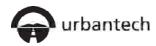
Designed by: [RAM]

Checked by: [RBTM]

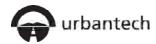
DESIGN CRITERIA

Avg. Domestic Flow = 360.0 l/c/dInfiltration = 0.600 l/s/ha

Max. Peaking Factor = 5.00 Min. Peaking Factor = 2.00


Factor of Safety = 25 %

Min Diameter = 250 mm


Min. Velocity = 0.75 m/s Max. Velocity = 2.75 m/s

Mannings 'n' = 0.015

							RESIDENT	TIAL			СОММ	ERCIAL/IN	DUSTRI	AL/INSTI	TUTIONA	L				FLOW	CALCULATIONS					PIPE D	ATA	
																								PIPE				
AREA ID	STREET	FROM	то		ACC.					ACCUM.		ACC.	EQUIV.	FLOW	EQUIV.	ACCUM. I	NFILTRATION	TOTAL	PEAKING	RES.	COMM. ACCUM.	TOTAL	SLOPE	DIAMETER	FULL FLOW	FULL FLOW	ACTUAL	PERCENT
		МН	МН	AREA	AREA			DENSITY	POP	RES.	AREA	AREA			POP.	EQUIV.			FACTOR							VELOCITY		FULL
				(ha)	(ha)	(#)	(P/ha)	(P/unit)		POP.	(ha)	(ha)	(p/ha)	(I/s/ha)		POP.	(l/s)	POP.		(l/s)	(I/s) (I/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
EST CONDO	STREET 'P'	WEST CONDO	MH23A-W	4.33	4.33		150		650	650							2.6	650	5.00	13.5		16.1	1.00	250	51.5	1.05	0.91	31%
COMM 1	STREET 'P'	COMM 1A	MH23A-W								0.23	0.23	250		58	58	0.1	58	5.00	1.2		1.3	1.00	250	51.5	1.05	0.41	3%
PARK 1	STREET 'P'	PARK 1A	MH23A-W	2.94	2.94		25		74	74							1.8	74	5.00	1.5		3.3	1.00	250	51.5	1.05	0.57	6%
8	STREET 'P'	MH23A-W	MH13A-W	1.77	9.04		142		252	976		0.23				58	5.6	1034	4.97	21.4		27.0	0.50	250	36.4	0.74	0.79	74%
7	COLLECTOR ROAD IT! WEST	MI 14 4 A 14/	MI 11 2 A 14/	0.01	0.01		150		122	122							0.5	122	F 00	2.5		2.0	1.00	250	F1 F	1.05	0.57	CO /
7	COLLECTOR ROAD 'E' WEST	MH14A-W	MH13A-W	0.81	0.81		150		122	122							0.5	122	5.00	2.5		3.0	1.00	250	51.5	1.05	0.57	6%
9	STREET 'O'	MH17A-W	MH13A-W	0.44	0.44		150		66	66							0.3	66	5.00	1.4		1.6	0.50	250	36.4	0.74	0.36	4%
9	JIKELI O	PHILIPATV	I-IIII3A-VV	0.77	0.77		150		00	00							0.5	00	3.00	1.7		1.0	0.50	230	30.4	0.74	0.50	770
6	COLLECTOR ROAD 'E' WEST	MH13A-W	MH12A-W	0.18	10.47					1164		0.23				58	6.4	1222	4.80	24.5		30.9	0.50	300	59.3	0.84	0.83	52%
-		2														- 1				1		23.3			1			
19	COLLECTOR ROAD 'D' WEST	MH15A-W	MH24A-W	0.58	0.58		150		87	87							0.3	87	5.00	1.8		2.2	1.00	250	51.5	1.05	0.49	4%
18	COLLECTOR ROAD 'D' WEST	MH24A-W	MH12A-W	0.75	1.33		150		113	200							0.8	200	5.00	4.2		5.0	0.50	250	36.4	0.74	0.52	14%
			-																									
16	STREET 'N'	MH24A-W(1)	MH12A-W	1.42	1.42		110		157	157							0.9	157	5.00	3.3		4.1	0.50	250	36.4	0.74	0.49	11%
		COMPORT	MI 14 7 A 14773	0.00	0.00		450		425	425							0.5	425	F 00	2.6			1.00	250	F4 F	4.05	0.57	CO '
		CONDO 2.1A	MH17A-W(1)	0.83	0.83		150		125	125							0.5	125	5.00	2.6		3.1	1.00	250	51.5	1.05	0.57	6%
		CONDO 2 24	MU174 W/(1)	0.50	0.50		150		90	90							0.4	90	F 00	1.0		2.2	1.00	250	E1 E	1 05	0 E1	40/-
		CONDO 2.2A	MH1/A-W(1)	0.59	0.59		150		89	89							0.4	09	5.00	1.9		2.2	1.00	250	51.5	1.05	0.51	4%
21	STREET 'O'	MH17A-W(1)	MH16A-W	0.57	1.99		150		86	300							1.2	300	5.00	6.3		7.4	1.00	250	51.5	1.05	0.73	14%
	STREET O	1111777 11(1)	111110/11	0.57	1.55		150			300							1.2	300	3.00	0.5		7	1.00	250	31.3	1.05	0.75	1170
22	STREET 'O'	MH18A-W	MH16A-W	1.47	1.47		150		221	221							0.9	221	5.00	4.6		5.5	1.00	250	51.5	1.05	0.69	11%
20	STREET 'M'	MH16A-W			3.60					521							2.2		5.00			13.0	0.50	250	36.4	0.74	0.67	36%
23	STREET 'O'	MH21A-W	MH19A-W	0.28	0.28		150		42	42							0.2	42	5.00	0.9		1.0	1.00	250	51.5	1.05	0.37	2%
25	COLLECTOR ROAD 'D' WEST	MH20A-W	MH19A-W	0.44	0.44		150		66	66							0.3	66	5.00	1.4		1.6	0.50	250	36.4	0.74	0.36	4%
		DADK 24	MILITON W	2.00	2.00		25		75	75							1.0	75	F 00	1.6		2.4	1.00	250	F1 F	1.05	0.60	70/
24	COLLECTOR BOAD ID! WEST	PARK 2A MH19A-W	MH19A-W		3.00 4.84		25		75	75 251							1.8 2.9		5.00			3.4	1.00	250	51.5	1.05 0.74	0.60	7%
24	COLLECTOR ROAD 'D' WEST	MULIPA-W	MH15A-W	1.12	4.04		150		168	351							2.9	331	5.00	7.3		10.2	0.50	250	36.4	0.74	0.03	28%
17	STREET 'M'	MH15A-W	MH12-A	2.41	10.85		110		266	1138							6.5	1138	4.87	23.1		29.6	0.50	300	59.3	0.84	0.83	50%
	0				10.00					1100								1100				23.0	0.00		33.3	0.0.	0.00	2070
5	COLLECTOR ROAD 'E' WEST	MH12A-W	MH9A-W	1.48	14.70		110		89	1610		0.23				58	9.0	1668	4.51	31.4		40.3	0.50	300	59.3	0.84	0.88	68%
15	STREET 'L'	MH22A-W	MH9A-W	1.19	1.19		140		167	167							0.7	167	5.00	3.5		4.2	0.50	250	36.4	0.74	0.50	12%
				1														1										
4	COLLECTOR ROAD 'E' WEST	MH9A-W	MH5A-W	0.35	16.24					1777		0.23				58	9.9	1835	4.43	33.9		43.7	0.50	375	107.4	0.97	0.90	41%
1/1.1	BARTON STREET	MH5A-W	EX.SMH007A	3 21	19 45		250		803	2580	4.23	4.46	125		529	587	14.3	3167	3.97	52 4		66.7	0.50	450	174.7	1.10	0.99	38%
1/ 1.1	DANTON STREET	IIII JA-VV	EAISI:II IOU/A	J.21	17.73		230		505	2300	1,23	1. 10	123		323	307	11.7	3107	3.37	J2.7		00.7	0.50	130	1/7./	1.10	0.33	30 /0
EX 15	HIGHWAY 8	EX.MH30	EX.MH28	3.44	3.44				85	85							2.1	85	5.00	1.8		3.8	1.00	250	51.5	1.05	0.60	7%
EX 14	HIGHWAY 8	EX.MH28	EX.MH25						70	155							7.9		5.00			11.1	0.50	300	59.3	0.84	0.64	19%
		COMM2A	EX.MH25								0.92	0.92	250		230		0.6		5.00			5.3	1.00	250	51.5	1.05	0.67	10%
EX 13	HIGHWAY 8	EX.MH25	EX.MH23	11.55	24.69				70	225	1	0.92				230	15.4	455	5.00	9.5		24.8	0.50	375	107.4	0.97	0.77	23%

						RESIDENTIAL		СОММ	ERCIAL/	INDUSTR	IAL/IN	STITUTIONA	\L				FLOW	CALCULATIO	ONS					PIPE DA	ATA	
AREA ID	STREET	FROM MH	TO MH	AREA	ACC. AREA	UNITS DENISTY DENSITY PO		ACCUM. RES. AREA	ACC.	_	FLO'	-	ACCUM. EQUIV.	INFILTRATION					ACCUM. COMM. FLOW	TOTAL FLOW	SLOPE	PIPE DIAMETER	FULL FLOW	FULL FLOW VELOCITY		PERCENT FULL
				(ha)	(ha)	(#) (P/ha) (P/unit)		POP. (ha)	(ha)	(p/ha)	(I/s/I		POP.	(l/s)	POP.		(l/s)	(l/s)	(l/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
			T																			1				
		СОММЗА	EX.MH23					0.47	0.47	250		118	118	0.3	118	5.00	2.5			2.7	1.00	250	51.5	1.05	0.55	5%
EX 12	HIGHWAY 8	EX.MH23	EX.MH10	16.50	41.19	75	5	300	1.39				348	25.5	648	5.00	13.5			39.0	0.50	375	107.4	0.97	0.88	36%
EX 11	LEWIS ROAD	EX.MH11	EX.MH10	7.80	7.80	12	0	120						4.7	120	5.00	2.5			7.2	0.60	300	64.9	0.92	0.61	11%
EX 10		HWY 8		20.45	20.45	70)	70						12.3	70	5.00	1.5			13.7	0.50	250	36.4	0.74	0.67	38%
EX 5	LEWIS ROAD	EX.MH10	EX.MH9	0.66	70.10	60 40	,	530	1.39				348	42.9	878	5.00	18.3			61.2	0.60	450	191.4	1.20	1.05	32%
EX 6	LEWIS ROAD	EX.MH9	EX.MH8	0.84	70.94	60 51		581	1.39				348	43.4	929	5.00	19.4			62.8	0.60	450	191.4	1.20	1.05	33%
EX 7	LEWIS ROAD	EX.MH8	EX.SMH005A	1.07	72.01	60 65	5	646	1.39				348	44.0	994	5.00	20.7			64.7	0.60	450	191.4	1.20	1.05	34%
EX 8	LEWIS ROAD	EX.SMH005A	EX.SMH006A	0.52	72.53	60 32	2	678	1.39				348	44.4	1026	4.97	21.3			65.6	0.82	450	223.8	1.41	1.20	29%
EX 9	LEWIS ROAD	EX.SMH006A	EX.SMH007A		72.53			678 4.13	5.52	125		517	865	46.8	1543	4.58	29.5			76.3	1.02	450	249.6	1.57	1.37	31%
	BARTON STREET	EAST	EX.SMH007A	25.00	25.00	385	51	3851						15.0	3851	3.82	61.3			76.3		450				
EX 0	LEWIS ROAD	EX.SMH007A	EX.SMH010A	10.10	127.08	15	0	7259	9.98				1452	82.2	8711	3.24	117.7			199.9	0.40	600	336.6	1.19	1.20	59%
		ARVIN AVE	EX.SMH010A	16.91	16.91	306	69	3069						6.8	3069	4.00	51.1			57.9		600				
	LEWIS ROAD	EX.SMH010A	SOUTH LEWIS		143.99			10328	9.98				1452	92.4	11780	3.05	149.9			242.2	0.40	600	336.6	1.19	1.27	72%

[WEST] McNeilly OPTION 1

[Branthaven-Fruitland Winona]

[City of Hamilton]

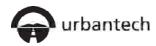
PROJECT DETAILS

Project No: 12-062W Date: [19-08-12] Designed by: [RAM] Checked by: [RBTM]

DESIGN CRITERIA

Avg. Domestic Flow = 360.0 I/c/d Infiltration = 0.600 l/s/ha

Max. Peaking Factor = 5.00 Min. Peaking Factor = 2.00


Factor of Safety = 15 %

Min Diameter = 250 mm

Min. Velocity = 0.75 m/s Max. Velocity = 2.75 m/s

Mannings 'n' = 0.015

						ь	RESIDEN	ΤΤΔΙ			COMM	FRCTAL /	INDUSTR	AI /INST	TUTION	ΔI				FLOW	CALCULA ^T	TIONS					PIPE D	ΔΤΔ	
						<u></u>	KESIDEN	IIAL			COMM	ERCIAL)	INDUSTR	AL/INSI	ITOTION	AL .				FLOW	CALCULA	ITIONS			PIPE		PIPE D	AIA	
AREA ID	STREET	FROM	то		ACC.					ACCUM.		ACC.	FOUTV.	FLOW	FOUTV.	ACCUM. TI	NFILTRATION	IATOT I	PFAKING	RFS.	сомм.	ACCUM. TOTA	AI SI			FULL FLOW	FULL FLOW	ACTUAL	PERCENT
7.1.1.2.1.2.2	J.1.2.	MH	мн	AREA	AREA	UNITS D	ENISTY	DENSITY	POP	RES.	AREA		POP.	RATE	-	EQUIV.			FACTOR			COMM. FLOW FLO				CAPACITY			FULL
				(ha)	(ha)			(P/unit)		POP.	(ha)		(p/ha)			POP.	(l/s)	POP.	17101011		(l/s)	(I/s) (I/s		6)	(mm)	(I/s)	(m/s)	(m/s)	(%)
				()	()	(")	(.,)	(. //			()	()	(271.0)	(1/0/114)			(., -)			(., -,	(., -,	(19)	-) (٠,	()	(.,,,,	(, 5)	(,5)	(70)
10	COLLECTOR ROAD 'D' WEST	Γ MH33A-W	MH31A-W	1 12	1.18		60		71	71							0.7	71	5.00	1.5		2.2	2 1	00	250	51.5	1.05	0.49	4%
10	COLLECTOR ROAD D WEST	I I'II ISSA-W	ITII ISTA-VV	1.10	1.10		00		/1	/1							0.7	/1	3.00	1.5		2.2	2 1.	00	230	31.3	1.03	0.75	770
10.1	COLLECTOR ROAD 'D' WEST	Г МН32A-W	MH31A-W	1 44	1.44		60		87	87							0.9	87	F 00	1.0		2.7	7 1	00	250	51.5	1.05	0.55	5%
							00		87									_	5.00	1.8									
13.1	STREET 'Q'	MH31A-W	MH30A-W	0.14	2.76					158							1.7	158	5.00	3.3		4.9	9 1.	00	250	51.5	1.05	0.67	10%
	077777 Int			1.05					440																252	20.4		0.50	222/
13	STREET 'R'	MH30A-W	MH26A-W	1.86	4.62		60		112	270							2.8	270	5.00	5.6		8.4	4 0.	50	250	36.4	0.74	0.59	23%
11	STREET 'S'	MH30A-W(1)	MH29A-W	2.10	2.10		60		126	126							1.3	126	5.00	2.6		3.9	9 0.	50	250	36.4	0.74	0.49	11%
12	STREET 'Q'	MH30A-W(2)	MH29A-W	1.01	1.01		60		61	61							0.6	61	5.00	1.3		1.9	9 0.	50	250	36.4	0.74	0.39	5%
14	STREET 'L'	MH29A-W	MH26A-W	1.51	4.62		60		91	278							2.8	278	5.00	5.8		8.6	6 0.	50	250	36.4	0.74	0.59	23%
14.1	STREET 'R'	MH26A-W	MH25A-W		9.71		60		29	577							5.8	577	5.00	12.0		17.			250	36.4	0.74	0.71	49%
	2																												
	EASEMENT	MH25A-W	MH7A-W		9.71					577							5.8	577	5.00	12.0		17.	8 0	50	250	36.4	0.74	0.71	49%
	LASEFIENT	I'II IZJA W	PHIZAV		5.71					377							3.0	3//	3.00	12.0		17.	.0 0.	50	230	30.1	0.7 1	0.71	1570
2/2.1	BARTON STREET	MH8A-W	MH7A-W	2.83	2.83		110		312	312	2.10	2 10	125		263	263	3.0	575	5.00	12.0		14.	.9 0.	50	450	174.7	1.10	0.68	9%
3/3.1	BARTON STREET	MH7A-W	EX.SMH005		13.16		60		38	927	0.45	2.55			57	320	9.4		4.78			34.			450	174.7	1.10	0.85	20%
3/3.1	DARTON STREET	IMIT/A-W	EX.SMINUUS	0.02	13.10		00		30	927	0.45	2.55	125		57	320	9.4	1247	4.70	24.9		34.	.5 0.	50	430	1/4./	1.10	0.05	2070
EV/20	M-NETH IV	OUTLL OF LEAST	EV MUC	14.05	14.05		75		1122	1122							0.0	1122	4.00	22.0		24	0 1	F0	250	62.1	1 20	1.27	F00/
EX20	McNEILLY	OUTH OF HWY		14.95	14.95		75		1122	1122							9.0	1122		1		31.			250	63.1	1.29	1.27	50%
EX19	McNEILLY	EX.MH9	EX.MH6	3.30	18.25		75		248	1370							11.0	1370				37.		50	250	63.1	1.29	1.32	60%
EX18	McNEILLY	EX.MH6		3.30	21.55		75		248	1618							12.9	1618				43.			300	70.1	0.99	1.02	62%
EX17	McNEILLY	EX.MH3	EX.SMH005	3.10	24.65		75		233	1851							14.8	1851	4.42	34.1		48.	.9 0.	70	300	70.1	0.99	1.06	70%
					·																								
EX16	BARTON STREET	WEST BARTON	EX.SMH005	41.10	41.10		80.47		3308	3308							24.7	3308	3.94	54.3		78.	.9 0.	40	450	156.3	0.98	0.97	50%
	McNEILLY	EX.SMH005	DRTH OF BART	d	78.91					6086		2.55				320	48.9	6406	3.45	92.1		140	.9 0.	18	525	158.1	0.73	0.81	89%

[WEST] McNeilly OPTION 2

[Branthaven-Fruitland Winona]

[City of Hamilton]

PROJECT DETAILS

Project No: 12-062W Date: [19-08-12] Designed by: [RAM] Checked by: [RBTM]

DESIGN CRITERIA

Avg. Domestic Flow = 360.0 I/c/d Infiltration = 0.600 l/s/ha

Max. Peaking Factor = 5.00

Min. Peaking Factor= 2.00

Factor of Safety = 15 %

Min Diameter = 250 mm

Min. Velocity = 0.75 m/s

Max. Velocity = 2.75 m/s

Mannings 'n' = 0.015

				1		RESIDENTIA			СОММ	EDCTAL /TNE	NISTRI/	AL/INSTITUTION	ΛI				ELOW (CALCULATION	ONS					PIPE DA	т.	
AREA ID	STREET	FROM	то		ACC.	RESIDENTIAL	_	ACCUM.	СОММ			FLOW EQUIV.	ACCUM.	INFILTRATION	TOTAL	PEAKING			ACCUM.	TOTAL	SLOPE	PIPE DIAMETER	FULL FLOW			PERCENT
		МН	мн	AREA	AREA	UNITS DENISTY DE	NSITY POP	RES.	AREA	AREA	POP.	RATE POP.	EQUIV.		ACCUM.	FACTOR	FLOW	FLOW	COMM. FLOW	FLOW			CAPACITY	VELOCITY	VELOCITY	FULL
				(ha)	(ha)	(#) (P/ha) (P.	/unit)	POP.	(ha)	(ha) (p/ha)	(I/s/ha)	POP.	(l/s)	POP.		(l/s)	(l/s)	(l/s)	(l/s)	(%)	(mm)	(l/s)	(m/s)	(m/s)	(%)
10	COLLECTOR ROAD 'D' WEST	MH33A-W	MH31A-W	1.18	1.18	150	177	177						0.7	177	5.00	3.7			4.4	1.00	250	51.5	1.05	0.65	9%
			-																							
10.1	COLLECTOR ROAD 'D' WEST	MH32A-W	MH31A-W	1.44	1.44	150	216	216						0.9	216	5.00	4.5			5.4	1.00	250	51.5	1.05	0.67	10%
13.1	STREET 'Q'	MH31A-W	-	0.14	2.76			393						1.7	393	5.00	8.2			9.8	1.00	250	51.5	1.05	0.80	19%
15.1	2E1 Q			0.11	2.70			233								3.00	0.2			3.0	2.00		51.5	2.00	0.00	2570
13	STREET 'R'	MH30A-W	MH26A-W	1.86	4.62	121	226	619						2.8	619	5.00	12.9			15.7	0.50	250	36.4	0.74	0.69	43%
15	STREET R	I'II ISOA W	PHIZOA W	1.00	1.02	12.1	220	017						2.0	013	3.00	12.5			13.7	0.50	230	50.1	0.7 1	0.05	1370
11	STREET 'S'	MH30A-W(1)	MH29A-W	2 10	2.10	110	231	231						1.3	231	5.00	4.8			6.1	0.50	250	36.4	0.74	0.55	17%
11	SIRLLI S	111130A-VV(1)	1111123A-VV	2.10	2.10	110	231	231						1.5	231	3.00	7.0			0.1	0.30	230	50.7	0.74	0.55	17 70
12	STREET 'O'	MI 1204 14/(2)	MH29A-W	1.01	1.01	110	112	112						0.6	112	F 00	2.2			2.0	0.50	250	36.4	0.74	0.44	8%
12	SIREET Q	MH30A-W(2)	MUZ9A-W	1.01	1.01	110	112	112						0.6	112	5.00	2.3			2.9	0.50	250	30.4	0.74	0.44	8%
	OTD SET III					4=0											44.0				0.50	2=2				100/
14	STREET 'L'	MH29A-W		1.51	4.62	150	227	570						2.8	570	5.00	11.9			14.6	0.50	250	36.4	0.74	0.69	40%
14.1	STREET 'R'	MH26A-W	MH25A-W	0.47	9.71	121	57	1246						5.8	1246	4.78	24.8			30.7	0.50	250	36.4	0.74	0.82	84%
	EASEMENT	MH25A-W	MH7A-W		9.71			1246						5.8	1246	4.78	24.8			30.7	0.50	250	36.4	0.74	0.82	84%
2/2.1	BARTON STREET	MH8A-W	MH7A-W	2.83	2.83	250	708	708	2.10	2.10	125	263	263	3.0	971	5.00	20.2			23.2	0.50	450	174.7	1.10	0.76	13%
3/3.1	BARTON STREET	MH7A-W	EX.SMH005	0.62	13.16	150	93	2047	0.45	2.55	125	57	320	9.4	2367	4.21	41.5			50.9	0.50	450	174.7	1.10	0.93	29%
EX20	McNEILLY	OUTH OF HWY	EX.MH9	14.95	14.95	75	1122	1122						9.0	1122	4.89	22.8			31.8	1.50	250	63.1	1.29	1.27	50%
EX19	McNEILLY	EX.MH9	EX.MH6	3.30	18.25	75	248	1370						11.0	1370	4.69	26.8			37.8	1.50	250	63.1	1.29	1.32	60%
EX18	McNEILLY	EX.MH6	EX.MH3	3.30	21.55	75	248	1618						12.9	1618	4.54	30.6			43.5	0.70	300	70.1	0.99	1.02	62%
EX17	McNEILLY	EX.MH3		3.10	24.65	75	233	1851						14.8	1851	4.42				48.9	0.70	300	70.1	0.99	1.06	70%
						1								=												
EX16	BARTON STREET	WEST BARTON	FX SMH005	41 10	41.10	80.47	3308	3308	+					24.7	3308	3.94	54 3			78.9	0.40	450	156.3	0.98	0.97	50%
LXIO	McNEILLY		DRTH OF BART		78.91	00.17	3300	7206	+	2.55			320	48.9	7526		104.7			153.6	0.18	525	158.1	0.73	0.83	97%
1	PICINETEET	LA.31-11 1003	DAKII OL DAKII	1	70.31			7200	+	2.33			320	70.5	7320	J.J⊤	107.7			133.0	0.10	323	130.1	0.75	0.05	37 70
		1													1											

APPENDIX J WATERMAIN CALCULATIONS AND REPORT

J-1 Water Servicing Study (WSP, December 2019)

Project No: 181-10203-00

December 16th, 2019

Block 3 BSS Group of Landowners c/o Urbantech West 2030 Bristol Circle, Suite 201 Oakville, ON, L6H 0H2

Subject:Lower Stoney Creek Block Servicing Study (Water Servicing) - City of Hamilton

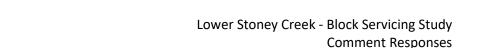
Dear Mr. Merwin,

WSP Canada Inc. (WSP) is pleased to present the results of its updated Block Servicing Study for the proposed Lower Stoney Creek Neighbourhood in the City of Hamilton. This revision addressed comments provided by the City of Hamilton, received by WSP in October 2019.

The analysis in this report includes the hydraulic examination of the Average Day, Maximum Day, Peak Hour and Maximum Day plus Fire Flow demand conditions of the development under present (2011), and ultimate buildout (2031) planning horizons. The hydraulic analysis was completed using a WaterGEMs model of the City of Hamilton water distribution network for Pressure District 1 (PD1).

The modeling shows that the development can achieve the hydraulic requirements prescribed by the City of Hamilton, the Ministry of the Environment and Climate Change design criteria and the Fire Underwriters Survey required fire flows.

If you have any questions, please do not hesitate to write or call.


Sincerely,

WSP Canada Inc.

Dec. 16, 2019

Jean-Luc Daviau, M.A.Sc., P.Eng. Sr. Hydraulic Specialist Manager, Hydraulics Antoine Lahaie, B.Eng, EIT Project Manager, Hydraulics

wsp.com

Comment 1: Include the logic for excluding HA12S002 here or cross reference to where this is documented.

WSP Response: WSP's report included a justification/logic for excluding Hydrant HA12S002 from the analysis. This discussion is part of section 4.2. Urbantech to make sure references to WSP's report are included.

Comment 2: Provide a Diagram showing the recommended upgrades

WSP Response: The recommendations are strictly conceptual in the event that available fire flows need to be increased at a later stage. These "upgrades" were not considered in this analysis and results do not reflect these upgrades. WSP has added figures to section 4.2 showing these possible upgrades.

Comment 3: Include Fire flow of xxx L/s applied in this analysis in the conclusion

WSP Response: The Winona Hills Development had a Required Fire Flow of 217 L/s. Everything outside of this development was not evaluated against a Required Fire Flow. Available Fire Flows were shown throughout the neighborhood for information. Required Fire Flows (in future works) will need to be compared to the Available Fire Flows (in this work) when more details are available. This is discussed in section 2.3

Comment 4: indicate if these conclusions are based on implementation of the recommended upgrades or are exclusive of the recommended upgrades for clarity.

WSP Response: The results in this report do not include the recommended upgrades discussed in section 4.2. See response to comment 2 above. If these upgrades are to be implemented, the analysis will need to be updated accordingly

TABLE OF CONTENTS

1	INTRODUCTION
2	DESIGN CRITERIA3
2.1	Water Demands3
2.2	Pressures4
2.3	Fire Flow4
3	HYDRAULIC MODEL5
3.1	Boundary Conditions 5
3.2	Model Calibration9
4	HYDRAULIC ANALYSIS9
4.1	System Pressures
4.2	Available Fire flow10
4.3	Transient Pressures13
4.4	System Flushing13
5	CONCLUSIONS14

TABLES

TABLE 1 - DEMAND CRITERIA FROM 2006 WATER AND	_
WASTEWATER MASTER PLAN	
TABLE 2 - HAZEN-WILLIAMS C-FACTORS	5
TABLE 3 - INITIAL PUMPING CONDITIONS AT	
WOODWARD STATION FOR THE 2011	
PLANNING HORIZON WITH TANKS 50%	
FULL	6
TABLE 4 - INITIAL PUMPING CONDITIONS AT	
WOODWARD STATION FOR THE 2031	
PLANNING HORIZON WITH TANKS 50%	
FULL	6
TABLE 5 - INITIAL PUMPING CONDITIONS AT	
WOODWARD STATION FOR THE 2011	
PLANNING HORIZON WITH TANK 75%	
FULL	7
TABLE 6 - INITIAL PUMPING CONDITIONS AT	
WOODWARD STATION FOR THE 2031	
PLANNING HORIZON WITH TANKS 75%	
FULL	7
TABLE 7 - INITIAL PUMPING CONDITIONS AT	,
WOODWARD STATION FOR THE 2011	
PLANNING HORIZON WITH TANKS 90%	
FULL	8
TABLE 8 - INITIAL PUMPING CONDITIONS AT	O
WOODWARD STATION FOR THE 2031	
PLANNING HORIZON WITH TANKS 90%	
FULL	Q
TABLE 9 - HYDRANT FLOW TEST CALIBRATION	0
INFORMATION	a
TABLE 10 - SIMULATED PRESSURE RANGES FOR THE	9
PRESENT DAY (2011) PLANNING HORIZON	
- ALL PUMPS ARE OFF AT WOODWARD	
	10
PS	10
TABLE 11 - SIMULATED PRESSURE RANGES FOR THE	
ULTIMATE BUILDOUT (2031) PLANNING	
HORIZON - ALL PUMPS ARE OFF AT	
WOODWARD PS	10
TABLE 12 - SIMULATED FIRE FLOW RANGES FOR THE	
PRESENT DAY (2011) AND ULTIMATE	
BUILDOUT (2031) PLANNING HORIZON	
WITH ALL PUMPS ARE OFF AT	
WOODWARD PS	10

	TABLE 13 - SE	CONDARY FLUSHING PHASE: UNIDIRECTIONAL FLUSHING STRATEGY13
FIGURES		
	FIGURE 1	LOWER STONEY CREEK DEVELOPMENT SITE LOCATION1
	FIGURE 2	LOWER STONEY CREEK CONCEPT PLAN OF THE PROPOSED DEVELOPMENT2
	FIGURE 3	PROPOSED DEVELOPMENT
	FIGURE 4 - PO	OSSIBLE WATERMAIN UPGRADES (LSP-24 AND LSP-16) TO INCREASE AFF (CIRCLED IN RED)11
	FIGURE 5 - PO	OSSIBLE WATERMAIN UPGRADES (LSP-30 AND LSP-40) TO INCREASE AFF (CIRCLED IN RED)12
	FIGURE 6	POSSIBLE WATERMAIN UPGRADE (BETWEEN WATERMAINS LSP-4 AND LSP- 43) TO INCREASE AFF (CIRCLED IN RED)12
APPENDICES		
	A DEMANDS	S AND PROPOSED SYSTEM LAYOUT
	B PIPE AND	JUNCTION TABLES
	C FIRE FLOW	V REPORT
	D FLUSHING	REPORT
	E HYDRANT	FLOW DATA

1 INTRODUCTION

WSP was retained by The Block 3 BSS Group of Landowners (Client) to perform a Block Servicing Study (BSS) for the proposed development located in the Lower Stoney Creek area of the City of Hamilton. The Lower Stoney Creek Development will neighbour the Winona Hills community, and will be bounded by Highway 8 to the north, McNeilly Road to the east and Barton Street to the south.

The purpose of this report is to examine the water servicing capacity of the proposed neighbourhood, which is estimated to have more than 2,300 low and medium density residential units, local commercial areas, community parks and a storm water management pond. The total servicing area is approximately 64 hectares.

The proposed development is located within Pressure District 1 (PD1) of the City of Hamilton water network. It will be serviced by the existing watermain along Highway 8 (which is 300 mm from McNeilly Road to Lewis Road and then is reduced to a 200mm east of Lewis Road); the 200mm watermain on Barton Street; the 200mm watermain on McNeilly Road and the 150mm watermain on Lewis Road.

The site location is shown on a Google Earth Pro image in **Figure 1** while a Concept Plan of the proposed development site is shown in **Figure 2**. **Figure 3** shows the proposed system layout.

Figure 1 Lower Stoney Creek Development Site Location

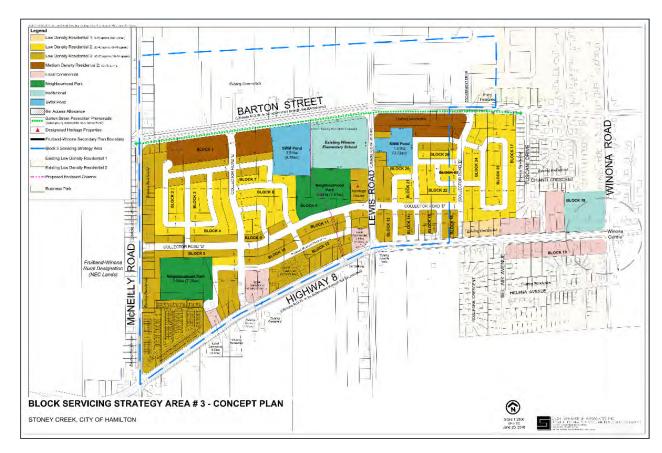


Figure 2 Lower Stoney Creek Concept Plan of the Proposed Development

Figure 3 Proposed Water Distribution System Layout with Proposed Pipe Diameters

2 DESIGN CRITERIA

2.1 WATER DEMANDS

This proposed development in the Lower Stoney Creek area will be made up of multiple planning zones with various development densities. Each of these planning zones are identified and were taken from the Lower Stoney Creek Concept Plan drawing provided by Urbantech. The plan includes:

Low Density Residential 1; 0-20 upnha Local Commercial
Low Density Residential 2; 20-40 upnha Local Institutional

Low Density Residential 3; 40-60 upnha Park

Medium Density Residential 2; 60-75 upnha SWM Pond

Demands for the Lower Stoney Creek Development were calculated using criteria from the City of Hamilton's Engineering Guidelines for Servicing Land under Development Applications, December 2012. Populations were determined according to the City of Hamilton Development Charge Background Study by Watson & Associates Economists Ltd. Accordingly, the persons per unit (PPU) for low density and medium density residential homes were taken as 3.39 PPU and 2.45 PPU respectively; the employee population for commercial areas was taken as 400 sq.ft. per employee; the employee population for institutional areas was taken as 700 sq.ft. per employee; the population for Park and SWM Pond areas was taken as 0 sq.ft. per employee, which is the most recent available data. **Table 1** lists the factors used to determine the demands for the development.

Table 1 - Demand Criteria from 2006 Water and Wastewater Master Plan

Persons Per Units	
Low Density Residential Homes	3.39 PPU
Medium Density Residential Homes	2.45 PPU
Commercial Population Rate	400 sq.ft./employee
Institutional Population Rate	700 sq.ft./employee
Park and SWM Pond Population Rate	0 sq.ft./employee
Average Day Demand	
Residential	360 L/persons/day
Employment	260 L/persons/day
Peaking Factors	
Maximum Day	1.9
Peak Hour	3.0

Detailed calculations of domestic demands are shown in **Appendix A**. Residential demands were calculated by measuring the surface area of the development zones using the Concept Plan drawing; converting the area to residential units; counting the number of units for each sub-block (Figure 2) and allocating the demands of each block to the closest node in the water model. In calculating the demands for this development, some conservatism was added to the calculation:

The higher value of the residential unit per hectare range shown above was used. e.g. for Low Density Residential 2 area, a rate of 40 unit per hectare was used

On the east side of the Lower Stoney Creek Development, there are five junctions (WH_3, WH_4, WH_5, WH_6, WH_7) that overlap with the Winona Hills Development. WSP completed a watermain analysis for the proposed Winona Hills Development and submitted a report in October 2018. Demands from this report were included in the demand calculations for the Lower Stoney Creek Development.

The overall demands in the water distribution district external to the development were unchanged.

2.2 PRESSURES

As outlined in the City of Hamilton Water and Waste Water Master Plan (WWWMP), November 2006, the acceptable pressures under normal conditions are between 275 kPa (40 psi) and 690 kPa (100 psi).

During a fire flow, pressures in the development and at all points in the system must not be lower than 140 kPa (20 psi)

2.3 FIRE FLOW

The Required Fire Flows (RFF) for the blocks used in the analysis were calculated using the procedure outlined in: "Water Supply for Public Fire Protection" by the Fire Underwriters Survey (FUS), 1999.

RFF were not calculated for the other blocks within the Lower Stoney Creek Development as the block servicing strategy does not provide sufficient information (ie. building footprints, exposure distances, construction material) for calculating RFF per the procedure noted above.

On the east side of the Lower Stoney Creek Development, there are five junctions (WH_3, WH_4, WH_5, WH_6, WH_7) that overlap with the Winona Hills Development. WSP completed a watermain analysis for the proposed Winona Hills Development and submitted a report in October 2018. For the blocks associated with these junctions, RFF from this report were considered for the Lower Stoney Creek Development.

Based on this information, the largest RFF within this development was calculated as 217 L/s (retrieved from the Winona Hills Report) and was applied at the nodes overlapping with the Lower Stoney Creek Development. RFF were not considered for all other nodes within the Stoney Creek Development. Upon provision of sufficient building information, RFF calculations will need to be performed and checked against modeled fire flows prior to construction.

3 HYDRAULIC MODEL

The development was added to an existing watermain model for the City of Hamilton received by WSP in January 2010. Two separate models were integrated to produce a model of PD1 as follows.

- Coarse_Trunk_System_v7_2_transfer.MDB
- Model_Sept02_2009.MDB

It is our understanding that the Coarse Trunk System model is derived from the Hamilton WWWMP 2006 while Model_Sept02_2009 is a full pipe model of the Hamilton system but does not include supply or demand information.

Demands were extracted from the Coarse Trunk System model and inserted into the full pipe Model_Sept02_2009 file to produce a complete PD1 model. All physical pipe and node characteristics (excluding demands) were kept from the full pipe Model_Sept02_2009.

The proposed watermains were added to the PD1 model along the street layout of the proposed development taken from the site plan provided. Junction elevations were taken as ground elevations from a survey provided by Urbantech.

Friction factors for all new pipes added to the model were assigned according to the Ministry of the Environment and Climate Change (MOECC) watermain Design Criteria as listed in **Table 2.**

Table 2 - Hazen-Williams C-Factors

Diameter (Nominal)	C-Factor
150 mm	100
200 mm	110
300 mm to 600 mm	120

3.1 BOUNDARY CONDITIONS

Three modeling alternatives, characterised by the initial water levels in tanks HDR01, HDR1B and HDR1C, were considered as part of this analysis. The first alternative had all previously mentioned tanks at 50% full: that is 129.0m, 128.0m and 129.0m respectively. The second alternative had all previously mentioned tanks at 75% full: that is 131.2m, 130.7m and 131.2m respectively. Finally, the third alternative had all previously mentioned tanks at approximately 90% full: that is 132.5m, 132.3m, and 132.5m respectively.

Table 3 through **Table 8** indicate the pumping conditions at the Woodward Pump station during the alternatives when tanks were set to 50%, 75%, and 90% full.

Table 3 - Initial pumping conditions at Woodward Station for the 2011 Planning Horizon with Tanks 50% Full

2011 - Reservoirs 50%

System Component	Average Day	Maximum Day	Maximum Day + FF	Peak Hour
HWHWLP-PMP-1	OFF	OFF	OFF	OFF
HWHWLP-PMP-2	OFF	OFF	OFF	OFF
HWHWLP-PMP-3	OFF	OFF	OFF	OFF
HWHWLP-PMP-4	OFF	OFF	OFF	OFF
HWHWLP-PMP-5	OFF	OFF	OFF	OFF
HWHWLP-PMP-6	OFF	OFF	OFF	OFF

Table 4 - Initial pumping conditions at Woodward Station for the 2031 Planning Horizon with Tanks 50% Full

2031 - Reservoirs 50%

System Component	Average Day	Maximum Day	Maximum Day + FF	Peak Hour
HWHWLP-PMP-1	OFF	OFF	OFF	OFF
HWHWLP-PMP-2	OFF	OFF	OFF	OFF
HWHWLP-PMP-3	OFF	OFF	OFF	OFF
HWHWLP-PMP-4	OFF	OFF	OFF	OFF
HWHWLP-PMP-5	OFF	OFF	OFF	OFF
HWHWLP-PMP-6	OFF	OFF	OFF	OFF

Table 5 - Initial pumping conditions at Woodward Station for the 2011 Planning Horizon with Tank 75% Full

2011 - Reservoirs 75%

System Component	Average Day	Maximum Day	Maximum Day + FF	Peak Hour
HWHWLP-PMP-1	OFF	OFF	OFF	OFF
HWHWLP-PMP-2	OFF	OFF	OFF	OFF
HWHWLP-PMP-3	OFF	OFF	OFF	OFF
HWHWLP-PMP-4	OFF	OFF	OFF	OFF
HWHWLP-PMP-5	OFF	OFF	OFF	OFF
HWHWLP-PMP-6	OFF	OFF	OFF	OFF

Table 6 - Initial pumping conditions at Woodward Station for the 2031 planning horizon with tanks 75% Full

2031 - Reservoirs 75%

System Component	Average Day	Maximum Day	Maximum Day + FF	Peak Hour
HWHWLP-PMP-1	OFF	OFF	OFF	OFF
HWHWLP-PMP-2	OFF	OFF	OFF	OFF
HWHWLP-PMP-3	OFF	OFF	OFF	OFF
HWHWLP-PMP-4	OFF	OFF	OFF	OFF
HWHWLP-PMP-5	OFF	OFF	OFF	OFF
HWHWLP-PMP-6	OFF	OFF	OFF	OFF

Table 7 - Initial pumping conditions at Woodward Station for the 2011 planning horizon with tanks 90% Full

<u>2011 - Reservoirs 90%</u>

System Component	Average Day	Maximum Day	Maximum Day + FF	Peak Hour
HWHWLP-PMP-1	OFF	OFF	OFF	OFF
HWHWLP-PMP-2	OFF	OFF	OFF	OFF
HWHWLP-PMP-3	OFF	OFF	OFF	OFF
HWHWLP-PMP-4	OFF	OFF	OFF	OFF
HWHWLP-PMP-5	OFF	OFF	OFF	OFF
HWHWLP-PMP-6	OFF	OFF	OFF	OFF

Table 8 - Initial pumping conditions at Woodward Station for the 2031 planning horizon with tanks 90% Full

2031 - Reservoirs 90%

System Component	Average Day	Maximum Day	Maximum Day + FF	Peak Hour
HWHWLP-PMP-1	OFF	OFF	OFF	OFF
HWHWLP-PMP-2	OFF	OFF	OFF	OFF
HWHWLP-PMP-3	OFF	OFF	OFF	OFF
HWHWLP-PMP-4	OFF	OFF	OFF	OFF
HWHWLP-PMP-5	OFF	OFF	OFF	OFF
HWHWLP-PMP-6	OFF	OFF	OFF	OFF

3.2 MODEL CALIBRATION

The calibration of the model was verified using results of four (4) hydrant flow tests provided by the City of Hamilton. Test information for each test is provided in **Table 9**.

Table 9 - Hydrant Flow Test Calibration Information

Location	Hydrant ID	Date of Test
244 McNeilly Road	SB02H036	July 5, 2016
257 McNeilly Road	SB02H037	July 5, 2016
1217 Barton Street	SA02H015	June 28, 2016
Barton Street	SA02H016	June 28, 2016

A comparison between the hydrant flow test results and their respective modeled hydrant curves were completed at the locations in question.

It was found that the modeled static pressure, was lower than the static pressure of the hydrant flow test and that the modeled flow at 20 psi were conservative. The results of this test, and how it compares to the model simulated data can be referred to in **Appendix E**.

4 HYDRAULIC ANALYSIS

The suggested watermain layout was modelled for Average Day, Maximum Day, Maximum Day plus Fire Flow and Peak Hour under the present (2011) and ultimate buildout (2031) planning horizons using a WaterGEMS V8i model of the PD1 network as described in Section 3. It should be noted that PD1 also feeds other pressure districts and the demands for those districts were also included in the analysis.

Pipes in the Lower Stoney Creek Development were sized to meet the greater requirement of Peak Hour Demands or Maximum Day Demand plus Fire Flow requirements. A detailed summary of demands is shown in **Appendix A** as well as the proposed pipe diameters within the development.

4.1 SYSTEM PRESSURES

For the modeled demand scenarios, **Table 10** and **Table 11** show the computer simulations predicted pressures. From these tables, it can be said that simulated pressures under all planning horizons are in the acceptable pressure range according to both the MOECC and the City of Hamilton. Furthermore, the nodes everywhere else in PD1 were checked and remain above 275 kPa during the simulation of all alternatives presented herein. A complete table of pipe and node data for all the simulated scenarios is included in **Appendix B**.

Table 10 - Simulated Pressure Ranges for the Present Day (2011) Planning Horizon - All Pumps are OFF at Woodward PS.

Scenario	Average Day (kPa)	Maximum Day (kPa)	Peak Hour (kPa)
Tanks 50% Full	319 - 388	312 - 381	296 - 365
Tanks 75% Full	345 - 414	337 - 406	320 - 390
Tanks 90% Full	360 - 429	351 - 420	335 - 404

Table 11 - Simulated Pressure Ranges for the Ultimate Buildout (2031) Planning Horizon - All Pumps are OFF at Woodward PS.

Scenario	Average Day (kPa)	Maximum Day (kPa)	Peak Hour (kPa)
Tanks 50% Full	317 - 386	302 - 371	276 - 346
Tanks 75% Full	342 - 411	327 - 396	300 - 370
Tanks 90% Full	357 - 426	341 - 411	314 - 384

4.2 AVAILABLE FIRE FLOW

The minimum allowable pressure under maximum day demand plus fire flow is 140 kPa (20 psi) at the location of the fire or anywhere else in the pressure district. The fire flow scenarios were simulated under Maximum Day demand conditions in the present (2011) and ultimate build out (2031) planning horizons. The available fire flow in the subdivision is different for each planning horizon and water level in PD1 tanks as shown in **Table 12** below – allow at least 20L/s margin between the RFF and table values to account for hydrant lead and isolation valve losses. A detailed analysis of fire flows available at all hydrants in the proposed system is included in **Appendix C**.

Table 12 - Simulated AFF Ranges at Nodes for 2011 and 2031 with All Pumps are OFF at Woodward PS

Scenario	2011 MDD+FF	2031 MDD+FF
Tanks 50% Full	102 – 439	98 - 353
Tanks 75% Full	110 – 468	105 - 439
Tanks 90% Full	114 - 489	110 - 455

Note: Junction HA12S002 was not included in PD1. Allow at least 20L/s for Hydrant AFF.

During the MDD + Fire Flow scenarios at 50% TWL, PD1 was not able to maintain the required pressure of 140 kPa resulting in zero flows at the subject area in the computer simulation. This is due to node HA12S002 located on Charleton Avenue (far from the development area) with an elevation of 114.20m and has a pressure that would constrain the AFF to zero in the Winona Hills area. This PD1 constraint would apply to all existing areas and developments during periods with reservoirs below 75%.

However, WSP understands node HA12S002 will be serviced from PD2 by the time the proposed development is constructed and, in addition, this one node does not now and will not in the future service dwellings in PD1. Therefore, WSP conducted a fire flow analysis without this junction in PD1.

Based on the simulations, WSP has determined that the system can maintain a minimum pressure of 140 kPa at ground level at all points in the PD1 distribution system under Maximum Day demand plus Fire Flow conditions at the subject site for the existing (2011) and ultimate buildout (2031) planning horizons when node HA12S002 is not included in PD1. The AFF reported above do not include any network improvements that may be considered (below).

As detailed subdivision plans advance and fire flow requirements become available, required fire flows may exceed available fire flows. At that time, it is recommended that the following system upgrades be implemented to increase the fire flow capacity of the system:

1. Upsize LSP-24 from 200 mm to 300 mm and LSP-16 from 200 mm to 300 mm to increase available fire flows for Blocks 1, 2, 3, and 4. **Figure 4** below shows watermains LSP-39 and LSP-40 before recommendation.

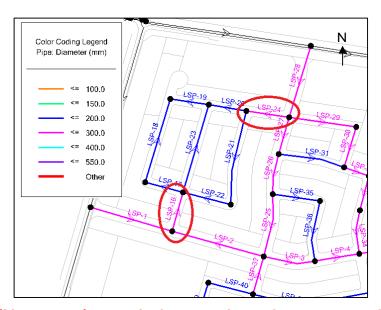


Figure 4 - Possible Watermain Upgrades (LSP-24 and LSP-16) to Increase AFF (Circled in Red)

2. Upsize LSP-39 from 200 mm to 300 mm and LSP-40 from 200 mm to 300 mm to increase available fire flows for Block 5. **Figure 5** shows watermains LSP-16 and LSP-24 before recommendation. Figure 6 shows the suggested layout when recommendation is implemented.

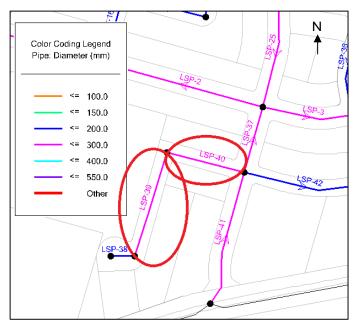


Figure 5 - Possible Watermain Upgrades (LSP-30 and LSP-40) to Increase AFF (Circled in Red)

3. Add a new watermain connecting LSJ-4 to LSP-43 to increase available fire flows for Blocks 10, 11, and 12. Figure 6 shows both watermains LSJ-4 and LSP-43 without any connecting watermain.

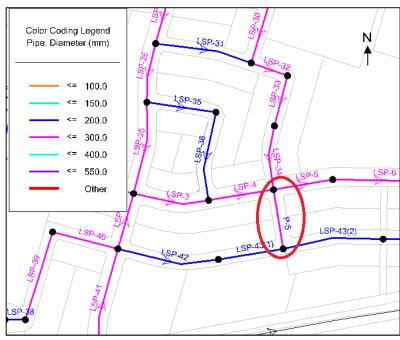


Figure 6 Possible Watermain Upgrade (between Watermains LSP-4 and LSP-43) to Increase AFF (Circled in Red)

4.3 TRANSIENT PRESSURES

According to the MOE Watermain Design Criteria, all watermains shall be designed so that pipes and joints are able to withstand the maximum operating pressure plus the surge pressure that would be created by stopping a water column moving at $0.6 \, \text{m/s}$.

AWWA C900-compliant PVC pipe has a pressure rating of 150 psi (or greater) and this is consistent with the City of Hamilton's Specification for the Installation of Watermains (April 2014) that requires PVC pipe to be of Class 150 DR18. A PVC pipe with dimension ratio (DR) of 18 will experience a pressure surge of 240 kPa for a 0.6 m/s instantaneous flow velocity change (Joukowski). The maximum operating pressure plus transient pressure is calculated as approximately 669 kPa (429 kPa + 240 kPa) - well under 1030 kPa (150 psi). All pipe restraints and thrust blocks should be designed to a minimum 1030 kPa (150 psi) design pressure.

4.4 SYSTEM FLUSHING

A modeled flushing test was performed for the proposed water distribution network, under existing (2011) Average Day conditions for all phases of construction to determine the achievable flushing velocities of the system. The MOECC watermain design criterion requires a minimum flushing velocity of 0.8 m/s.

WaterGEMS software allows for testing of flushing by representing a modeled hydrant as a flow emitter with an emitter coefficient K equivalent to the components of the hydrant including the lateral, valve, bends and outlet. Hydrants were simulated in the model as junction with a K value taken as $11.2 \, \text{l/s/m}^{0.5}$ (150 gpm/psi^{0.5}) which is the minimum value prescribed by the American Water Works Association (AWWA) standard for flow calculations through a single 60 mm (2.5") outlet.

Based on the simulation, all watermains sections can meet the required flushing velocity of 0.8 m/s. To achieve this, two phases of flushing are required. The first phase of flushing requires all watermains to be open (no closed valves) with some hydrants being flushed with two ports open. The second phase of flushing requires unidirectional flushing for four pipes: LSP-9, LSP-12, LSP-13, LSP-31, and P-240. Unidirectional flushing of each pipe requires that a valve on a downstream pipe be closed. A summary of the flushing strategy for the second phase of flushing is depicted in **Table 13.**

Table 13 - Secondary Flushing Phase: Unidirectional Flushing Strategy

Pipe to be Unidirectionally Flushed	Pipe to be Closed
LSP-9	LSP-10
LSP-12	LSP-11
LSP-13	LSP-57
LSP-31	LSP-30
P-240	LSP-69

Although isolation strategies for unidirectional flushing are shown in **Table 13** and **Appendix D**, isolation strategies for watermains requiring unidirectional flushing should always be determined by the field crew responsible and are dependent on specific local system requirements at the time of flushing.

Note that since hydrant locations were not specified to WSP at the time of the analysis, 41 junctions were chosen as flow emitters. All of these junctions are within 150m of each other which is in line with the hydrant placement requirements.

With the requirements listed above, flushing velocities ranging between 0.80 and 2.54 m/s were simulated for the Lower Stoney Creek Development. A detailed flushing report, including all nodes which require two (2) port flushing and all pipes which require unidirectional flushing is provided in **Appendix D**.

5 CONCLUSIONS

The proposed watermain system for the Lower Stoney Creek Development site can achieve hydraulic requirements as prescribed by the Ministry of the Environment and Climate Change and the City of Hamilton watermain design criteria as summarized below:

- The service pressures under existing conditions (2011), and ultimate build-out conditions (2031) are expected to range between 276 kPa and 429 kPa which are within standards established by the MOECC and City of Hamilton Guidelines;
- 2 The largest RFF within this development was calculated as 217 L/s (retrieved from the Winona Hills Report) and was applied at the nodes overlapping with the Lower Stoney Creek Development.
- 3 The Required Fire Flows of 217 L/s for the jucntions representing the Winona Hills Development can be achieved under Maximum Day Demand conditions for the proposed development under existing (2011) and ultimate buildout conditions (2031) provided that node HA12S002 will be omitted from PD1 fire constraints (based on a pending adjustment of the PD2/PD1 boundary as discussed in section 4.2). The AFF values reported herein do not include any network improvements that may be considered and require at least 20L/s of margin to allow for hydrant and lead losses;
- 4 Under Maximum Day plus Fire Flow for existing (2011) and ultimate buildout (2031) conditions the PD1 distribution system is able to maintain pressure above 140 kPa at ground level at all modeled nodes in the district;
- 5 Under the simulated conditions, all AWWA C900-compliant PVC pipe with a pressure rating of 150 psi (or greater) watermains in the proposed development can withstand transient pressure created by stopping a water column moving at 0.6 m/s plus maximum operating pressure; and,
- 6 All proposed watermains can achieve a minimum flushing velocity of 0.8 m/s given the requirements outlined in Section 4.4.

These conclusions remain valid as long as the proposed water distribution system and the City's network configuration remain as described herein. Furthermore, these conclusions are exclusive of the recommended upgrades but these would improve AFF and service pressures. If significant changes are contemplated, this analysis should be updated.

APPENDIX

DEMANDS AND PROPOSED SYSTEM LAYOUT

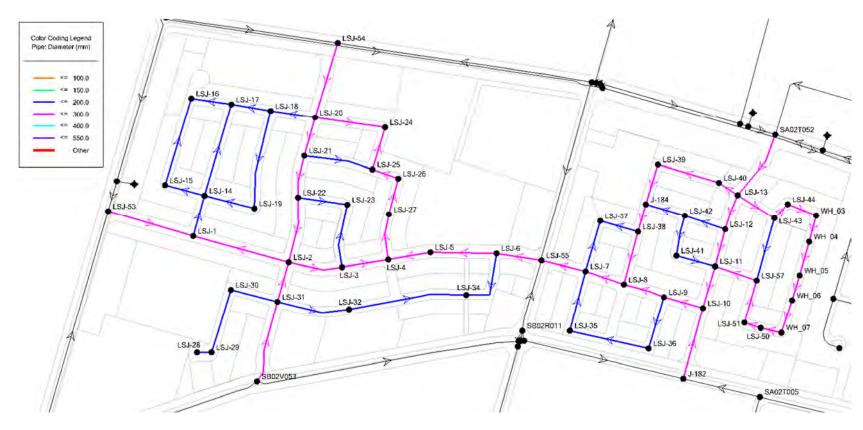


Figure A1 - Proposed System Layout with all Junction IDs

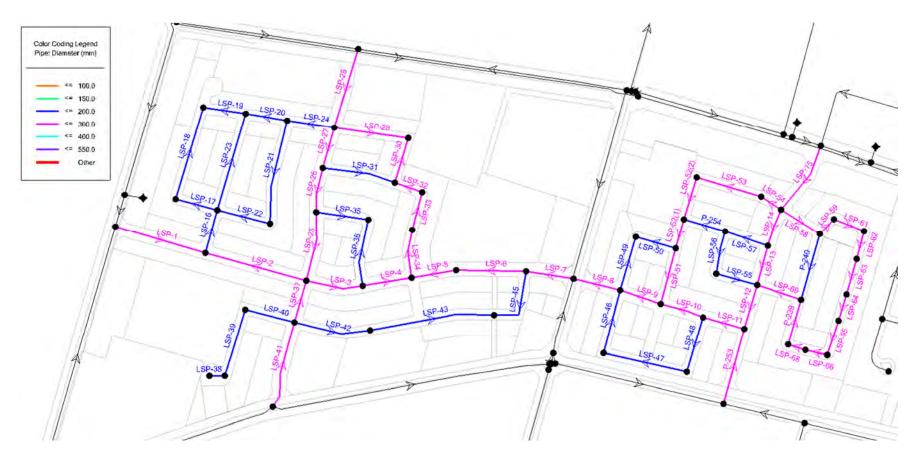


Figure A2 - Proposed System Layout with all Pipe IDs

Water Demands

Residential Unit Rate			Population Rate		Demand			Peaking Factors			
Class	Low Density 1	Low Density 2	Low Density 3	Med Density 2	3.39	LD-PPU	Residential	360	L/Person/day	Maximum Dav	1.9
Rate (upnha)	20	40.0	60.0	75	2.45	MD-PPU	Employment	260	Dr ersoniday	waxiiiiuiii Day	1.5
Range (upnha)	0-20	20-40	40-60	60-75	400	ft2/comm. empl.	Conservative	100%		Maximum Hou	3.0
					700	ft2/insti, empl.	Factor	100%		IVIAXIIIIUIII FIOUI	3.0

Notes:
Residential and Commercial Population rates used in calculating demands for the development were based on the City of Hamilton Study (October 1, 2014) by Watson & Associates Economists Ltd.
Block areas, proposed residential density, person per unit (ppu) for each density group were taken from drawing: Block Servicing Strategy Area # 3 Concept Plan June 2018 by Glen Schnarr & Associates Inc.
Employment demands based on the City of Hamilton's WWMP (2006) demand criteria.

Calculated Der

Node	Block	Class	Area (sqm)	Area (ha)	Single-Family Units	Number of People	Average Day x 150% (L/day)	Average Day (L/s)	Maximum Day (L/s)	Peak Hour (L/s)
		Low Density 2	7676	0.77	31	104	37473	0.43	0.82	1.30
LSJ-16	1	Low Density 3	29953	3.00	180	609	219328	2.54	4.82	7.62
		Med Density 2	19242	1.92	144	354	127288	1.47	2.80	4.42
		Low Density 3	56872 1655	5.69 0.17	355 10	1067 34	384089 12116	4.45 0.14	8.45 0.27	13.34 0.42
LSJ-15	2	Low Density 2	7910	0.79	32	107	38616	0.45	0.85	1.34
			9565	0.96	42	141	50731	0.59	1.12	1.76
LSJ-19	3	Low Density 3	1655 9278	0.17 0.93	10 37	34 126	12116 45293	0.14 0.52	0.27 1.00	0.42 1.57
		Low Density 2	10933	1.09	47	159	57408	0.66	1.26	1.99
LSJ-22	4	Low Density 2	15731	1.57	63	213	76793	0.89	1.69	2.67
LSJ-22	4	Low Density 3	6341	0.63	38	129	46430	0.54	1.02	1.61
		Law Danaity 2	22072	2.21 7.64	101 458	342	123223	1.43 6.48	2.71 12.30	4.28
	_	Low Density 3 Low Density 2	76413 2767	0.28	11	1554 38	559530 13508	0.16	0.30	19.43 0.47
LSJ-1	5	Commercial	2291	0.23	0	62	16027	0.19	0.35	0.56
		Park	29400	2.94	0	0	0	0.00	0.00	0.00
		Mod Donoity 2	110871 11506	11.09 1.15	470 86	1653 211	589065 76113	6.82 0.88	12.95 1.67	20.45 2.64
		Med Density 2 Low Density 3	11260	1.13	68	229	82451	0.95	1.81	2.86
LSJ-24	6	Low Density 2	6922	0.69	28	94	33792	0.39	0.74	1.17
	· ·	Park CMM Dand	29989	3.00	0	0	0	0.00	0.00	0.00
		SWM Pond Institutional	25404 37529	2.54 3.75	0	0 577	0 150042	0.00 1.74	0.00 3.30	0.00 5.21
		moutational	122610	12.26	182	1111	342398	3.96	7.53	11.89
LSJ-21	7	Low Density 2	4359	0.44	17	59	21277	0.25	0.47	0.74
		Low Density 3	2314 6673	0.23 0.67	14	47 106	16947 38225	0.20	0.37 0.84	0.59 1.33
		Low Density 2	14410	1.44	31 58	195	70342	0.44 0.81	1.55	2.44
LSJ-27	8	Low Density 3	1978	0.20	12	40	14481	0.17	0.32	0.50
			16387	1.64	70	236	84823	0.98	1.87	2.95
LSJ-23	9	Low Density 3 Low Density 2	1949 5368	0.19 0.54	12 21	40 73	14270 26203	0.17 0.30	0.31	0.50 0.91
		Low Density 2	7316	0.73	33	112	40473	0.47	0.89	1.41
LSJ-32	10	Low Density 3	11513	1.15	69	234	84303	0.98	1.85	2.93
			11513	1.15	69	234	84303	0.98	1.85	2.93
LSJ-6	11	Low Density 3	10094 10094	1.01 1.01	61 61	205 205	73915 73915	0.86 0.86	1.63 1.63	2.57 2.57
		Low Density 3	29507	2.95	177	600	216061	2.50	4.75	7.50
LSJ-34	12	Commercial	13716	1.37	0	369	95966	1.11	2.11	3.33
			43223	4.32	177	969	312028	3.61	6.86	10.83
LSJ-35	13	Low Density 3	6879 6879	0.69 0.69	41 41	140 140	50367 50367	0.58 0.58	1.11 1.11	1.75 1.75
LSJ-8	14	Low Density 3	5425	0.54	33	110	39721	0.46	0.87	1.75
			5425	0.54	33	110	39721	0.46	0.87	1.38
LSJ-9	15	Low Density 3	5183	0.52	31	105	37955	0.44	0.83	1.32
LSJ-10	16	Low Density 3	5183 6044	0.52 0.60	31 36	105 123	37955 44257	0.44 0.51	0.83 0.97	1.32 1.54
L33-10	10	LOW Deliaity 3	6044	0.60	36	123	44257	0.51	0.97	1.54
		Low Density 2	34841	3.48	139	472	170079	1.97	3.74	5.91
LSJ-10	17	Low Density 1	7512	0.75	15	51	18336	0.21	0.40	0.64
		Commercial	8333 50686	0.83 5.07	0 154	224 748	58303 246718	0.67 2.86	1.28 5.43	2.02 8.57
SA02T005	18	Commercial	10340	1.03	0	278	72347	0.84	1.59	2.51
3AU21005	10	Institutional	20943	2.09	0	322	83729	0.97	1.84	2.91
SA02T005	19	Commercial	31283 19365	3.13 1.94	0	600 521	156076 135486	1.81 1.57	3.43 2.98	5.42 4.70
SAU21005	19	Commercial	19365 19365	1.94 1.94	0	521 521	135486 135486	1.57 1.57	2.98 2.98	4.70 4.70
		Low Density 2	2512	0.25	10	34	12261	0.14	0.27	0.43
LSJ-37	20	Low Density 3	11166	1.12	67	227	81761	0.95	1.80	2.84
		Med Density 2 SWM Pond	23949 15061	2.39 1.51	180	440 0	158424 0	1.83 0.00	3.48 0.00	5.50 0.00
		SVVIVI I OIIU	52688	5.27	257	701	252446	2.92	5.55	8.77
LSJ-38	21	Low Density 2	4975	0.50	20	67	24285	0.28	0.53	0.84
			4975	0.50	20	67	24285	0.28	0.53	0.84
LSJ-11	22	Low Density 2	12983 12983	1.30 1.30	52 52	176 176	63378 63378	0.73 0.73	1.39 1.39	2.20 2.20
LSJ-12	23	Low Density 2	3545	0.35	14	48	17305	0.20	0.38	0.60
			3545	0.35	14	48	17305	0.20	0.38	0.60
LSJ-57	24	Low Density 2	6989	0.70	28	95	34119	0.39	0.75	1.18
10140	25	Low Bonsit C	6989	0.70	28	95	34119	0.39	0.75	1.18
LSJ-43	25	Low Density 2	13402 13402	1.34 1.34	54 54	182 182	65421 65421	0.76 0.76	1.44 1.44	2.27 2.27
	26	Low Density 2	4164	0.42	17	56	20329	0.24	0.45	0.71
15112										
LSJ-13	20	Low Density 3	4160 8324	0.42 0.83	25 42	85 141	30459 50788	0.35 0.59	0.67 1.12	1.06 1.76

APPENDIX

B

PIPE AND JUNCTION TABLES

2011 ADD Junction Results				
			Hydraulic Grade	
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)
J-182	94.25	0.00	128	328
J-184	91.25	0.00	128	358
LSJ-1	91.00	6.82	128	360
LSJ-1	91.75	0.00	128	353
LSJ-3	91.50	0.00	128	355
LSJ-4	91.50	0.00	128	355
LSJ-5	90.25	0.00	128	368
LSJ-6	91.75	0.86	128	353
LSJ-7	92.25	0.00	128	348
LSJ-8	92.50	0.46	128	346
LSJ-9	92.75	0.44	128	343
LSJ-10	93.00	3.37	128	341
LSJ-11	92.00	0.73	128	350
LSJ-12	91.75	0.20	128	353
LSJ-13	91.25	0.59	128	358
LSJ-14	90.75	0.00	128	363
LSJ-15	91.50	0.59	128	355
LSJ-16	90.50	4.45	128	365
LSJ-16 LSJ-17	90.75	0.00	128	363
LSJ-18	89.75	0.00	128	372
LSJ-19	91.00	0.66	128	360
LSJ-20	89.75	0.00	128	372
LSJ-21	90.50	0.44	128	365
LSJ-22	90.75	1.43	128	363
LSJ-23	90.50	0.47	128	365
LSJ-24	89.25	3.96	128	377
LSJ-25	89.75	0.00	128	372
LSJ-26	89.75	0.00	128	372
LSJ-27	90.50	0.98	128	365
LSJ-28	94.25	0.00	128	328
LSJ-29	94.00	0.00	128	331
LSJ-30	92.00	0.00	128	350
LSJ-31	92.75	0.00	128	343
LSJ-32	92.75	0.00	128	343
			128	
LSJ-34	91.25	3.61		358
LSJ-35	93.50	0.58	128	336
LSJ-36	94.00	0.00	128	331
LSJ-37	91.00	2.92	128	360
LSJ-38	91.50	0.28	128	355
LSJ-39	91.00	0.00	128	360
LSJ-40	91.25	0.00	128	358
LSJ-41	92.00	0.00	128	350
LSJ-42	91.50	0.00	128	355
LSJ-43	91.25	0.76	128	358
LSJ-44	91.75	0.00	128	353
LSJ-50	95.00	0.00	128	321
LSJ-51	94.00	0.00	128	331
LSJ-53	92.25	0.00	128	348
LSJ-54	88.18	0.00	128	388
LSJ-54 LSJ-55	91.86	0.00	128	352
LSJ-57	92.25	0.39	128	348
SA02T005	95.10	4.03	128	320
SA02T052	91.00	0.00	128	360
SB02R011	94.00	0.00	128	331
SB02V053	95.20	0.00	128	319
		0.10	128	350
WH_03	92.00			
WH_04	92.00 92.00	0.13	128	350
WH_04	92.00	0.13	128	350

2011 MDD Junction Results				
			Hydraulic Grade	
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)
J-182	94.25	0.00	127	321
J-184	91.25	0.00	127	351
LSJ-1	91.00	12.95	127	353
LSJ-2	91.75	0.00	127	345
LSJ-3	91.73	0.00	127	348
LSJ-4 LSJ-5	91.50	0.00 0.00	127 127	348
	90.25			360
LSJ-6	91.75	1.63	127	345
LSJ-7	92.25	0.00	127	341
LSJ-8	92.50	0.87	127	338
LSJ-9	92.75	0.83	127	336
LSJ-10	93.00	6.40	127	333
LSJ-11	92.00	1.39	127	343
LSJ-12	91.75	0.38	127	346
LSJ-13	91.25	1.12	127	351
LSJ-14	90.75	0.00	127	355
LSJ-15	91.50	1.12	127	347
LSJ-16	90.50	8.45	127	357
LSJ-17	90.75	0.00	127	355
LSJ-18	89.75	0.00	127	365
LSJ-19	91.00	1.26	127	353
LSJ-20	89.75	0.00	127	365
LSJ-21	90.50	0.84	127	358
LSJ-22	90.75	2.71	127	355
LSJ-23	90.50	0.89	127	358
LSJ-24	89.25	7.53	127	370
LSJ-25	89.75	0.00	127	365
LSJ-26	89.75	0.00	127	365
LSJ-27	90.50	1.87	127	358
LSJ-28	94.25	0.00	127	321
LSJ-29	94.00	0.00	127	323
LSJ-30	92.00	0.00	127	343
LSJ-31	92.75	0.00	127	336
LSJ-32	92.75	1.85	127	335
LSJ-34	91.25	6.86	127	350
LSJ-35	93.50	1.11	127	328
LSJ-36	94.00	0.00	127	324
LSJ-37	91.00	5.55	127	353
LSJ-38	91.50	0.53	127	348
LSJ-39	91.00	0.00	127	353
LSJ-40	91.25	0.00	127	351
LSJ-41	92.00	0.00	127	343
LSJ-42	91.50	0.00	127	348
LSJ-43	91.25	1.44	127	351
LSJ-44	91.75	0.00	127	346
LSJ-50	95.00	0.00	127	314
LSJ-51	94.00	0.00	127	324
LSJ-53	92.25	0.00	127	341
LSJ-54	88.18	0.00	127	381
LSJ-55	91.86	0.00	127	344
LSJ-57	92.25	0.75	127	341
SA02T005	95.10	7.66	127	313
SA02T052	91.00	0.00	127	354
SB02R011	94.00	0.00	127	324
SB02V053	95.20	0.00	127	312
WH_03	92.00	0.19	127	343
WH_04	92.00	0.24	127	343
WH_05	92.00	0.30	127	343
WH_06	93.00	0.21	127	333
WH_07	95.00	0.19	127	314

2011 PHD Junction Results				
Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
J-182	94.25	0.00	125	305
J-184	91.25	0.00	125	334
LSJ-1	91.00	20.45	125	336
LSJ-2	91.75	0.00	125	329
LSJ-3	91.50	0.00	125	331
LSJ-4	91.50	0.00	125	331
LSJ-5	90.25	0.00	125	344
LSJ-6	91.75	2.57	125	329
LSJ-7	92.25	0.00	125	324
LSJ-8	92.50	1.38	125	322
LSJ-9	92.75	1.32	125	319
LSJ-10	93.00	10.10	125	317
LSJ-11	92.00	2.20	125	327
LSJ-11	91.75	0.60	125	329
		1.76		335
LSJ-13	91.25		125	
LSJ-14	90.75	0.00	125	338
LSJ-15	91.50	1.76	125	331
LSJ-16	90.50	13.34	125	340
LSJ-17	90.75	0.00	125	338
LSJ-18	89.75	0.00	125	348
LSJ-19	91.00	1.99	125	336
LSJ-20	89.75	0.00	125	349
LSJ-21	90.50	1.33	125	341
LSJ-22	90.75	4.28	125	339
LSJ-23	90.50	1.41	125	341
LSJ-24	89.25	11.89	125	353
LSJ-25	89.75	0.00	125	349
LSJ-26	89.75	0.00	125	349
LSJ-27	90.50	2.95	125	341
LSJ-28	94.25	0.00	125	305
LSJ-29	94.00	0.00	125	307
LSJ-30	92.00	0.00	125	327
LSJ-30 LSJ-31	92.75	0.00	125	319
			125	
LSJ-32	92.75	2.93		319
LSJ-34	91.25	10.83	125	333
LSJ-35	93.50	1.75	125	312
LSJ-36	94.00	0.00	125	307
LSJ-37	91.00	8.77	125	336
LSJ-38	91.50	0.84	125	332
LSJ-39	91.00	0.00	125	337
LSJ-40	91.25	0.00	125	334
LSJ-41	92.00	0.00	125	327
LSJ-42	91.50	0.00	125	332
LSJ-43	91.25	2.27	125	334
LSJ-44	91.75	0.00	125	330
LSJ-50	95.00	0.00	125	298
LSJ-51	94.00	0.00	125	307
LSJ-53	92.25	0.00	125	325
LSJ-54	88.18	0.00	125	365
LSJ-55	91.86	0.00	125	328
LSJ-57	92.25	1.18	125	325
SA02T005	95.10	12.28	125	297
SA02T053	91.00	0.00	126	338
SB02R011	94.00	0.00	125	307
SB02V053	95.20	0.00	125	296
WH_03	92.00	0.30	125	327
WH_04	92.00	0.38	125	327
WH_05	92.00	0.47	125	327
WH 06	93.00	0.34	125	317
WH 07	95.00	0.30	125	298

2031 ADD Junction Results				
			Hydraulic Grade	
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)
J-182	94.25	0.00	128	326
J-184	91.25	0.00	128	355
LSJ-1	91.00	6.82	128	358
LSJ-2	91.75	0.00	128	351
LSJ-3	91.50	0.00	128	353
LSJ-4	91.50	0.00	128	353
LSJ-5	90.25	0.00	128	365
LSJ-6		0.86	128	
LSJ-6 LSJ-7	91.75	0.00		351 346
	92.25		128	
LSJ-8	92.50	0.46	128	343
LSJ-9	92.75	0.44	128	341
LSJ-10	93.00	3.37	128	338
LSJ-11	92.00	0.73	128	348
LSJ-12	91.75	0.20	128	351
LSJ-13	91.25	0.59	128	355
LSJ-14	90.75	0.00	128	360
LSJ-15	91.50	0.59	128	353
LSJ-16	90.50	4.45	128	363
LSJ-17	90.75	0.00	128	360
LSJ-18	89.75	0.00	128	370
LSJ-19	91.00	0.66	128	358
LSJ-20	89.75	0.00	128	370
LSJ-21	90.50	0.44	128	363
LSJ-22	90.75	1.43	128	360
LSJ-23	90.50	0.47	128	363
LSJ-24	89.25	3.96	128	375
LSJ-25	89.75	0.00	128	370
LSJ-26	89.75	0.00	128	370
LSJ-27	90.50	0.98	128	363
LSJ-28	94.25	0.00	128	326
LSJ-29	94.00	0.00	128	329
LSJ-30	92.00	0.00	128	348
LSJ-31	92.75	0.00	128	341
LSJ-32	92.75	0.98	128	341
LSJ-34	91.25	3.61	128	355
LSJ-35	93.50	0.58		333
LSJ-36	94.00	0.00	128 128	329
		2.92	128	
LSJ-37	91.00			358
LSJ-38	91.50	0.28	128	353
LSJ-39	91.00	0.00	128	358
LSJ-40	91.25	0.00	128	355
LSJ-41	92.00	0.00	128	348
LSJ-42	91.50	0.00	128	353
LSJ-43	91.25	0.76	128	355
LSJ-44	91.75	0.00	128	351
LSJ-50	95.00	0.00	128	319
LSJ-51	94.00	0.00	128	329
LSJ-53	92.25	0.00	128	346
LSJ-54	88.18	0.00	128	386
LSJ-55	91.86	0.00	128	349
LSJ-57	92.25	0.39	128	346
SA02T005	95.10	6.78	128	318
SA02T052	91.00	0.00	128	358
SB02R011	94.00	0.00	128	328
SB02V053	95.20	0.00	128	317
WH_03	92.00	0.10	128	348
WH 04	92.00	0.13	128	348
WH 05	92.00	0.16	128	348
WH 06	93.00	0.11	128	338
WH 07	95.00	0.10	128	319
VVII_0/	55.00	0.10	120	010

	2031 MDD Junction Results				
Label Flavation (m) Demand (L/a) Hydrai	ulic Grade				
Label Elevation (m) Demand (L/s)	(m) Pressure (kPa)				
	126 311				
	126 341				
	126 343				
	126 336				
	126 338				
	126 338				
	126 350				
	126 336				
	126 331				
	126 328				
	126 326				
	126 324				
	126 333				
	126 336				
	126 341				
	126 345				
	126 338				
	126 348				
	126 345				
	126 355				
	126 343				
	126 355				
	126 348				
	126 346				
	126 348				
	126 360				
	126 355				
	126 355				
	126 348				
	126 311				
	126 314				
	126 333				
	126 326				
	126 326				
	126 340				
	126 319				
	126 314				
	126 343				
	126 338				
	126 343				
	126 341				
	126 333				
	126 338				
	126 341				
	126 336				
	126 304				
	126 314				
	126 331				
	126 371				
	126 335				
	126 331				
	126 303				
	126 344				
	126 314				
	126 302				
	126 333				
	126 333				
	126 333				
_	126 324				
WH_07 95.00 0.19	126 304				

2031 PHD Junction Results								
			Hydraulic Grade					
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)				
J-182	94.25	0.00	123	285				
J-184	91.25	0.00	123	314				
LSJ-1	91.00	20.45	123	316				
LSJ-1	91.75	0.00	123	309				
LSJ-3	91.50	0.00	123	311				
LSJ-4	91.50	0.00	123	311				
LSJ-5	90.25	0.00	123	324				
LSJ-6	91.75	2.57	123	309				
LSJ-7	92.25	0.00	123	304				
LSJ-8	92.50	1.38	123	302				
LSJ-9	92.75	1.32	123	299				
LSJ-10	93.00	10.10	123	297				
LSJ-11	92.00	2.20	123	307				
LSJ-12	91.75	0.60	123	309				
LSJ-13	91.25	1.76	123	314				
LSJ-14	90.75	0.00	123	318				
LSJ-15	91.50	1.76	123	311				
LSJ-16	90.50	13.34	123	320				
LSJ-16 LSJ-17	90.75							
		0.00	123 123	318				
LSJ-18	89.75	0.00		328				
LSJ-19	91.00	1.99	123	316				
LSJ-20	89.75	0.00	123	329				
LSJ-21	90.50	1.33	123	321				
LSJ-22	90.75	4.28	123	319				
LSJ-23	90.50	1.41	123	321				
LSJ-24	89.25	11.89	123	333				
LSJ-25	89.75	0.00	123	329				
LSJ-26	89.75	0.00	123	329				
LSJ-27	90.50	2.95	123	321				
LSJ-28	94.25	0.00	123	285				
LSJ-29	94.00	0.00	123	287				
LSJ-30	92.00	0.00	123	307				
LSJ-31	92.75	0.00	123	299				
LSJ-32	92.75	2.93	123	299				
LSJ-34	91.25	10.83	123	313				
LSJ-35	93.50	1.75	123	292				
LSJ-36	94.00	0.00	123	287				
LSJ-37	91.00	8.77	123	316				
LSJ-38	91.50	0.84	123	312				
LSJ-39	91.00	0.00	123	317				
LSJ-40	91.25	0.00	123	314				
LSJ-41	92.00	0.00	123	307				
LSJ-42	91.50	0.00	123	312				
LSJ-43	91.25	2.27	123	314				
LSJ-44	91.75	0.00	123	309				
LSJ-50	95.00	0.00	123	278				
LSJ-51	94.00	0.00	123	287				
LSJ-53	92.25	0.00	123	305				
LSJ-53	92.25 88.18	0.00	124	346				
LSJ-54 LSJ-55	91.86		123	308				
		0.00						
LSJ-57	92.25	1.18	123	304				
SA02T005	95.10	19.88	123	276				
SA02T052	91.00	0.00	124	319				
000000			123	287				
SB02R011	94.00	0.00						
SB02V053	95.20	0.00	123	276				
			123 123					
SB02V053	95.20	0.00	123	276				
SB02V053 WH_03	95.20 92.00	0.00 0.30	123 123	276 307				
SB02V053 WH_03 WH_04	95.20 92.00 92.00	0.00 0.30 0.38	123 123 123	276 307 307				

			2	011 ADD Pipe Resi	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	6.62	0.09	0.05
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-2.95	0.04	0.01
LSP-3 LSP-4	LSJ-2	LSJ-3	106.10	300	120	0.49	0.01	0.00
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	0.32 -0.85	0.00 0.01	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-0.85	0.01	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-4.27	0.06	0.02
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-2.00	0.03	0.01
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-3.07	0.04	0.01
LSP-10	LSJ-9	LSJ-8	82.00	300	120	1.51	0.02	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-2.53	0.04	0.01
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-3.95	0.06	0.02
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-3.16	0.04	0.01
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-4.30	0.06	0.02
LSP-15 LSP-16	LSJ-13 LSJ-14	SA02T052 LSJ-1	140.50 82.00	300 200	120 110	-11.36 -2.75	0.16 0.09	0.13 0.08
LSP-17	LSJ-14 LSJ-15	LSJ-14	79.20	200	110	-2.12	0.09	0.05
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-1.53	0.05	0.03
LSP-19	LSJ-17	LSJ-16	78.90	200	110	2.92	0.09	0.09
LSP-20	LSJ-18	LSJ-17	77.40	200	110	2.07	0.07	0.05
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-0.88	0.03	0.01
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.22	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	0.85	0.03	0.01
LSP-24	LSJ-20	LSJ-18	87.80	200	110	2.95	0.09	0.09
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.28	0.00	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	2.00	0.03	0.01
LSP-27 LSP-28	LSJ-20 LSJ-54	LSJ-21 LSJ-20	77.70 151.80	300 300	120 120	3.06 9.17	0.04 0.13	0.01 0.09
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-3.15	0.13	0.09
LSP-30	LSJ-25	LSJ-24	86.00	300	120	0.81	0.04	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	0.62	0.02	0.01
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.19	0.00	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.19	0.00	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-1.17	0.02	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.29	0.01	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	0.18	0.01	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-3.17	0.04	0.01
LSP-38	LSJ-29	LSJ-28	28.00 127.40	200	110 110	0.00	0.00	0.00
LSP-39 LSP-40	LSJ-29 LSJ-30	LSJ-30 LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-5.20	0.07	0.03
LSP-42	LSJ-31	LSJ-32	142.30	200	110	2.04	0.06	0.05
LSP-43	LSJ-32	LSJ-34	231.30	200	110	1.06	0.03	0.01
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-2.55	0.08	0.07
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.00	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.58	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.58	0.02	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	1.07	0.03	0.01
LSP-50 LSP-51	LSJ-37 LSJ-8	LSJ-38 LSJ-38	76.50 106.40	200 300	110 120	-1.85 -2.02	0.06	0.04 0.01
LSP-51 LSP-52(1)	LSJ-8 LSJ-38	J-184	55.80	300	120	-2.02 -4.14	0.06	0.01
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-3.26	0.05	0.02
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-3.26	0.05	0.01
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-3.26	0.05	0.01
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.05	0.00	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.05	0.00	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-0.94	0.03	0.01
LSP-58	LSJ-13	LSJ-43	84.40	300	120	3.21	0.05	0.01
LSP-59	LSJ-43	LSJ-44	37.80	300	120	1.60	0.02	0.00
LSP-61 LSP-62	LSJ-44 WH_03	WH_03	59.40 53.00	300 300	120 120	1.60 1.50	0.02	0.00
LSP-62 LSP-63	WH_03	WH_04 WH_05	68.00	300	120	1.38	0.02 0.02	0.00
LSP-64	WH_05	WH_06	50.90	300	120	1.22	0.02	0.00
LSP-65	WH_06	WH_07	66.40	300	120	1.11	0.02	0.00
LSP-66	WH_07	LSJ-50	41.10	300	120	1.01	0.01	0.00
LSP-68	LSJ-50	LSJ-51	33.50	300	120	1.01	0.01	0.00
LSP-69	LSJ-57	LSJ-11	85.30	300	120	1.47	0.02	0.00
P-239	LSJ-51	LSJ-57	86.00	300	120	1.01	0.01	0.00
P-240	LSJ-57	LSJ-43	126.20	200	110	-0.85	0.03	0.01
P-253	J-182	LSJ-10	142.30	300	120	1.95	0.03	0.01
P-254	J-184	LSJ-42	79.20	200	110	-0.89	0.03	0.01

			2	2011 MDD Pipe Res	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	12.52	0.18	0.16
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-5.64	0.08	0.04
LSP-3	LSJ-2	LSJ-3	106.10	300	120	0.85	0.01	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300 300	120 120	0.51	0.01	0.00
LSP-5 LSP-6	LSJ-4 LSJ-5	LSJ-5 LSJ-6	83.20 128.90	300	120	-1.69 -1.69	0.02	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-8.18	0.12	0.07
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-3.86	0.05	0.02
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-5.89	0.08	0.04
LSP-10	LSJ-9	LSJ-8	82.00	300	120	2.88	0.04	0.01
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-4.82	0.07	0.03
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-7.59	0.11	0.06
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-6.06	0.09	0.04
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-8.24	0.12	0.07
LSP-15 LSP-16	LSJ-13	SA02T052	140.50	300	120	-21.73	0.31	0.44
LSP-16 LSP-17	LSJ-14 LSJ-15	LSJ-1 LSJ-14	82.00 79.20	200 200	110 110	-5.21 -4.03	0.17 0.13	0.27 0.17
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-2.91	0.09	0.09
LSP-19	LSJ-17	LSJ-16	78.90	200	110	5.54	0.18	0.30
LSP-20	LSJ-18	LSJ-17	77.40	200	110	3.93	0.13	0.16
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-1.69	0.05	0.03
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.43	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	1.61	0.05	0.03
LSP-24	LSJ-20	LSJ-18	87.80	200	110	5.62	0.18	0.31
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.60	0.01	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	3.86	0.05	0.02
LSP-27	LSJ-20	LSJ-21	77.70	300	120	5.88	0.08	0.04
LSP-28	LSJ-54	LSJ-20	151.80	300	120	17.52	0.25	0.30
LSP-29	LSJ-24	LSJ-20	137.80	300 300	120 120	-6.02 1.51	0.09	0.04 0.00
LSP-30 LSP-31	LSJ-25 LSJ-21	LSJ-24 LSJ-25	86.00 136.20	200	110	1.51	0.02 0.04	0.00
LSP-32	LSJ-21	LSJ-26	53.30	300	120	-0.33	0.00	0.02
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.33	0.00	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-2.20	0.03	0.01
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.55	0.02	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	0.34	0.01	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-5.89	0.08	0.04
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-9.74	0.14	0.10
LSP-42 LSP-43	LSJ-31 LSJ-32	LSJ-32 LSJ-34	142.30 231.30	200 200	110 110	3.85 2.00	0.12 0.06	0.15 0.05
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-4.86	0.15	0.03
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.00	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-1.11	0.04	0.02
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.11	0.04	0.02
LSP-49	LSJ-7	LSJ-37	102.40	200	110	2.03	0.06	0.05
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-3.52	0.11	0.13
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-3.89	0.05	0.02
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-7.93	0.11	0.07
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-6.24	0.09	0.04
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-6.24	0.09	0.04
LSP-54 LSP-55	LSJ-40 LSJ-41	LSJ-13 LSJ-11	43.90 78.30	300 200	120 110	-6.24 0.11	0.09	0.04
LSP-56	LSJ-41 LSJ-42	LSJ-11	80.20	200	110	0.11	0.00	0.00
LSP-57	LSJ-42	LSJ-41	82.90	200	110	-1.80	0.06	0.04
LSP-58	LSJ-13	LSJ-43	84.40	300	120	6.13	0.09	0.04
LSP-59	LSJ-43	LSJ-44	37.80	300	120	3.07	0.04	0.01
LSP-61	LSJ-44	WH_03	59.40	300	120	3.07	0.04	0.01
LSP-62	WH_03	WH_04	53.00	300	120	2.88	0.04	0.01
LSP-63	WH_04	WH_05	68.00	300	120	2.64	0.04	0.01
LSP-64	WH_05	WH_06	50.90	300	120	2.34	0.03	0.01
LSP-65	WH_06	WH_07	66.40	300	120	2.13	0.03	0.01
LSP-66	WH_07	LSJ-50	41.10	300	120	1.94	0.03	0.01
LSP-68 LSP-69	LSJ-50	LSJ-51	33.50	300	120	1.94	0.03	0.01
P-239	LSJ-57 LSJ-51	LSJ-11 LSJ-57	85.30 86.00	300 300	120 120	2.82 1.94	0.04	0.01 0.01
P-239 P-240	LSJ-51 LSJ-57	LSJ-57 LSJ-43	126.20	200	110	-1.63	0.05	0.03
P-253	J-182	LSJ-43	142.30	300	120	3.62	0.05	0.03
P-254	J-184	LSJ-42	79.20	200	110	-1.69	0.05	0.03
						1.00	0.00	0.00

Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradier (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	20.13	0.28	0.38
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-8.58	0.12	0.08
LSP-3	LSJ-2	LSJ-3	106.10	300	120	1.82	0.03	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300	120	1.33	0.02	0.00
LSP-5	LSJ-4	LSJ-5	83.20	300	120	-2.06	0.03	0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-2.06	0.03	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-12.28	0.17	0.15
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-5.47	0.08	0.03
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-8.84	0.13	0.08
LSP-10	LSJ-9	LSJ-8	82.00	300	120	4.35	0.06	0.02
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-7.34	0.10	0.06
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-11.63	0.16	0.14
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-9.35	0.13	0.09
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-12.73	0.18	0.16
LSP-15	LSJ-13	SA02T052	140.50	300	120	-33.62	0.48	0.99
LSP-16 LSP-17	LSJ-14 LSJ-15	LSJ-1	82.00	200 200	110 110	-8.26	0.26	0.62 0.38
LSP-17 LSP-18		LSJ-14	79.20	200	110	-6.36	0.20	0.38
LSP-16 LSP-19	LSJ-16	LSJ-15	176.80	200	110	-4.60 8.74	0.15	0.69
LSP-19 LSP-20	LSJ-17 LSJ-18	LSJ-16 LSJ-17	78.90 77.40	200	110	6.19	0.28 0.20	0.69
LSP-20 LSP-21	LSJ-16 LSJ-19	LSJ-17 LSJ-18	193.90	200	110	-2.64	0.08	0.08
LSP-21 LSP-22	LSJ-19	LSJ-16 LSJ-19	100.30	200	110	-2.64	0.02	0.08
LSP-23	LSJ-14	LSJ-19	185.90	200	110	2.55	0.02	0.07
LSP-24	LSJ-20	LSJ-18	87.80	200	110	8.83	0.28	0.70
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.84	0.01	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	6.04	0.09	0.04
LSP-27	LSJ-20	LSJ-21	77.70	300	120	9.27	0.13	0.09
LSP-28	LSJ-54	LSJ-20	151.80	300	120	27.64	0.39	0.69
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-9.55	0.14	0.10
LSP-30	LSJ-25	LSJ-24	86.00	300	120	2.34	0.03	0.01
LSP-31	LSJ-21	LSJ-25	136.20	200	110	1.90	0.06	0.04
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.44	0.01	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.44	0.01	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-3.39	0.05	0.01
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.92	0.03	0.01
LSP-36	LSJ-3	LSJ-23	124.70	200	110	0.49	0.02	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-9.56	0.14	0.10
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-15.68	0.22	0.24
LSP-42 LSP-43	LSJ-31 LSJ-32	LSJ-32 LSJ-34	142.30 231.30	200 200	110 110	6.12 3.19	0.19 0.10	0.36 0.11
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-7.64	0.10	0.54
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.08	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-1.67	0.05	0.03
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.67	0.05	0.03
LSP-49	LSJ-7	LSJ-37	102.40	200	110	3.29	0.10	0.03
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-5.48	0.17	0.29
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-5.87	0.08	0.04
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-12.19	0.17	0.15
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-9.61	0.14	0.10
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-9.61	0.14	0.10
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-9.61	0.14	0.10
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.19	0.01	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.19	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-2.78	0.09	0.08
LSP-58	LSJ-13	LSJ-43	84.40	300	120	9.53	0.13	0.10
LSP-59	LSJ-43	LSJ-44	37.80	300	120	4.75	0.07	0.03
LSP-61	LSJ-44	WH_03	59.40	300	120	4.75	0.07	0.03
LSP-62	WH_03	WH_04	53.00	300	120	4.45	0.06	0.02
LSP-63	WH_04	WH_05	68.00	300	120	4.07	0.06	0.02
LSP-64	WH_05	WH_06	50.90	300	120	3.60	0.05	0.02
LSP-65	WH_06	WH_07	66.40	300	120	3.26	0.05	0.01
LSP-66	WH_07	LSJ-50	41.10	300	120	2.96	0.04	0.01
LSP-68	LSJ-50	LSJ-51	33.50	300	120	2.96	0.04	0.01
LSP-69	LSJ-57	LSJ-11	85.30	300	120	4.29	0.06	0.02
P-239	LSJ-51	LSJ-57	86.00	300	120	2.96	0.04	0.01
P-240 P-253	LSJ-57	LSJ-43	126.20	200	110	-2.50	0.08	0.07
P-253	J-182	LSJ-10	142.30	300	120	5.81	0.08	0.04

			2	031 ADD Pipe Resu	ilts			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	7.87	0.11	0.07
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-1.70	0.02	0.00
LSP-3	LSJ-2	LSJ-3	106.10	300	120	1.10	0.02	0.00
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	1.16 1.25	0.02 0.02	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	1.25	0.02	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-2.14	0.03	0.01
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-0.36	0.01	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-1.75	0.02	0.00
LSP-10	LSJ-9	LSJ-8	82.00	300	120	-0.12	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-0.66	0.01	0.00
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-5.07	0.07	0.03
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-3.72	0.05	0.02
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-4.97	0.07	0.03
LSP-15 LSP-16	LSJ-13	SA02T052	140.50	300	120	-12.71	0.18	0.16 0.08
LSP-16 LSP-17	LSJ-14 LSJ-15	LSJ-1 LSJ-14	82.00 79.20	200 200	110 110	-2.75 -2.12	0.09	0.08
LSP-18	LSJ-16	LSJ-14 LSJ-15	176.80	200	110	-1.53	0.07	0.03
LSP-19	LSJ-17	LSJ-16	78.90	200	110	2.92	0.09	0.09
LSP-20	LSJ-18	LSJ-17	77.40	200	110	2.07	0.07	0.05
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-0.88	0.03	0.01
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.22	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	0.85	0.03	0.01
LSP-24	LSJ-20	LSJ-18	87.80	200	110	2.95	0.09	0.09
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.99	0.01	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	2.95	0.04	0.01
LSP-27	LSJ-20	LSJ-21	77.70	300	120	4.23	0.06	0.02
LSP-28	LSJ-54	LSJ-20	151.80	300	120	11.38	0.16	0.13
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-4.19	0.06	0.02
LSP-30 LSP-31	LSJ-25 LSJ-21	LSJ-24	86.00 136.20	300 200	120 110	-0.23 0.84	0.00	0.00
LSP-31 LSP-32	LSJ-21 LSJ-25	LSJ-25 LSJ-26	53.30	300	120	1.08	0.03	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	1.08	0.02	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	0.10	0.02	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.53	0.02	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.06	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-1.81	0.03	0.00
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-3.86	0.05	0.02
LSP-42	LSJ-31	LSJ-32	142.30	200	110	2.06	0.07	0.05
LSP-43	LSJ-32	LSJ-34	231.30	200	110	1.08	0.03	0.01
LSP-45 LSP-46	LSJ-34 LSJ-7	LSJ-6 LSJ-35	126.80 120.10	200 200	110 110	-2.53 0.24	0.08	0.07
LSP-46 LSP-47	LSJ-7 LSJ-35	LSJ-35 LSJ-36	157.30	200	110	-0.34	0.01	0.00
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.34	0.01	0.00
LSP-49	LSJ-7	LSJ-37	102.40	200	110	1.15	0.04	0.02
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-1.77	0.06	0.04
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-2.33	0.03	0.01
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-4.38	0.06	0.02
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-3.56	0.05	0.02
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-3.56	0.05	0.02
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-3.56	0.05	0.02
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.23	0.01	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.23	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-1.05	0.03	0.01
LSP-58 LSP-59	LSJ-13 LSJ-43	LSJ-43 LSJ-44	84.40 37.80	300 300	120 120	3.60 1.84	0.05 0.03	0.02 0.01
LSP-59 LSP-61	LSJ-43 LSJ-44	WH 03	59.40	300	120	1.84	0.03	0.01
LSP-62	WH 03	WH_03	53.00	300	120	1.74	0.03	0.00
LSP-63	WH 04	WH 05	68.00	300	120	1.61	0.02	0.00
LSP-64	WH 05	WH 06	50.90	300	120	1.45	0.02	0.00
LSP-65	WH_06	WH_07	66.40	300	120	1.34	0.02	0.00
LSP-66	WH_07	LSJ-50	41.10	300	120	1.24	0.02	0.00
LSP-68	LSJ-50	LSJ-51	33.50	300	120	1.24	0.02	0.00
LSP-69	LSJ-57	LSJ-11	85.30	300	120	1.85	0.03	0.01
P-239	LSJ-51	LSJ-57	86.00	300	120	1.24	0.02	0.00
P-240	LSJ-57	LSJ-43	126.20	200	110	-1.00	0.03	0.01
P-253	J-182	LSJ-10	142.30	300	120	-1.04	0.01	0.00
P-254	J-184	LSJ-42	79.20	200	110	-0.82	0.03	0.01

			2	031 MDD Pipe Res	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	14.89	0.21	0.22
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-3.27	0.05	0.01
LSP-3 LSP-4	LSJ-2	LSJ-3	106.10	300	120	1.99	0.03	0.01
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	2.09	0.03	0.01 0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	2.27	0.03	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-4.18	0.06	0.02
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-0.80	0.01	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-3.43	0.05	0.01
LSP-10	LSJ-9	LSJ-8	82.00	300	120	-0.17	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-1.32	0.02	0.00
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-9.69	0.14	0.10
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-7.10	0.10	0.06
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-9.49	0.13	0.10
LSP-15 LSP-16	LSJ-13 LSJ-14	SA02T052 LSJ-1	140.50 82.00	300 200	120 110	-24.27 -5.21	0.34 0.17	0.54 0.27
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-4.03	0.17	0.17
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-2.91	0.09	0.09
LSP-19	LSJ-17	LSJ-16	78.90	200	110	5.54	0.18	0.30
LSP-20	LSJ-18	LSJ-17	77.40	200	110	3.93	0.13	0.16
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-1.69	0.05	0.03
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.43	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	1.61	0.05	0.03
LSP-24	LSJ-20	LSJ-18	87.80	200	110	5.62	0.18	0.31
LSP-25	LSJ-22	LSJ-2	129.20	300	120	1.94	0.03	0.01
LSP-26	LSJ-21	LSJ-22	82.90	300	120	5.65	0.08	0.04
LSP-27 LSP-28	LSJ-20 LSJ-54	LSJ-21 LSJ-20	77.70 151.80	300 300	120 120	8.08 21.69	0.11	0.07 0.44
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-7.98	0.11	0.07
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.45	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	1.60	0.05	0.03
LSP-32	LSJ-25	LSJ-26	53.30	300	120	2.05	0.03	0.01
LSP-33	LSJ-26	LSJ-27	71.90	300	120	2.05	0.03	0.01
LSP-34	LSJ-27	LSJ-4	89.60	300	120	0.18	0.00	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.99	0.03	0.01
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.10	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-3.31	0.05	0.01
LSP-38	LSJ-29	LSJ-28	28.00 127.40	200	110 110	0.00	0.00	0.00
LSP-39 LSP-40	LSJ-29 LSJ-30	LSJ-30 LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-30	SB02V053	161.80	300	120	-7.20	0.10	0.06
LSP-42	LSJ-31	LSJ-32	142.30	200	110	3.89	0.12	0.15
LSP-43	LSJ-32	LSJ-34	231.30	200	110	2.04	0.06	0.05
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-4.82	0.15	0.23
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.46	0.01	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.65	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.65	0.02	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	2.18	0.07	0.05
LSP-50 LSP-51	LSJ-37 LSJ-8	LSJ-38 LSJ-38	76.50 106.40	200 300	110 120	-3.37 -4.47	0.11 0.06	0.12 0.02
LSP-51 LSP-52(1)	LSJ-8 LSJ-38	J-184	55.80	300	120	-4.47	0.06	0.02
LSP-52(1)	J-184	LSJ-39	81.10	300	120	-6.80	0.12	0.05
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-6.80	0.10	0.05
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-6.80	0.10	0.05
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.44	0.01	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.44	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-2.00	0.06	0.05
LSP-58	LSJ-13	LSJ-43	84.40	300	120	6.86	0.10	0.05
LSP-59	LSJ-43	LSJ-44	37.80	300	120	3.51	0.05	0.02
LSP-61 LSP-62	LSJ-44 WH_03	WH_03	59.40 53.00	300 300	120 120	3.51 3.32	0.05	0.02
LSP-62 LSP-63	WH_03	WH_04 WH_05	68.00	300	120	3.32	0.05 0.04	0.01 0.01
LSP-64	WH_05	WH_06	50.90	300	120	2.78	0.04	0.01
LSP-65	WH_06	WH_07	66.40	300	120	2.57	0.04	0.01
LSP-66	WH_07	LSJ-50	41.10	300	120	2.38	0.03	0.01
LSP-68	LSJ-50	LSJ-51	33.50	300	120	2.38	0.03	0.01
LSP-69	LSJ-57	LSJ-11	85.30	300	120	3.54	0.05	0.02
P-239	LSJ-51	LSJ-57	86.00	300	120	2.38	0.03	0.01
P-240	LSJ-57	LSJ-43	126.20	200	110	-1.91	0.06	0.04
P-253	J-182	LSJ-10	142.30	300	120	-1.97	0.03	0.01
P-254	J-184	LSJ-42	79.20	200	110	-1.57	0.05	0.03

			2	031 PHD Pipe Resu	ılts			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	23.28	0.33	0.50
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-5.41	0.08	0.03
LSP-3 LSP-4	LSJ-2	LSJ-3	106.10	300	120	3.17	0.04	0.01
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	3.27 3.26	0.05 0.05	0.01 0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	3.26	0.05	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-6.93	0.10	0.05
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-1.53	0.02	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-5.66	0.08	0.04
LSP-10	LSJ-9	LSJ-8	82.00	300	120	0.09	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-2.47	0.03	0.01
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-15.09	0.21	0.22
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-11.11	0.16	0.13
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-14.84	0.21	0.22
LSP-15 LSP-16	LSJ-13 LSJ-14	SA02T052 LSJ-1	140.50 82.00	300 200	120 110	-37.99 -8.24	0.54 0.26	1.24 0.62
LSP-17	LSJ-14 LSJ-15	LSJ-14	79.20	200	110	-6.36	0.20	0.38
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-4.60	0.15	0.21
LSP-19	LSJ-17	LSJ-16	78.90	200	110	8.74	0.28	0.69
LSP-20	LSJ-18	LSJ-17	77.40	200	110	6.20	0.20	0.37
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-2.65	0.08	0.08
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.66	0.02	0.01
LSP-23	LSJ-14	LSJ-17	185.90	200	110	2.54	0.08	0.07
LSP-24	LSJ-20	LSJ-18	87.80	200	110	8.85	0.28	0.71
LSP-25 LSP-26	LSJ-22	LSJ-2	129.20 82.90	300 300	120 120	2.85	0.04 0.12	0.01 0.08
LSP-27	LSJ-21 LSJ-20	LSJ-22 LSJ-21	77.70	300	120	8.65 12.46	0.12	0.06
LSP-28	LSJ-54	LSJ-20	151.80	300	120	33.66	0.48	0.99
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-12.35	0.17	0.16
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.46	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	2.48	0.08	0.07
LSP-32	LSJ-25	LSJ-26	53.30	300	120	2.94	0.04	0.01
LSP-33	LSJ-26	LSJ-27	71.90	300	120	2.94	0.04	0.01
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-0.01	0.00	0.00
LSP-35 LSP-36	LSJ-22 LSJ-3	LSJ-23 LSJ-23	96.90 124.70	200 200	110 110	1.52 -0.11	0.05	0.03
LSP-37	LSJ-2	LSJ-23	79.90	300	120	-5.73	0.08	0.04
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-11.87	0.17	0.14
LSP-42	LSJ-31	LSJ-32	142.30	200	110	6.14	0.20	0.36
LSP-43	LSJ-32	LSJ-34	231.30	200	110	3.21	0.10	0.11
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-7.62	0.24	0.54
LSP-46 LSP-47	LSJ-7 LSJ-35	LSJ-35 LSJ-36	120.10 157.30	200 200	110 110	0.69 -1.06	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.06	0.03	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	3.44	0.11	0.12
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-5.33	0.17	0.28
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-6.95	0.10	0.05
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-13.11	0.19	0.17
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-10.65	0.15	0.12
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-10.65	0.15	0.12
LSP-54 LSP-55	LSJ-40 LSJ-41	LSJ-13 LSJ-11	43.90 78.30	300 200	120 110	-10.65 0.67	0.15 0.02	0.12 0.01
LSP-56	LSJ-41 LSJ-42	LSJ-11 LSJ-41	80.20	200	110	0.67	0.02	0.01
LSP-57	LSJ-42 LSJ-42	LSJ-41 LSJ-12	82.90	200	110	-3.14	0.10	0.10
LSP-58	LSJ-13	LSJ-43	84.40	300	120	10.74	0.15	0.12
LSP-59	LSJ-43	LSJ-44	37.80	300	120	5.49	0.08	0.03
LSP-61	LSJ-44	WH_03	59.40	300	120	5.49	0.08	0.03
LSP-62	WH_03	WH_04	53.00	300	120	5.19	0.07	0.03
LSP-63	WH_04	WH_05	68.00	300	120	4.81	0.07	0.03
LSP-64	WH_05	WH_06	50.90	300	120	4.34	0.06	0.02
LSP-65	WH_06	WH_07	66.40	300	120	4.00	0.06	0.02
LSP-66 LSP-68	WH_07 LSJ-50	LSJ-50 LSJ-51	41.10 33.50	300 300	120 120	3.71	0.05	0.02
LSP-69	LSJ-50 LSJ-57	LSJ-51 LSJ-11	85.30	300	120	3.71 5.51	0.05 0.08	0.02 0.04
P-239	LSJ-51	LSJ-57	86.00	300	120	3.71	0.05	0.02
P-240	LSJ-57	LSJ-43	126.20	200	110	-2.99	0.10	0.10
P-253								
P-253 P-254	J-182 J-184	LSJ-10 LSJ-42	142.30 79.20	300 200	120 110	-2.52 -2.47	0.04 0.08	0.01

2011 ADD Junction Results								
			Hydraulic Grade					
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)				
J-182	94.25	0.00	130	354				
J-184	91.25	0.00	130	384				
LSJ-1	91.00	6.82	130	386				
LSJ-1	91.75	0.00	130	379				
LSJ-3	91.50	0.00	130	381				
LSJ-4	91.50	0.00	130	381				
LSJ-5	90.25	0.00	130	393				
LSJ-6	91.75	0.86	130	379				
LSJ-7	92.25	0.00	130	374				
LSJ-8	92.50	0.46	130	371				
LSJ-9	92.75	0.44	130	369				
LSJ-10	93.00	3.37	130	367				
LSJ-11	92.00	0.73	130	376				
LSJ-12	91.75	0.20	130	379				
LSJ-13	91.25	0.59	130	384				
LSJ-14	90.75	0.00	130	388				
LSJ-15	91.50	0.59	130	381				
LSJ-16	90.50	4.45	130	391				
LSJ-17	90.75	0.00	130	388				
			130	398				
LSJ-18	89.75	0.00						
LSJ-19	91.00	0.66	130	386				
LSJ-20	89.75	0.00	130	398				
LSJ-21	90.50	0.44	130	391				
LSJ-22	90.75	1.43	130	389				
LSJ-23	90.50	0.47	130	391				
LSJ-24	89.25	3.96	130	403				
LSJ-25	89.75	0.00	130	398				
LSJ-26	89.75	0.00	130	398				
LSJ-27	90.50	0.98	130	391				
LSJ-28	94.25	0.00	130	354				
LSJ-29	94.00	0.00	130	357				
LSJ-30	92.00	0.00	130	376				
LSJ-31	92.75	0.00	130	369				
LSJ-32	92.75	0.98	130	369				
LSJ-34	91.25	3.61	130	384				
LSJ-35	93.50	0.58	130	362				
LSJ-36	94.00	0.00	130	357				
LSJ-37	91.00	2.92	130	386				
LSJ-38	91.50	0.28	130	381				
LSJ-39	91.00	0.00	130	386				
LSJ-40	91.25	0.00	130	384				
LSJ-41	92.00	0.00	130	376				
LSJ-42	91.50	0.00	130	381				
LSJ-43	91.25	0.76	130	384				
LSJ-44	91.75	0.00	130	379				
LSJ-50	95.00	0.00	130	347				
LSJ-51	94.00	0.00	130	357				
LSJ-53	92.25	0.00	130	374				
LSJ-54	88.18	0.00	130	414				
LSJ-54 LSJ-55	91.86		130	378				
		0.00		378 374				
LSJ-57	92.25	0.39	130					
SA02T005	95.10	4.03	130	346				
SA02T052	91.00	0.00	130	386				
SB02R011	94.00	0.00	130	357				
SB02V053	95.20	0.00	130	345				
			400	276				
WH_03	92.00	0.10	130	376				
	92.00 92.00	0.10 0.13	130	376				
WH_03								
WH_03 WH_04	92.00	0.13	130	376				

2011 MDD Junction Results								
			Hydraulic Grade	5 (5)				
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)				
J-182	94.25	0.00	130	346				
J-184	91.25	0.00	130	375				
LSJ-1	91.00	12.95	130	378				
LSJ-2	91.75	0.00	130	370				
LSJ-3	91.50	0.00	130	373				
LSJ-4	91.50	0.00	130	373				
LSJ-5	90.25	0.00	130	385				
LSJ-6	91.75	1.63	130	370				
LSJ-7	92.25	0.00	130	366				
LSJ-8	92.50	0.87	130	363				
LSJ-9	92.75	0.83	130	361				
LSJ-10	93.00	6.40	130	358				
LSJ-11	92.00	1.39	130	368				
LSJ-12	91.75	0.38	130	371				
LSJ-13	91.25	1.12	130	376				
LSJ-14	90.75	0.00	130	380				
LSJ-14 LSJ-15	91.50	1.12	130	372				
LSJ-15 LSJ-16	90.50	8.45	130	382				
LSJ-16 LSJ-17	90.75	0.00	130	380				
LSJ-17 LSJ-18	90.75 89.75	0.00	130	380				
LSJ-19	91.00	1.26	130	377				
LSJ-20	89.75	0.00	130	390				
LSJ-21	90.50	0.84	130	383				
LSJ-22	90.75	2.71	130	380				
LSJ-23	90.50	0.89	130	383				
LSJ-24	89.25	7.53	130	395				
LSJ-25	89.75	0.00	130	390				
LSJ-26	89.75	0.00	130	390				
LSJ-27	90.50	1.87	130	383				
LSJ-28	94.25	0.00	130	346				
LSJ-29	94.00	0.00	130	348				
LSJ-30	92.00	0.00	130	368				
LSJ-31	92.75	0.00	130	361				
LSJ-32	92.75	1.85	130	360				
LSJ-34	91.25	6.86	130	375				
LSJ-35	93.50	1.11	130	353				
LSJ-36	94.00	0.00	130	348				
LSJ-37	91.00	5.55	130	378				
LSJ-38	91.50	0.53	130	373				
LSJ-39	91.00	0.00	130	378				
LSJ-40	91.25	0.00	130	376				
LSJ-41	92.00	0.00	130	368				
LSJ-42	91.50	0.00	130	373				
LSJ-43	91.25	1.44	130	376				
LSJ-44	91.75	0.00	130	371				
LSJ-50	95.00	0.00	130	339				
LSJ-51	94.00	0.00	130	349				
LSJ-53	92.25	0.00	130	366				
LSJ-54	88.18	0.00	130	406				
LSJ-55	91.86	0.00	130	369				
LSJ-57	92.25	0.75	130	366				
SA02T005	95.10	7.66	130	338				
SA02T052	91.00	0.00	130	379				
SB02R011	94.00	0.00	130	349				
SB02V053	95.20	0.00	130	337				
WH 03	92.00	0.19	130	368				
WH 04	92.00	0.24	130	368				
WH 05	92.00	0.30	130	368				
WH 06	93.00	0.21	130	358				
WH 07	95.00	0.19	130	339				
· · · · · · · · · · · · · · · · · · ·	00.00	0.10	100	555				

	201	11 PHD Junction Re	sults	
Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
J-182	94.25	0.00	128	330
J-184	91.25	0.00	128	359
LSJ-1	91.00	20.45	128	361
LSJ-2	91.75	0.00	128	354
LSJ-3	91.50	0.00	128	356
LSJ-4	91.50	0.00	128	356
LSJ-5	90.25	0.00	128	368
LSJ-6	91.75	2.57	128	354
LSJ-7	92.25	0.00	128	349
LSJ-8	92.50	1.38	128	347
LSJ-9	92.75	1.32	128	344
LSJ-10	93.00	10.10	128	342
LSJ-11	92.00	2.20	128	352
LSJ-12	91.75	0.60	128	354
LSJ-13	91.25	1.76	128	359
LSJ-14	90.75	0.00	128	363
LSJ-15	91.50	1.76	128	355
LSJ-16	90.50	13.34	128	365
LSJ-17	90.75	0.00	128	363
LSJ-18	89.75	0.00	128	373
LSJ-19	91.00	1.99	128	360
LSJ-20	89.75	0.00	128	373
LSJ-21	90.50	1.33	128	366
LSJ-22	90.75	4.28	128	363
LSJ-23	90.50	1.41	128	366
LSJ-24	89.25	11.89	128	378
LSJ-25	89.75	0.00	128	373
LSJ-26	89.75	0.00	128	373
LSJ-27	90.50	2.95	128	366
LSJ-28	94.25	0.00	128	329
LSJ-29	94.00	0.00	128	332
LSJ-30	92.00	0.00	128	351
LSJ-30	92.75	0.00	128	344
LSJ-31	92.75	2.93	128	343
LSJ-34	91.25	10.83	128	358
LSJ-35	93.50	1.75	128	337
LSJ-36	94.00	0.00	128	332
LSJ-37	91.00	8.77	128	361
LSJ-38	91.50	0.84	128	356
LSJ-39	91.00	0.00	128	361
LSJ-39 LSJ-40	91.00	0.00	128	359
LSJ-40 LSJ-41				
LSJ-41 LSJ-42	92.00 91.50	0.00	128 128	352 356
LSJ-42 LSJ-43	91.25	2.27	128	359
LSJ-43 LSJ-44	91.75	0.00	128	354
LSJ-44 LSJ-50	95.00	0.00	128	322
LSJ-50 LSJ-51	95.00	0.00	128	332
LSJ-51 LSJ-53	94.00	0.00	128	332 349
LSJ-53 LSJ-54	92.25 88.18	0.00	128	349
LSJ-54 LSJ-55	91.86	0.00	128	353
	91.86	1.18		353
LSJ-57			128	
SA02T005	95.10	12.28	128	322
SA02T052	91.00	0.00	128	363
SB02R011	94.00	0.00	128	332
SB02V053	95.20	0.00	128	320
WH_03	92.00	0.30	128	352
WH_04	92.00	0.38	128	352
WH_05	92.00	0.47	128	352
WH_06	93.00	0.34	128	342
WH_07	95.00	0.30	128	322

2031 ADD Junction Results							
Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)			
J-182	94.25	0.00	130	352			
J-184	91.25	0.00	130	381			
LSJ-1	91.00	6.82	130	383			
LSJ-2	91.75	0.00	130	376			
LSJ-3	91.50	0.00	130	378			
LSJ-4	91.50	0.00	130	378			
LSJ-5	90.25	0.00	130	391			
LSJ-6	91.75	0.86	130	376			
LSJ-7	92.25	0.00	130	371			
LSJ-8	92.50	0.46	130	369			
LSJ-9	92.75	0.44	130	366			
LSJ-10	93.00	3.37	130	364			
LSJ-10	92.00	0.73	130	374			
LSJ-12	91.75	0.20	130	376			
LSJ-13	91.25	0.59	130	381			
LSJ-14	90.75	0.00	130	386			
LSJ-15	91.50	0.59	130	378			
LSJ-16	90.50	4.45	130	388			
LSJ-17	90.75	0.00	130	386			
LSJ-18	89.75	0.00	130	396			
LSJ-19	91.00	0.66	130	383			
LSJ-20	89.75	0.00	130	396			
LSJ-21	90.50	0.44	130	388			
LSJ-22	90.75	1.43	130	386			
LSJ-23	90.50	0.47	130	388			
LSJ-24	89.25	3.96	130	400			
LSJ-25	89.75	0.00	130	396			
LSJ-26	89.75	0.00	130	396			
LSJ-27	90.50	0.98	130	388			
LSJ-28	94.25	0.00	130	352			
LSJ-29	94.00	0.00	130	354			
LSJ-30	92.00	0.00	130	374			
LSJ-31	92.75	0.00	130	366			
LSJ-32	92.75	0.98	130	366			
LSJ-34	91.25	3.61	130	381			
LSJ-35	93.50	0.58	130	359			
LSJ-36	94.00	0.00	130	354			
LSJ-37	91.00	2.92	130	383			
LSJ-38	91.50	0.28	130	378			
LSJ-39	91.00	0.00	130	383			
LSJ-40	91.25	0.00	130	381			
LSJ-40	92.00	0.00	130	374			
LSJ-41	91.50	0.00	130	379			
LSJ-42 LSJ-43	91.25	0.76	130	381			
LSJ-43	91.75	0.00	130	376			
			130	344			
LSJ-50 LSJ-51	95.00	0.00					
	94.00	0.00	130	354			
LSJ-53	92.25	0.00	130	371			
LSJ-54	88.18	0.00	130	411			
LSJ-55	91.86	0.00	130	375			
LSJ-57	92.25	0.39	130	371			
SA02T005	95.10	6.78	130	343			
SA02T052	91.00	0.00	130	384			
SB02R011	94.00	0.00	130	354			
SB02V053	95.20	0.00	130	342			
WH_03	92.00	0.10	130	374			
WH_04	92.00	0.13	130	374			
WH_05	92.00	0.16	130	374			
WH_06	93.00	0.11	130	364			

2031 Junctions Tables PD1 Reservoir 75% Full + NO Pumps 2031 MDD Junction Results

	2031 MDD Junction Results						
Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)			
J-182	94.25	0.00	129	336			
J-184	91.25	0.00	129	365			
LSJ-1	91.00	12.95	129	368			
LSJ-2	91.75	0.00	129	360			
LSJ-3	91.50	0.00	129	363			
LSJ-4	91.50	0.00	129	363			
LSJ-5	90.25	0.00	129	375			
LSJ-6	91.75	1.63	129	360			
LSJ-7	92.25	0.00	129	356			
LSJ-8	92.50	0.87	129	353			
LSJ-9	92.75	0.83	129	351			
LSJ-10	93.00	6.40	129	348			
LSJ-11	92.00	1.39	129	358			
LSJ-12	91.75	0.38	129	361			
LSJ-13	91.25	1.12	129	366			
LSJ-14	90.75	0.00	129	370			
LSJ-15	91.50	1.12	129	363			
LSJ-16	90.50	8.45	129	372			
LSJ-17	90.75	0.00	129	370			
LSJ-18	89.75	0.00	129	380			
LSJ-19	91.00	1.26	129	368			
LSJ-20	89.75	0.00	129	380			
LSJ-21	90.50	0.84	129	373			
LSJ-22	90.75	2.71	129	370			
			129				
LSJ-23	90.50	0.89		373			
LSJ-24	89.25	7.53	129	385			
LSJ-25	89.75	0.00	129	380			
LSJ-26	89.75	0.00	129	380			
LSJ-27	90.50	1.87	129	373			
LSJ-28	94.25	0.00	129	336			
LSJ-29	94.00	0.00	129	338			
LSJ-30	92.00	0.00	129	358			
LSJ-31	92.75	0.00	129	351			
LSJ-32	92.75	1.85	129	350			
LSJ-34	91.25	6.86	129	365			
LSJ-35	93.50	1.11	129	343			
LSJ-36	94.00	0.00	129	338			
LSJ-37	91.00	5.55	129	368			
LSJ-38	91.50	0.53	129	363			
LSJ-39	91.00	0.00	129	368			
LSJ-40	91.25	0.00	129	366			
LSJ-40 LSJ-41	92.00	0.00	129				
LSJ-41 LSJ-42	92.00		129	358 363			
		0.00					
LSJ-43	91.25	1.44	129	366			
LSJ-44	91.75	0.00	129	361			
LSJ-50	95.00	0.00	129	329			
LSJ-51	94.00	0.00	129	339			
LSJ-53	92.25	0.00	129	356			
LSJ-54	88.18	0.00	129	396			
LSJ-55	91.86	0.00	129	359			
LSJ-57	92.25	0.75	129	356			
SA02T005	95.10	12.90	129	328			
SA02T052	91.00	0.00	129	369			
SB02R011	94.00	0.00	129	338			
SB02V053	95.20	0.00	129	327			
WH 03	92.00	0.19	129	358			
WH 04	92.00	0.19	129	358			
WH 05	92.00	0.30	129	358			
		0.30	129	348			
WH_06	93.00						
WH_07	95.00	0.19	129	329			

	203	31 PHD Junction Re	sults	
Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
J-182	94.25	0.00	126	309
J-184	91.25	0.00	126	339
LSJ-1	91.00	20.45	126	341
LSJ-2	91.75	0.00	126	333
LSJ-3	91.50	0.00	126	336
LSJ-4	91.50	0.00	126	336
LSJ-5	90.25	0.00	126	348
LSJ-6	91.75	2.57	126	333
LSJ-7	92.25	0.00	126	329
LSJ-8	92.50	1.38	126	326
LSJ-9	92.75	1.32	126	324
LSJ-10	93.00	10.10	126	321
LSJ-11	92.00	2.20	126	331
LSJ-12	91.75	0.60	126	334
LSJ-12	91.25	1.76	126	339
			126	
LSJ-14	90.75	0.00		343
LSJ-15	91.50	1.76	126	335
LSJ-16	90.50	13.34	126	344
LSJ-17	90.75	0.00	126	343
LSJ-18	89.75	0.00	126	353
LSJ-19	91.00	1.99	126	340
LSJ-20	89.75	0.00	126	353
LSJ-21	90.50	1.33	126	346
LSJ-22	90.75	4.28	126	343
LSJ-23	90.50	1.41	126	346
LSJ-24	89.25	11.89	126	358
LSJ-25	89.75	0.00	126	353
LSJ-26	89.75	0.00	126	353
LSJ-27	90.50	2.95	126	346
LSJ-28	94.25	0.00	126	309
LSJ-29	94.00	0.00	126	311
LSJ-30	92.00	0.00	126	331
LSJ-31	92.75	0.00	126	324
LSJ-32	92.75	2.93	126	323
LSJ-34	91.25	10.83	126	338
LSJ-35	93.50	1.75	126	316
LSJ-36	94.00	0.00	126	311
LSJ-37	91.00	8.77	126	341
LSJ-38	91.50	0.84	126	336
LSJ-39	91.00	0.00	126	341
LSJ-40	91.25	0.00	126	339
LSJ-40 LSJ-41	92.00	0.00	126	331
LSJ-41 LSJ-42	91.50	0.00	126	336
LSJ-42 LSJ-43	91.25	2.27	126	339
LSJ-43 LSJ-44	91.75			
		0.00	126	334
LSJ-50	95.00	0.00	126	302
LSJ-51	94.00	0.00	126	312
LSJ-53	92.25	0.00	126	329
LSJ-54	88.18	0.00	126	370
LSJ-55	91.86	0.00	126	332
LSJ-57	92.25	1.18	126	329
SA02T005	95.10	19.88	126	301
SA02T052	91.00	0.00	126	343
SB02R011	94.00	0.00	126	311
SB02V053	95.20	0.00	126	300
WH_03	92.00	0.30	126	331
WH_04	92.00	0.38	126	331
WH_05	92.00	0.47	126	331
WH 06	93.00	0.34	126	322
WH 07	95.00	0.30	126	302
~/	00.00	0.00		

			2	011 ADD Pipe Resu	ilts			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	6.60	0.09	0.05
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-2.96	0.04	0.01
LSP-3	LSJ-2	LSJ-3	106.10	300	120	0.46	0.01	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300	120	0.28	0.00	0.00
LSP-5	LSJ-4	LSJ-5	83.20	300	120	-0.88	0.01	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-0.88	0.01	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-4.30	0.06	0.02
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-2.02	0.03	0.01
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-3.09	0.04	0.01
LSP-10	LSJ-9	LSJ-8	82.00	300	120	1.51	0.02	0.00
LSP-11 LSP-12	LSJ-9 LSJ-10	LSJ-10 LSJ-11	78.90 84.70	300 300	120 120	-2.54 -3.98	0.04 0.06	0.01
LSP-13	LSJ-10	LSJ-12	75.00	300	120	-3.18	0.04	0.02
LSP-14	LSJ-11	LSJ-13	71.00	300	120	-4.33	0.06	0.02
LSP-15	LSJ-13	SA02T052	140.50	300	120	-11.42	0.16	0.13
LSP-16	LSJ-14	LSJ-1	82.00	200	110	-2.74	0.09	0.08
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-2.12	0.07	0.05
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-1.53	0.05	0.03
LSP-19	LSJ-17	LSJ-16	78.90	200	110	2.92	0.09	0.09
LSP-20	LSJ-18	LSJ-17	77.40	200	110	2.07	0.07	0.05
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-0.89	0.03	0.01
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.23	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	0.85	0.03	0.01
LSP-24	LSJ-20	LSJ-18	87.80	200	110	2.96	0.09	0.09
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.31	0.00	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	2.03	0.03	0.01
LSP-27	LSJ-20	LSJ-21	77.70	300	120	3.09	0.04	0.01
LSP-28	LSJ-54	LSJ-20	151.80	300	120	9.20	0.13	0.09
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-3.16	0.04	0.01
LSP-30	LSJ-25	LSJ-24	86.00	300	120	0.80	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	0.62	0.02	0.01
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.18	0.00	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.18	0.00	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-1.16	0.02	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.29	0.01	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	0.18	0.01	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-3.12	0.04	0.01
LSP-38 LSP-39	LSJ-29 LSJ-29	LSJ-28	28.00 127.40	200 200	110 110	0.00	0.00	0.00
LSP-39 LSP-40	LSJ-29 LSJ-30	LSJ-30 LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-30	SB02V053	161.80	300	120	-5.15	0.00	0.00
LSP-42	LSJ-31	LSJ-32	142.30	200	110	2.03	0.07	0.05
LSP-43	LSJ-32	LSJ-34	231.30	200	110	1.05	0.03	0.01
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-2.56	0.08	0.07
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.00	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.58	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.58	0.02	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	1.07	0.03	0.01
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-1.85	0.06	0.04
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-2.04	0.03	0.01
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-4.17	0.06	0.02
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-3.28	0.05	0.01
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-3.28	0.05	0.01
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-3.28	0.05	0.01
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.06	0.00	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.06	0.00	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-0.95	0.03	0.01
LSP-58	LSJ-13	LSJ-43	84.40	300	120	3.22	0.05	0.01
LSP-59	LSJ-43	LSJ-44	37.80	300	120	1.61	0.02	0.00
LSP-61	LSJ-44	WH_03	59.40	300	120	1.61	0.02	0.00
LSP-62	WH_03	WH_04	53.00	300	120	1.51	0.02	0.00
LSP-63	WH_04	WH_05	68.00	300	120	1.38	0.02	0.00
LSP-64	WH_05	WH_06	50.90	300	120	1.23	0.02	0.00
LSP-65	WH_06	WH_07	66.40	300	120	1.12	0.02	0.00
LSP-66	WH_07	LSJ-50	41.10	300	120	1.02	0.01	0.00
LSP-68	LSJ-50	LSJ-51	33.50	300	120	1.02	0.01	0.00
LSP-69	LSJ-57	LSJ-11	85.30	300	120	1.48	0.02	0.00
P-239 P-240	LSJ-51	LSJ-57	86.00	300	120	1.02	0.01	0.00
P-240	LSJ-57	LSJ-43	126.20	200	110	-0.85	0.03	0.01
P-253	J-182	LSJ-10	142.30	300	120	1.92	0.03	0.01

			2	011 MDD Pipe Res	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	12.51	0.18	0.16
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-5.65	0.08	0.04
LSP-3	LSJ-2	LSJ-3	106.10	300	120	0.83	0.01	0.00
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	0.49 -1.70	0.01 0.02	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-1.70	0.02	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-8.19	0.12	0.07
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-3.87	0.05	0.02
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-5.90	0.08	0.04
LSP-10	LSJ-9	LSJ-8	82.00	300	120	2.88	0.04	0.01
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-4.82	0.07	0.03
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-7.61	0.11	0.06
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-6.07	0.09	0.04
LSP-14 LSP-15	LSJ-12 LSJ-13	LSJ-13 SA02T052	71.00 140.50	300 300	120 120	-8.25 -21.76	0.12	0.07 0.44
LSP-16	LSJ-13	LSJ-1	82.00	200	110	-5.21	0.31 0.17	0.44
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-4.03	0.17	0.17
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-2.91	0.09	0.09
LSP-19	LSJ-17	LSJ-16	78.90	200	110	5.54	0.18	0.30
LSP-20	LSJ-18	LSJ-17	77.40	200	110	3.93	0.13	0.16
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-1.69	0.05	0.03
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.43	0.01	0.00
LSP-23 LSP-24	LSJ-14	LSJ-17	185.90	200	110	1.61	0.05	0.03
LSP-24 LSP-25	LSJ-20 LSJ-22	LSJ-18 LSJ-2	87.80 129.20	200 300	110 120	5.62 0.61	0.18 0.01	0.31
LSP-25 LSP-26	LSJ-22 LSJ-21	LSJ-22	82.90	300	120	3.87	0.01	0.00
LSP-27	LSJ-20	LSJ-21	77.70	300	120	5.89	0.08	0.04
LSP-28	LSJ-54	LSJ-20	151.80	300	120	17.53	0.25	0.30
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-6.02	0.09	0.04
LSP-30	LSJ-25	LSJ-24	86.00	300	120	1.51	0.02	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	1.18	0.04	0.02
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.33	0.00	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.33	0.00	0.00
LSP-34 LSP-35	LSJ-27 LSJ-22	LSJ-4 LSJ-23	89.60 96.90	300 200	120 110	-2.20 0.55	0.03 0.02	0.01
LSP-36	LSJ-3	LSJ-23 LSJ-23	124.70	200	110	0.34	0.02	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-5.87	0.08	0.04
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-9.72	0.14	0.10
LSP-42	LSJ-31	LSJ-32	142.30	200	110	3.85	0.12	0.15
LSP-43	LSJ-32	LSJ-34	231.30	200	110	2.00	0.06	0.05
LSP-45 LSP-46	LSJ-34	LSJ-6	126.80	200 200	110 110	-4.86	0.15	0.23
LSP-47	LSJ-7 LSJ-35	LSJ-35 LSJ-36	120.10 157.30	200	110	0.00 -1.11	0.00 0.04	0.00
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.11	0.04	0.02
LSP-49	LSJ-7	LSJ-37	102.40	200	110	2.03	0.06	0.05
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-3.52	0.11	0.13
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-3.89	0.06	0.02
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-7.94	0.11	0.07
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-6.25	0.09	0.04
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-6.25	0.09	0.04
LSP-54	LSJ-40	LSJ-13	43.90	300 200	120 110	-6.25	0.09	0.04
LSP-55 LSP-56	LSJ-41 LSJ-42	LSJ-11 LSJ-41	78.30 80.20	200	110	0.11 0.11	0.00	0.00
LSP-56 LSP-57	LSJ-42 LSJ-42	LSJ-12	82.90	200	110	-1.80	0.00	0.00
LSP-58	LSJ-13	LSJ-43	84.40	300	120	6.14	0.09	0.04
LSP-59	LSJ-43	LSJ-44	37.80	300	120	3.07	0.04	0.01
LSP-61	LSJ-44	WH_03	59.40	300	120	3.07	0.04	0.01
LSP-62	WH_03	WH_04	53.00	300	120	2.89	0.04	0.01
LSP-63	WH_04	WH_05	68.00	300	120	2.64	0.04	0.01
LSP-64	WH_05	WH_06	50.90	300	120	2.35	0.03	0.01
LSP-65	WH_06	WH_07	66.40	300	120	2.13	0.03	0.01
LSP-66	WH_07	LSJ-50	41.10	300	120	1.95	0.03	0.01
LSP-68 LSP-69	LSJ-50 LSJ-57	LSJ-51 LSJ-11	33.50 85.30	300 300	120 120	1.95 2.82	0.03	0.01 0.01
P-239	LSJ-57 LSJ-51	LSJ-11 LSJ-57	86.00	300	120	1.95	0.03	0.01
	LSJ-57	LSJ-43	126.20	200	110	-1.63	0.05	0.03
P-240								
P-240 P-253	J-182	LSJ-10	142.30	300	120	3.61	0.05	0.02

			2	011 PHD Pipe Resu	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	20.13	0.28	0.38
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-8.58	0.12	0.08
LSP-3	LSJ-2	LSJ-3	106.10	300	120	1.81	0.03	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300	120	1.32	0.02	0.00
LSP-5 LSP-6	LSJ-4 LSJ-5	LSJ-5 LSJ-6	83.20 128.90	300 300	120 120	-2.08 -2.08	0.03	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-12.29	0.03	0.01
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-5.48	0.08	0.03
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-8.85	0.13	0.08
LSP-10	LSJ-9	LSJ-8	82.00	300	120	4.35	0.06	0.02
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-7.34	0.10	0.06
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-11.64	0.16	0.14
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-9.36	0.13	0.09
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-12.73	0.18	0.16
LSP-15	LSJ-13	SA02T052	140.50	300	120	-33.64	0.48	0.99
LSP-16 LSP-17	LSJ-14 LSJ-15	LSJ-1 LSJ-14	82.00 79.20	200 200	110 110	-8.26 -6.36	0.26 0.20	0.62 0.38
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-4.60	0.15	0.36
LSP-19	LSJ-17	LSJ-16	78.90	200	110	8.74	0.28	0.69
LSP-20	LSJ-18	LSJ-17	77.40	200	110	6.19	0.20	0.37
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-2.64	0.08	0.08
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.65	0.02	0.01
LSP-23	LSJ-14	LSJ-17	185.90	200	110	2.55	0.08	0.07
LSP-24	LSJ-20	LSJ-18	87.80	200	110	8.83	0.28	0.70
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.85	0.01	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	6.05	0.09	0.04
LSP-27	LSJ-20	LSJ-21	77.70	300	120	9.27	0.13	0.09
LSP-28	LSJ-54	LSJ-20	151.80	300	120	27.65	0.39	0.69
LSP-29 LSP-30	LSJ-24 LSJ-25	LSJ-20 LSJ-24	137.80 86.00	300 300	120 120	-9.55 2.34	0.14 0.03	0.10 0.01
LSP-31	LSJ-23	LSJ-25	136.20	200	110	1.90	0.03	0.01
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.44	0.01	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.44	0.01	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-3.39	0.05	0.01
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.92	0.03	0.01
LSP-36	LSJ-3	LSJ-23	124.70	200	110	0.49	0.02	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-9.54	0.14	0.10
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40 LSP-41	LSJ-30 LSJ-31	LSJ-31 SB02V053	93.60 161.80	200 300	110 120	0.00 -15.66	0.00	0.00
LSP-41 LSP-42	LSJ-31 LSJ-31	LSJ-32	142.30	200	110	6.12	0.22	0.24
LSP-43	LSJ-32	LSJ-34	231.30	200	110	3.19	0.10	0.11
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-7.64	0.24	0.54
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.08	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-1.67	0.05	0.03
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.67	0.05	0.03
LSP-49	LSJ-7	LSJ-37	102.40	200	110	3.29	0.10	0.11
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-5.48	0.17	0.29
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-5.87	0.08	0.04
LSP-52(1) LSP-52(2)	LSJ-38 J-184	J-184 LSJ-39	55.80 81.10	300 300	120 120	-12.20 -9.61	0.17 0.14	0.15 0.10
LSP-52(2) LSP-53	J-184 LSJ-39	LSJ-39 LSJ-40	124.10	300	120	-9.61 -9.61	0.14	0.10
LSP-54	LSJ-40	LSJ-40 LSJ-13	43.90	300	120	-9.61	0.14	0.10
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.19	0.01	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.19	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-2.78	0.09	0.08
LSP-58	LSJ-13	LSJ-43	84.40	300	120	9.53	0.13	0.10
LSP-59	LSJ-43	LSJ-44	37.80	300	120	4.76	0.07	0.03
LSP-61	LSJ-44	WH_03	59.40	300	120	4.76	0.07	0.03
LSP-62	WH_03	WH_04	53.00	300 300	120	4.46 4.08	0.06	0.02
LSP-63 LSP-64	WH_04 WH_05	WH_05 WH_06	68.00 50.90	300	120 120	4.08 3.61	0.06 0.05	0.02 0.02
LSP-65	WH_06	WH_07	66.40	300	120	3.27	0.05	0.02
LSP-66	WH_07	LSJ-50	41.10	300	120	2.97	0.03	0.01
LSP-68	LSJ-50	LSJ-51	33.50	300	120	2.97	0.04	0.01
LSP-69	LSJ-57	LSJ-11	85.30	300	120	4.29	0.06	0.02
P-239	LSJ-51	LSJ-57	86.00	300	120	2.97	0.04	0.01
P-240	LSJ-57	LSJ-43	126.20	200	110	-2.51	0.08	0.07
P-253	J-182	LSJ-10	142.30	300	120	5.81	0.08	0.04
P-254	J-184	LSJ-42	79.20	200	110	-2.59	0.08	0.07

			2	031 ADD Pipe Resi	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	7.85	0.11	0.07
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-1.71	0.02	0.00
LSP-3 LSP-4	LSJ-2	LSJ-3	106.10	300	120	1.06	0.02	0.00
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	1.12 1.22	0.02 0.02	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	1.22	0.02	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-2.18	0.03	0.01
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-0.40	0.01	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-1.79	0.03	0.00
LSP-10	LSJ-9	LSJ-8	82.00	300	120	-0.10	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-0.68	0.01	0.00
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-5.09	0.07	0.03
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-3.73	0.05	0.02
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-4.99	0.07	0.03
LSP-15 LSP-16	LSJ-13 LSJ-14	SA02T052 LSJ-1	140.50 82.00	300 200	120 110	-12.75 -2.74	0.18	0.16 0.08
LSP-17	LSJ-14 LSJ-15	LSJ-14	79.20	200	110	-2.12	0.09	0.05
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-1.53	0.05	0.03
LSP-19	LSJ-17	LSJ-16	78.90	200	110	2.92	0.09	0.09
LSP-20	LSJ-18	LSJ-17	77.40	200	110	2.07	0.07	0.05
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-0.89	0.03	0.01
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.23	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	0.85	0.03	0.01
LSP-24	LSJ-20	LSJ-18	87.80	200	110	2.96	0.09	0.09
LSP-25	LSJ-22	LSJ-2	129.20	300	120	1.01	0.01	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	2.97	0.04	0.01
LSP-27 LSP-28	LSJ-20 LSJ-54	LSJ-21 LSJ-20	77.70 151.80	300 300	120 120	4.25 11.40	0.06 0.16	0.02 0.13
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-4.20	0.06	0.02
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.24	0.00	0.02
LSP-31	LSJ-21	LSJ-25	136.20	200	110	0.84	0.03	0.01
LSP-32	LSJ-25	LSJ-26	53.30	300	120	1.08	0.02	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	1.08	0.02	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	0.10	0.00	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.52	0.02	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.05	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-1.76	0.02	0.00
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40 LSP-41	LSJ-30 LSJ-31	LSJ-31 SB02V053	93.60 161.80	200 300	110 120	0.00 -3.81	0.00	0.00
LSP-42	LSJ-31	LSJ-32	142.30	200	110	2.05	0.03	0.05
LSP-43	LSJ-32	LSJ-34	231.30	200	110	1.07	0.03	0.01
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-2.54	0.08	0.07
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.24	0.01	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.34	0.01	0.00
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.34	0.01	0.00
LSP-49	LSJ-7	LSJ-37	102.40	200	110	1.15	0.04	0.02
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-1.77	0.06	0.04
LSP-51 LSP-52(1)	LSJ-8 LSJ-38	LSJ-38 J-184	106.40 55.80	300 300	120 120	-2.35 -4.40	0.03 0.06	0.01 0.02
LSP-52(1) LSP-52(2)	J-184	J-184 LSJ-39	81.10	300	120	-4.40	0.05	0.02
LSP-52(2)	LSJ-39	LSJ-39 LSJ-40	124.10	300	120	-3.57	0.05	0.02
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-3.57	0.05	0.02
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.23	0.01	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.23	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-1.05	0.03	0.01
LSP-58	LSJ-13	LSJ-43	84.40	300	120	3.60	0.05	0.02
LSP-59	LSJ-43	LSJ-44	37.80	300	120	1.84	0.03	0.00
LSP-61	LSJ-44	WH_03	59.40	300	120	1.84	0.03	0.01
LSP-62	WH_03	WH_04	53.00	300	120	1.74	0.02	0.00
LSP-63 LSP-64	WH_04 WH_05	WH_05 WH_06	68.00 50.90	300 300	120 120	1.62 1.46	0.02	0.00
LSP-65	WH_06	WH_07	66.40	300	120	1.35	0.02	0.00
LSP-66	WH_07	LSJ-50	41.10	300	120	1.25	0.02	0.00
LSP-68	LSJ-50	LSJ-51	33.50	300	120	1.25	0.02	0.00
LSP-69	LSJ-57	LSJ-11	85.30	300	120	1.86	0.03	0.01
P-239	LSJ-51	LSJ-57	86.00	300	120	1.25	0.02	0.00
P-240	LSJ-57	LSJ-43	126.20	200	110	-1.00	0.03	0.01
P-253	J-182 J-184	LSJ-10	142.30	300	120	-1.04	0.01	0.00
P-254		LSJ-42	79.20	200	110	-0.82	0.03	0.01

			2	031 MDD Pipe Resi	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	14.89	0.21	0.22
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-3.27	0.05	0.01
LSP-3	LSJ-2	LSJ-3	106.10	300	120	1.97	0.03	0.01
LSP-4	LSJ-3	LSJ-4	91.10	300	120	2.07	0.03	0.01
LSP-5 LSP-6	LSJ-4 LSJ-5	LSJ-5 LSJ-6	83.20 128.90	300 300	120 120	2.25 2.25	0.03	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-4.20	0.03	0.02
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-0.82	0.01	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-3.45	0.05	0.02
LSP-10	LSJ-9	LSJ-8	82.00	300	120	-0.16	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-1.33	0.02	0.00
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-9.70	0.14	0.10
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-7.11	0.10	0.06
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-9.50	0.13	0.10
LSP-15	LSJ-13	SA02T052	140.50	300	120	-24.28	0.34	0.54
LSP-16	LSJ-14	LSJ-1	82.00	200	110 110	-5.21	0.17	0.27
LSP-17 LSP-18	LSJ-15 LSJ-16	LSJ-14 LSJ-15	79.20 176.80	200 200	110	-4.03 -2.91	0.13 0.09	0.17 0.09
LSP-19	LSJ-17	LSJ-16	78.90	200	110	5.54	0.09	0.30
LSP-20	LSJ-18	LSJ-17	77.40	200	110	3.93	0.13	0.16
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-1.69	0.05	0.03
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.43	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	1.60	0.05	0.03
LSP-24	LSJ-20	LSJ-18	87.80	200	110	5.62	0.18	0.31
LSP-25	LSJ-22	LSJ-2	129.20	300	120	1.95	0.03	0.01
LSP-26	LSJ-21	LSJ-22	82.90	300	120	5.65	0.08	0.04
LSP-27	LSJ-20	LSJ-21	77.70	300	120	8.09	0.11	0.07
LSP-28	LSJ-54	LSJ-20	151.80	300	120	21.69	0.31	0.44
LSP-29	LSJ-24	LSJ-20	137.80 86.00	300 300	120 120	-7.98 -0.45	0.11 0.01	0.07
LSP-30 LSP-31	LSJ-25 LSJ-21	LSJ-24 LSJ-25	136.20	200	120	1.60	0.01	0.00
LSP-32	LSJ-25	LSJ-26	53.30	300	120	2.05	0.03	0.03
LSP-33	LSJ-26	LSJ-27	71.90	300	120	2.05	0.03	0.01
LSP-34	LSJ-27	LSJ-4	89.60	300	120	0.18	0.00	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.99	0.03	0.01
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.10	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-3.29	0.05	0.01
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41 LSP-42	LSJ-31	SB02V053	161.80	300 200	120	-7.18	0.10 0.12	0.06
LSP-42 LSP-43	LSJ-31 LSJ-32	LSJ-32 LSJ-34	142.30 231.30	200	110 110	3.89 2.04	0.12	0.15 0.05
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-4.82	0.15	0.03
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.45	0.01	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.66	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.66	0.02	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	2.18	0.07	0.05
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-3.37	0.11	0.12
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-4.48	0.06	0.02
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-8.38	0.12	0.08
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-6.81	0.10	0.05
LSP-53 LSP-54	LSJ-39 LSJ-40	LSJ-40 LSJ-13	124.10 43.90	300 300	120 120	-6.81 -6.81	0.10 0.10	0.05 0.05
LSP-54 LSP-55	LSJ-40 LSJ-41	LSJ-13 LSJ-11	78.30	200	110	0.44	0.10	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.44	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-2.01	0.06	0.05
LSP-58	LSJ-13	LSJ-43	84.40	300	120	6.86	0.10	0.05
LSP-59	LSJ-43	LSJ-44	37.80	300	120	3.51	0.05	0.02
LSP-61	LSJ-44	WH_03	59.40	300	120	3.51	0.05	0.02
LSP-62	WH_03	WH_04	53.00	300	120	3.32	0.05	0.01
LSP-63	WH_04	WH_05	68.00	300	120	3.08	0.04	0.01
LSP-64	WH_05	WH_06	50.90	300	120	2.78	0.04	0.01
LSP-65	WH_06	WH_07	66.40	300	120	2.57	0.04	0.01
LSP-66 LSP-68	WH_07 LSJ-50	LSJ-50	41.10 33.50	300 300	120 120	2.38 2.38	0.03	0.01
LSP-69	LSJ-50 LSJ-57	LSJ-51 LSJ-11	85.30	300	120	3.54	0.05	0.01 0.02
P-239	LSJ-51	LSJ-11	86.00	300	120	2.38	0.03	0.02
P-240	LSJ-57	LSJ-43	126.20	200	110	-1.91	0.06	0.04
P-253	J-182	LSJ-10	142.30	300	120	-1.97	0.03	0.01
P-254	J-184	LSJ-42	79.20	200	110	-1.57	0.05	0.03

			2	2031 PHD Pipe Res	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	23.27	0.33	0.50
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-5.42	0.08	0.03
LSP-3	LSJ-2	LSJ-3	106.10	300	120	3.16	0.04	0.01
LSP-4	LSJ-3	LSJ-4	91.10	300	120	3.26	0.05	0.01
LSP-5	LSJ-4	LSJ-5	83.20	300	120	3.25	0.05	0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	3.25	0.05	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-6.94	0.10	0.05
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-1.54	0.02	0.00
LSP-9 LSP-10	LSJ-7 LSJ-9	LSJ-8 LSJ-8	78.90 82.00	300 300	120 120	-5.67 0.10	0.08	0.04
LSP-10 LSP-11	LSJ-9	LSJ-10	78.90	300	120	-2.48	0.00	0.00
LSP-12	LSJ-10	LSJ-10	84.70	300	120	-15.10	0.21	0.01
LSP-13	LSJ-10	LSJ-12	75.00	300	120	-11.11	0.16	0.13
LSP-14	LSJ-11	LSJ-13	71.00	300	120	-14.85	0.10	0.13
LSP-15	LSJ-13	SA02T052	140.50	300	120	-38.01	0.54	1.24
LSP-16	LSJ-14	LSJ-1	82.00	200	110	-8.24	0.26	0.62
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-6.36	0.20	0.38
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-4.60	0.15	0.21
LSP-19	LSJ-17	LSJ-16	78.90	200	110	8.74	0.28	0.69
LSP-20	LSJ-18	LSJ-17	77.40	200	110	6.20	0.20	0.37
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-2.65	0.08	0.08
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.66	0.02	0.01
LSP-23	LSJ-14	LSJ-17	185.90	200	110	2.54	0.08	0.07
LSP-24	LSJ-20	LSJ-18	87.80	200	110	8.85	0.28	0.71
LSP-25	LSJ-22	LSJ-2	129.20	300	120	2.85	0.04	0.01
LSP-26	LSJ-21	LSJ-22	82.90	300	120	8.65	0.12	0.08
LSP-27	LSJ-20	LSJ-21	77.70	300	120	12.46	0.18	0.16
LSP-28	LSJ-54	LSJ-20	151.80	300	120	33.66	0.48	0.99
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-12.35	0.17	0.16
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.46	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	2.48	0.08	0.07
LSP-32	LSJ-25	LSJ-26	53.30	300	120	2.94	0.04	0.01
LSP-33	LSJ-26	LSJ-27	71.90	300	120	2.94	0.04	0.01
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-0.01	0.00	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	1.52	0.05	0.03
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.11	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-5.72	0.08	0.04
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39 LSP-40	LSJ-29	LSJ-30	127.40	200	110 110	0.00	0.00	0.00
LSP-41	LSJ-30 LSJ-31	LSJ-31 SB02V053	93.60 161.80	300	120	-11.86	0.00 0.17	0.00
LSP-41 LSP-42	LSJ-31 LSJ-31	LSJ-32	142.30	200	110	6.14	0.17	0.14
LSP-43	LSJ-32	LSJ-34	231.30	200	110	3.21	0.10	0.11
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-7.62	0.24	0.54
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.69	0.02	0.01
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-1.06	0.03	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.06	0.03	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	3.44	0.11	0.12
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-5.33	0.17	0.28
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-6.95	0.10	0.05
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-13.12	0.19	0.17
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-10.65	0.15	0.12
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-10.65	0.15	0.12
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-10.65	0.15	0.12
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.67	0.02	0.01
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.67	0.02	0.01
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-3.14	0.10	0.10
LSP-58	LSJ-13	LSJ-43	84.40	300	120	10.75	0.15	0.12
LSP-59	LSJ-43	LSJ-44	37.80	300	120	5.49	0.08	0.03
LSP-61	LSJ-44	WH_03	59.40	300	120	5.49	0.08	0.04
LSP-62	WH_03	WH_04	53.00	300	120	5.19	0.07	0.03
LSP-63	WH_04	WH_05	68.00	300	120	4.81	0.07	0.03
LSP-64	WH_05	WH_06	50.90	300	120	4.34	0.06	0.02
LSP-65	WH_06	WH_07	66.40	300	120	4.01	0.06	0.02
LSP-66	WH_07	LSJ-50	41.10	300	120	3.71	0.05	0.02
LSP-68	LSJ-50	LSJ-51	33.50	300	120	3.71	0.05	0.02
LSP-69	LSJ-57	LSJ-11	85.30	300	120	5.52	0.08	0.04
P-239	LSJ-51	LSJ-57	86.00	300	120	3.71	0.05	0.02
P-240	LSJ-57	LSJ-43	126.20	200	110	-2.99	0.10	0.10
P-253	J-182	LSJ-10	142.30	300	120	-2.52	0.04	0.01
P-254	J-184	LSJ-42	79.20	200	110	-2.47	0.08	0.07

	201	1 ADD Junction Re	sults	
			Hydraulic Grade	
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)
J-182	94.25	0.00	132	369
J-184	91.25	0.00	132	399
LSJ-1	91.00	6.82	132	401
LSJ-1	91.75	0.00	132	394
LSJ-2 LSJ-3		0.00	132	396
	91.50			
LSJ-4	91.50	0.00	132	396
LSJ-5	90.25	0.00	132	408
LSJ-6	91.75	0.86	132	394
LSJ-7	92.25	0.00	132	389
LSJ-8	92.50	0.46	132	386
LSJ-9	92.75	0.44	132	384
LSJ-10	93.00	3.37	132	382
LSJ-11	92.00	0.73	132	391
LSJ-12	91.75	0.20	132	394
LSJ-13	91.25	0.59	132	399
LSJ-14	90.75	0.00	132	403
LSJ-15	91.50	0.59	132	396
LSJ-16	90.50	4.45	132	406
LSJ-17	90.75	0.00	132	403
LSJ-17 LSJ-18	89.75	0.00	132	413
LSJ-19	91.00	0.66	132	401
LSJ-20	89.75	0.00	132	413
LSJ-21	90.50	0.44	132	406
LSJ-22	90.75	1.43	132	404
LSJ-23	90.50	0.47	132	406
LSJ-24	89.25	3.96	132	418
LSJ-25	89.75	0.00	132	413
LSJ-26	89.75	0.00	132	413
LSJ-27	90.50	0.98	132	406
LSJ-28	94.25	0.00	132	369
LSJ-29	94.00	0.00	132	372
LSJ-30	92.00	0.00	132	391
LSJ-31	92.75	0.00	132	384
LSJ-32	92.75	0.98	132	384
LSJ-34	91.25	3.61	132	399
LSJ-35	93.50	0.58	132	377
LSJ-36	94.00	0.00	132	372
LSJ-37	91.00	2.92	132	401
LSJ-38	91.50	0.28	132	396
LSJ-39	91.00	0.00	132	401
LSJ-40	91.25	0.00	132	399
LSJ-41	92.00	0.00	132	391
LSJ-42	91.50	0.00	132	396
LSJ-43	91.25	0.76	132	399
LSJ-44	91.75	0.00	132	394
LSJ-50	95.00	0.00	132	362
LSJ-51	94.00	0.00	132	372
LSJ-53	92.25	0.00	132	389
LSJ-54	88.18	0.00	132	429
LSJ-54 LSJ-55	91.86	0.00	132	393
LSJ-57	92.25	0.39	132	389
SA02T005	95.10	4.03	132	361
SA02T052	91.00	0.00	132	401
			400	272
SB02R011	94.00	0.00	132	372
SB02V053	94.00 95.20	0.00	132	360
	94.00		132 132	
SB02V053	94.00 95.20	0.00	132	360
SB02V053 WH_03	94.00 95.20 92.00	0.00 0.10	132 132	360 391
SB02V053 WH_03 WH_04	94.00 95.20 92.00 92.00	0.00 0.10 0.13	132 132 132	360 391 391

Label E		1 MDD Junction Re		
	levation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
J-182	94.25	0.00	131	361
J-184	91.25	0.00	131	390
LSJ-1	91.00	12.95	131	392
LSJ-2	91.75	0.00	131	385
LSJ-3	91.50	0.00	131	387
LSJ-4	91.50	0.00	131	387
LSJ-5	90.25	0.00	131	400
LSJ-6	91.75	1.63	131	385
LSJ-7	92.25	0.00	131	380
LSJ-8	92.50	0.87	131	378
LSJ-9	92.75	0.83	131	375
LSJ-10	93.00	6.40	131	373
LSJ-11	92.00	1.39	131	383
LSJ-12	91.75	0.38	131	385
LSJ-13	91.25	1.12	131	390
LSJ-14	90.75	0.00	131	394
LSJ-15	91.50	1.12	131	387
LSJ-16	90.50	8.45	131	397
LSJ-17	90.75	0.00	131	394
LSJ-18	89.75	0.00	131	404
LSJ-19	91.00	1.26	131	392
LSJ-20	89.75	0.00	131	405
LSJ-21	90.50	0.84	131	397
LSJ-22	90.75	2.71	131	395
LSJ-23	90.50	0.89	131	397
LSJ-24	89.25	7.53	131	409
LSJ-25	89.75	0.00	131	405
LSJ-26	89.75	0.00	131	405
LSJ-27	90.50	1.87	131	397
LSJ-28	94.25	0.00	131	361
LSJ-29	94.00	0.00	131	363
LSJ-30	92.00	0.00	131	383
LSJ-31	92.75	0.00	131	375
LSJ-32	92.75	1.85	131	375
LSJ-34	91.25	6.86	131	390
LSJ-35	93.50	1.11	131	368
LSJ-36	94.00	0.00	131	363
LSJ-37	91.00	5.55	131	392
LSJ-38	91.50	0.53	131	388
LSJ-39	91.00	0.00	131	393
LSJ-40	91.25	0.00	131	390
LSJ-41	92.00	0.00	131	383
LSJ-42	91.50	0.00	131	388
LSJ-43	91.25	1.44	131	390
LSJ-44	91.75	0.00	131	385
LSJ-50	95.00	0.00	131	353
LSJ-51	94.00	0.00	131	363
LSJ-53	92.25	0.00	131	380
LSJ-54	88.18	0.00	131	420
LSJ-55	91.86	0.00	131	384
LSJ-57	92.25	0.75	131	380
SA02T005	95.10	7.66	131	353
SA02T052	91.00	0.00	131	393
SB02R011	94.00	0.00	131	363
SB02V053	95.20	0.00	131	351
WH_03	92.00	0.19	131	383
WH_04	92.00	0.24	131	383
	00.00	0.30	131	383
WH_05	92.00	0.50		
WH_05 WH_06	93.00	0.21	131	373

	201	1 PHD Junction Re	sults	
			Hydraulic Grade	
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)
J-182	94.25	0.00	129	344
J-184	91.25	0.00	129	373
LSJ-1	91.00	20.45	129	375
LSJ-2	91.75	0.00	129	368
LSJ-3	91.50	0.00	129	371
LSJ-4	91.50	0.00	129	371
LSJ-5	90.25	0.00	129	383
LSJ-6	91.75	2.57	129	368
LSJ-7	92.25	0.00	129	363
LSJ-8	92.50	1.38	129	361
LSJ-9	92.75	1.32	129	359
LSJ-10	93.00	10.10	129	356
LSJ-11	92.00	2.20	129	366
LSJ-12	91.75	0.60	129	369
LSJ-13	91.25	1.76	129	374
LSJ-14	90.75	0.00	129	377
LSJ-15	91.50	1.76	129	370
LSJ-16	90.50	13.34	129	379
LSJ-17	90.75	0.00	129	377
LSJ-18	89.75	0.00	129	387
LSJ-19	91.00	1.99	129	375
LSJ-20	89.75	0.00	129	388
LSJ-21	90.50	1.33	129	380
LSJ-22	90.75	4.28	129	378
LSJ-23	90.50	1.41	129	380
LSJ-24	89.25	11.89	129	393
LSJ-25	89.75	0.00	129	388
LSJ-26	89.75	0.00	129	388
LSJ-27	90.50	2.95	129	380
LSJ-28	94.25	0.00	129	344
LSJ-29	94.00	0.00	129	346
		0.00	129	
LSJ-30	92.00			366
LSJ-31	92.75	0.00	129	358
LSJ-32	92.75	2.93	129	358
LSJ-34	91.25	10.83	129	372
LSJ-35	93.50	1.75	129	351
LSJ-36	94.00	0.00	129	346
LSJ-37	91.00	8.77	129	375
LSJ-38	91.50	0.84	129	371
LSJ-39	91.00	0.00	129	376
LSJ-40	91.25	0.00	129	374
LSJ-41	92.00	0.00	129	366
LSJ-42	91.50	0.00	129	371
LSJ-43	91.25	2.27	129	373
LSJ-44	91.75	0.00	129	369
LSJ-50	95.00	0.00	129	337
LSJ-51	94.00	0.00	129	347
LSJ-51 LSJ-53			129	364
	92.25	0.00		
LSJ-54	88.18	0.00	129	404
LSJ-55	91.86	0.00	129	367
LSJ-57	92.25	1.18	129	364
SA02T005	95.10	12.28	129	336
SA02T052	91.00	0.00	130	377
SB02R011	94.00	0.00	129	346
	95.20	0.00	129	335
SB02V053	95.20			
SB02V053 WH_03	92.00	0.30	129	366
		0.30 0.38	129 129	366 366
WH_03	92.00 92.00			366
WH_03 WH_04	92.00	0.38	129	

	203	31 ADD Junction Re	sults	
			Hydraulic Grade	
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)
J-182	94.25	0.00	132	366
J-184	91.25	0.00	132	396
LSJ-1	91.00	6.82	132	398
LSJ-2	91.75	0.00	132	391
LSJ-3	91.50	0.00	132	393
LSJ-4	91.50	0.00	132	393
LSJ-4 LSJ-5	90.25	0.00	132	405
LSJ-6		0.86	132	391
LSJ-6 LSJ-7	91.75	0.00		
	92.25		132	386
LSJ-8	92.50	0.46	132	383
LSJ-9	92.75	0.44	132	381
LSJ-10	93.00	3.37	132	379
LSJ-11	92.00	0.73	132	388
LSJ-12	91.75	0.20	132	391
LSJ-13	91.25	0.59	132	396
LSJ-14	90.75	0.00	132	400
LSJ-15	91.50	0.59	132	393
LSJ-16	90.50	4.45	132	403
LSJ-17	90.75	0.00	132	400
LSJ-18	89.75	0.00	132	410
LSJ-19	91.00	0.66	132	398
LSJ-20	89.75	0.00	132	410
LSJ-21	90.50	0.44	132	403
LSJ-22	90.75	1.43	132	401
LSJ-23	90.50	0.47	132	403
LSJ-24	89.25	3.96	132	415
LSJ-25	89.75	0.00	132	410
LSJ-26	89.75	0.00	132	410
LSJ-27	90.50	0.98	132	403
LSJ-28	94.25	0.00	132	366
LSJ-29	94.00	0.00	132	369
LSJ-30	92.00	0.00	132	388
LSJ-31	92.75	0.00	132	381
LSJ-32	92.75	0.98	132	381
LSJ-34	91.25	3.61	132	396
		.		
LSJ-35	93.50 94.00	0.58	132	374
LSJ-36		0.00	132	369
LSJ-37	91.00	2.92	132	398
LSJ-38	91.50	0.28	132	393
LSJ-39	91.00	0.00	132	398
LSJ-40	91.25	0.00	132	396
LSJ-41	92.00	0.00	132	388
LSJ-42	91.50	0.00	132	393
LSJ-43	91.25	0.76	132	396
LSJ-44	91.75	0.00	132	391
LSJ-50	95.00	0.00	132	359
LSJ-51	94.00	0.00	132	369
LSJ-53	92.25	0.00	132	386
LSJ-54	88.18	0.00	132	426
LSJ-55	91.86	0.00	132	390
LSJ-57	92.25	0.39	132	386
SA02T005	95.10	6.78	132	358
SA02T052	91.00	0.00	132	398
SB02R011	94.00	0.00	132	369
SB02V053	95.20	0.00	132	357
WH_03	92.00	0.10	132	388
WH 04	92.00	0.13	132	388
WH 05	92.00	0.16	132	388
WH 06	93.00	0.11	132	379
WH 07	95.00	0.10	132	359
VVI I_U/	55.00	0.10	102	000

Label Elevation (m) Demand (L/s) Hydraulic Grade (m) J-182 94.25 0.00 130 J-184 91.25 0.00 130 LSJ-1 91.00 12.95 130 LSJ-2 91.75 0.00 130 LSJ-3 91.50 0.00 130 LSJ-4 91.50 0.00 130 LSJ-5 90.25 0.00 130 LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	Pressure (kPa) 350 380 382 375 377 377 390 375 370 368 365 363
J-182 94.25 0.00 130 J-184 91.25 0.00 130 LSJ-1 91.00 12.95 130 LSJ-2 91.75 0.00 130 LSJ-3 91.50 0.00 130 LSJ-4 91.50 0.00 130 LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	380 382 375 377 377 390 375 370 368 365
J-184 91.25 0.00 130 LSJ-1 91.00 12.95 130 LSJ-2 91.75 0.00 130 LSJ-3 91.50 0.00 130 LSJ-4 91.50 0.00 130 LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	380 382 375 377 377 390 375 370 368 365
LSJ-1 91.00 12.95 130 LSJ-2 91.75 0.00 130 LSJ-3 91.50 0.00 130 LSJ-4 91.50 0.00 130 LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	375 377 377 390 375 370 368 365
LSJ-2 91.75 0.00 130 LSJ-3 91.50 0.00 130 LSJ-4 91.50 0.00 130 LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	375 377 377 390 375 370 368 365
LSJ-4 91.50 0.00 130 LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	377 390 375 370 368 365
LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	390 375 370 368 365
LSJ-5 90.25 0.00 130 LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	390 375 370 368 365
LSJ-6 91.75 1.63 130 LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	370 368 365
LSJ-7 92.25 0.00 130 LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	368 365
LSJ-8 92.50 0.87 130 LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	365
LSJ-9 92.75 0.83 130 LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	365
LSJ-10 93.00 6.40 130 LSJ-11 92.00 1.39 130	
LSJ-11 92.00 1.39 130	000
	373
LSJ-12 91.75 0.38 130	375
LSJ-13 91.25 1.12 130	380
LSJ-14 90.75 0.00 130	385
LSJ-15 91.50 1.12 130	377
LSJ-16 90.50 8.45 130	387
LSJ-17 90.75 0.00 130	384
LSJ-18 89.75 0.00 130	394
LSJ-19 91.00 1.26 130	382
LSJ-20 89.75 0.00 130	395
LSJ-21 90.50 0.84 130	387
LSJ-22 90.75 2.71 130	385
LSJ-23 90.50 0.89 130	387
LSJ-24 89.25 7.53 130	399
LSJ-25 89.75 0.00 130	395
LSJ-26 89.75 0.00 130	395
LSJ-27 90.50 1.87 130	387
LSJ-28 94.25 0.00 130	350
LSJ-29 94.00 0.00 130	353
LSJ-30 92.00 0.00 130	373
LSJ-31 92.75 0.00 130	365
LSJ-32 92.75 1.85 130	365
LSJ-34 91.25 6.86 130	380
LSJ-35 93.50 1.11 130	358
LSJ-36 94.00 0.00 130	353
LSJ-37 91.00 5.55 130	382
LSJ-38 91.50 0.53 130	377
LSJ-39 91.00 0.00 130	382
LSJ-40 91.25 0.00 130	380
LSJ-41 92.00 0.00 130	373
LSJ-42 91.50 0.00 130	377
LSJ-43 91.25 1.44 130	380
LSJ-44 91.75 0.00 130	375
LSJ-50 95.00 0.00 130	343
LSJ-51 94.00 0.00 130	353
LSJ-53 92.25 0.00 130	370
LSJ-54 88.18 0.00 130	411
LSJ-55 91.86 0.00 130	374
LSJ-57 92.25 0.75 130	370
SA02T005 95.10 12.90 130	342
SA02T052 91.00 0.00 130	383
SB02R011 94.00 0.00 130	353
SB02V053 95.20 0.00 130	341
WH_03 92.00 0.19 130	373
WH_04 92.00 0.24 130	373
WH_05 92.00 0.30 130	373
WH_06 93.00 0.21 130	363
WH_07 95.00 0.19 130	343

2031 PHD Junction Results									
			Hydraulic Grade						
Label	Elevation (m)	Demand (L/s)	(m)	Pressure (kPa)					
J-182	94.25	0.00	127	323					
J-184	91.25	0.00	127	353					
LSJ-1	91.00	20.45	127	355					
LSJ-2	91.75	0.00	127	348					
LSJ-3	91.50	0.00	127	350					
LSJ-4	91.50	0.00	127	350					
LSJ-5	90.25	0.00	127	363					
LSJ-6	91.75	2.57	127	348					
LSJ-7	92.25	0.00	127	343					
				343					
LSJ-8	92.50	1.38	127						
LSJ-9	92.75	1.32	127	338					
LSJ-10	93.00	10.10	127	336					
LSJ-11	92.00	2.20	127	346					
LSJ-12	91.75	0.60	127	348					
LSJ-13	91.25	1.76	127	353					
LSJ-14	90.75	0.00	127	357					
LSJ-15	91.50	1.76	127	349					
LSJ-16	90.50	13.34	127	359					
LSJ-17	90.75	0.00	127	357					
LSJ-18	89.75	0.00	127	367					
LSJ-19	91.00	1.99	127	355					
LSJ-20	89.75	0.00	127	368					
LSJ-21	90.50	1.33	127	360					
LSJ-22	90.75	4.28	127	358					
LSJ-23	90.50	1.41	127	360					
LSJ-24	89.25	11.89	127	372					
LSJ-25	89.75	0.00	127	367					
LSJ-26	89.75	0.00	127	367					
LSJ-27	90.50	2.95	127	360					
LSJ-28	94.25	0.00	127	323					
LSJ-29			127	326					
	94.00	0.00	127						
LSJ-30	92.00	0.00		345					
LSJ-31	92.75	0.00	127	338					
LSJ-32	92.75	2.93	127	338					
LSJ-34	91.25	10.83	127	352					
LSJ-35	93.50	1.75	127	331					
LSJ-36	94.00	0.00	127	326					
LSJ-37	91.00	8.77	127	355					
LSJ-38	91.50	0.84	127	350					
LSJ-39	91.00	0.00	127	355					
LSJ-40	91.25	0.00	127	353					
LSJ-41	92.00	0.00	127	346					
LSJ-42	91.50	0.00	127	351					
LSJ-43	91.25	2.27	127	353					
LSJ-44	91.75	0.00	127	348					
LSJ-50	95.00	0.00	127	316					
LSJ-51	94.00	0.00	127	326					
LSJ-53	92.25	0.00	127	344					
LSJ-54	88.18	0.00	127	384					
LSJ-55	91.86	0.00	127	347					
LSJ-57	92.25	1.18	127	343					
SA02T005	95.10	19.88	127	315					
SA02T052	91.00	0.00	128	357					
SB02R011	94.00	0.00	127	326					
SB02V053	3 ₩.UU		127	314					
. DOUZ V UOO	05.20	0.00							
	95.20	0.00							
WH_03	92.00	0.30	127	346					
WH_03 WH_04	92.00 92.00	0.30 0.38	127 127	346 346					
WH_03 WH_04 WH_05	92.00 92.00 92.00	0.30 0.38 0.47	127 127 127	346 346 346					
WH_03 WH_04	92.00 92.00	0.30 0.38	127 127	346 346					

			2	011 ADD Pipe Resu	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	6.59	0.09	0.05
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-2.97	0.04	0.01
LSP-3	LSJ-2	LSJ-3	106.10	300	120	0.44	0.01	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300	120	0.26	0.00	0.00
LSP-5	LSJ-4	LSJ-5	83.20	300	120	-0.89	0.01	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-0.89	0.01	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-4.31	0.06	0.02
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-2.04	0.03	0.01
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-3.10	0.04	0.01
LSP-10	LSJ-9	LSJ-8	82.00	300	120	1.51	0.02	0.00
LSP-11 LSP-12	LSJ-9 LSJ-10	LSJ-10 LSJ-11	78.90 84.70	300 300	120 120	-2.54 -4.00	0.04	0.01 0.02
LSP-13	LSJ-10	LSJ-12	75.00	300	120	-3.19	0.05	0.02
LSP-14	LSJ-11	LSJ-13	71.00	300	120	-4.34	0.06	0.02
LSP-15	LSJ-13	SA02T052	140.50	300	120	-11.45	0.16	0.14
LSP-16	LSJ-14	LSJ-1	82.00	200	110	-2.74	0.09	0.08
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-2.12	0.07	0.05
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-1.53	0.05	0.03
LSP-19	LSJ-17	LSJ-16	78.90	200	110	2.92	0.09	0.09
LSP-20	LSJ-18	LSJ-17	77.40	200	110	2.07	0.07	0.05
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-0.89	0.03	0.01
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.23	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	0.85	0.03	0.01
LSP-24	LSJ-20	LSJ-18	87.80	200	110	2.96	0.09	0.09
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.32	0.00	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	2.04	0.03	0.01
LSP-27	LSJ-20	LSJ-21	77.70	300	120	3.10	0.04	0.01
LSP-28	LSJ-54	LSJ-20	151.80	300	120	9.22	0.13	0.09
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-3.17	0.04	0.01
LSP-30	LSJ-25	LSJ-24	86.00	300	120	0.79	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	0.62	0.02	0.01
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.17	0.00	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.17	0.00	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-1.15	0.02	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.29	0.01	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	0.18	0.01	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-3.09	0.04	0.01
LSP-38 LSP-39	LSJ-29 LSJ-29	LSJ-28	28.00 127.40	200 200	110 110	0.00	0.00	0.00
LSP-39 LSP-40	LSJ-29 LSJ-30	LSJ-30 LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-40 LSP-41	LSJ-30 LSJ-31	SB02V053	161.80	300	120	-5.13	0.00	0.00
LSP-42	LSJ-31	LSJ-32	142.30	200	110	2.03	0.06	0.05
LSP-43	LSJ-32	LSJ-34	231.30	200	110	1.05	0.03	0.01
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-2.56	0.08	0.07
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.00	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.58	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.58	0.02	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	1.07	0.03	0.01
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-1.85	0.06	0.04
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-2.05	0.03	0.01
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-4.18	0.06	0.02
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-3.29	0.05	0.01
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-3.29	0.05	0.01
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-3.29	0.05	0.01
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.06	0.00	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.06	0.00	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-0.95	0.03	0.01
LSP-58	LSJ-13	LSJ-43	84.40	300	120	3.23	0.05	0.01
LSP-59	LSJ-43	LSJ-44	37.80	300	120	1.62	0.02	0.00
LSP-61	LSJ-44	WH_03	59.40	300	120	1.62	0.02	0.00
LSP-62	WH_03	WH_04	53.00	300	120	1.52	0.02	0.00
LSP-63	WH_04	WH_05	68.00	300	120	1.39	0.02	0.00
LSP-64	WH_05	WH_06	50.90	300	120	1.23	0.02	0.00
LSP-65	WH_06	WH_07	66.40	300	120	1.12	0.02	0.00
LSP-66	WH_07	LSJ-50	41.10	300	120	1.02	0.01	0.00
LSP-68	LSJ-50	LSJ-51	33.50	300 300	120	1.02	0.01	0.00
LSP-69 P-239	LSJ-57 LSJ-51	LSJ-11 LSJ-57	85.30 86.00	300	120 120	1.49 1.02	0.02 0.01	0.00
P-239 P-240	LSJ-51 LSJ-57	LSJ-43	126.20	200	110	-0.86	0.01	0.00
P-253	J-182	LSJ-10	142.30	300	120	1.90	0.03	0.01
	J-184	LSJ-10 LSJ-42	79.20	200	110	-0.89	0.03	0.01

			2	011 MDD Pipe Resi	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	12.51	0.18	0.16
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-5.65	0.08	0.04
LSP-3	LSJ-2	LSJ-3	106.10	300	120	0.83	0.01	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300	120	0.48	0.01	0.00
LSP-5	LSJ-4	LSJ-5	83.20	300	120	-1.71	0.02	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-1.71	0.02	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-8.20	0.12	0.07
LSP-8 LSP-9	LSJ-55 LSJ-7	LSJ-7 LSJ-8	88.40 78.90	300 300	120 120	-3.88 -5.91	0.05	0.02 0.04
LSP-10	LSJ-9	LSJ-8	82.00	300	120	2.88	0.04	0.04
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-4.82	0.07	0.03
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-7.62	0.11	0.06
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-6.07	0.09	0.04
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-8.26	0.12	0.07
LSP-15	LSJ-13	SA02T052	140.50	300	120	-21.78	0.31	0.44
LSP-16	LSJ-14	LSJ-1	82.00	200	110	-5.21	0.17	0.27
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-4.03	0.13	0.17
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-2.91	0.09	0.09
LSP-19	LSJ-17	LSJ-16	78.90	200	110	5.54	0.18	0.30
LSP-20	LSJ-18	LSJ-17	77.40	200	110	3.93	0.13	0.16
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-1.69	0.05	0.03
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.43	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	1.61	0.05	0.03
LSP-24	LSJ-20	LSJ-18	87.80	200	110	5.62	0.18	0.31
LSP-25	LSJ-22	LSJ-2	129.20	300	120	0.62	0.01	0.00
LSP-26	LSJ-21	LSJ-22	82.90	300	120	3.88	0.05	0.02
LSP-27	LSJ-20	LSJ-21	77.70	300	120	5.90	0.08	0.04
LSP-28	LSJ-54	LSJ-20	151.80	300	120	17.54	0.25	0.30
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-6.02	0.09	0.04
LSP-30	LSJ-25	LSJ-24	86.00	300	120	1.51	0.02	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	1.18	0.04	0.02
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.32	0.00	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.32	0.00	0.00
LSP-34	LSJ-27	LSJ-4	89.60 96.90	300 200	120 110	-2.19 0.55	0.03	0.01
LSP-35 LSP-36	LSJ-22 LSJ-3	LSJ-23 LSJ-23	124.70	200	110	0.55	0.02	0.00
LSP-36 LSP-37	LSJ-3	LSJ-23 LSJ-31	79.90	300	120	-5.86	0.01	0.00
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29 LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-9.71	0.14	0.10
LSP-42	LSJ-31	LSJ-32	142.30	200	110	3.85	0.12	0.15
LSP-43	LSJ-32	LSJ-34	231.30	200	110	2.00	0.06	0.05
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-4.86	0.15	0.23
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.00	0.00	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-1.11	0.04	0.02
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.11	0.04	0.02
LSP-49	LSJ-7	LSJ-37	102.40	200	110	2.03	0.06	0.05
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-3.52	0.11	0.13
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-3.90	0.06	0.02
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-7.95	0.11	0.07
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-6.25	0.09	0.04
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-6.25	0.09	0.04
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-6.25	0.09	0.04
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.11	0.00	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.11	0.00	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-1.81	0.06	0.04
LSP-58	LSJ-13	LSJ-43	84.40	300	120	6.15	0.09	0.04
LSP-59	LSJ-43	LSJ-44	37.80	300	120	3.08	0.04	0.01
LSP-61	LSJ-44	WH_03	59.40	300	120	3.08	0.04	0.01
LSP-62	WH_03	WH_04	53.00	300 300	120	2.89	0.04	0.01
LSP-63 LSP-64	WH_04 WH_05	WH_05 WH_06	68.00 50.90	300	120 120	2.65 2.35	0.04	0.01
LSP-65	WH_05	WH_06	66.40	300	120	2.35	0.03	0.01
LSP-66	WH_06	LSJ-50	41.10	300	120	1.95	0.03	0.01
LSP-68	LSJ-50	LSJ-50 LSJ-51	33.50	300	120	1.95	0.03	0.01
LSP-69	LSJ-50 LSJ-57	LSJ-51 LSJ-11	85.30	300	120	2.83	0.03	0.01
P-239	LSJ-51	LSJ-57	86.00	300	120	1.95	0.03	0.01
P-240	LSJ-57	LSJ-43	126.20	200	110	-1.63	0.05	0.03
P-253	J-182	LSJ-10	142.30	300	120	3.60	0.05	0.02
P-254	J-184	LSJ-42	79.20	200	110	-1.70	0.05	0.03

			2	011 PHD Pipe Resi	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	20.12	0.28	0.38
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-8.59	0.12	0.08
LSP-3 LSP-4	LSJ-2	LSJ-3	106.10	300	120	1.80	0.03	0.00
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	1.31 -2.08	0.02 0.03	0.00 0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	-2.08	0.03	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-12.29	0.17	0.15
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-5.49	0.08	0.04
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-8.85	0.13	0.08
LSP-10	LSJ-9	LSJ-8	82.00	300	120	4.35	0.06	0.02
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-7.35	0.10	0.06
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-11.64	0.16	0.14
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-9.36	0.13	0.09
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-12.74	0.18	0.16
LSP-15 LSP-16	LSJ-13 LSJ-14	SA02T052 LSJ-1	140.50 82.00	300 200	120 110	-33.65 -8.26	0.48 0.26	0.99 0.62
LSP-17	LSJ-14 LSJ-15	LSJ-14	79.20	200	110	-6.36	0.20	0.38
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-4.60	0.15	0.21
LSP-19	LSJ-17	LSJ-16	78.90	200	110	8.74	0.28	0.69
LSP-20	LSJ-18	LSJ-17	77.40	200	110	6.19	0.20	0.37
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-2.64	0.08	0.08
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.65	0.02	0.01
LSP-23	LSJ-14	LSJ-17	185.90	200	110	2.55	0.08	0.07
LSP-24	LSJ-20	LSJ-18	87.80	200	110	8.83	0.28	0.70
LSP-25 LSP-26	LSJ-22 LSJ-21	LSJ-2 LSJ-22	129.20 82.90	300 300	120 120	0.85 6.05	0.01	0.00 0.04
LSP-27	LSJ-21	LSJ-22 LSJ-21	77.70	300	120	9.28	0.09	0.09
LSP-28	LSJ-54	LSJ-20	151.80	300	120	27.66	0.39	0.69
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-9.55	0.14	0.10
LSP-30	LSJ-25	LSJ-24	86.00	300	120	2.34	0.03	0.01
LSP-31	LSJ-21	LSJ-25	136.20	200	110	1.90	0.06	0.04
LSP-32	LSJ-25	LSJ-26	53.30	300	120	-0.44	0.01	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	-0.44	0.01	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-3.39	0.05	0.01
LSP-35 LSP-36	LSJ-22 LSJ-3	LSJ-23 LSJ-23	96.90 124.70	200	110 110	0.92	0.03	0.01
LSP-30 LSP-37	LSJ-3	LSJ-23 LSJ-31	79.90	300	120	-9.54	0.02	0.00
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-15.65	0.22	0.24
LSP-42	LSJ-31	LSJ-32	142.30	200	110	6.12	0.19	0.36
LSP-43	LSJ-32	LSJ-34	231.30	200	110	3.19	0.10	0.11
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-7.64	0.24	0.54
LSP-46 LSP-47	LSJ-7	LSJ-35	120.10	200	110 110	0.08	0.00	0.00
LSP-47 LSP-48	LSJ-35 LSJ-9	LSJ-36 LSJ-36	157.30 104.20	200	110	-1.67 1.67	0.05 0.05	0.03
LSP-49	LSJ-9	LSJ-37	104.20	200	110	3.28	0.03	0.03
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-5.49	0.17	0.29
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-5.88	0.08	0.04
LSP-52(1)	LSJ-38	J-184	55.80	300	120	-12.20	0.17	0.15
LSP-52(2)	J-184	LSJ-39	81.10	300	120	-9.62	0.14	0.10
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-9.62	0.14	0.10
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-9.62	0.14	0.10
LSP-55 LSP-56	LSJ-41	LSJ-11	78.30	200	110	0.19	0.01	0.00
LSP-56 LSP-57	LSJ-42 LSJ-42	LSJ-41 LSJ-12	80.20 82.90	200 200	110 110	0.19 -2.78	0.01	0.00 0.08
LSP-57 LSP-58	LSJ-13	LSJ-12 LSJ-43	84.40	300	120	9.53	0.09	0.00
LSP-59	LSJ-43	LSJ-44	37.80	300	120	4.76	0.07	0.03
LSP-61	LSJ-44	WH_03	59.40	300	120	4.76	0.07	0.03
LSP-62	WH_03	WH_04	53.00	300	120	4.46	0.06	0.02
LSP-63	WH_04	WH_05	68.00	300	120	4.08	0.06	0.02
LSP-64	WH_05	WH_06	50.90	300	120	3.61	0.05	0.02
LSP-65	WH_06	WH_07	66.40	300	120	3.27	0.05	0.01
LSP-66	WH_07	LSJ-50	41.10	300	120	2.97	0.04	0.01
LSP-68 LSP-69	LSJ-50 LSJ-57	LSJ-51	33.50 85.30	300 300	120 120	2.97 4.29	0.04 0.06	0.01 0.02
P-239	LSJ-57 LSJ-51	LSJ-11 LSJ-57	85.30 86.00	300	120 120	4.29 2.97	0.06	0.02
P-239 P-240	LSJ-57	LSJ-57 LSJ-43	126.20	200	110	-2.51	0.04	0.07
P-253	J-182	LSJ-10	142.30	300	120	5.80	0.08	0.04

Label	Start Node	Cton Nada		2031 ADD Pipe Resi	Hazen-Williams C	Flow (L/a)	Volonity (m/s)	Headloss Gradien
Label	Start Node	Stop Node	Length (m)	Diameter (mm)		Flow (L/s)	Velocity (m/s)	(m/km)
LSP-1 LSP-2	LSJ-53 LSJ-1	LSJ-1 LSJ-2	172.80 192.90	300 300	120 120	7.84 -1.72	0.11 0.02	0.07
LSP-3	LSJ-1	LSJ-2	106.10	300	120	1.04	0.02	0.00
LSP-4	LSJ-3	LSJ-4	91.10	300	120	1.10	0.02	0.00
LSP-5	LSJ-4	LSJ-5	83.20	300	120	1.20	0.02	0.00
LSP-6	LSJ-5	LSJ-6	128.90	300	120	1.20	0.02	0.00
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-2.20	0.03	0.01
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-0.42	0.01	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-1.81	0.03	0.00
LSP-10	LSJ-9	LSJ-8	82.00	300	120	-0.09	0.00	0.00
LSP-11 LSP-12	LSJ-9 LSJ-10	LSJ-10 LSJ-11	78.90 84.70	300 300	120 120	-0.70 -5.10	0.01 0.07	0.00
LSP-13	LSJ-10	LSJ-11	75.00	300	120	-3.74	0.07	0.03
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-4.99	0.07	0.03
LSP-15	LSJ-13	SA02T052	140.50	300	120	-12.77	0.18	0.17
LSP-16	LSJ-14	LSJ-1	82.00	200	110	-2.74	0.09	0.08
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-2.12	0.07	0.05
LSP-18	LSJ-16	LSJ-15	176.80	200	110	-1.53	0.05	0.03
LSP-19	LSJ-17	LSJ-16	78.90	200	110	2.92	0.09	0.09
LSP-20	LSJ-18	LSJ-17	77.40	200	110	2.07	0.07	0.05
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-0.89	0.03	0.01
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.23	0.01	0.00
LSP-23 LSP-24	LSJ-14	LSJ-17	185.90	200	110	0.85	0.03	0.01
LSP-24 LSP-25	LSJ-20 LSJ-22	LSJ-18 LSJ-2	87.80 129.20	200 300	110 120	2.96 1.02	0.09	0.09
LSP-25 LSP-26	LSJ-22 LSJ-21	LSJ-2 LSJ-22	82.90	300	120	2.97	0.01	0.00
LSP-27	LSJ-21 LSJ-20	LSJ-22 LSJ-21	77.70	300	120	4.25	0.04	0.01
LSP-28	LSJ-54	LSJ-20	151.80	300	120	11.41	0.16	0.13
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-4.20	0.06	0.02
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.24	0.00	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	0.84	0.03	0.01
LSP-32	LSJ-25	LSJ-26	53.30	300	120	1.08	0.02	0.00
LSP-33	LSJ-26	LSJ-27	71.90	300	120	1.08	0.02	0.00
LSP-34	LSJ-27	LSJ-4	89.60	300	120	0.10	0.00	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	0.52	0.02	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.05	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-1.74	0.02	0.00
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39 LSP-40	LSJ-29 LSJ-30	LSJ-30 LSJ-31	127.40 93.60	200	110 110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-3.79	0.05	0.00
LSP-42	LSJ-31	LSJ-32	142.30	200	110	2.05	0.07	0.05
LSP-43	LSJ-32	LSJ-34	231.30	200	110	1.07	0.03	0.01
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-2.54	0.08	0.07
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.24	0.01	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.34	0.01	0.00
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.34	0.01	0.00
LSP-49	LSJ-7	LSJ-37	102.40	200	110	1.15	0.04	0.02
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-1.77	0.06	0.04
LSP-51	LSJ-8	LSJ-38	106.40	300	120	-2.35	0.03	0.01
LSP-52(1) LSP-52(2)	LSJ-38	J-184	55.80	300 300	120 120	-4.41	0.06	0.02
LSP-52(2) LSP-53	J-184 LSJ-39	LSJ-39 LSJ-40	81.10 124.10	300	120	-3.58 -3.58	0.05 0.05	0.02 0.02
LSP-53 LSP-54	LSJ-39 LSJ-40	LSJ-40 LSJ-13	43.90	300	120	-3.58	0.05	0.02
LSP-55	LSJ-41	LSJ-13	78.30	200	110	0.23	0.03	0.02
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.23	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-1.05	0.03	0.01
LSP-58	LSJ-13	LSJ-43	84.40	300	120	3.61	0.05	0.02
LSP-59	LSJ-43	LSJ-44	37.80	300	120	1.84	0.03	0.01
LSP-61	LSJ-44	WH_03	59.40	300	120	1.84	0.03	0.01
LSP-62	WH_03	WH_04	53.00	300	120	1.74	0.02	0.00
LSP-63	WH_04	WH_05	68.00	300	120	1.62	0.02	0.00
LSP-64	WH_05	WH_06	50.90	300	120	1.46	0.02	0.00
LSP-65	WH_06	WH_07	66.40	300	120	1.35	0.02	0.00
LSP-66	WH_07	LSJ-50	41.10	300	120	1.25	0.02	0.00
LSP-68 LSP-69	LSJ-50 LSJ-57	LSJ-51 LSJ-11	33.50 85.30	300 300	120 120	1.25 1.87	0.02	0.00
P-239	LSJ-57 LSJ-51	LSJ-11 LSJ-57	86.00	300	120	1.25	0.03	0.00
P-239 P-240	LSJ-51 LSJ-57	LSJ-57 LSJ-43	126.20	200	110	-1.00	0.02	0.00
P-253	J-182	LSJ-43 LSJ-10	142.30	300	120	-1.03	0.03	0.00
	3 102	200 10	79.20	200	110	-0.83	0.03	0.00

			20	031 MDD Pipe Resu	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	14.88	0.21	0.22
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-3.28	0.05	0.01
LSP-3	LSJ-2	LSJ-3	106.10	300	120	1.96	0.03	0.01
LSP-4 LSP-5	LSJ-3 LSJ-4	LSJ-4 LSJ-5	91.10 83.20	300 300	120 120	2.06 2.24	0.03	0.01 0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	2.24	0.03	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-4.21	0.06	0.02
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-0.83	0.01	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-3.46	0.05	0.02
LSP-10	LSJ-9	LSJ-8	82.00	300	120	-0.15	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-1.34	0.02	0.00
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-9.70	0.14	0.10
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-7.11	0.10	0.06
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-9.50	0.13	0.10
LSP-15	LSJ-13	SA02T052	140.50	300	120	-24.29	0.34	0.54
LSP-16 LSP-17	LSJ-14 LSJ-15	LSJ-1 LSJ-14	82.00 79.20	200 200	110 110	-5.21 -4.03	0.17 0.13	0.27 0.17
LSP-17 LSP-18	LSJ-15 LSJ-16	LSJ-14 LSJ-15	176.80	200	110	-4.03 -2.91	0.13	0.17
LSP-19	LSJ-10	LSJ-16	78.90	200	110	5.54	0.09	0.30
LSP-20	LSJ-18	LSJ-17	77.40	200	110	3.93	0.13	0.16
LSP-21	LSJ-19	LSJ-18	193.90	200	110	-1.69	0.05	0.03
LSP-22	LSJ-14	LSJ-19	100.30	200	110	-0.43	0.01	0.00
LSP-23	LSJ-14	LSJ-17	185.90	200	110	1.60	0.05	0.03
LSP-24	LSJ-20	LSJ-18	87.80	200	110	5.62	0.18	0.31
LSP-25	LSJ-22	LSJ-2	129.20	300	120	1.96	0.03	0.01
LSP-26	LSJ-21	LSJ-22	82.90	300	120	5.66	0.08	0.04
LSP-27	LSJ-20	LSJ-21	77.70	300	120	8.09	0.11	0.07
LSP-28	LSJ-54	LSJ-20	151.80	300	120	21.70	0.31	0.44
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-7.98	0.11	0.07
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.45	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	1.60	0.05	0.03
LSP-32	LSJ-25	LSJ-26	53.30	300	120	2.05	0.03	0.01
LSP-33 LSP-34	LSJ-26 LSJ-27	LSJ-27 LSJ-4	71.90 89.60	300 300	120 120	2.05 0.18	0.03	0.01
LSP-35	LSJ-27 LSJ-22	LSJ-4 LSJ-23	96.90	200	110	0.18	0.00	0.00
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.10	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-3.28	0.05	0.00
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-7.17	0.10	0.06
LSP-42	LSJ-31	LSJ-32	142.30	200	110	3.89	0.12	0.15
LSP-43	LSJ-32	LSJ-34	231.30	200	110	2.04	0.06	0.05
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-4.82	0.15	0.23
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.45	0.01	0.00
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-0.66	0.02	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	0.66	0.02	0.01
LSP-49 LSP-50	LSJ-7 LSJ-37	LSJ-37	102.40 76.50	200 200	110 110	2.18	0.07	0.05 0.12
LSP-50 LSP-51	LSJ-37 LSJ-8	LSJ-38 LSJ-38	76.50 106.40	300	110 120	-3.37 -4.48	0.11	0.12
LSP-51 LSP-52(1)	LSJ-8 LSJ-38	J-184	55.80	300	120	-4.46	0.06	0.02
LSP-52(1)	J-184	LSJ-39	81.10	300	120	-6.81	0.12	0.05
LSP-53	LSJ-39	LSJ-40	124.10	300	120	-6.81	0.10	0.05
LSP-54	LSJ-40	LSJ-13	43.90	300	120	-6.81	0.10	0.05
LSP-55	LSJ-41	LSJ-11	78.30	200	110	0.44	0.01	0.00
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.44	0.01	0.00
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-2.01	0.06	0.05
LSP-58	LSJ-13	LSJ-43	84.40	300	120	6.86	0.10	0.05
LSP-59	LSJ-43	LSJ-44	37.80	300	120	3.51	0.05	0.02
LSP-61	LSJ-44	WH_03	59.40	300	120	3.51	0.05	0.02
LSP-62	WH_03	WH_04	53.00	300	120	3.32	0.05	0.01
LSP-63	WH_04	WH_05	68.00	300	120	3.08	0.04	0.01
LSP-64 LSP-65	WH_05 WH 06	WH_06 WH 07	50.90 66.40	300 300	120 120	2.78 2.57	0.04 0.04	0.01 0.01
LSP-66	WH_06 WH 07	WH_07 LSJ-50	41.10	300	120	2.38	0.04	0.01
LSP-68	LSJ-50	LSJ-50 LSJ-51	33.50	300	120	2.38	0.03	0.01
LSP-69	LSJ-57	LSJ-11	85.30	300	120	3.55	0.05	0.01
20. 00	LSJ-51	LSJ-57	86.00	300	120	2.38	0.03	0.01
P-239								
P-239 P-240	LSJ-57	LSJ-43	126.20	200	110	-1.91	0.06	0.04
			126.20 142.30	200 300	110 120	-1.91 -1.97	0.06 0.03	0.04 0.01

			2	031 PHD Pipe Resu	ults			
Label	Start Node	Stop Node	Length (m)	Diameter (mm)	Hazen-Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradien (m/km)
LSP-1	LSJ-53	LSJ-1	172.80	300	120	23.27	0.33	0.50
LSP-2	LSJ-1	LSJ-2	192.90	300	120	-5.42	0.08	0.03
LSP-3	LSJ-2	LSJ-3	106.10	300	120	3.15	0.04	0.01
LSP-4	LSJ-3	LSJ-4	91.10	300	120	3.26	0.05	0.01
LSP-5	LSJ-4	LSJ-5	83.20	300	120	3.24	0.05	0.01
LSP-6	LSJ-5	LSJ-6	128.90	300	120	3.24	0.05	0.01
LSP-7	LSJ-6	LSJ-55	88.40	300	120	-6.95	0.10	0.05
LSP-8	LSJ-55	LSJ-7	88.40	300	120	-1.54	0.02	0.00
LSP-9	LSJ-7	LSJ-8	78.90	300	120	-5.67	0.08	0.04
LSP-10	LSJ-9	LSJ-8	82.00	300	120	0.10	0.00	0.00
LSP-11	LSJ-9	LSJ-10	78.90	300	120	-2.48	0.04	0.01
LSP-12	LSJ-10	LSJ-11	84.70	300	120	-15.10	0.21	0.23
LSP-13	LSJ-11	LSJ-12	75.00	300	120	-11.11	0.16	0.13
LSP-14	LSJ-12	LSJ-13	71.00	300	120	-14.85	0.21	0.22
LSP-15	LSJ-13	SA02T052	140.50	300	120	-38.01	0.54	1.24
LSP-16	LSJ-14	LSJ-1	82.00	200	110	-8.24	0.26	0.62
LSP-17	LSJ-15	LSJ-14	79.20	200	110	-6.36	0.20	0.38
LSP-18 LSP-19	LSJ-16	LSJ-15	176.80	200 200	110 110	-4.60	0.15	0.21
LSP-19 LSP-20	LSJ-17 LSJ-18	LSJ-16 LSJ-17	78.90 77.40	200	110	8.74 6.20	0.28 0.20	0.69 0.37
LSP-21	LSJ-16 LSJ-19	LSJ-17 LSJ-18	193.90	200	110	-2.65	0.20	0.08
LSP-21 LSP-22	LSJ-19	LSJ-16 LSJ-19	100.30	200	110	-0.66	0.02	0.08
LSP-23	LSJ-14 LSJ-14	LSJ-19 LSJ-17	185.90	200	110	2.54	0.02	0.01
LSP-24	LSJ-14 LSJ-20	LSJ-17 LSJ-18	87.80	200	110	8.85	0.08	0.71
LSP-25	LSJ-22	LSJ-16	129.20	300	120	2.86	0.04	0.71
LSP-26	LSJ-21	LSJ-22	82.90	300	120	8.65	0.12	0.08
LSP-27	LSJ-20	LSJ-21	77.70	300	120	12.46	0.18	0.16
LSP-28	LSJ-54	LSJ-20	151.80	300	120	33.66	0.48	0.99
LSP-29	LSJ-24	LSJ-20	137.80	300	120	-12.35	0.17	0.16
LSP-30	LSJ-25	LSJ-24	86.00	300	120	-0.46	0.01	0.00
LSP-31	LSJ-21	LSJ-25	136.20	200	110	2.48	0.08	0.07
LSP-32	LSJ-25	LSJ-26	53.30	300	120	2.94	0.04	0.01
LSP-33	LSJ-26	LSJ-27	71.90	300	120	2.94	0.04	0.01
LSP-34	LSJ-27	LSJ-4	89.60	300	120	-0.01	0.00	0.00
LSP-35	LSJ-22	LSJ-23	96.90	200	110	1.52	0.05	0.03
LSP-36	LSJ-3	LSJ-23	124.70	200	110	-0.11	0.00	0.00
LSP-37	LSJ-2	LSJ-31	79.90	300	120	-5.71	0.08	0.04
LSP-38	LSJ-29	LSJ-28	28.00	200	110	0.00	0.00	0.00
LSP-39	LSJ-29	LSJ-30	127.40	200	110	0.00	0.00	0.00
LSP-40	LSJ-30	LSJ-31	93.60	200	110	0.00	0.00	0.00
LSP-41	LSJ-31	SB02V053	161.80	300	120	-11.85	0.17	0.14
LSP-42	LSJ-31	LSJ-32	142.30	200	110	6.14	0.20	0.36
LSP-43	LSJ-32	LSJ-34	231.30	200	110	3.21	0.10	0.11
LSP-45	LSJ-34	LSJ-6	126.80	200	110	-7.62	0.24	0.54
LSP-46	LSJ-7	LSJ-35	120.10	200	110	0.69	0.02	0.01
LSP-47	LSJ-35	LSJ-36	157.30	200	110	-1.06	0.03	0.01
LSP-48	LSJ-9	LSJ-36	104.20	200	110	1.06	0.03	0.01
LSP-49	LSJ-7	LSJ-37	102.40	200	110	3.44	0.11	0.12
LSP-50	LSJ-37	LSJ-38	76.50	200	110	-5.33	0.17	0.28
LSP-51	LSJ-8	LSJ-38 J-184	106.40	300 300	120	-6.95	0.10 0.19	0.05 0.17
LSP-52(1) LSP-52(2)	LSJ-38 J-184	J-184 LSJ-39	55.80 81.10	300	120 120	-13.12 -10.66	0.19	0.17
LSP-52(2) LSP-53	J-184 LSJ-39	LSJ-39 LSJ-40	124.10	300	120	-10.66	0.15	0.12
LSP-54	LSJ-39 LSJ-40	LSJ-13	43.90	300	120	-10.66	0.15	0.12
LSP-55	LSJ-41	LSJ-13 LSJ-11	78.30	200	110	0.67	0.02	0.12
LSP-56	LSJ-42	LSJ-41	80.20	200	110	0.67	0.02	0.01
LSP-57	LSJ-42	LSJ-12	82.90	200	110	-3.14	0.10	0.10
LSP-58	LSJ-13	LSJ-43	84.40	300	120	10.75	0.15	0.10
LSP-59	LSJ-43	LSJ-44	37.80	300	120	5.49	0.08	0.03
LSP-61	LSJ-44	WH_03	59.40	300	120	5.49	0.08	0.04
LSP-62	WH_03	WH_04	53.00	300	120	5.19	0.07	0.03
LSP-63	WH_04	WH_05	68.00	300	120	4.81	0.07	0.03
LSP-64	WH_05	WH_06	50.90	300	120	4.35	0.06	0.02
LSP-65	WH_06	WH_07	66.40	300	120	4.01	0.06	0.02
LSP-66	WH_07	LSJ-50	41.10	300	120	3.71	0.05	0.02
LSP-68	LSJ-50	LSJ-51	33.50	300	120	3.71	0.05	0.02
LSP-69	LSJ-57	LSJ-11	85.30	300	120	5.52	0.08	0.04
P-239	LSJ-51	LSJ-57	86.00	300	120	3.71	0.05	0.02
P-240	LSJ-57	LSJ-43	126.20	200	110	-2.99	0.10	0.10
P-253	J-182	LSJ-10	142.30	300	120	-2.52	0.04	0.01
P-254	J-184	LSJ-42	79.20	200	110	-2.47	0.08	0.07

APPENDIX

C

FIRE FLOW REPORT

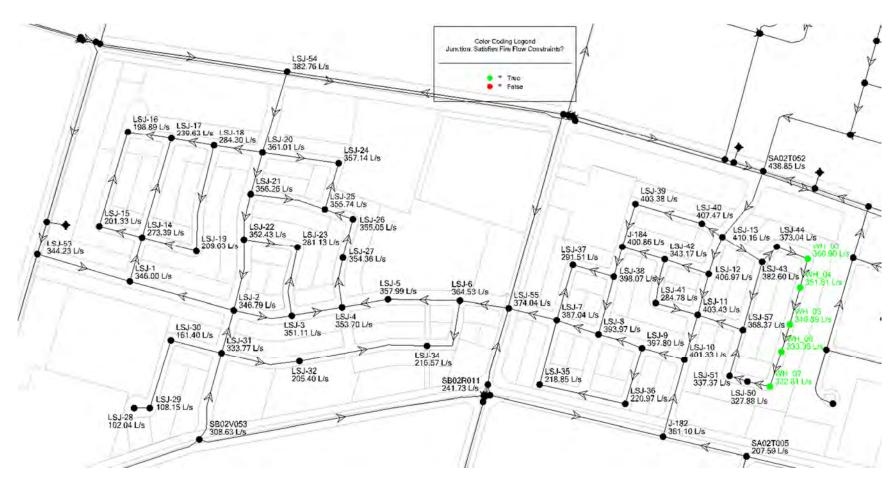


Figure C1 - Fire Flow Available During the 2011 MDD+FF Scenario with PD1 Reservoir at 50% Full and ALL Woodward Pumps set to OFF

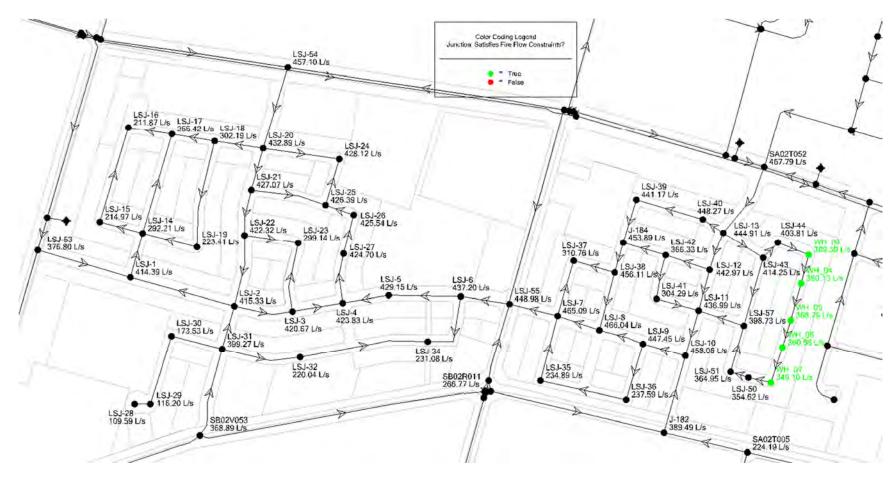


Figure C2 - Fire Flow Available During the 2011 MDD+FF Scenario with PD1 Reservoir at 75% Full and ALL Woodward Pumps set to OFF

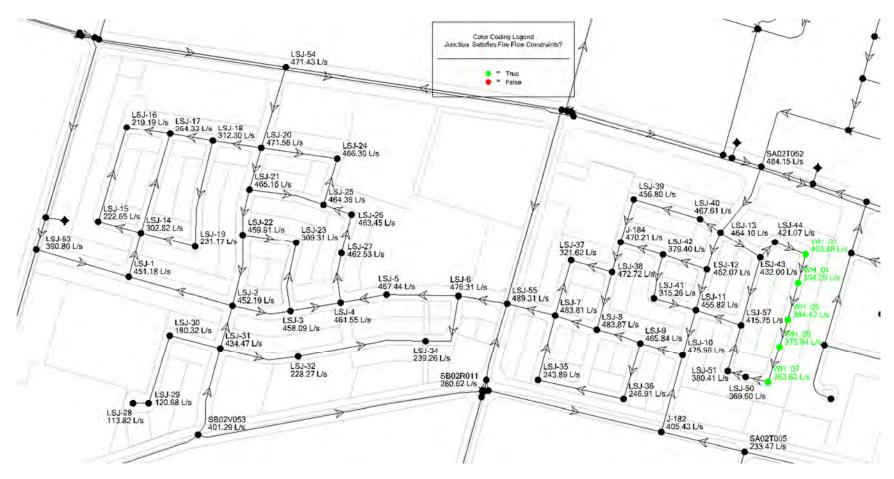


Figure C3 - Fire Flow Available During the 2011 MDD+FF Scenario with PD1 Reservoir at 90% Full and ALL Woodward Pumps set to OFF

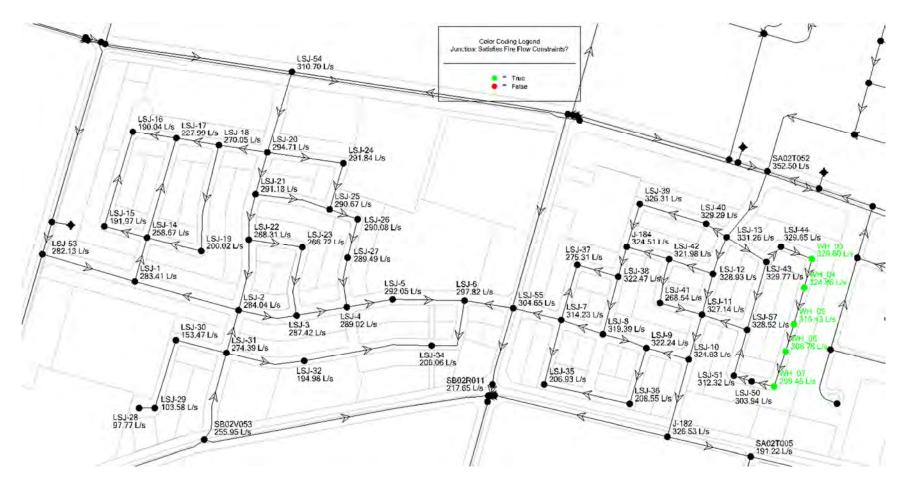


Figure C4 - Fire Flow Available During the 2031 MDD+FF Scenario with PD1 Reservoir at 50% Full and ALL Woodward Pumps set to OFF

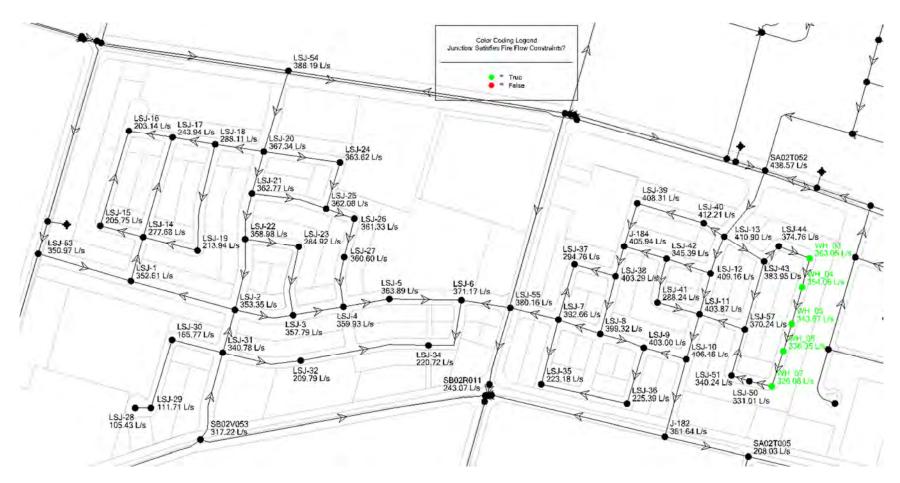


Figure C5 - Fire Flow Available During the 2031 MDD+FF Scenario with PD1 Reservoir at 75% Full and ALL Woodward Pumps set to OFF

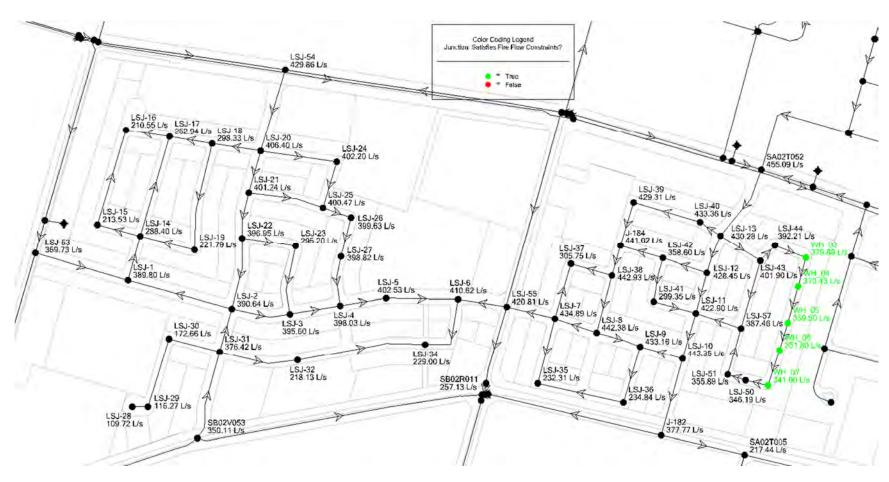


Figure C6 - Fire Flow Available During the 2031 MDD+FF Scenario with PD1 Reservoir at 90% Full and ALL Woodward Pumps set to OFF

					2011 MI	DD + FF - Reservoir 5	0% Full				1
				Satisfies Fire	2011111	1	570 T UII	Pressure	Pressure	Junction w/	Junction w/
Label	Elevation (m)	Fire Flow	Fire Flow	Flow	Hydraulic	Pressure (Residual	Pressure (Zone	(Calculated	(Calculated Zone	Minimum Pressure	Minimum Pressure
Label	Lievation (III)	(Needed) (L/s)	(Available) (L/s)	Constraints?	Grade (m)	Lower Limit) (kPa)	Lower Limit) (kPa)	Residual) (kPa)	Lower Limit) (kPa)	(Zone)	(System)
1.100	04.05	NI/A	004		107.00	440	110		, , ,	, ,	. , ,
J-182 J-184	94.25 91.25	N/A N/A	361 401	TRUE TRUE	127.06 127.06	140 140	140 140	140 160	151 140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-1	91.00	N/A	346	TRUE	127.04	140	140	192	140	SB02S008	SF05E005
LSJ-2	91.75	N/A	347	TRUE	127.05	140	140	222	140	SB02S008	SF05E005
LSJ-3	91.50	N/A	351	TRUE	127.05	140	140	209	140	SB02S008	SF05E005
LSJ-4	91.50	N/A	354	TRUE	127.05	140	140	210	140	SB02S008	SF05E005
LSJ-5	90.25	N/A	358	TRUE	127.05	140	140	210	140	SB02S008	SF05E005
LSJ-6	91.75	N/A	365	TRUE	127.05	140	140	194	140	SB02S008	SF05E005
LSJ-7	92.25	N/A	387	TRUE	127.05	140	140	178	140	SB02S008	SF05E005
LSJ-8 LSJ-9	92.50 92.75	N/A N/A	394 398	TRUE TRUE	127.06 127.06	140 140	140 140	169 157	140 140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-10	93.00	N/A	401	TRUE	127.06	140	140	158	140	SB02S008	SF05E005
LSJ-10	92.00	N/A	403	TRUE	127.07	140	140	164	140	LSJ-50	SF05E005
LSJ-12	91.75	N/A	407	TRUE	127.07	140	140	158	140	SB02S008	SF05E005
LSJ-13	91.25	N/A	410	TRUE	127.07	140	140	172	140	SB02S008	SF05E005
LSJ-14	90.75	N/A	273	TRUE	127.02	140	140	143	140	LSJ-15	SF05E005
LSJ-15	91.50	N/A	201	TRUE	127.00	140	140	140	183	SB02S008	SF05E005
LSJ-16	90.50	N/A	199	TRUE	126.99	140	140	140	183	SB02S008	SF05E005
LSJ-17	90.75	N/A	240	TRUE	127.01	140	140	140	154	LSJ-16	SF05E005
LSJ-18 LSJ-19	89.75 91.00	N/A N/A	284 210	TRUE TRUE	127.02 127.02	140 140	140 140	140 140	155 181	LSJ-17 SB02S008	SF05E005 SF05E005
LSJ-19	89.75	N/A	361	TRUE	127.05	140	140	219	140	SB02S008	SF05E005
LSJ-21	90.50	N/A	356	TRUE	127.05	140	140	211	140	SB02S008	SF05E005
LSJ-22	90.75	N/A	352	TRUE	127.05	140	140	211	140	SB02S008	SF05E005
LSJ-23	90.50	N/A	281	TRUE	127.05	140	140	140	162	SB02S008	SF05E005
LSJ-24	89.25	N/A	357	TRUE	127.05	140	140	203	140	SB02S008	SF05E005
LSJ-25	89.75	N/A	356	TRUE	127.05	140	140	204	140	SB02S008	SF05E005
LSJ-26	89.75	N/A	355	TRUE	127.05	140	140	203	140	SB02S008	SF05E005
LSJ-27 LSJ-28	90.50 94.25	N/A N/A	354 102	TRUE TRUE	127.05 127.05	140 140	140 140	201 140	140 160	SB02S008 LSJ-29	SF05E005 SF05E005
LSJ-28 LSJ-29	94.25	N/A N/A	102	TRUE	127.05	140	140	140	140	LSJ-29 LSJ-28	SF05E005 SF05E005
LSJ-30	92.00	N/A	161	TRUE	127.05	140	140	162	140	LSJ-28	SF05E005
LSJ-31	92.75	N/A	334	TRUE	127.05	140	140	212	140	SB02S008	SF05E005
LSJ-32	92.75	N/A	205	TRUE	127.03	140	140	140	181	SB02S008	SF05E005
LSJ-34	91.25	N/A	217	TRUE	127.02	140	140	140	180	SB02S008	SF05E005
LSJ-35	93.50	N/A	219	TRUE	127.05	140	140	140	183	SB02S008	SF05E005
LSJ-36	94.00	N/A	221	TRUE	127.06	140	140	140	183	SB02S008	SF05E005
LSJ-37	91.00	N/A	292	TRUE	127.05	140	140	140	167	SB02S008	SF05E005
LSJ-38 LSJ-39	91.50 91.00	N/A N/A	398 403	TRUE TRUE	127.06 127.07	140 140	140 140	163 149	140 140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-39 LSJ-40	91.00	N/A N/A	403	TRUE	127.07	140	140	157	140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-40 LSJ-41	92.00	N/A	285	TRUE	127.07	140	140	140	171	SB02S008	SF05E005
LSJ-42	91.50	N/A	343	TRUE	127.07	140	140	140	157	SB02S008	SF05E005
LSJ-43	91.25	N/A	383	TRUE	127.07	140	140	161	140	WH_07	SF05E005
LSJ-44	91.75	N/A	373	TRUE	127.07	140	140	150	140	WH_07	SF05E005
LSJ-50	95.00	N/A	328	TRUE	127.07	140	140	140	144	WH_07	SF05E005
LSJ-51	94.00	N/A	337	TRUE	127.07	140	140	147	140	LSJ-50	SF05E005
LSJ-53	92.25	N/A N/A	344	TRUE	127.07	140	140	147	140	SB02S008	SF05E005
LSJ-54 LSJ-55	88.18 91.86	N/A N/A	383 374	TRUE TRUE	127.10 127.05	140 140	140 140	185 191	140 140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-55 LSJ-57	92.25	N/A N/A	368	TRUE	127.05	140	140	161	140	LSJ-50	SF05E005
SA02T005	95.10	N/A	208	TRUE	127.08	140	140	140	184	HB15T003	SF05E005
SA02T052	91.00	N/A	439	TRUE	127.14	140	140	140	140	SB02S008	SF05E005
SB02R011	94.00	N/A	242	TRUE	127.06	140	140	182	140	SB02S010	SF05E005
SB02V053	95.20	N/A	309	TRUE	127.07	140	140	197	140	SB02S008	SF05E005
WH_03	92.00	217	361	TRUE	127.07	140	140	143	140	WH_07	SF05E005
WH_04	92.00	217	352	TRUE	127.07	140	140	144	140	WH_07	SF05E005
WH_05	92.00	217	341	TRUE	127.07	140	140	149	140	WH_07	SF05E005
WH_06 WH 07	93.00 95.00	217 217	333 323	TRUE TRUE	127.07 127.07	140 140	140 140	146 140	140 150	WH_07 LSJ-50	SF05E005 SF05E005
WH_U/	90.00	211	323	INUE	121.01	140	140	140	100	L3J-30	SFUSEUUS

					2011 ME	DD + FF - Reservoir 7	5% Full				
Label	Elevation (m)	Fire Flow (Needed) (L/s)	Fire Flow (Available) (L/s)	Satisfies Fire Flow Constraints?	Hydraulic Grade (m)	Pressure (Residual Lower Limit) (kPa)	Pressure (Zone Lower Limit) (kPa)	Pressure (Calculated Residual) (kPa)	Pressure (Calculated Zone Lower Limit) (kPa)	Junction w/ Minimum Pressure (Zone)	Junction w/ Minimum Pressure (System)
J-182	94.25	N/A	389	TRUE	129.61	140	140	140	168	SB02S008	SF05E005
J-184	91.25	N/A	454	TRUE	129.61	140	140	140	144	WH 07	SF05E005
LSJ-1	91.00	N/A	414	TRUE	129.59	140	140	161	140	SB02S008	SF05E005
LSJ-2	91.75	N/A	415	TRUE	129.60	140	140	205	140	SB02S008	SF05E005
LSJ-3	91.50	N/A	421	TRUE	129.59	140	140	186	140	SB02S008	SF05E005
LSJ-4	91.50	N/A	424	TRUE	129.59	140	140	187	140	SB02S008	SF05E005
LSJ-5	90.25	N/A	429	TRUE	129.60	140	140	183	140	SB02S008	SF05E005
LSJ-6	91.75	N/A	437	TRUE	129.60	140	140	166	140	SB02S008	SF05E005
LSJ-7	92.25	N/A	465	TRUE	129.60	140	140	145	140	SB02S008	SF05E005
LSJ-8	92.50	N/A	466 447	TRUE	129.61	140	140 140	140 144	140	LSJ-36	SF05E005
LSJ-9 LSJ-10	92.75 93.00	N/A N/A	447 458	TRUE TRUE	129.61 129.61	140 140	140	144	140 141	LSJ-36 LSJ-50	SF05E005 SF05E005
LSJ-10 LSJ-11	92.00	N/A	437	TRUE	129.61	140	140	163	141	LSJ-50 LSJ-50	SF05E005 SF05E005
LSJ-11	91.75	N/A	443	TRUE	129.62	140	140	154	140	LSJ-50	SF05E005
LSJ-13	91.75	N/A	445	TRUE	129.62	140	140	171	140	WH 07	SF05E005
LSJ-14	90.75	N/A	292	TRUE	129.57	140	140	143	140	LSJ-15	SF05E005
LSJ-15	91.50	N/A	215	TRUE	129.55	140	140	140	204	SB02S008	SF05E005
LSJ-16	90.50	N/A	212	TRUE	129.54	140	140	140	205	SB02S008	SF05E005
LSJ-17	90.75	N/A	255	TRUE	129.56	140	140	140	156	LSJ-16	SF05E005
LSJ-18	89.75	N/A	302	TRUE	129.57	140	140	140	158	LSJ-17	SF05E005
LSJ-19	91.00	N/A	223	TRUE	129.57	140	140	140	202	SB02S008	SF05E005
LSJ-20	89.75	N/A	433	TRUE	129.60	140	140	193	140	SB02S008	SF05E005
LSJ-21	90.50	N/A	427	TRUE	129.60	140	140	185	140	SB02S008	SF05E005
LSJ-22	90.75	N/A	422	TRUE	129.60	140	140	186	140	SB02S008	SF05E005
LSJ-23 LSJ-24	90.50 89.25	N/A N/A	299 428	TRUE TRUE	129.59 129.59	140 140	140 140	140 170	181 140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-25	89.25	N/A	426	TRUE	129.59	140	140	170	140	SB02S008	SF05E005
LSJ-25	89.75	N/A	426	TRUE	129.59	140	140	173	140	SB02S008	SF05E005
LSJ-27	90.50	N/A	425	TRUE	129.59	140	140	171	140	SB02S008	SF05E005
LSJ-28	94.25	N/A	110	TRUE	129.60	140	140	140	163	LSJ-29	SF05E005
LSJ-29	94.00	N/A	116	TRUE	129.60	140	140	142	140	LSJ-28	SF05E005
LSJ-30	92.00	N/A	174	TRUE	129.60	140	140	162	140	LSJ-28	SF05E005
LSJ-31	92.75	N/A	399	TRUE	129.60	140	140	195	140	SB02S008	SF05E005
LSJ-32	92.75	N/A	220	TRUE	129.58	140	140	140	202	SB02S008	SF05E005
LSJ-34	91.25	N/A	231	TRUE	129.57	140	140	140	201	SB02S008	SF05E005
LSJ-35	93.50	N/A	235	TRUE	129.60	140	140	140	205	SB02S008	SF05E005
LSJ-36	94.00	N/A	238	TRUE	129.61	140	140	140	204	SB02S008	SF05E005
LSJ-37	91.00	N/A	311	TRUE TRUE	129.60	140	140	140	187	SB02S008	SF05E005
LSJ-38 LSJ-39	91.50 91.00	N/A N/A	456 441	TRUE	129.61 129.62	140 140	140 140	140 140	147 150	LSJ-50 WH 07	SF05E005 SF05E005
LSJ-39 LSJ-40	91.00	N/A N/A	441	TRUE	129.62	140	140	148	140	WH_07 WH 07	SF05E005 SF05E005
LSJ-40 LSJ-41	92.00	N/A	304	TRUE	129.62	140	140	140	191	SB02S008	SF05E005 SF05E005
LSJ-42	91.50	N/A	366	TRUE	129.62	140	140	140	175	SB02S008	SF05E005
LSJ-43	91.25	N/A	414	TRUE	129.62	140	140	158	140	WH 07	SF05E005
LSJ-44	91.75	N/A	404	TRUE	129.62	140	140	146	140	WH_07	SF05E005
LSJ-50	95.00	N/A	355	TRUE	129.62	140	140	140	145	WH_07	SF05E005
LSJ-51	94.00	N/A	365	TRUE	129.62	140	140	146	140	LSJ-50	SF05E005
LSJ-53	92.25	N/A	377	TRUE	129.62	140	140	140	153	SB02S008	SF05E005
LSJ-54	88.18	N/A	457	TRUE	129.64	140	140	140	141	SB02S008	SF05E005
LSJ-55	91.86	N/A	449	TRUE	129.60	140	140	162	140	SB02S008	SF05E005
LSJ-57	92.25	N/A	399	TRUE	129.62	140	140	160	140	LSJ-50	SF05E005
SA02T005 SA02T052	95.10 91.00	N/A N/A	224 468	TRUE TRUE	129.63 129.69	140 140	140 140	140 140	207	HB15T003 WH 07	SF05E005
SB02R011	91.00	N/A N/A	468 267	TRUE	129.69	140	140	181	156 140	SB02S010	SF05E005 SF05E005
SB02V053	95.20	N/A	369	TRUE	129.61	140	140	183	140	SB02S010 SB02S008	SF05E005 SF05E005
WH 03	95.20	217	390	TRUE	129.62	140	140	140	141	WH 07	SF05E005 SF05E005
WH_03	92.00	217	380	TRUE	129.62	140	140	140	140	WH_07	SF05E005
WH 05	92.00	217	369	TRUE	129.62	140	140	146	140	WH 07	SF05E005
WH_06	93.00	217	361	TRUE	129.62	140	140	144	140	WH 07	SF05E005
WH 07	95.00	217	349	TRUE	129.62	140	140	140	151	LSJ-50	SF05E005

					2011 ME	DD + FF - Reservoir 9	0% Full				
Label	Elevation (m)	Fire Flow (Needed) (L/s)	Fire Flow (Available) (L/s)	Satisfies Fire Flow Constraints?	Hydraulic Grade (m)	Pressure (Residual Lower Limit) (kPa)	Pressure (Zone Lower Limit) (kPa)	Pressure (Calculated Residual) (kPa)	Pressure (Calculated Zone Lower Limit) (kPa)	Junction w/ Minimum Pressure (Zone)	Junction w/ Minimum Pressure (System)
J-182	94.25	N/A	405	TRUE	131.10	140	140	140	178	SB02S008	SF05E005
J-184	91.25	N/A	470	TRUE	131.10	140	140	140	147	WH_07	SF05E005
LSJ-1	91.00	N/A	451	TRUE	131.08	140	140	142	140	SB02S008	SF05E005
LSJ-2	91.75	N/A	452	TRUE	131.08	140	140	195	140	SB02S008	SF05E005
LSJ-3	91.50	N/A	458	TRUE	131.08	140	140	172	140	SB02S008	SF05E005
LSJ-4	91.50	N/A	462	TRUE	131.08	140	140	174	140	SB02S008	SF05E005
LSJ-5	90.25	N/A	467	TRUE	131.08	140	140	167	140	SB02S008	SF05E005
LSJ-6 LSJ-7	91.75 92.25	N/A N/A	476 484	TRUE TRUE	131.09 131.09	140 140	140 140	149 144	140 140	SB02S008 LSJ-35	SF05E005 SF05E005
LSJ-7 LSJ-8	92.25	N/A N/A	484 484	TRUE	131.09	140	140	144	140	LSJ-35 LSJ-36	SF05E005 SF05E005
LSJ-9	92.75	N/A	466	TRUE	131.10	140	140	143	140	LSJ-36	SF05E005
LSJ-10	93.00	N/A	476	TRUE	131.10	140	140	140	143	LSJ-50	SF05E005
LSJ-11	92.00	N/A	456	TRUE	131.10	140	140	162	140	LSJ-50	SF05E005
LSJ-12	91.75	N/A	462	TRUE	131.11	140	140	152	140	LSJ-50	SF05E005
LSJ-13	91.25	N/A	464	TRUE	131.11	140	140	170	140	WH_07	SF05E005
LSJ-14	90.75	N/A	303	TRUE	131.06	140	140	142	140	LSJ-15	SF05E005
LSJ-15	91.50	N/A	223	TRUE	131.04	140	140	140	214	LSJ-16	SF05E005
LSJ-16	90.50	N/A	219	TRUE	131.03	140	140	140	214	LSJ-15	SF05E005
LSJ-17	90.75	N/A	264	TRUE	131.05	140	140	140	157	LSJ-16	SF05E005
LSJ-18	89.75	N/A	312	TRUE	131.06	140	140	140	160	LSJ-17	SF05E005
LSJ-19 LSJ-20	91.00 89.75	N/A N/A	231 472	TRUE TRUE	131.06 131.09	140 140	140 140	140 178	214 140	SB02S008	SF05E005
LSJ-20 LSJ-21	90.50	N/A N/A	472	TRUE	131.09	140	140	178	140	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-21 LSJ-22	90.50	N/A	460	TRUE	131.09	140	140	171	140	SB02S008	SF05E005 SF05E005
LSJ-22	90.75	N/A	309	TRUE	131.08	140	140	140	192	SB02S008	SF05E005
LSJ-24	89.25	N/A	466	TRUE	131.08	140	140	150	140	SB02S008	SF05E005
LSJ-25	89.75	N/A	464	TRUE	131.08	140	140	154	140	SB02S008	SF05E005
LSJ-26	89.75	N/A	463	TRUE	131.08	140	140	152	140	SB02S008	SF05E005
LSJ-27	90.50	N/A	463	TRUE	131.08	140	140	153	140	SB02S008	SF05E005
LSJ-28	94.25	N/A	114	TRUE	131.09	140	140	140	164	LSJ-29	SF05E005
LSJ-29	94.00	N/A	121	TRUE	131.09	140	140	142	140	LSJ-28	SF05E005
LSJ-30	92.00	N/A	180	TRUE	131.09	140	140	162	140	LSJ-28	SF05E005
LSJ-31	92.75	N/A	434	TRUE	131.09	140	140	185	140	SB02S008	SF05E005
LSJ-32	92.75	N/A	228	TRUE	131.07	140	140	140	214	SB02S008	SF05E005
LSJ-34	91.25	N/A N/A	239 244	TRUE TRUE	131.06 131.09	140 140	140 140	140 140	213 217	SB02S008	SF05E005
LSJ-35 LSJ-36	93.50 94.00	N/A	247	TRUE	131.10	140	140	140	217	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-37	91.00	N/A	322	TRUE	131.09	140	140	140	199	SB02S008	SF05E005
LSJ-38	91.50	N/A	473	TRUE	131.10	140	140	140	149	LSJ-50	SF05E005
LSJ-39	91.00	N/A	457	TRUE	131.11	140	140	140	153	WH 07	SF05E005
LSJ-40	91.25	N/A	468	TRUE	131.11	140	140	145	140	WH_07	SF05E005
LSJ-41	92.00	N/A	315	TRUE	131.10	140	140	140	202	SB02S008	SF05E005
LSJ-42	91.50	N/A	379	TRUE	131.10	140	140	140	183	LSJ-41	SF05E005
LSJ-43	91.25	N/A	432	TRUE	131.11	140	140	156	140	WH_07	SF05E005
LSJ-44	91.75	N/A	421	TRUE	131.11	140	140	144	140	WH_07	SF05E005
LSJ-50	95.00	N/A	370	TRUE	131.11	140	140	140	145	WH_07	SF05E005
LSJ-51	94.00	N/A	380	TRUE	131.11	140	140	146	140	LSJ-50	SF05E005
LSJ-53 LSJ-54	92.25 88.18	N/A N/A	391 471	TRUE TRUE	131.11 131.13	140 140	140 140	140 140	162 150	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-54 LSJ-55	91.86	N/A N/A	489	TRUE	131.13	140	140	140	150	SB02S008 SB02S008	SF05E005 SF05E005
LSJ-55	92.25	N/A	416	TRUE	131.11	140	140	160	140	LSJ-50	SF05E005
SA02T005	95.10	N/A	233	TRUE	131.12	140	140	140	221	HB15T003	SF05E005
SA02T052	91.00	N/A	484	TRUE	131.18	140	140	140	160	WH 07	SF05E005
SB02R011	94.00	N/A	281	TRUE	131.10	140	140	181	140	SB02S010	SF05E005
SB02V053	95.20	N/A	401	TRUE	131.10	140	140	175	140	SB02S008	SF05E005
WH_03	92.00	217	404	TRUE	131.11	140	140	140	143	WH_07	SF05E005
WH_04	92.00	217	394	TRUE	131.11	140	140	140	142	WH_07	SF05E005
WH_05	92.00	217	384	TRUE	131.11	140	140	144	140	WH_07	SF05E005
WH_06	93.00	217	376	TRUE	131.11	140	140	143	140	WH_07	SF05E005
WH_07	95.00	217	364	TRUE	131.11	140	140	140	152	LSJ-50	SF05E005

Label Brewton (n) Fire From Price Plane Montrol (n) Price Plane Program						2031 ME	DD + FF - Reservoir 5	0% Full				
J-194	Label	Elevation (m)			Flow				(Calculated	(Calculated Zone	Minimum Pressure	Minimum Pressure
LS-1:1 91.00 NA 283 TRUE 120.06 140 140 217 140 80025008 H8151012 LS-12 0175 NA 284 TRUE 120.06 140 140 225 140 80025008 H8151012 LS-13 01.55 NA 284 TRUE 120.06 140 140 227 140 80025009 H8151012 LS-13 01.55 NA 282 TRUE 120.06 140 140 227 140 80025009 H8151012 LS-13 01.55 NA 282 TRUE 120.06 140 140 222 140 80025009 H8151012 LS-15 NA 282 TRUE 120.06 140 140 222 140 80025009 H8151012 LS-15 NA 282 TRUE 120.06 140 140 210 140 80025009 H8151012 LS-15 NA 282 TRUE 120.06 140 140 210 140 80025009 H8151012 LS-15 NA 284 TRUE 120.06 140 140 210 140 80025009 H8151012 LS-15 NA 284 TRUE 120.06 140 140 140 190 140 80025009 H8151012 LS-15 NA 284 NA 284 TRUE 120.06 140 140 140 190 140 80025009 H8151012 LS-15 NA 284 NA 284 TRUE 120.06 140 140 140 190 140 80025009 H8151012 LS-16 NA 284 NA 284 TRUE 120.07 140 140 140 190 140 80025009 H8151012 LS-16 NA 284 NA	J-182	94.25	N/A	327	TRUE	126.06	140	140	145	140	SB02S008	HB15T012
LS-12 91.75												
LS-13												
LSJ-14 91.50 NA 289 TRUE 126.06 140 140 228 140 58025006 H815T012 LSJ-15 80.256 NAV 222 TRUE 126.06 140 140 222 140 58025006 H815T012 LSJ-16 81.55 NAV 229 TRUE 126.06 140 140 216 140 58025006 H815T012 LSJ-16 140 58025006 NAV 1919 TRUE 126.06 140 140 140 1919 140 58025006 H815T012 LSJ-16 140 58025006 NAV 1919 TRUE 126.06 140 140 140 1919 140 58025006 NAV 1919 TRUE 126.06 140 140 140 188 140 58025006 NAV 1919 140 140 140 188 140 58025006 NAV 1919 140 140 140 180 18025006 NAV 1919 140 180 18025006 NAV 1919 140 140 180 18025006 NAV 1919 140 180 180 18025006 NAV 1919 140 1802500 NAV 1919 140 180 18025006 NAV 1919 140 180 18025006 NAV 1919 140 1802500 NAV 1919 140 180250												
LSJ-15 90.25												
LSJ-16 91.75 NA 298 TRUE 128.06 140 140 216 140 80025008 H9151012 LSJ-18 92.25 NA 314 TRUE 128.06 140 140 140 203 140 80025008 H9151012 LSJ-18 92.25 NA 312 TRUE 128.06 140 140 140 188 140 80025008 H9151012 LSJ-18 128.06 140 140 140 188 140 80025008 H9151012 LSJ-18 140												
LS.17 92.25 NA 314 TRUE 126.06 140 140 203 140 SB025008 Hel1ford LS.18 92.50 NA 319 TRUE 126.06 140 140 140 168 140 SB025008 Hel1ford LS.19 127 NA 322 TRUE 126.06 140 140 168 140 SB025008 Hel1ford LS.10 NA 322 TRUE 126.06 140 140 168 140 SB025008 Hel1ford LS.10 NA 322 TRUE 126.06 140 140 168 140 SB025008 Hel1ford LS.10 NA 322 TRUE 126.07 140 140 162 140 SB025008 Hel1ford LS.16 NA 329 TRUE 126.07 140 140 192 140 SB025008 Hel1ford LS.11 SB025008 Hel1ford LS.11 SB025008 Hel1ford LS.11 SB025008 Hel1ford LS.11 SB02508 Hel1ford LS.12 SB02508 Hel1for												
LSJ-8 92.50 NA 319 TRUE 126.06 140 140 197 140 S80025008 H8157012 LSJ-10 93.00 NA 325 TRUE 126.06 140 140 167 140 S80025008 H8157012 LSJ-10 93.00 NA 325 TRUE 126.06 140 140 167 140 S80025008 H8157012 LSJ-10 93.00 NA 325 TRUE 126.07 140 140 167 140 S80025008 H8157012 LSJ-13 91.25 NA 331 TRUE 126.08 140 140 160 167 140 S80025008 H8157012 LSJ-13 91.25 NA 331 TRUE 126.08 140 140 203 140 S80025008 H8157012 LSJ-13 91.25 NA 331 TRUE 126.08 140 140 203 140 S80025008 H8157012 LSJ-15 91.50 NA 192 TRUE 126.02 140 140 140 140 168 S80025008 H8157012 LSJ-15 91.50 NA 192 TRUE 126.02 140 140 140 140 168 S80025008 H8157012 LSJ-16 M8157012 LSJ-17 M9175 NA 228 TRUE 126.02 140 140 140 140 168 S80025008 H8157012 LSJ-17 M9175 NA 228 TRUE 126.03 140 140 140 140 153 LSJ-16 H8157012 LSJ-17 M9175 NA 228 TRUE 126.03 140 140 140 140 153 LSJ-16 H8157012 LSJ-17 M9175 NA 228 TRUE 126.00 140 140 140 140 140 153 LSJ-16 H8157012 LSJ-17 M9175 NA 228 TRUE 126.00 140 140 140 240 140 S80025008 H8157012 LSJ-12 M9175 NA 228 TRUE 126.00 140 140 240 140 S80025008 H8157012 LSJ-12 M9175 NA 228 TRUE 126.00 140 140 240 140 S80025008 H8157012 LSJ-12 M9175 NA 228 TRUE 126.00 140 140 229 140 S80025008 H8157012 LSJ-12 M9175 NA 229 TRUE 126.00 140 140 140 230 140 S80025008 H8157012 LSJ-12 M9175 NA 229 TRUE 126.00 140 140 140 140 S80025008 H8157012 LSJ-1												
LSJ-10 93.00 NA 325 TRUE 126.06 140 140 187 140 S8025008 P815T012 LSJ-11 92.00 NA 327 TRUE 126.07 140 140 194 140 S8025008 P815T012 LSJ-12 91.76 NA 320 TRUE 126.07 140 140 192 140 S8025008 P815T012 LSJ-13 91.76 NA 320 TRUE 126.07 140 140 140 192 140 S8025008 P815T012 LSJ-14 91.76 NA 320 TRUE 126.08 140 140 140 140 140 S8025008 P815T012 LSJ-14 90.75 NA 259 TRUE 126.04 140 140 140 140 140 140 LSJ-15 P815T012 LSJ-14 90.75 NA 259 TRUE 126.04 140 140 140 140 140 140 LSJ-15 P815T012 LSJ-17 90.75 NA 228 TRUE 126.01 140 140 140 140 159 S8025008 P815T012 LSJ-17 90.75 NA 228 TRUE 126.01 140 140 140 140 153 LSJ-16 P815T012 LSJ-18 90.75 NA 228 TRUE 126.04 140 140 140 140 153 LSJ-18 P815T012 LSJ-19 91.00 NA 200 TRUE 126.04 140 140 140 140 166 S8025008 P815T012 LSJ-19 91.00 NA 200 TRUE 126.04 140 140 140 166 S8025008 P815T012 LSJ-19 90.75 NA 201 TRUE 126.04 140 140 140 166 S8025008 P815T012 LSJ-19 90.75 NA 201 TRUE 126.04 140 140 140 140 166 S8025008 P815T012 LSJ-19 90.75 NA 201 TRUE 126.07 140 140 140 140 166 S8025008 P815T012 LSJ-19 90.75 NA 201 TRUE 126.07 140 140 140 140 186 S8025008 P815T012 LSJ-12 90.55 NA 201 TRUE 126.07 140 140 230 140 S8025008 P815T012 LSJ-12 90.55 NA 201 TRUE 126.07 140 140 230 140 S8025008 P815T012 LSJ-12 90.55 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 201 TRUE 126.06 140 140 140 230 140 S8025008 P815T012 LSJ-12 89.25 NA 200 TRUE 126.06 140 140 140 140 159 S8025008 P815T012 LSJ-12 89.25 NA 200 TRUE 126.06 140 140 140 140 159 S8025008 P815T012 LSJ-13 90.75 NA 200 TRUE 126.06 140 140 140 140 159 S8025008 P815T012 LSJ-13 90.75 NA 200 TRUE 126.06 140 140 140 140 160 S8025008 P815T012 LSJ-13 90.50 NA 200 TRUE 126.06 140 140 140												
LSJ-11 92.00 NA 327 TRUE 128.07 140 140 194 140 S8025008 H9151012 LSJ-12 91.75 NA 329 TRUE 128.07 140 140 192 140 S8025008 H9151012 LSJ-13 91.25 NA 331 TRUE 126.08 140 140 140 203 140 S8025008 H9151012 LSJ-15 91.55 NA 259 TRUE 126.04 140 140 144 140 LSJ-15 H9151012 LSJ-15 91.50 NA 192 TRUE 126.02 140 140 140 168 S8025008 H9151012 LSJ-16 91.50 NA 192 TRUE 126.02 140 140 140 168 S8025008 H9151012 LSJ-16 91.50 NA 192 TRUE 126.02 140 140 140 168 S8025008 H9151012 LSJ-16 91.50 NA 270 TRUE 126.04 140 140 140 168 S8025008 H9151012 LSJ-16 91.50 NA 270 TRUE 126.04 140 140 140 140 168 S8025008 H9151012 LSJ-18 89.76 NA 270 TRUE 126.04 140 140 140 140 168 S8025008 H9151012 LSJ-19 89.75 NA 295 TRUE 128.07 140 140 140 140 S8025008 H9151012 LSJ-19 S805500 NA 295 TRUE 128.06 140 140 232 140 S8025008 H9151012 LSJ-12 90.75 NA 288 TRUE 128.06 140 140 231 140 S8025008 H9151012 LSJ-12 90.75 NA 288 TRUE 128.06 140 140 231 140 S8025008 H9151012 LSJ-12 90.75 NA 288 TRUE 128.06 140 140 230 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 128.06 140 140 230 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 128.06 140 140 230 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 128.06 140 140 140 140 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 126.06 140 140 140 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 126.06 140 140 140 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 126.06 140 140 140 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 126.06 140 140 140 140 S8025008 H9151012 LSJ-12 90.50 NA 292 TRUE 126.0												
ES-12 91.76 NA 329 TRUE 128.07 140 140 192 140 S8025008 H8151012												
LS.1-13 9125 NA 331 TRUE 126.08 140 140 203 140 S8025008 H9157012 LS.1-15 90.50 NA 259 TRUE 126.04 140 140 140 140 140 140 150 S8025008 H9157012 LS.1-16 90.50 NA 192 TRUE 126.02 140 140 140 140 168 S8025008 H9157012 LS.1-16 90.50 NA 192 TRUE 126.02 140 140 140 140 159 S8025008 H9157012 LS.1-16 90.50 NA 192 TRUE 126.02 140 140 140 140 159 S8025008 H9157012 LS.1-16 90.50 NA 192 TRUE 126.03 140 140 140 153 LS.1-16 H9157012 LS.1-16 90.50 NA 228 TRUE 126.03 140 140 140 140 153 LS.1-16 H9157012 LS.1-16 90.50 NA 228 TRUE 126.03 140 140 140 140 153 LS.1-16 H9157012 LS.1-16 90.50 NA 228 TRUE 126.04 140 140 140 153 LS.1-16 H9157012 LS.1-16 90.50 NA 229 TRUE 126.04 140 140 140 153 LS.1-16 H9157012 LS.1-20 89.75 NA 255 TRUE 126.04 140 140 1240 140 S8025008 H9157012 LS.1-20 90.50 NA 251 TRUE 126.06 140 140 231 140 S8025008 H9157012 LS.1-22 90.75 NA 258 TRUE 126.06 140 140 123 140 S8025008 H9157012 LS.1-23 90.50 NA 258 TRUE 126.06 140 140 140 231 140 S8025008 H9157012 LS.1-24 89.25 NA 292 TRUE 126.06 140 140 140 230 140 S8025008 H9157012 LS.1-25 89.76 NA 292 TRUE 126.06 140 140 230 140 S8025008 H9157012 LS.1-25 89.76 NA 292 TRUE 126.06 140 140 230 140 S8025008 H9157012 LS.1-26 89.76 NA 292 TRUE 126.06 140 140 230 140 S8025008 H9157012 LS.1-26 89.76 NA 292 TRUE 126.06 140 140 230 140 S8025008 H9157012 LS.1-26 89.76 NA 292 TRUE 126.06 140 140 230 140 S8025008 H9157012 LS.1-26 89.76 NA 292 TRUE 126.06 140 140 140 230 140 S8025008 H9157012 LS.1-26 89.76 NA 292 TRUE 126.06 140 140 140 230 140 S8025008 H9157012 LS.1-26 89.76 NA 292 TRUE 126.06 140 140 140 230 140 S8025008 H9157012 LS.1-29 94.00 NA 104 TRUE 126.06 140 140 140 140 140 S8025008 H9157012 LS.1-29 94.00 NA 104 TRUE 126.06 140 140 140 140 140 S8025008 H9157012 LS.1-39 94.00 NA 294 TRUE 126.06 140 140 140 140 140 S8025008 H9157012 LS.1-39 94.00 NA 294 TRUE 126.06 140 140 140 140 140 S8025008 H9157012 LS.1-39 94.00 NA 294 TRUE 126.06 140 140 140 140 140 S8025008 H9157012 LS.1-39 94.00 NA 294 TRUE 126.06 140 140 140 140 140 S8025008 H9157012 LS.1-39 94.00 NA 294 TRUE 126.06												
LS.1-14 99.75 NA 259 TRUE 126.04 140 140 144 140 LS.1-15 H9157012 LS.1-15 91.50 NA 192 TRUE 126.02 140 140 140 140 168 S8025908 H9157012 LS.1-16 90.50 NA 190 TRUE 126.01 140 140 140 140 169 S8025908 H9157012 LS.1-16 99.50 NA 228 TRUE 126.03 140 140 140 140 169 S8025908 H9157012 LS.1-16 99.75 NA 228 TRUE 126.03 140 140 140 140 169 S8025908 H9157012 LS.1-18 89.75 NA 270 TRUE 126.04 140 140 140 140 166 S8025908 H9157012 LS.1-18 99.70 NA 270 TRUE 126.04 140 140 140 166 S8025908 H9157012 LS.1-18 99.70 NA 280 TRUE 126.04 140 140 140 166 S8025908 H9157012 LS.1-20 89.70 NA 285 TRUE 126.05 140 140 240 140 S8025908 H9157012 LS.1-20 90.75 NA 288 TRUE 126.06 140 140 240 140 S8025908 H9157012 LS.1-22 90.75 NA 288 TRUE 126.06 140 140 140 140 147 S8025908 H9157012 LS.1-23 90.50 NA 267 TRUE 126.06 140 140 140 140 147 S8025908 H9157012 LS.1-24 89.25 NA 292 TRUE 126.06 140 140 140 140 S8025908 H9157012 LS.1-24 89.75 NA 291 TRUE 126.06 140 140 140 140 S8025908 H9157012 LS.1-24 89.75 NA 291 TRUE 126.06 140 140 120 147 S8025908 H9157012 LS.1-26 89.75 NA 291 TRUE 126.06 140 140 1230 140 S8025908 H9157012 LS.1-26 89.75 NA 291 TRUE 126.06 140 140 230 140 S8025908 H9157012 LS.1-26 89.75 NA 291 TRUE 126.06 140 140 1230 140 S8025908 H9157012 LS.1-26 89.75 NA 291 TRUE 126.06 140 140 1230 140 S8025908 H9157012 LS.1-26 89.75 NA 290 TRUE 126.06 140 140 129 140 S8025908 H9157012 LS.1-26 89.75 NA 290 TRUE 126.06 140 140 140 229 140 S8025908 H9157012 LS.1-26 99.50 NA 299 TRUE 126.06 140 140 140 229 140 S8025908 H9157012 LS.1-26 99.50 NA 299 TRUE 126.06 140 140 140 125 140 S8025908 H9157012 LS.1-29 99.50 NA 299 TRUE 126.06 140 140 140 140 150 S8025908 H9157012 LS.1-28 99.50 NA 299 TRUE 126.06 140 140 140 140 150 S8025908 H9157012 LS.1-29 99.50 NA 299 TRUE 126.06 140 140 140 140 150 S8025908 H9157012 LS.1-39 99.00 NA 297 TRUE 126.06 140 140 140 140 150 S8025908 H9157012 LS.1-39 99.00 NA 297 TRUE 126.06 140 140 140 140 150 S8025908 H9157012 LS.1-39 99.00 NA 299 TRUE 126.06 140 140 140 140 140 S8025908 H9157012 LS.1-39 99.00 NA 299 TRUE 126.06 140												
LSJ-15 9150												
LS.1-16 90.50 NA 190 ITRUE 126.01 140 140 140 169 SB025008 HB15T012 LS.1-18 HB15T012 LS.1-20 HB15T012 LS.1-2												
LSJ-17 90.75 NA 228 TRUE 126.03 140 14												
LSJ-18												
ISJ20	LSJ-18			270								
LSJ-21 90.50												
ISJ-32 90.75 NIA 288 TRUE 126.06 140 140 140 141 147 SB025908 H815T012												
ISJ-32 90.50 N/A 267 TRUE 126.06 140 140 140 141 141 SB025008 HB15T012 ISJ-24 88.25 N/A 291 TRUE 126.06 140 140 230 140 SB025008 HB15T012 ISJ-25 89.75 N/A 291 TRUE 126.06 140 140 230 140 SB025008 HB15T012 ISJ-26 89.75 N/A 291 TRUE 126.06 140 140 229 140 SB025008 HB15T012 ISJ-27 90.50 N/A 289 TRUE 126.06 140 140 225 140 SB025008 HB15T012 ISJ-28 SB025008 HB15T012 ISJ-29 94.00 N/A 98 TRUE 126.06 140 140 140 159 ISJ-29 HB15T012 ISJ-29 94.00 N/A 104 TRUE 126.06 140 140 140 142 140 ISJ-28 HB15T012 ISJ-30 94.00 N/A 104 TRUE 126.06 140 140 142 140 ISJ-28 HB15T012 ISJ-30 92.00 N/A 153 TRUE 126.06 140 140 142 140 ISJ-28 HB15T012 ISJ-31 92.75 N/A 274 TRUE 126.06 140 140 140 125 140 ISJ-28 HB15T012 ISJ-31 92.75 N/A 274 TRUE 126.06 140 140 140 125 140 SB025008 HB15T012 ISJ-31 92.75 N/A 274 TRUE 126.06 140 140 140 157 SB025008 HB15T012 ISJ-34 91.25 N/A 208 TRUE 126.03 140 140 140 156 SB025008 HB15T012 ISJ-34 91.25 N/A 208 TRUE 126.03 140 140 140 165 SB025008 HB15T012 ISJ-35 93.50 N/A 208 TRUE 126.03 140 140 140 166 SB025008 HB15T012 ISJ-36 94.00 N/A 209 TRUE 126.03 140 140 140 169 SB025008 HB15T012 ISJ-37 PSD-37 PSD-												
ISJ-26												
ISJ-25 89.75 NA 291 TRUE 126.06 140 140 220 140 S8025008 H9151012												
ISJ-26												
LSJ-27 99.50 N/A 289 TRUE 126.06 140 140 140 140 159 LSJ-29 HB15T012 LSJ-28 94.26 N/A 98 TRUE 126.06 140 140 140 142 140 LSJ-28 HB15T012 LSJ-29 S94.00 N/A 104 TRUE 126.06 140 140 142 140 LSJ-28 HB15T012 LSJ-30 S92.00 N/A 153 TRUE 126.06 140 140 140 162 140 LSJ-28 HB15T012 LSJ-31 92.75 N/A 274 TRUE 126.06 140 140 140 162 140 LSJ-28 HB15T012 LSJ-32 92.75 N/A 195 TRUE 126.06 140 140 140 167 SB025008 HB15T012 LSJ-34 91.25 N/A 206 TRUE 126.03 140 140 140 167 SB025008 HB15T012 LSJ-35 93.50 N/A 206 TRUE 126.03 140 140 140 169 SB025008 HB15T012 LSJ-35 93.50 N/A 207 TRUE 126.06 140 140 140 169 SB025008 HB15T012 LSJ-37 91.00 N/A 209 TRUE 126.06 140 140 140 169 SB025008 HB15T012 LSJ-37 91.00 N/A 275 TRUE 126.06 140 140 140 140 152 SB025008 HB15T012 LSJ-39 91.00 N/A 322 TRUE 126.06 140 140 140 140 152 SB025008 HB15T012 LSJ-39 91.00 N/A 326 TRUE 126.06 140 140 140 155 SB025008 HB15T012 LSJ-39 91.00 N/A 326 TRUE 126.06 140 140 140 155 SB025008 HB15T012 LSJ-34 91.25 N/A 329 TRUE 126.06 140 140 140 155 SB025008 HB15T012 LSJ-40 91.25 N/A 322 TRUE 126.06 140 140 140 155 SB025008 HB15T012 LSJ-41 92.00 N/A 326 TRUE 126.07 140 140 140 140 SB025008 HB15T012 LSJ-44 91.55 N/A 330 TRUE 126.07 140 140 140 140 140 SB025008 HB15T012 LSJ-44 91.55 N/A 330 TRUE 126.07 140 140 140 140 142 SB025008 HB15T012 LSJ-44 91.55 N/A 330 TRUE 126.07 140 140 140 140 140 SB025008 HB15T012 LSJ-45 94.00 N/A 322 TRUE 126.07 140 140 140 140 SB025008 HB15T012 LSJ-51 94.00 N/A 332 TRUE 126.07 140 140 140 140 SB025008 HB15T012												
LSJ-28 94-00												
LSJ-30 92.00 NA 153 TRUE 126.06 140 140 162 140 LSJ-28 HB15T012 LSJ-31 92.75 NA 274 TRUE 126.06 140 140 140 125 140 S8025008 HB15T012 LSJ-32 92.75 NA 195 TRUE 126.04 140 140 140 167 S8025008 HB15T012 LSJ-34 91.25 NA 206 TRUE 126.03 140 140 140 167 S8025008 HB15T012 LSJ-35 93.50 NA 207 TRUE 126.06 140 140 140 169 S8025008 HB15T012 LSJ-37 91.00 NA 209 TRUE 126.06 140 140 140 169 S8025008 HB15T012 LSJ-38 94.00 NA 209 TRUE 126.06 140 140 140 169 S8025008 HB15T012 LSJ-39 91.00 NA 275 TRUE 126.06 140 140 140 152 S8025008 HB15T012 LSJ-39 91.00 NA 275 TRUE 126.06 140 140 140 152 S8025008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.06 140 140 140 195 140 S8025008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.06 140 140 140 195 140 S8025008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.07 140 140 140 188 HA 140 S8025008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.07 140 140 140 193 140 S8025008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.08 140 140 140 193 140 S8025008 HB15T012 LSJ-41 92.00 NA 229 TRUE 126.07 140 140 140 140 156 S8025008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 156 S8025008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 140 S8025008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 140 140 S8025008 HB15T012 LSJ-43 91.26 NA 330 TRUE 126.07 140 140 140 140 181 140 S8025008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 140 181 140 S8025008 HB15T012 LSJ-50 95.00 NA 322 TRUE 126.07 140 140 140 140 181 140 S8025008 HB15T012 LSJ-51 94.00 NA 324 TRUE 126.07 140 140 140 140 S8025008 HB15T012 LSJ-51 94.00 NA 330 TRUE 126.07 140 140 140 181 140 S8025008 HB15T012 LSJ-53 92.25 NA 329 TRUE 126.07 140 140 140 140 S8025008 HB15T012 LSJ-55 91.86 NA 304 TRUE 126.07 140 140 140 140 S8025008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S8025008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S8025008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S8025008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S8025008 HB15T012 S8025008 HB15T012 S8025008 HB15T012 S8025008 HB15T012 S8025008	LSJ-28	94.25	N/A	98		126.06	140	140	140	159	LSJ-29	HB15T012
LSJ-31 92.75 NA 274 TRUE 126.06 140 140 225 140 \$802\$5008 HB15T012 LSJ-32 92.75 NA 195 TRUE 126.04 140 140 140 167 \$802\$5008 HB15T012 LSJ-34 91.25 NA 206 TRUE 126.03 140 140 140 165 \$802\$5008 HB15T012 LSJ-34 91.25 NA 206 TRUE 126.06 140 140 140 165 \$802\$5008 HB15T012 LSJ-36 94.00 NA 207 TRUE 126.06 140 140 140 169 \$802\$5008 HB15T012 LSJ-36 94.00 NA 209 TRUE 126.06 140 140 140 169 \$802\$5008 HB15T012 LSJ-37 91.00 NA 275 TRUE 126.06 140 140 140 169 \$802\$5008 HB15T012 LSJ-38 91.50 NA 322 TRUE 126.06 140 140 140 152 \$802\$5008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.06 140 140 140 160 \$802\$5008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.06 140 140 140 188 140 \$802\$5008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.06 140 140 140 188 140 \$802\$5008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.07 140 140 188 140 \$802\$5008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.07 140 140 193 140 \$802\$5008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 140 156 \$802\$5008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 158 \$802\$5008 HB15T012 LSJ-43 91.25 NA 320 TRUE 126.07 140 140 140 140 156 \$802\$5008 HB15T012 LSJ-43 91.25 NA 322 TRUE 126.07 140 140 140 140 142 \$802\$5008 HB15T012 LSJ-43 91.25 NA 322 TRUE 126.07 140 140 140 140 140 S802\$5008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 140 142 \$802\$5008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 140 141 140 S802\$5008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 140 181 140 S802\$5008 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 140 140 S802\$5008 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 140 140 S802\$5008 HB15T012 LSJ-55 91.86 NA 330 TRUE 126.07 140 140 140 140 140 S802\$5008 HB15T012 LSJ-55 91.86 NA 311 TRUE 126.07 140 140 140 140 S802\$5008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S802\$5008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S802\$5008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.07 140 140 140 140 S802\$5008 HB15T012												
LSJ-32 92.75 NA 195 TRUE 126.04 140 140 140 167 SB02S008 HB15T012 LSJ-34 91.25 NA 206 TRUE 126.03 140 140 140 169 SB02S008 HB15T012 LSJ-35 93.50 NA 207 TRUE 126.06 140 140 140 169 SB02S008 HB15T012 LSJ-36 94.00 NA 209 TRUE 126.06 140 140 140 169 SB02S008 HB15T012 LSJ-37 91.00 NA 275 TRUE 126.06 140 140 140 169 SB02S008 HB15T012 LSJ-38 91.50 NA 322 TRUE 126.06 140 140 140 189 SB02S008 HB15T012 LSJ-38 91.50 NA 322 TRUE 126.06 140 140 189 140 SB02S008 HB15T012 LSJ-39 91.00 NA 326 TRUE 126.07 140 140 188 140 SB02S008 HB15T012 LSJ-41 91.25 NA 329 TRUE 126.07 140 140 188 140 SB02S008 HB15T012 LSJ-41 92.00 NA 229 TRUE 126.07 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 140 153 SB02S008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 153 SB02S008 HB15T012 LSJ-43 91.50 NA 322 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.50 NA 322 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.50 NA 322 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.55 NA 330 TRUE 126.07 140 140 140 140 155 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 161 140 SB02S008 HB15T012 LSJ-45 95.00 NA 304 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-57 95.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 140 144 WH 07 HB15T012 LSJ-53 92.50 NA 282 TRUE 126.07 140 140 140 140 140 SB02S008 HB15T012 LSJ-54 88.18 NA 311 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-55 91.68 NA 305 TRUE 126.07 140 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.68 NA 305 TRUE 126.07 140 140 140 140 183 140 SB02S008 HB15T012 LSJ-56 91.68 NA 305 TRUE 126.07 140 140 140 140 183 140 SB02S008 HB15T012 LSJ-56 91.68 NA 305 TRUE 126.07 140 140 140 140 180 SB02S008 HB15T012 LSJ-56 91.68 NA 305 TRUE 126.07 140 140 140 140 180 SB02S008 HB15T012 LSJ-56 91.68 NA 305 TRUE 126.07 140 140 140 140 180 SB02S008 HB15T012 LSJ-56 91.68 NA 305 TRUE 126.07 140 140 140 184 140 SB02S008 HB15T012 SB02V053												
LSJ-34 91.25 NA 206 TRUE 126.03 140 140 140 140 165 SB02S008 HB15T012 LSJ-35 93.50 NA 207 TRUE 126.06 140 140 140 169 SB02S008 HB15T012 LSJ-36 94.00 NA 209 TRUE 126.06 140 140 140 169 SB02S008 HB15T012 LSJ-36 94.00 NA 275 TRUE 126.05 140 140 140 152 SB02S008 HB15T012 LSJ-38 91.50 NA 322 TRUE 126.05 140 140 140 195 140 SB02S008 HB15T012 LSJ-39 91.00 NA 322 TRUE 126.06 140 140 195 140 SB02S008 HB15T012 LSJ-39 91.00 NA 326 TRUE 126.07 140 140 198 140 SB02S008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.08 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 322 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-45 94.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-51 94.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-53 95.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-53 95.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-54 94.00 NA 304 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-55 95.00 NA 304 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-55 95.00 NA 304 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 LSJ-55 95.00 NA 305 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-55 95.00 NA 305 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 LSJ-55 95.00 NA 305 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 LSJ-55 95.00 NA 305 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 LSJ-55 95.00 NA 305 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SB02S008 HB15T01												
LSJ-35 93.50 N/A 207 TRUE 126.06 140 140 140 169 SB025008 HB15T012 LSJ-36 94.00 N/A 209 TRUE 126.06 140 140 140 169 SB025008 HB15T012 LSJ-37 91.00 N/A 275 TRUE 126.06 140 140 140 152 SB025008 HB15T012 LSJ-38 91.00 N/A 322 TRUE 126.06 140 140 195 140 SB025008 HB15T012 LSJ-38 91.00 N/A 322 TRUE 126.06 140 140 195 140 SB025008 HB15T012 LSJ-39 91.00 N/A 326 TRUE 126.07 140 140 195 140 SB025008 HB15T012 LSJ-40 91.25 N/A 329 TRUE 126.08 140 140 140 193 140 SB025008 HB15T012 LSJ-41 92.00 N/A 269 TRUE 126.07 140 140 140 166 SB025008 HB15T012 LSJ-42 91.50 N/A 322 TRUE 126.07 140 140 140 156 SB025008 HB15T012 LSJ-43 91.50 N/A 322 TRUE 126.07 140 140 140 156 SB025008 HB15T012 LSJ-43 91.50 N/A 330 TRUE 126.07 140 140 140 156 SB025008 HB15T012 LSJ-44 91.75 N/A 330 TRUE 126.07 140 140 140 181 140 SB025008 HB15T012 LSJ-44 91.75 N/A 330 TRUE 126.07 140 140 181 140 SB025008 HB15T012 LSJ-45 95.00 N/A 304 TRUE 126.07 140 140 140 181 140 SB025008 HB15T012 LSJ-45 95.00 N/A 330 TRUE 126.07 140 140 140 181 140 SB025008 HB15T012 LSJ-51 94.00 N/A 312 TRUE 126.07 140 140 140 165 140 SB025008 HB15T012 LSJ-51 94.00 N/A 312 TRUE 126.07 140 140 140 140 140 SB025008 HB15T012 LSJ-51 94.00 N/A 312 TRUE 126.07 140 140 140 183 140 SB025008 HB15T012 LSJ-54 88.18 N/A 311 TRUE 126.07 140 140 140 183 140 SB025008 HB15T012 LSJ-55 91.86 N/A 305 TRUE 126.07 140 140 140 183 140 SB025008 HB15T012 LSJ-55 91.86 N/A 305 TRUE 126.06 140 140 140 180 SB025008 HB15T012 LSJ-55 91.86 N/A 305 TRUE 126.06 140 140 140 180 SB025008 HB15T012 SB025008 HB15T												
LSJ-36 94.00 NA 209 TRUE 126.06 140 140 140 169 SB02S008 HB15T012 LSJ-37 91.00 NA 275 TRUE 126.05 140 140 140 140 152 SB02S008 HB15T012 LSJ-38 91.50 NA 322 TRUE 126.06 140 140 195 140 SB02S008 HB15T012 LSJ-39 91.00 NA 326 TRUE 126.07 140 140 140 188 140 SB02S008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.07 140 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 140 142 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 140 142 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 181 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 181 140 SB02S008 HB15T012 LSJ-45 95.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-51 94.00 NA 304 TRUE 126.07 140 140 140 140 LSJ-50 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.07 140 140 140 140 LSJ-50 HB15T012 LSJ-55 91.86 NA 330 TRUE 126.10 140 140 140 SB02S008 HB15T012 LSJ-55 91.86 NA 329 TRUE 126.10 140 140 140 SB02S008 HB15T012 LSJ-55 91.86 NA 329 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-55 91.86 NA 329 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 SB02X015 95.10 NA 353 TRUE 126.06 140 140 140 140 183 140 SB02S008 HB15T012 SB02X015 95.10 NA 353 TRUE 126.07 140 140 140 140 140 SB02S008 HB15T012 SB02X015 95.10 NA 353 TRUE 126.06 140 140 140 140 140 SB02S008 HB15T012 SB02X015 95.10 NA 353 TRUE 126.07 140 140 140 140 183 140 SB02S008 HB15T012 SB02X015 95.00 NA 353 TRUE 126.07 140 140 140 140 140 SB02S008 HB15T012 SB02X015 95.00 NA 353 TRUE 126.07 140 140 140 140 140 MH 07 HB15T012 WH 03 92.00 217 335 TRUE 126.07 140 140 140 140 140 MH 07 HB15T012 WH												
LSJ-37 91.00 NA 275 TRUE 126.05 140 140 140 152 SB02S008 HB15T012 LSJ-38 91.50 NA 322 TRUE 126.06 140 140 195 140 SB02S008 HB15T012 LSJ-39 91.00 NA 326 TRUE 126.07 140 140 188 140 SB02S008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.08 140 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 156 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 181 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 140 181 140 SB02S008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-51 94.00 NA 304 TRUE 126.07 140 140 140 140 150 SB02S008 HB15T012 LSJ-53 92.25 NA 331 TRUE 126.07 140 140 140 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 331 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 330 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 LSJ-50 93.60 NA 311 TRUE 126.10 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 SB02S008 HB15T012 TRUE 126.07 140 140 140 140 SB02S008 HB15T012 SB02S008 HB1												
LSJ-38 91.50 NA 322 TRUE 126.06 140 140 195 140 SB02S008 HB15T012 LSJ-39 91.00 NA 326 TRUE 126.07 140 140 188 140 SB02S008 HB15T012 LSJ-40 91.25 NA 329 TRUE 126.08 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 142 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.08 140 140 140 140 142 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.08 140 140 140 181 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-45 95.00 NA 304 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 140 144 WH 07 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 LSJ-54 88.18 NA 311 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 140 SB02S008 HB15T012 SB02S005 95.10 NA 353 TRUE 126.06 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.10 NA 353 TRUE 126.06 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 140 140 140 MH 07 HB15T012 WH 04 92.00 217 330 TRUE 126.07 140 140 140 140 140 WH 07 HB15T012 WH 05												
LSJ-40 91.25 NA 329 TRUE 126.08 140 140 193 140 SB02S008 HB15T012 LSJ-41 92.00 NA 269 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 140 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.07 140 140 140 181 140 SB02S008 HB15T012 LSJ-43 91.75 NA 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.10 140 140 140 183 140 SB02S008 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.10 140 140 140 183 140 SB02S008 HB15T012 LSJ-54 88.18 NA 311 TRUE 126.14 140 140 140 223 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 223 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 150 SB02S008 HB15T012 SB02T052 95.10 NA 191 TRUE 126.06 140 140 140 150 SB02S008 HB15T012 SB02T052 95.10 NA 191 TRUE 126.06 140 140 140 150 SB02S008 HB15T012 SB02T052 95.10 NA 256 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 SB02T052 95.10 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02T052 95.00 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02T053 95.20 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02T053 95.20 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02T05 95.20 NA 256 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 SB02T053 95.20 NA 2566 TRUE 126.07 140 140 140 140 180 SB02S008 HB15T012 SB02T053 95.20 NA 2566 TRUE 126.07 140 140 140 140 180 SB02S008 HB15T012 SB02T053 95.20 NA 2566 TRUE 126.07 140 140 140 140 180 SB02S008 HB15T012 SB02T053 95.20 NA 2566 TRUE 126.07 140 140 140 140 140 WH 07 HB15T012 WH 05 95.00 217 335 TRUE 126.07 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 330 TRUE 126.07 140	LSJ-38	91.50	N/A	322	TRUE	126.06	140	140	195	140	SB02S008	HB15T012
LSJ-41 92.00 N/A 269 TRUE 126.07 140 140 140 156 SB02S008 HB15T012 LSJ-42 91.50 N/A 322 TRUE 126.07 140 140 140 140 142 SB02S008 HB15T012 LSJ-43 91.25 N/A 330 TRUE 126.08 140 140 181 140 SB02S008 HB15T012 LSJ-44 91.75 N/A 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-44 91.75 N/A 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 N/A 304 TRUE 126.07 140 140 140 144 WH.07 HB15T012 LSJ-51 94.00 N/A 312 TRUE 126.07 140 140 140 144 WH.07 HB15T012 LSJ-53 92.25 N/A 282 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 305 TRUE 126.06 140 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 309 TRUE 126.06 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-50 95.10 N/A 353 TRUE 126.06 140 140 140 150 SB02S008 HB15T012 SB02S005 95.10 N/A 353 TRUE 126.06 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.10 N/A 268 TRUE 126.06 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.06 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 SB02S005 95.00 N/A 256 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 N/H 03 92.00 217 330 TRUE 126.07 140 140 140 140 140 N/H 07 HB15T012 N/H 03 92.00 217 330 TRUE 126.07 140 140 140 140 140 N/H 07 HB15T012 N/H 03 92.00 217 3315 TRUE 126.07 140 140 140 140 140 N/H 07 HB15T012 N/H 05 92.00 217 335 TRUE 126.07 140 140 140 140 140 N/H 07 HB15T012 N/H 05 92.00 217 335 TRUE 126.07 140 140 140 140 140 N/H 07 HB15T012 N/H 05 92.00 217												
LSJ-42 91.50 NA 322 TRUE 126.07 140 140 140 140 142 SB02S008 HB15T012 LSJ-43 91.25 NA 330 TRUE 126.08 140 140 181 140 SB02S008 HB15T012 LSJ-44 91.75 NA 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 140 144 WH 07 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.01 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 NA 311 TRUE 126.10 140 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 140 223 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 SA02T052 95.10 NA 191 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SB02S015 95.10 NA 191 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SB02S011 94.00 NA 256 TRUE 126.05 140 140 140 180 SB02S008 HB15T012 SB02S011 94.00 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S011 94.00 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S011 94.00 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S008 HB15T012 SB02S008 HB15T012 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 SB02S008 HB15T012 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 SB02S008 HB15T012 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 TRUE 126.07 140 140 140 140 TRUE TRUE TRUE 126.07 140 140 TRUE TRUE TRUE 126.07 140 140 TRUE TRUE TRUE TRUE 126.07 140 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE												
LSJ-43 91.25 N/A 330 TRUE 126.08 140 140 181 140 SB02S008 HB15T012 LSJ-44 91.75 N/A 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 N/A 304 TRUE 126.07 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 312 TRUE 126.07 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 N/A 282 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 LSJ-54 88.18 N/A 311 TRUE 126.14 140 140 1223 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 305 TRUE 126.06 140 140 223 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 95.10 N/A 191 TRUE 126.07 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 95.10 N/A 353 TRUE 126.06 140 140 140 140 180 SB02S008 HB15T012 SB02T005 95.10 N/A 353 TRUE 126.16 140 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 N/A 258 TRUE 126.07 140 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 N/A 258 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02R011 94.00 N/A 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02R011 94.00 N/A 256 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 WH 03 92.00 217 330 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 335 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 05 92.00 217 335 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 05 92.00 217 335 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 335 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 335 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 335 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 N/H 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 N/H 07 HB15T012 N/H 06 93.00 217 309 TR												
LSJ-44 91.75 NA 330 TRUE 126.07 140 140 165 140 SB02S008 HB15T012 LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.10 140 140 183 140 SB02S008 HB15T012 LSJ-53 88.18 NA 311 TRUE 126.14 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 LSJ-57 95.00 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 SA02T005 95.10 NA 191 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 SB02S005 95.10 NA 251 TRUE 126.06 140 140 140 150 SB02S008 HB15T012 SB02S005 95.00 NA 258 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SB02S005 95.00 NA 258 TRUE 126.06 140 140 140 184 140 SB02S008 HB15T012 SB02S005 95.00 NA 258 TRUE 126.07 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 183 140 SB02S008 HB15T012 SB02S005 95.20 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.20 NA 256 TRUE 126.07 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 140 180 SB02S008 HB15T012 SB02S005 95.00 NA 256 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 WH 03 92.00 217 330 TRUE 126.07 140 140 140 150 140 WH 07 HB15T012 WH 04 92.00 217 335 TRUE 126.07 140 140 140 150 140 WH 07 HB15T012 WH 05 92.00 217 335 TRUE 126.07 140 140 140 150 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 126.07 140 140 140 150 140 WH 07 HB15T012 WH 06 93.00 217 339 TRUE 126.07 140 140 140 150 140 WH 07 HB15T012 WH 06 93.00 217 339 TRUE 126.07 140 140 140 140 150 140 WH 07 HB15T012 WH 06 93.00 217 339 TRUE 126.07 140 140 140 140 150 140 WH 07 HB15T012 WH 06 93.00 217 339 TRUE 126.07 140 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 140 WH 07 HB15T012												
LSJ-50 95.00 NA 304 TRUE 126.07 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 NA 312 TRUE 126.07 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.10 140 140 183 140 SB02S008 HB15T012 LSJ-53 92.25 NA 311 TRUE 126.14 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.14 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 SA02T005 95.10 NA 191 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SA02T052 91.00 NA 191 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SB02S001 194.00 NA 258 TRUE 126.16 140 140 140 180 SB02S008 HB15T012 SB02S011 94.00 NA 218 TRUE 126.05 140 140 183 140 SB02S008 HB15T012 SB02S011 94.00 NA 256 TRUE 126.05 140 140 183 140 SB02S008 HB15T012 SB02S011 94.00 NA 256 TRUE 126.07 140 140 140 SB02S008 HB15T012 SB02S003 95.20 NA 256 TRUE 126.07 140 140 140 SB02S008 HB15T012 SB02S003 92.00 217 330 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 140 140 WH 07 HB15T012 WH 05 93.00 217 315 TRUE 126.07 140 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 315 TRUE 126.07 140 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 140 WH 07 HB15T012												
LSJ-51 94.00 NA 312 TRUE 126.07 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 282 TRUE 126.10 140 140 183 140 SB02S008 HB15T012 LSJ-54 88.18 NA 311 TRUE 126.14 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 171 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.06 140 140 171 140 SB02S008 HB15T012 SA02T005 95.10 NA 191 TRUE 126.06 140 140 140 140 180 SB02S008 HB15T012 SA02T052 91.00 NA 353 TRUE 126.16 140 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 NA 218 TRUE 126.07 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 NA 218 TRUE 126.07 140 140 183 140 SB02S010 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 140 207 140 SB02S008 HB15T012 WH_03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_05 92.00 217 335 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 140 WH_07 HB15T012												
LSJ-53 92.25 NA 282 TRUE 126.10 140 140 183 140 SB02S008 HB15T012 LSJ-54 88.18 NA 311 TRUE 126.14 140 140 223 140 SB02S008 HB15T012 LSJ-55 91.86 NA 305 TRUE 126.06 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 SA02T005 95.10 NA 191 TRUE 126.06 140 140 140 171 140 SB02S008 HB15T012 SA02T052 91.00 NA 353 TRUE 126.16 140 140 140 180 SB02S008 HB15T012 SB02S005 95.10 NA 218 TRUE 126.16 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 NA 218 TRUE 126.05 140 140 183 140 SB02S008 HB15T012 SB02R011 94.00 NA 226 TRUE 126.05 140 140 183 140 SB02S008 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 150 SB02S008 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 150 SB02S008 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 150 SB02S008 HB15T012 SB02S008 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 150 SB02S008 HB15T012 WH_03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 140 155 140 WH_07 HB15T012 WH_05 92.00 217 335 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012												
LSJ-55 91.86 N/A 305 TRUE 126.06 140 140 214 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 SA02T005 95.10 N/A 191 TRUE 126.06 140 140 140 140 180 SB02S008 HB15T012 SA02T052 91.00 N/A 353 TRUE 126.16 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 N/A 218 TRUE 126.16 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 N/A 218 TRUE 126.05 140 140 183 140 SB02S010 HB15T012 SB02R011 95.20 N/A 256 TRUE 126.07 140 140 183 140 SB02S010 HB15T012 WH_03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 140 147 140 WH_07 HB15T012 WH_05 92.00 217 315 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH_07 HB15T012	LSJ-53	92.25	N/A	282	TRUE	126.10	140	140	183	140	SB02S008	HB15T012
LSJ-57 92.25 NA 329 TRUE 126.07 140 140 171 140 SB02S008 HB15T012 SA02T005 95.10 NA 191 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SA02T052 91.00 NA 353 TRUE 126.16 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 NA 218 TRUE 126.05 140 140 183 140 SB02S008 HB15T012 SB02R011 95.00 NA 226 TRUE 126.05 140 140 183 140 SB02S010 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 207 140 SB02S010 HB15T012 WH 03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 140 147 140 WH 07 HB15T012 WH 05 92.00 217 315 TRUE 126.07 140 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 315 TRUE 126.07 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 140 152 140 WH 07 HB15T012												
SA02T005 95.10 N/A 191 TRUE 126.06 140 140 140 180 SB02S008 HB15T012 SA02T052 91.00 N/A 353 TRUE 126.16 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 N/A 218 TRUE 126.05 140 140 183 140 SB02S010 HB15T012 SB02V053 95.20 N/A 256 TRUE 126.07 140 140 207 140 SB02S008 HB15T012 WH 03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 147 140 WH 07 HB15T012 WH 05 92.00 217 315 TRUE 126.07 140 140 147 140 WH 07 HB15T012												
SA02T052 91.00 N/A 353 TRUE 126.16 140 140 184 140 SB02S008 HB15T012 SB02R011 94.00 N/A 218 TRUE 126.05 140 140 183 140 SB02S010 HB15T012 SB02V053 95.20 N/A 256 TRUE 126.07 140 140 207 140 SB02S008 HB15T012 WH 03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 147 140 WH 07 HB15T012 WH 05 92.00 217 315 TRUE 126.07 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 148 140 WH 07 HB15T012												
SB02R011 94.00 NA 218 TRUE 126.05 140 140 183 140 SB02S010 HB15T012 SB02V053 95.20 NA 256 TRUE 126.07 140 140 207 140 SB02S008 HB15T012 WH 03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH 04 92.00 217 325 TRUE 126.07 140 140 147 140 WH 07 HB15T012 WH 05 92.00 217 315 TRUE 126.07 140 140 152 140 WH 07 HB15T012 WH 06 93.00 217 309 TRUE 126.07 140 140 148 140 WH 07 HB15T012												
SB02V053 95.20 N/A 256 TRUE 126.07 140 140 207 140 SB02S008 HB15T012 WH_03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 147 140 WH_07 HB15T012 WH_05 92.00 217 315 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 148 140 WH_07 HB15T012												
WH_03 92.00 217 330 TRUE 126.07 140 140 150 140 SB02S008 HB15T012 WH_04 92.00 217 325 TRUE 126.07 140 140 147 140 WH_07 HB15T012 WH_05 92.00 217 315 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 148 140 WH_07 HB15T012												
WH_04 92.00 217 32.5 TRUE 126.07 140 140 147 140 WH_07 HB15T012 WH_05 92.00 217 315 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 148 140 WH_07 HB15T012												
WH_05 92.00 217 315 TRUE 126.07 140 140 152 140 WH_07 HB15T012 WH_06 93.00 217 309 TRUE 126.07 140 140 148 140 WH_07 HB15T012												
	WH_05	92.00	217	315	TRUE	126.07	140	140	152	140	WH_07	HB15T012
WH_07 95.00 217 299 TRUE 126.07 140 140 140 148 SB02S008 HB15T012												
	WH_07	95.00	217	299	TRUE	126.07	140	140	140	148	SB02S008	HB15T012

Library Pre-Prior Pre-Pr						2031 ME	DD + FF - Reservoir 7	5% Full				
J-164	Label	Elevation (m)			Flow				(Calculated	(Calculated Zone	Minimum Pressure	Minimum Pressure
LSJ-1												
LS-12 91.75												
LS-13												
LS.14 91.50 NA 360 TRUE 128.56 140 140 208 140 SB025006 H816T012 LS.16 150.55 NA 361 TRUE 128.56 140 140 140 208 140 SB025006 H816T012 LS.16 151.55 NA 371 TRUE 128.56 140 140 191 140 SB025006 H816T012 LS.16 151.55 NA 371 TRUE 128.58 140 140 140 191 140 SB025006 H816T012 LS.16 151.55 NA 371 TRUE 128.58 140 140 140 151 140 SB025006 H816T012 LS.16 151 NA 391 TRUE 128.58 140 140 140 151 140 SB025006 H816T012 LS.16 151 NA 391 TRUE 128.58 140 140 151 140 SB025006 H816T012 LS.17 NA 400 TRUE 128.58 140 140 154 140 SB025006 H816T012 LS.17 NA 400 TRUE 128.59 140 140 154 140 SB025006 H816T012 LS.17 NA 400 TRUE 128.59 140 140 154 140 SB025006 H816T012 LS.17 NA 400 TRUE 128.59 140 140 154 140 SB025006 H816T012 LS.17 NA 400 TRUE 128.59 140 140 150 160 NA 400 TRUE 128.54 140 140 160 160 160 NA 400												
LSJ-15 90.25												
LSJ-16 91.75 NA 371 TRUE 128.56 140 140 191 140 SB025006 Hel151012 LSJ-18 92.25 NA 393 TRUE 128.56 140 140 166 140 SB025006 Hel151012 LSJ-18 92.25 NA 340 TRUE 128.56 140 140 166 140 SB025006 Hel151012 LSJ-18 LSJ-18 SB025006 Hel151012 LSJ-18 LSJ-												
LS.17												
LS.1-0 92.75												
LSJ-10 93.00 NA 406 TRUE 128.58 140 140 154 140 88025008 PB15T012 LSJ-11 92.00 NA 404 TRUE 128.59 140 140 164 140 LSJ-50 PB15T012 LSJ-12 91.76 NA 409 TRUE 128.50 140 140 166 140 LSJ-50 PB15T012 LSJ-12 91.76 NA 409 TRUE 128.50 140 140 156 140 LSJ-50 PB15T012 LSJ-13 91.26 NA 411 TRUE 128.50 140 140 156 140 LSJ-50 PB15T012 LSJ-14 80.55 NA 2276 TRUE 128.50 140 140 140 172 140 WH.07 PB15T012 LSJ-14 80.55 NA 2276 TRUE 128.53 140 140 140 140 140 ESJ-15 PB15T012 LSJ-14 80.55 NA 2276 TRUE 128.53 140 140 140 140 140 155 LSJ-16 PB15T012 LSJ-17 90.75 NA 244 TRUE 128.55 140 140 140 140 155 LSJ-16 PB15T012 LSJ-17 90.75 NA 244 TRUE 128.56 140 140 140 155 LSJ-18 PB15T012 LSJ-19 91.00 NA 214 TRUE 128.56 140 140 140 140 155 LSJ-18 PB15T012 LSJ-19 91.00 NA 214 TRUE 128.56 140 140 140 140 157 SB025008 PB15T012 LSJ-19 91.00 NA 214 TRUE 128.56 140 140 140 167 SB025008 PB15T012 LSJ-19 90.50 NA 363 TRUE 128.56 140 140 140 187 SB025008 PB15T012 LSJ-19 90.50 NA 363 TRUE 128.56 140 140 140 187 SB025008 PB15T012 LSJ-19 90.50 NA 363 TRUE 128.56 140 140 140 187 SB025008 PB15T012 LSJ-12 BSJ-18 BSJ-18 NA 363 TRUE 128.56 140 140 140 187 SB025008 PB15T012 LSJ-12 BSJ-18 BSJ-18 NA 363 TRUE 128.56 140 140 200 140 SB025008 PB15T012 LSJ-12 BSJ-18												
LSJ-11 Q-2,00 NA												
LSJ-12 91.76 NA 409 TRUE 128.60 140 140 156 140 LSJ-50 H6157012 LSJ-14 90.75 NA 411 TRUE 128.60 140 140 143 140 LSJ-15 H6157012 LSJ-14 90.75 NA 278 TRUE 128.66 140 140 140 143 140 LSJ-15 H6157012 LSJ-16 90.50 NA 205 TRUE 128.64 140 140 140 140 189 S8022008 H6157012 LSJ-16 80.50 NA 205 TRUE 128.64 140 140 140 160 169 S8022008 H6157012 LSJ-16 80.50 NA 205 TRUE 128.64 140 140 140 160 169 S8022008 H6157012 LSJ-16 S8022008 H6157012 LSJ-16 S8022008 H6157012 LSJ-19 S8022008 H6157012												
LS.1-13 9125 NA 411 TRUE 128.60 140 140 172 140 WH 07 H815T012 LS.1-14 90.75 NA 278 TRUE 128.56 140 140 143 140 LS.1-15 H815T012 LS.1-16 91.50 NA 206 TRUE 128.54 140 140 140 189 SB02500B H815T012 LS.1-16 90.50 NA 206 TRUE 128.54 140 140 140 140 189 SB02500B H815T012 LS.1-16 90.50 NA 203 TRUE 128.55 140 140 140 140 159 SB02500B H815T012 LS.1-17 90.75 NA 244 TRUE 128.55 140 140 140 155 LS.1-16 NA 151 NA 244 TRUE 128.55 140 140 140 155 LS.1-16 NA 151 NA 15												
LS.1-14 997.5												
LSJ-15 91:50 NA 206 TRUE 128:54 140 140 140 140 189 SB025008 H815T012 LSJ-17 90:75 NA 244 TRUE 128:55 140 140 140 140 155 LSJ-16 H815T012 LSJ-17 90:75 NA 244 TRUE 128:56 140 140 140 140 155 LSJ-16 H815T012 LSJ-18 89:75 NA 288 TRUE 128:56 140 140 140 140 155 LSJ-17 H815T012 LSJ-19 91:00 NA 214 TRUE 128:56 140 140 140 140 157 SB025008 H815T012 LSJ-19 91:00 NA 214 TRUE 128:56 140 140 140 140 187 SB025008 H815T012 LSJ-20 99:50 NA 363 TRUE 128:59 140 140 299 140 SB025008 H815T012 LSJ-21 99:50 NA 363 TRUE 128:59 140 140 209 140 SB025008 H815T012 LSJ-22 89:75 NA 363 TRUE 128:58 140 140 209 140 SB025008 H815T012 LSJ-22 89:75 NA 363 TRUE 128:58 140 140 209 140 SB025008 H815T012 LSJ-22 89:75 NA 364 TRUE 128:58 140 140 209 140 SB025008 H815T012 LSJ-22 89:75 NA 364 TRUE 128:58 140 140 201 140 SB025008 H815T012 LSJ-22 89:75 NA 362 TRUE 128:58 140 140 202 140 SB025008 H815T012 LSJ-22 89:75 NA 361 TRUE 128:58 140 140 202 140 SB025008 H815T012 LSJ-22 89:75 NA 361 TRUE 128:58 140 140 202 140 SB025008 H815T012 LSJ-22 89:75 NA 361 TRUE 128:58 140 140 140 201 140 SB025008 H815T012 LSJ-29 99:50 NA 361 TRUE 128:58 140 140 140 162 LSJ-29 H815T012 LSJ-29 99:50 NA 361 TRUE 128:58 140 140 140 162 LSJ-29 H815T012 LSJ-29 99:50 NA 361 TRUE 128:58 140 140 140 140 152 LSJ-29 H815T012 LSJ-39 99:50 NA 166 TRUE 128:58 140 140 140 140 152 LSJ-29 H815T012 LSJ-39 99:50 NA 166 TRUE 128:58 140 140 140 140 152 LSJ-28 H815T012 LSJ-39 99:50 NA 223 TRUE 128:58 140 140 140 140 159 SB025008 H815T012 LSJ-39 99:50												
LS.1-16 90.50 NA 203 ITRUE 122.55 140 140 140 150 S8028008 H815T012 LS.1-18 89.75 NA 288 TRUE 122.56 140 140 140 155 LS.1-16 H815T012 LS.1-18 89.75 NA 288 TRUE 122.56 140 140 140 166 LS.1-17 H815T012 LS.1-19 91.00 NA 214 TRUE 122.56 140 140 140 167 S8028000 H815T012 LS.1-20 89.75 NA 367 TRUE 122.56 140 140 140 187 S8028000 H815T012 LS.1-20 89.75 NA 367 TRUE 122.59 140 140 209 140 S8028000 H815T012 LS.1-20 90.50 NA 363 TRUE 122.59 140 140 209 140 S8028000 H815T012 LS.1-21 90.50 NA 363 TRUE 122.59 140 140 209 140 S8028000 H815T012 LS.1-22 90.50 NA 363 TRUE 122.59 140 140 209 140 S8028000 H815T012 LS.1-23 90.50 NA 363 TRUE 122.59 140 140 209 140 S8028000 H815T012 LS.1-24 90.50 NA 364 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 89.75 NA 364 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 89.75 NA 364 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 89.75 NA 364 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 89.75 NA 361 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 89.75 NA 361 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 94.00 NA 361 TRUE 125.58 140 140 201 140 S8028000 H815T012 LS.1-26 94.00 NA 361 TRUE 125.58 140 140 140 199 140 S8028000 H815T012 LS.1-26 94.00 NA 361 TRUE 125.58 140 140 140 162 140 S8028000 H815T012 LS.1-26 94.00 NA 361 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-30 94.00 NA 361 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-30 94.00 NA 361 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-30 94.00 NA 112 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-30 94.00 NA 122 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-30 94.00 NA 122 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-30 94.00 NA 295 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-35 94.00 NA 295 TRUE 125.58 140 140 140 162 140 LS.1-28 H815T012 LS.1-35 94.00 NA 295 TRUE 125.58 140 140 140 140 169 S8028000 H815T012 LS.1-36 94.00 NA 295 TRUE 125.59 140 140 140 140 180 S8028000 H815T012 LS.1-37 91.00 NA 295 TRUE 125.59 140 140 140 140 140 180 S802800												
LS.1-17 90.75 NA 244 TRUE 128.55 140 140 140 155 LS.1-16 H915T012												
LS.1-18 99.75 NA 288 TRUE 128.56 140 140 140 156 LS.1-17 HB15T012 LS.1-19 91.00 NA 214 TRUE 128.56 140 140 140 187 SB02S008 HB15T012 LS.1-20 89.75 NA 367 TRUE 128.59 140 140 299 140 SB02S008 HB15T012 LS.1-20 90.75 NA 363 TRUE 128.59 140 140 209 140 SB02S008 HB15T012 LS.1-23 90.75 NA 369 TRUE 128.58 140 140 209 140 SB02S008 HB15T012 LS.1-24 99.75 NA 369 TRUE 128.58 140 140 140 165 SB02S008 HB15T012 LS.1-24 99.25 NA 364 TRUE 128.58 140 140 140 209 140 SB02S008 HB15T012 LS.1-25 99.75 NA 364 TRUE 128.58 140 140 201 140 SB02S008 HB15T012 LS.1-26 89.75 NA 364 TRUE 128.58 140 140 201 140 SB02S008 HB15T012 LS.1-26 89.75 NA 361 TRUE 128.58 140 140 201 140 SB02S008 HB15T012 LS.1-26 89.75 NA 361 TRUE 128.58 140 140 201 140 SB02S008 HB15T012 LS.1-26 89.75 NA 361 TRUE 128.58 140 140 201 140 SB02S008 HB15T012 LS.1-26 89.75 NA 361 TRUE 128.58 140 140 160 201 140 SB02S008 HB15T012 LS.1-26 89.75 NA 361 TRUE 128.58 140 140 169 140 SB02S008 HB15T012 LS.1-27 80.50 NA 361 TRUE 128.58 140 140 169 140 SB02S008 HB15T012 LS.1-28 SB02S00 NA 361 TRUE 128.58 140 140 169 140 SB02S008 HB15T012 LS.1-29 SB02S00 NA 155 TRUE 128.58 140 140 160 162 LS.1-28 HB15T012 LS.1-30 SB02S00 NA 155 TRUE 128.58 140 140 160 162 LS.1-28 HB15T012 LS.1-30 SB02S00 NA 155 TRUE 128.58 140 140 160 162 LS.1-28 HB15T012 LS.1-30 SB02S00 NA 201 TRUE 128.58 140 140 140 162 LS.1-28 HB15T012 LS.1-30 SB02S00 NA 201 TRUE 128.58 140 140 140 162 LS.1-28 HB15T012 LS.1-30 SB02S00 NA 201 TRUE 128.58 140 140 140 160 187 SB02S00 HB15T012 LS.1-30 SB02S00 NA 201 TRUE 128.58 140 140 140 160 187 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.58 140 140 140 140 189 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.58 140 140 140 140 189 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.58 140 140 140 140 189 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.59 140 140 140 140 189 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.59 140 140 140 140 180 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.59 140 140 140 140 180 SB02S00 HB15T012 LS.1-36 SB02S00 NA 201 TRUE 128.59 140 140 140 14	LSJ-17			244		128.55		140				HB15T012
ISJ20 89.76 N/A 367 TRUE 128.59 140 140 218 140 SB025008 HB15T012	LSJ-18	89.75	N/A	288							LSJ-17	HB15T012
LSJ-21 90.50												
ISJ-32 99.75 NA 359 TRUE 128.58 140 140 209 140 SB025008 H8157012												
ISJ-32 90.00 N/A 285 TRUE 128.58 140 140 140 165 SB025008 H6157012 ISJ-24 88.25 N/A 364 TRUE 128.58 140 140 202 140 SB025008 H6157012 ISJ-26 89.75 N/A 362 TRUE 128.58 140 140 202 140 SB025008 H6157012 ISJ-26 SB025008 H6157012 ISJ-26 SB025008 H6157012 ISJ-27 90.50 N/A 361 TRUE 128.58 140 140 199 140 SB025008 H6157012 ISJ-28 SB025008 H6157012 ISJ-29 H0157012 ISJ-29 I												
ISJ-26 89.75 N/A 364 TRUE 128.58 140 140 201 140 S802S008 HB15T012 ISJ-26 89.75 N/A 361 TRUE 128.58 140 140 201 140 S802S008 HB15T012 ISJ-27 90.50 N/A 361 TRUE 128.58 140 140 199 140 S802S008 HB15T012 ISJ-27 90.50 N/A 361 TRUE 128.58 140 140 199 140 S802S008 HB15T012 ISJ-27 90.50 N/A 361 TRUE 128.58 140 140 199 140 S802S008 HB15T012 ISJ-28 94.25 N/A 105 TRUE 128.58 140 140 140 140 162 ISJ-29 HB15T012 ISJ-30 92.00 N/A 166 TRUE 128.58 140 140 140 142 140 ISJ-28 HB15T012 ISJ-31 92.75 N/A 341 TRUE 128.58 140 140 140 162 140 ISJ-28 HB15T012 ISJ-31 92.75 N/A 241 TRUE 128.58 140 140 140 167 S802S008 HB15T012 ISJ-34 91.25 N/A 221 TRUE 128.55 140 140 140 167 S802S008 HB15T012 ISJ-34 91.25 N/A 221 TRUE 128.55 140 140 140 180 S802S008 HB15T012 ISJ-36 94.00 N/A 223 TRUE 128.58 140 140 140 140 190 S802S008 HB15T012 ISJ-36 94.00 N/A 225 TRUE 128.58 140 140 140 140 199 S802S008 HB15T012 ISJ-38 91.50 N/A 408 TRUE 128.59 140 140 140 159 140 S802S008 HB15T012 ISJ-38 91.50 N/A 408 TRUE 128.59 140 140 140 159 140 S802S008 HB15T012 ISJ-38 91.50 N/A 408 TRUE 128.59 140 140 140 153 140 S802S008 HB15T012 ISJ-34 91.50 N/A 408 TRUE 128.59 140 140 140 153 140 S802S008 HB15T012 ISJ-34 91.50 N/A 408 TRUE 128.59 140 140 140 140 159 S802S008 HB15T012 ISJ-34 91.50 N/A 408 TRUE 128.59 140 140 140 140 159 S802S008 HB15T012 ISJ-34 91.50 N/A 408 TRUE 128.59 140 140 140 140 140 S802S008 HB15T012												
ISJ-25 89.75 N/A 362 TRUE 128.88 140 140 202 140 S802S008 HB15T012 ISJ-26 89.75 N/A 361 TRUE 128.88 140 140 199 140 S802S008 HB15T012 ISJ-27 90.50 N/A 361 TRUE 128.88 140 140 199 140 S802S008 HB15T012 ISJ-28 94.25 N/A 105 TRUE 128.88 140 140 140 162 ISJ-29 ISJ-29 94.00 N/A 112 TRUE 128.88 140 140 140 142 140 ISJ-28 HB15T012 ISJ-29 94.00 N/A 112 TRUE 128.88 140 140 142 140 ISJ-28 HB15T012 ISJ-39 92.00 N/A 166 TRUE 128.88 140 140 142 140 ISJ-28 HB15T012 ISJ-31 92.75 N/A 341 TRUE 128.88 140 140 140 140 ISJ-28 HB15T012 ISJ-31 92.75 N/A 241 TRUE 128.85 140 140 140 137 S802S008 HB15T012 ISJ-34 91.25 N/A 221 TRUE 128.85 140 140 140 137 S802S008 HB15T012 ISJ-34 91.25 N/A 221 TRUE 128.85 140 140 140 140 185 S802S008 HB15T012 ISJ-35 93.50 N/A 223 TRUE 128.85 140 140 140 140 185 S802S008 HB15T012 ISJ-35 93.50 N/A 223 TRUE 128.85 140 140 140 140 185 S802S008 HB15T012 ISJ-36 94.00 N/A 223 TRUE 128.85 140 140 140 140 189 S802S008 HB15T012 ISJ-36 94.00 N/A 225 TRUE 128.85 140 140 140 140 189 S802S008 HB15T012 ISJ-38 91.50 N/A 40.3 TRUE 128.85 140 140 140 140 140 189 S802S008 HB15T012 ISJ-38 91.50 N/A 40.3 TRUE 128.85 140 140 140 140 140 189 S802S008 HB15T012 ISJ-34 91.50 N/A 40.3 TRUE 128.85 140 14												
ISJ-26 89.76												
I.S.J.28												
LSJ-28												
LSJ-30 92.00 NA 166 TRUE 128.58 140 140 162 140 LSJ-28 HB15T012 LSJ-31 92.75 NA 341 TRUE 128.58 140 140 140 187 SB02S008 HB15T012 LSJ-32 92.75 NA 210 TRUE 128.56 140 140 140 187 SB02S008 HB15T012 LSJ-34 91.25 NA 221 TRUE 128.55 140 140 140 187 SB02S008 HB15T012 LSJ-35 93.50 NA 223 TRUE 128.58 140 140 140 199 SB02S008 HB15T012 LSJ-36 94.00 NA 223 TRUE 128.58 140 140 140 199 SB02S008 HB15T012 LSJ-37 91.00 NA 225 TRUE 128.58 140 140 140 140 189 SB02S008 HB15T012 LSJ-37 91.00 NA 225 TRUE 128.58 140 140 140 140 171 SB02S008 HB15T012 LSJ-38 91.50 NA 403 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-39 91.00 NA 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-39 91.00 NA 408 TRUE 128.59 140 140 140 159 140 SB02S008 HB15T012 LSJ-40 91.25 NA 412 TRUE 128.60 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 155 SB02S008 HB15T012 LSJ-43 91.25 NA 344 TRUE 128.59 140 140 140 155 SB02S008 HB15T012 LSJ-44 91.75 NA 345 TRUE 128.60 140 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 344 TRUE 128.60 140 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 344 TRUE 128.60 140 140 140 140 159 SB02S008 HB15T012 LSJ-44 91.75 NA 375 TRUE 128.60 140 140 140 140 140 WH 07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 330 TRUE 128.60 140 140 140 140 140 SB02S008 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.60 140 140 140 140 140 SB02S008 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.60 140 140 140 140 140 SB02S008 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.60 140 140 140 140 SB02S008 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.60 140 140 140 140 SB02S008 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.60 140 140 140 140 SB02S008 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.60 140 140 140 140 HB 140 SB02S008 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.60 140 140 140 HB 140 WH 07 HB15T012 SB02V053 95.00 NA												
LSJ-31 92.75 NA 341 TRUE 128.58 140 140 210 140 \$802S008 HB15T012 LSJ-32 92.75 NA 210 TRUE 128.56 140 140 140 187 \$802S008 HB15T012 LSJ-34 91.25 NA 221 TRUE 128.56 140 140 140 187 \$802S008 HB15T012 LSJ-34 91.25 NA 221 TRUE 128.55 140 140 140 187 \$802S008 HB15T012 LSJ-35 93.50 NA 223 TRUE 128.58 140 140 140 190 \$802S008 HB15T012 LSJ-36 94.00 NA 225 TRUE 128.58 140 140 140 189 \$802S008 HB15T012 LSJ-37 91.00 NA 225 TRUE 128.58 140 140 140 149 189 \$802S008 HB15T012 LSJ-38 91.50 NA 403 TRUE 128.58 140 140 140 140 171 \$802S008 HB15T012 LSJ-39 91.00 NA 408 TRUE 128.59 140 140 140 159 HA S802S008 HB15T012 LSJ-39 91.00 NA 408 TRUE 128.59 140 140 140 153 140 \$802S008 HB15T012 LSJ-40 91.25 NA 412 TRUE 128.60 140 140 153 140 \$802S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 140 \$802S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 153 140 \$802S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 159 \$802S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 140 159 \$802S008 HB15T012 LSJ-44 91.75 NA 345 TRUE 128.59 140 140 140 140 159 \$802S008 HB15T012 LSJ-44 91.75 NA 346 TRUE 128.59 140 140 140 140 159 \$802S008 HB15T012 LSJ-44 91.75 NA 346 TRUE 128.60 140 140 140 140 159 \$802S008 HB15T012 LSJ-44 91.75 NA 346 TRUE 128.60 140 140 140 140 140 WH 07 HB15T012 LSJ-45 91.00 NA 341 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 343 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.69 140 140 140 140 140 S802S008 HB15T012 LSJ-53 92.25 NA 351 TRUE 128.60 140 140 140 140 S802S008 HB15T012 LSJ-54 88.18 NA 360 TRUE 128.69 140 140 140 140 183 140 S802S008 HB15T012 LSJ-55 91.86 NA 361 TRUE 128.69 140 140 140 140 S802S008 HB15T012 LSJ-55 91.86 NA 361 TRUE 128.69 140 140 140 140 S802S008 HB15T012 LSJ-55 91.86 NA 360 TRUE 128.59 140 140 140 140 140 S802S008 HB15T012 LSJ-55 91.86 NA 360 TRUE 128.59 140 140 140 140 140 S802S008 HB15T012 LSJ-55 91.86 NA 370 TRUE 128.59 140 140 140 140 140 S802S008 HB15T012 S802S008 HB15T012 S802S008 HB15T012 S802S008 HB15T012 S802S008 HB15T012 S8												
LSJ-32 92.75 NA 210 TRUE 128.56 140 140 140 187 SB02S008 HB15T012 LSJ-34 91.25 NA 221 TRUE 128.55 140 140 140 185 SB02S008 HB15T012 LSJ-35 93.50 NA 223 TRUE 128.58 140 140 140 160 190 SB02S008 HB15T012 LSJ-36 94.00 NA 225 TRUE 128.58 140 140 140 189 SB02S008 HB15T012 LSJ-37 91.00 NA 225 TRUE 128.58 140 140 140 140 189 SB02S008 HB15T012 LSJ-37 91.00 NA 225 TRUE 128.58 140 140 140 140 189 SB02S008 HB15T012 LSJ-38 91.00 NA 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-38 91.50 NA 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-39 91.00 NA 408 TRUE 128.59 140 140 145 140 SB02S008 HB15T012 LSJ-40 91.25 NA 412 TRUE 128.50 140 140 140 155 140 SB02S008 HB15T012 LSJ-41 92.00 NA 228 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 228 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 153 SB02S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 384 TRUE 128.59 140 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 384 TRUE 128.60 140 140 140 160 140 WH 07 HB15T012 LSJ-43 91.25 NA 384 TRUE 128.60 140 140 140 160 140 WH 07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.60 140 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 331 TRUE 128.60 140 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 NA 331 TRUE 128.60 140 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 351 TRUE 128.60 140 140 140 140 141 USJ-50 HB15T012 LSJ-54 88.18 NA 388 TRUE 128.60 140 140 140 140 141 USJ-50 HB15T012 LSJ-54 88.18 NA 388 TRUE 128.60 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.59 140 140 140 140 183 140 SB02S008 HB15T012 LSJ-56 91.86 NA 380 TRUE 128.59 140 140 140 140 183 140 SB02S008 HB15T012 LSJ-56 91.86 NA 380 TRUE 128.59 140 140 140 140 183 140 SB02S008 HB15T012 LSJ-56 91.86 NA 380 TRUE 128.59 140 140 140 189 140 SB02S008 HB15T012 LSJ-56 91.86 NA 380 TRUE 128.59 140 140 140 140 189 140 SB02S008 HB15T012 LSJ-56 91.86 NA 380 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 LSJ-56 91.86 NA 380 TRUE 128.59 140 140 140 140												
LSJ-34 91.25 NA 221 TRUE 128.55 140 140 140 140 190 SB02S008 HB15T012 LSJ-35 93.50 NA 223 TRUE 128.58 140 140 140 190 SB02S008 HB15T012 LSJ-36 94.00 NA 225 TRUE 128.58 140 140 140 199 SB02S008 HB15T012 LSJ-36 94.00 NA 225 TRUE 128.58 140 140 140 140 189 SB02S008 HB15T012 LSJ-37 91.00 NA 295 TRUE 128.59 140 140 140 159 140 SB02S008 HB15T012 LSJ-38 91.50 NA 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-39 91.00 NA 408 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-40 91.25 NA 412 TRUE 128.60 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 140 175 SB02S008 HB15T012 LSJ-43 91.25 NA 344 TRUE 128.60 140 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 384 TRUE 128.60 140 140 140 140 159 SB02S008 HB15T012 LSJ-44 91.75 NA 375 TRUE 128.60 140 140 140 140 160 140 WH 07 HB15T012 LSJ-44 91.75 NA 375 TRUE 128.60 140 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012 LSJ-53 92.25 NA 334 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012 LSJ-53 92.25 NA 331 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 336 TRUE 128.59 140 140 140 140 SB02S008 HB15T012 LSJ-54 94.00 NA 331 TRUE 128.59 140 140 140 140 SB02S008 HB15T012 LSJ-54 98.00 NA 331 TRUE 128.59 140 140 140 140 SB02S008 HB15T012 LSJ-55 91.86 NA 338 TRUE 128.59 140 140 140 145 144 WH 07 HB15T012 LSJ-55 91.86 NA 388 TRUE 128.59 140 140 140 145 144 WH 07 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.59 140 140 140 140 189 140 SB02S008 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.59 140 140 140 140 189 140 SB02S008 HB15T012 WH 03 92.00 217 354 TRUE 128.59 140 140 140 140 140 WH 07 HB15T0												
LSJ-35 93.50 N/A 223 TRUE 128.58 140 140 140 190 SB02S008 HB15T012 LSJ-36 94.00 N/A 225 TRUE 128.58 140 140 140 190 HB9 SB02S008 HB15T012 LSJ-37 91.00 N/A 225 TRUE 128.58 140 140 140 140 171 SB02S008 HB15T012 LSJ-38 91.00 N/A 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-38 91.00 N/A 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-40 91.25 N/A 412 TRUE 128.59 140 140 153 140 SB02S008 HB15T012 LSJ-40 91.25 N/A 412 TRUE 128.59 140 140 153 140 SB02S008 HB15T012 LSJ-40 91.25 N/A 412 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 N/A 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 140 175 SB02S008 HB15T012 LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 N/A 384 TRUE 128.59 140 140 140 140 159 SB02S008 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 160 160 140 WH 07 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 140 140 WH 07 HB15T012 LSJ-50 95.00 N/A 331 TRUE 128.60 140 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.60 140 140 140 140 SB02S008 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.60 140 140 140 145 140 SB02S008 HB15T012 LSJ-54 88.18 N/A 388 TRUE 128.66 140 140 140 145 140 SB02S008 HB15T012 LSJ-54 88.18 N/A 388 TRUE 128.66 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.65 140 140 140 189 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.65 140 140 140 189 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.65 140 140 140 189 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.65 140 140 140 189 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.65 140 140 140 140 189 140 SB02S008 HB15T012 SB02S008												
LSJ-36 94.00 NA 225 TRUE 128.58 140 140 140 140 189 SB02S008 HB15T012 LSJ-37 91.00 NA 295 TRUE 128.58 140 140 140 140 171 SB02S008 HB15T012 LSJ-38 91.50 NA 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-39 91.00 NA 408 TRUE 128.59 140 140 145 140 SB02S008 HB15T012 LSJ-40 91.25 NA 412 TRUE 128.50 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 345 TRUE 128.59 140 140 140 153 SB02S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 155 SB02S008 HB15T012 LSJ-43 91.25 NA 345 TRUE 128.60 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 384 TRUE 128.60 140 140 140 160 140 WH 07 HB15T012 LSJ-44 91.75 NA 375 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-44 91.75 NA 375 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.59 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 351 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 NA 351 TRUE 128.60 140 140 140 140 140 LSJ-50 HB15T012 LSJ-54 88.18 NA 388 TRUE 128.60 140 140 140 140 147 140 SB02S008 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.60 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 SB02S005 95.10 NA 208 TRUE 128.59 140 140 140 150 LSJ-50 HB15T012 SB02S005 95.10 NA 208 TRUE 128.59 140 140 140 140 150 LSJ-50 HB15T012 SB02S005 95.10 NA 208 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02S005 95.10 NA 208 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02S005 95.10 NA 209 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02S005 95.00 NA 331 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02S005 95.00 NA 331 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02S005 95.00 NA 331 TRUE 128.59 140 140 140 140 140 SB02S005 HB15T012 WH 03 92.00 217 364 TRUE 128.59 140 140 140 140 140 1												
LSJ-37 91.00 N/A 295 TRUE 128.58 140 140 140 140 171 SB02S008 HB15T012 LSJ-38 91.50 N/A 403 TRUE 128.59 140 140 159 140 SB02S008 HB15T012 LSJ-39 91.00 N/A 408 TRUE 128.59 140 140 145 140 SB02S008 HB15T012 LSJ-40 91.25 N/A 412 TRUE 128.60 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 N/A 288 TRUE 128.59 140 140 140 153 140 SB02S008 HB15T012 LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 153 SB02S008 HB15T012 LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 N/A 384 TRUE 128.60 140 140 140 159 SB02S008 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 160 140 WH 07 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 140 140 WH 07 HB15T012 LSJ-50 95.00 N/A 331 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.62 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 N/A 388 TRUE 128.62 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 388 TRUE 128.66 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 380 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 SB02S008 SB02S008 HB15T012 SB02S008 SB02S008 SB02S008 HB15T012 SB02S008 SB02S008 SB02S008 HB15T012 SB02S												
LSJ-39 91.00 N/A 408 TRUE 128.59 140 140 145 140 SB02S008 HB15T012 LSJ-40 91.25 N/A 412 TRUE 128.60 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 N/A 288 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 N/A 384 TRUE 128.60 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.75 N/A 375 TRUE 128.60 140 140 160 140 WH 07 HB15T012 LSJ-49 175 N/A 375 TRUE 128.60 140 140 140 160 140 WH 07 HB15T012 LSJ-50 95.00 N/A 331 TRUE 128.59 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 140 144 WH 07 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.62 140 140 140 145 SB02S008 HB15T012 LSJ-54 88.18 N/A 388 TRUE 128.66 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 140 183 140 SB02S008 HB15T012 SB02T05 95.10 N/A 208 TRUE 128.58 140 140 140 140 150 SB02S008 HB15T012 SB02T05 95.10 N/A 243 TRUE 128.58 140 140 140 140 181 SB02S008 HB15T012 SB02T05 95.10 N/A 243 TRUE 128.58 140 140 140 182 140 SB02S008 HB15T012 SB02T05 95.00 N/A 317 TRUE 128.58 140 140 140 140 180 SB02S008 HB15T012 SB02T05 95.00 N/A 317 TRUE 128.59 140 140 140 182 140 SB02S008 HB15T012 SB02T05 95.00 N/A 317 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02T05 95.00 N/A 317 TRUE 128.59 140 140 140 140 140 N/H 07 HB15T012 SB02T05 95.00 N/A 317 TRUE 128.59 140 140 140 140 140 N/H 07 HB15T012 N/H 03 92.00 217 363 TRUE 128.60 140 140 140 140 143 140 N/H 07 HB15T012 N/H 03 92.00 217 364 TRUE 128.59 140 140 140 140 140 N/H 07 HB15T012 N/H 05 92.00 217 364 TRUE 128.59												
LSJ-40 91.25 NA 412 TRUE 128.60 140 140 153 140 SB02S008 HB15T012 LSJ-41 92.00 NA 288 TRUE 128.59 140 140 140 153 SB02S008 HB15T012 LSJ-42 91.50 NA 345 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 NA 384 TRUE 128.60 140 140 160 140 WH 07 HB15T012 LSJ-43 91.75 NA 375 TRUE 128.60 140 140 140 160 140 WH 07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.59 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 351 TRUE 128.62 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 351 TRUE 128.62 140 140 140 145 140 SB02S008 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 350 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 380 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.58 140 140 140 161 140 SB02S008 HB15T012 SB02T052 95.10 NA 208 TRUE 128.58 140 140 140 161 140 SB02S008 HB15T012 SB02T052 95.10 NA 439 TRUE 128.58 140 140 140 140 150 SB02S008 HB15T012 SB02T052 95.10 NA 439 TRUE 128.58 140 140 140 140 150 SB02S008 HB15T012 SB02T052 95.00 NA 317 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02T053 95.20 NA 317 TRUE 128.59 140 140 140 140 140 SB02S008 HB15T012 SB02T05 95.20 NA 317 TRUE 128.59 140 140 140 140 140 NH 07 HB15T012 SB02T05 95.00 NA 317 TRUE 128.59 140 140 140 140 140 NH 07 HB15T012 WH 03 92.00 217 363 TRUE 128.60 140 140 140 140 143 140 WH 07 HB15T012 WH 04 92.00 217 363 TRUE 128.60 140 140 140 140 144 NH 07 HB15T012 WH 05 92.00 217 344 TRUE 128.59 140 140 140 140 140 NH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 NH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 NH		91.50	N/A	403	TRUE		140	140	159		SB02S008	HB15T012
LSJ-41 92.00 N/A 288 TRUE 128.59 140 140 140 175 SB02S008 HB15T012 LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 N/A 384 TRUE 128.60 140 140 160 140 WH 07 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 140 WH 07 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 149 140 WH 07 HB15T012 LSJ-50 95.00 N/A 331 TRUE 128.59 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 140 144 WH 07 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.62 140 140 140 145 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 388 TRUE 128.66 140 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 95.00 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 95.00 N/A 370 TRUE 128.58 140 140 140 161 140 LSJ-50 HB15T012 LSJ-50 95.10 N/A 208 TRUE 128.58 140 140 140 161 140 LSJ-50 HB15T012 SB02S008 HB15T012 SB02S008 PSD2S008 HB15T012 SB02S009 95.10 N/A 208 TRUE 128.58 140 140 140 140 150 LSJ-50 HB15T012 SB02S008 SB02S008 HB15T012 SB02S008 SB02S008 SB02S008 SB02S0												
LSJ-42 91.50 N/A 345 TRUE 128.59 140 140 140 159 SB02S008 HB15T012 LSJ-43 91.25 N/A 384 TRUE 128.60 140 140 160 160 140 WH 07 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 149 140 144 WH 07 HB15T012 LSJ-50 95.00 N/A 331 TRUE 128.59 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 144 WH 07 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.59 140 140 140 145 140 SB02S008 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.52 140 140 140 145 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 388 TRUE 128.58 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 140 183 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 SA02T052 95.10 N/A 208 TRUE 128.58 140 140 140 161 140 LSJ-50 HB15T012 SB02S008 HB15T012 SB02S009 19.00 N/A 439 TRUE 128.58 140 140 140 140 140 201 SB02S008 HB15T012 SB02S011 94.00 N/A 243 TRUE 128.58 140 140 140 140 140 SB02S008 HB15T012 SB02S011 94.00 N/A 243 TRUE 128.58 140 140 140 140 150 SB02S008 HB15T012 SB02S008 SB02S008 HB15T012 SB02S008 HB15T012 SB02S008 SB02S008 SB02S008 HB15T012 SB02S008 SB02												
LSJ-43 91.25 N/A 384 TRUE 128.60 140 140 160 140 WH 07 HB15T012 LSJ-44 91.75 N/A 375 TRUE 128.60 140 140 140 149 140 WH 07 HB15T012 LSJ-50 95.00 N/A 331 TRUE 128.59 140 140 140 144 WH 07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.62 140 140 145 140 SB025008 HB15T012 LSJ-54 88.18 N/A 388 TRUE 128.66 140 140 140 183 140 SB025008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 189 140 SB025008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 LSJ-57 95.10 N/A 208 TRUE 128.58 140 140 140 161 140 LSJ-50 HB15T012 SA02T005 95.10 N/A 208 TRUE 128.58 140 140 140 140 SB025008 HB15T012 SB025008 HB15T012 SB02501 94.00 N/A 439 TRUE 128.58 140 140 140 140 SB025008 HB15T012 SB02S019 94.00 N/A 439 TRUE 128.59 140 140 140 140 SB025008 HB15T012 SB025019 HB15T012 SB025019 95.20 N/A 317 TRUE 128.59 140 140 140 182 140 SB025010 HB15T012 WH 03 92.00 217 363 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 03 92.00 217 354 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 04 92.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 05 92.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 140 WH 07 HB15T012												
LSJ-44 91.75 NA 375 TRUE 128.60 140 140 149 140 WH_07 HB15T012 LSJ-50 95.00 NA 331 TRUE 128.59 140 140 140 144 WH_07 HB15T012 LSJ-51 94.00 NA 340 TRUE 128.59 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 NA 351 TRUE 128.62 140 140 145 140 SB02S008 HB15T012 LSJ-54 88.18 NA 368 TRUE 128.66 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 SA02T005 95.10 NA 208 TRUE 128.58 140 140 140 161 140 LSJ-50 HB15T012 SA02T005 91.00 NA 439 TRUE 128.58 140 140 140 140 201 SB02S008 HB15T012 SB02S005 91.00 NA 439 TRUE 128.58 140 140 140 140 201 SB02S008 HB15T012 SB02R011 94.00 NA 243 TRUE 128.58 140 140 140 140 152 140 SB02S008 HB15T012 SB02R011 94.00 NA 243 TRUE 128.57 140 140 140 182 140 SB02S008 HB15T012 SB02S005 95.20 NA 317 TRUE 128.59 140 140 140 182 140 SB02S008 HB15T012 SB02S005 95.20 NA 317 TRUE 128.59 140 140 140 182 140 SB02S008 HB15T012 SB02S005 95.20 NA 317 TRUE 128.59 140 140 140 182 140 SB02S010 HB15T012 SB02S005 95.20 NA 317 TRUE 128.59 140 140 140 143 140 SB02S010 HB15T012 WH_03 92.00 217 363 TRUE 128.59 140 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 344 TRUE 128.59 140 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 140 WH_07 HB15T012												
LSJ-50 95.00 N/A 331 TRUE 128.59 140 140 140 144 WH_07 HB15T012 LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.62 140 140 145 140 SB02S008 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.66 140 140 145 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 388 TRUE 128.66 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 SA02T005 95.10 N/A 208 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SA02T052 91.00 N/A 439 TRUE 128.58 140 140 140 140 201 SB02S008 HB15T012 SB02S005 91.00 N/A 439 TRUE 128.58 140 140 140 140 201 SB02S008 HB15T012 SB02S011 94.00 N/A 243 TRUE 128.58 140 140 140 140 141 SB02S008 HB15T012 SB02S011 94.00 N/A 243 TRUE 128.57 140 140 140 182 140 SB02S008 HB15T012 SB02S003 95.20 N/A 317 TRUE 128.59 140 140 140 195 140 SB02S008 HB15T012 WH_03 92.00 217 363 TRUE 128.60 140 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 354 TRUE 128.60 140 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 140 WH_07 HB15T012												
LSJ-51 94.00 N/A 340 TRUE 128.59 140 140 147 140 LSJ-50 HB15T012 LSJ-53 92.25 N/A 351 TRUE 128.62 140 140 145 140 SB02S008 HB15T012 LSJ-54 88.18 N/A 388 TRUE 128.66 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.58 140 140 161 140 LSJ-50 HB15T012 LSJ-57 95.10 N/A 208 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SA02T005 95.10 N/A 243 TRUE 128.58 140 140 140 211 SB02S008 HB15T012 SB02S008 HB15T012 SB02S001 94.00 N/A 439 TRUE 128.58 140 140 140 140 141 SB02S008 HB15T012 SB02S001 94.00 N/A 243 TRUE 128.57 140 140 140 182 140 SB02S010 HB15T012 SB02S005 95.20 N/A 317 TRUE 128.59 140 140 182 140 SB02S010 HB15T012 WH 03 92.00 217 363 TRUE 128.60 140 140 140 143 140 WH 07 HB15T012 WH 04 92.00 217 354 TRUE 128.60 140 140 140 143 140 WH 07 HB15T012 WH 05 92.00 217 344 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 140 WH 07 HB15T012												
LSJ-54 88.18 NA 388 TRUE 128.66 140 140 183 140 SB02S008 HB15T012 LSJ-55 91.86 NA 380 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 NA 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 SA02T005 95.10 NA 208 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SA02T052 91.00 NA 439 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SB02R011 94.00 NA 243 TRUE 128.68 140 140 140 141 SB02S008 HB15T012 SB02R011 94.00 NA 243 TRUE 128.57 140 140 182 140 SB02S008 HB15T012 SB02R011 94.00 NA 317 TRUE 128.59 140 140 182 140 SB02S008 HB15T012 SB02V053 95.20 NA 317 TRUE 128.59 140 140 195 140 SB02S008 HB15T012 WH 03 92.00 217 363 TRUE 128.60 140 140 143 140 WH 07 HB15T012 WH 04 92.00 217 354 TRUE 128.60 140 140 140 143 140 WH 07 HB15T012 WH 04 92.00 217 354 TRUE 128.60 140 140 140 143 140 WH 07 HB15T012 WH 05 92.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 05 93.00 217 336 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 140 140 WH 07 HB15T012	LSJ-51	94.00		340	TRUE	128.59	140				LSJ-50	
LSJ-55 91.86 N/A 380 TRUE 128.58 140 140 189 140 SB02S008 HB15T012 LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 SA02T005 95.10 N/A 208 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SA02T052 91.00 N/A 439 TRUE 128.68 140 140 140 140 201 SB02S008 HB15T012 SB02S001 94.00 N/A 439 TRUE 128.68 140 140 140 140 141 SB02S008 HB15T012 SB02R011 94.00 N/A 243 TRUE 128.57 140 140 182 140 SB02S010 HB15T012 SB02S003 95.20 N/A 317 TRUE 128.59 140 140 195 140 SB02S010 HB15T012 WH_03 92.00 217 363 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 354 TRUE 128.60 140 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 344 TRUE 128.59 140 140 140 143 140 WH_07 HB15T012 WH_06 93.00 217 334 TRUE 128.59 140 140 140 143 140 WH_07 HB15T012 WH_06 93.00 217 334 TRUE 128.59 140 140 140 143 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 143 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH_07 HB15T012												
LSJ-57 92.25 N/A 370 TRUE 128.59 140 140 161 140 LSJ-50 HB15T012 SA02T005 95.10 N/A 208 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SA02T052 91.00 N/A 439 TRUE 128.58 140 140 140 140 141 SB02S008 HB15T012 SB02R011 94.00 N/A 243 TRUE 128.57 140 140 182 140 SB02S010 HB15T012 SB02R053 95.20 N/A 317 TRUE 128.57 140 140 182 140 SB02S010 HB15T012 N/H 03 92.00 217 363 TRUE 128.50 140 140 140 195 140 SB02S010 HB15T012 N/H 04 92.00 217 363 TRUE 128.60 140 140 143 140 WH 07 HB15T012 N/H 04 92.00 217 354 TRUE 128.50 140 140 140 143 140 WH 07 HB15T012 N/H 05 92.00 217 344 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 N/H 05 92.00 217 344 TRUE 128.59 140 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 149 140 WH 07 HB15T012 WH 06 93.00 217 336 TRUE 128.59 140 140 140 146 140 WH 07 HB15T012												
SA02T005 95.10 N/A 208 TRUE 128.58 140 140 140 201 SB02S008 HB15T012 SA02T052 91.00 N/A 439 TRUE 128.68 140 140 140 141 SB02S008 HB15T012 SB02R011 94.00 N/A 243 TRUE 128.57 140 140 182 140 SB02S010 HB15T012 SB02V053 95.20 N/A 317 TRUE 128.59 140 140 195 140 SB02S008 HB15T012 WH_03 92.00 217 363 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 354 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 344 TRUE 128.69 140 140 143 140 WH_07 HB15T012 <												
SA02T052 91.00 N/A 439 TRUE 128.68 140 140 140 141 SB02S008 HB15T012 SB02R011 94.00 N/A 243 TRUE 128.57 140 140 182 140 SB02S010 HB15T012 SB02V053 95.20 N/A 317 TRUE 128.59 140 140 195 140 SB02S008 HB15T012 WH 03 92.00 217 363 TRUE 128.60 140 140 143 140 WH 07 HB15T012 WH 04 92.00 217 354 TRUE 128.60 140 140 143 140 WH 07 HB15T012 WH 05 92.00 217 344 TRUE 128.60 140 140 143 140 WH 07 HB15T012 WH 06 93.00 217 344 TRUE 128.59 140 140 149 140 WH 07 HB15T012 WH												
SB02R011 94.00 NA 243 TRUE 128.57 140 140 182 140 SB02S010 HB15T012 SB02V053 95.20 NA 317 TRUE 128.59 140 140 195 140 SB02S008 HB15T012 WH_03 92.00 217 363 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 354 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 344 TRUE 128.59 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 146 140 WH_07 HB15T012												
SB02V053 95.20 N/A 317 TRUE 128.59 140 140 195 140 SB02S008 HB15T012 WH_03 92.00 217 363 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 354 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 344 TRUE 128.59 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 146 140 WH_07 HB15T012												
WH_03 92.00 217 363 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_04 92.00 217 354 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 344 TRUE 128.59 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 146 140 WH_07 HB15T012												
WH_04 92.00 217 354 TRUE 128.60 140 140 143 140 WH_07 HB15T012 WH_05 92.00 217 344 TRUE 128.59 140 140 149 140 WH_07 HB15T012 WH_06 93.00 217 336 TRUE 128.59 140 140 146 140 WH_07 HB15T012												
WH_06 93.00 217 336 TRUE 128.59 140 140 146 140 WH_07 HB15T012												
WH_07 95.00 217 326 TRUE 128.59 140 140 140 150 LSJ-50 HB15T012												
	WH_07	95.00	217	326	TRUE	128.59	140	140	140	150	LSJ-50	HB15T012

					2031 ME	DD + FF - Reservoir 9	0% Full				
		·	·	Satisfies Fire				Pressure	Pressure	Junction w/	Junction w/
Label	Elevation (m)	Fire Flow (Needed) (L/s)	Fire Flow (Available) (L/s)	Flow	Hydraulic Grade (m)	Pressure (Residual Lower Limit) (kPa)	Pressure (Zone Lower Limit) (kPa)	(Calculated	(Calculated Zone	Minimum Pressure	Minimum Pressure
		(Needed) (L/S)	(Available) (L/S)	Constraints?	Grade (III)	Lower Limit) (KPa)	Lower Limit) (kPa)	Residual) (kPa)	Lower Limit) (kPa)	(Zone)	(System)
J-182	94.25	N/A	378	TRUE	130.06	140	140	140	164	SB02S008	HB15T012
J-184	91.25	N/A	441	TRUE	130.07	140	140	140	142	WH_07	HB15T012
LSJ-1	91.00	N/A	390	TRUE	130.06	140	140	173	140	SB02S008	HB15T012
LSJ-2 LSJ-3	91.75 91.50	N/A N/A	391	TRUE TRUE	130.06 130.06	140 140	140 140	212	140 140	SB02S008 SB02S008	HB15T012 HB15T012
LSJ-3 LSJ-4	91.50	N/A N/A	396 398	TRUE	130.06	140	140	195 196	140	SB02S008 SB02S008	HB15T012 HB15T012
LSJ-5	90.25	N/A	403	TRUE	130.06	140	140	194	140	SB02S008	HB15T012
LSJ-6	91.75	N/A	411	TRUE	130.06	140	140	177	140	SB02S008	HB15T012
LSJ-7	92.25	N/A	435	TRUE	130.06	140	140	157	140	SB02S008	HB15T012
LSJ-8	92.50	N/A	442	TRUE	130.06	140	140	147	140	SB02S008	HB15T012
LSJ-9 LSJ-10	92.75 93.00	N/A N/A	433 443	TRUE TRUE	130.06 130.06	140 140	140 140	144 140	140 140	LSJ-36 LSJ-50	HB15T012 HB15T012
LSJ-10 LSJ-11	93.00	N/A N/A	423	TRUE	130.06	140	140	163	140	LSJ-50 LSJ-50	HB15T012
LSJ-12	91.75	N/A	428	TRUE	130.07	140	140	155	140	LSJ-50	HB15T012
LSJ-13	91.25	N/A	430	TRUE	130.08	140	140	171	140	WH_07	HB15T012
LSJ-14	90.75	N/A	288	TRUE	130.04	140	140	143	140	LSJ-15	HB15T012
LSJ-15	91.50	N/A	214	TRUE	130.02	140	140	140	201	SB02S008	HB15T012
LSJ-16 LSJ-17	90.50 90.75	N/A N/A	211 253	TRUE TRUE	130.01 130.03	140 140	140 140	140 140	202	SB02S008	HB15T012 HB15T012
LSJ-17 LSJ-18	90.75 89.75	N/A N/A	253 298	TRUE	130.03	140	140	140	156 157	LSJ-16 LSJ-17	HB151012 HB15T012
LSJ-19	91.00	N/A	222	TRUE	130.04	140	140	140	199	SB02S008	HB15T012
LSJ-20	89.75	N/A	406	TRUE	130.07	140	140	204	140	SB02S008	HB15T012
LSJ-21	90.50	N/A	401	TRUE	130.06	140	140	195	140	SB02S008	HB15T012
LSJ-22	90.75	N/A	397	TRUE	130.06	140	140	196	140	SB02S008	HB15T012
LSJ-23	90.50	N/A	295	TRUE	130.06	140	140	140	176	SB02S008	HB15T012
LSJ-24 LSJ-25	89.25 89.75	N/A N/A	402 400	TRUE TRUE	130.06 130.06	140 140	140 140	183 186	140 140	SB02S008 SB02S008	HB15T012 HB15T012
LSJ-25 LSJ-26	89.75	N/A	400	TRUE	130.06	140	140	184	140	SB02S008	HB15T012
LSJ-27	90.50	N/A	399	TRUE	130.06	140	140	183	140	SB02S008	HB15T012
LSJ-28	94.25	N/A	110	TRUE	130.06	140	140	140	163	LSJ-29	HB15T012
LSJ-29	94.00	N/A	116	TRUE	130.06	140	140	142	140	LSJ-28	HB15T012
LSJ-30	92.00	N/A	173	TRUE	130.06	140	140	162	140	LSJ-28	HB15T012
LSJ-31 LSJ-32	92.75 92.75	N/A N/A	376 218	TRUE TRUE	130.06 130.04	140 140	140 140	201 140	140 199	SB02S008 SB02S008	HB15T012 HB15T012
LSJ-32 LSJ-34	92.75	N/A	229	TRUE	130.04	140	140	140	199	SB02S008	HB15T012
LSJ-35	93.50	N/A	232	TRUE	130.06	140	140	140	202	SB02S008	HB15T012
LSJ-36	94.00	N/A	235	TRUE	130.06	140	140	140	201	SB02S008	HB15T012
LSJ-37	91.00	N/A	306	TRUE	130.05	140	140	140	183	SB02S008	HB15T012
LSJ-38	91.50	N/A	443	TRUE	130.06	140	140	140	141	SB02S008	HB15T012
LSJ-39 LSJ-40	91.00 91.25	N/A N/A	429	TRUE TRUE	130.07	140	140	140 149	147	WH_07 WH 07	HB15T012 HB15T012
LSJ-40 LSJ-41	91.25	N/A N/A	433 299	TRUE	130.08 130.07	140 140	140 140	149	140 187	SB02S008	HB15T012
LSJ-42	91.50	N/A	359	TRUE	130.07	140	140	140	170	SB02S008	HB15T012
LSJ-43	91.25	N/A	402	TRUE	130.08	140	140	159	140	WH_07	HB15T012
LSJ-44	91.75	N/A	392	TRUE	130.08	140	140	148	140	WH_07	HB15T012
LSJ-50	95.00	N/A	346	TRUE	130.07	140	140	140	145	WH_07	HB15T012
LSJ-51	94.00 92.25	N/A N/A	356 370	TRUE TRUE	130.07 130.10	140 140	140 140	146 140	140 147	LSJ-50	HB15T012 HB15T012
LSJ-53 LSJ-54	92.25 88.18	N/A N/A	430	TRUE	130.10	140	140	158	147	SB02S008 SB02S008	HB15T012
LSJ-55	91.86	N/A	421	TRUE	130.06	140	140	173	140	SB02S008	HB15T012
LSJ-57	92.25	N/A	387	TRUE	130.07	140	140	160	140	LSJ-50	HB15T012
SA02T005	95.10	N/A	217	TRUE	130.06	140	140	140	214	SB02S008	HB15T012
SA02T052	91.00	N/A	455	TRUE	130.16	140	140	140	151	SB02S008	HB15T012
SB02R011	94.00	N/A	257	TRUE	130.05	140	140	182	140	SB02S010	HB15T012
SB02V053 WH 03	95.20 92.00	N/A 217	350 380	TRUE TRUE	130.07 130.07	140 140	140 140	187 141	140 140	SB02S008 WH 07	HB15T012 HB15T012
WH_03 WH_04	92.00	217	380 370	TRUE	130.07	140	140	141	140	WH_07	HB15T012
WH 05	92.00	217	360	TRUE	130.07	140	140	147	140	WH 07	HB15T012
WH_06	93.00	217	352	TRUE	130.07	140	140	145	140	WH_07	HB15T012
WH 07	95.00	217	341	TRUE	130.07	140	140	140	151	LSJ-50	HB15T012

APPENDIX

FLUSHING REPORT

Flushing Report (2011 Average Day) Lower Stoney Creek BSS

Label	Length (m)	Diameter (mm)	Flushing Event	Velocity (Maximum Flushing) (m/s)	Satisfies Flushing Target Velocity?	Flow (Absolute) (L/s)
LSP-1	172.80	300	Event [LSJ-53]	1.11	TRUE	6.62
LSP-2	192.90	300	Event [LSJ-53]	0.96	TRUE	2.95
LSP-3	106.10	300	Event [LSJ-3]	0.86	TRUE	0.49
LSP-4	91.10	300	Event [LSJ-3]	0.80	TRUE	0.32
LSP-5	83.20	300	Event [LSJ-5]	1.03	TRUE	0.85
LSP-6	128.90	300	Event [LSJ-5]	0.85	TRUE	0.85
LSP-7	88.40	300	Event [LSJ-6]	0.93	TRUE	4.27
LSP-8 LSP-9	88.40 78.90	300 300	Event [LSJ-8] Event [LSJ-8]	0.81 1.00	TRUE TRUE	2.00 2.28
LSP-10	82.00	300	Event [LSJ-9]	0.84	TRUE	1.51
LSP-11	78.90	300	Event [LSJ-9]	0.84	TRUE	2.53
LSP-12	84.70	300	Event [J-182]	1.09	TRUE	2.23
LSP-13	75.00	300	Event [LSJ-12]	0.88	TRUE	3.79
LSP-14	71.00	300	Event [LSJ-12]	0.86	TRUE	4.30
LSP-15	140.50	300	Event [SA02T052]	0.94	TRUE	11.36
LSP-16	82.00	200	Event [LSJ-17]	2.06	TRUE	2.75
LSP-17	79.20	200	Event [LSJ-17]	0.93	TRUE	2.12
LSP-18 LSP-19	176.80	200 200	Event [LSJ-17]	0.91 1.38	TRUE	1.53 2.92
LSP-19 LSP-20	78.90 77.40	200	Event [LSJ-16] Event [LSJ-17]	1.97	TRUE	2.92
LSP-21	193.90	200	Event [LSJ-17]	0.88	TRUE	0.88
LSP-22	100.30	200	Event [LSJ-19]	1.22	TRUE	0.22
LSP-23	185.90	200	Event [LSJ-17]	1.22	TRUE	0.85
LSP-24	87.80	200	Event [LSJ-17]	2.07	TRUE	2.95
LSP-25	129.20	300	Event [LSJ-22]	0.87	TRUE	0.28
LSP-26	82.90	300	Event [LSJ-22]	0.81	TRUE	2.00
LSP-27	77.70	300	Event [LSJ-21]	0.87	TRUE	3.06
LSP-28	151.80	300	Event [LSJ-54]	1.17	TRUE	9.17
LSP-29	137.80	300	Event [LSJ-24]	1.01	TRUE	3.15 0.81
LSP-30 LSP-31	86.00 136.20	300 200	Event [LSJ-24] Event [LSJ-26]	0.93 1.17	TRUE TRUE	0.81
LSP-32	53.30	300	Event [LSJ-26]	0.94	TRUE	0.19
LSP-33	71.90	300	Event [LSJ-26]	0.94	TRUE	0.19
LSP-34	89.60	300	Event [LSJ-26]	0.96	TRUE	1.17
LSP-35	96.90	200	Event [LSJ-23]	1.14	TRUE	0.29
LSP-36	124.70	200	Event [LSJ-23]	1.00	TRUE	0.18
LSP-37	79.90	300	Event [LSJ-31]	0.96	TRUE	3.17
LSP-38	28.00	200	Event [LSJ-28]	1.86	TRUE	0.00
LSP-39	127.40	200	Event [LSJ-28]	1.86	TRUE	0.00
LSP-40 LSP-41	93.60 161.80	200 300	Event [LSJ-28] Event [SB02V053]	1.86 0.81	TRUE TRUE	0.00 5.20
LSP-41	142.30	200	Event [LSJ-34]	1.45	TRUE	2.04
LSP-43	231.30	200	Event [LSJ-34]	1.45	TRUE	1.06
LSP-45	126.80	200	Event [LSJ-34]	2.54	TRUE	2.55
LSP-46	120.10	200	Event [LSJ-35]	1.24	TRUE	0.00
LSP-47	157.30	200	Event [LSJ-35]	0.81	TRUE	0.58
LSP-48	104.20	200	Event [LSJ-36]	1.27	TRUE	0.58
LSP-49	102.40	200	Event [LSJ-37]	1.03	TRUE	1.07
LSP-50	76.50	200	Event [LSJ-37]	1.18	TRUE	1.85
LSP-51	106.40	300	Event [LSJ-38]	0.87	TRUE	2.02
LSP-52(1) LSP-52(2)	55.80 81.10	300 300	Event [J-184] Event [LSJ-39]	0.91 0.97	TRUE TRUE	4.14 3.26
LSP-53	124.10	300	Event [LSJ-39]	0.88	TRUE	3.26
LSP-54	43.90	300	Event [LSJ-39]	0.88	TRUE	3.26
LSP-55	78.30	200	Event [LSJ-42]	1.06	TRUE	0.05
LSP-56	80.20	200	Event [LSJ-42]	1.06	TRUE	0.05
LSP-57	82.90	200	Event [LSJ-42]	1.49	TRUE	0.94
LSP-58	84.40	300	Event [WH_03]	1.04	TRUE	3.21
LSP-59	37.80	300	Event [WH_03]	1.19	TRUE	1.60
LSP-61 LSP-62	59.40 53.00	300 300	Event [WH_03] Event [WH_05]	1.19 0.96	TRUE TRUE	1.60 1.50
LSP-62 LSP-63	68.00	300	Event [WH_05]	0.96	TRUE	1.38
LSP-64	50.90	300	Event [WH 05]	0.85	TRUE	1.22
LSP-65	66.40	300	Event [WH_05]	0.85	TRUE	1.11
LSP-66	41.10	300	Event [WH_05]	0.85	TRUE	1.01
LSP-68	33.50	300	Event [WH_05]	0.85	TRUE	1.01
LSP-69	85.30	300	Event [LSJ-57]	1.16	TRUE	1.47
P-239	86.00	300	Event [WH_05]	0.85	TRUE	1.01
P-240	126.20	200	Event [LSJ-57]	1.57	TRUE	0.28
P-253	142.30	300	Event [J-182]	1.13	TRUE	1.95
P-254 P-253	79.20 142.30	200 300	Event [LSJ-42] Event [J-182]	1.54 1.20	TRUE TRUE	0.89 1.16
P-254	79.20	200	Event [LSJ-42]	1.63	TRUE	0.81
1 204	13.20	200	LVCIII [LUU-42]	1.00	IIVOL	0.01



Figure D1 - Simulated Flushing Results for the Proposed Lower Stoney Creek Development during the 2011 Average Day Scenario. All Hydrants Circled in Blue Require Two Port Flushing, as Described in Section 4.4 of the Report. Watermains Highlighted in Blue Require Unidirectional Flushing.

APPENDIX

E

HYDRANT FLOW DATA

Table E1 – Hydrant Flow Test vs. Modeled Hydrant Curve: Hydrant SB02H036 @ 244 McNeilly Road

Source	Static Pressure (kPa)	Residual Pressure (kPa)	Test Flow (L/s)	Theoretical Flow Available at 20 psi Residual (L/s)
Hydrant Test	400	352	64	159
Model Curve	382	332	63	147

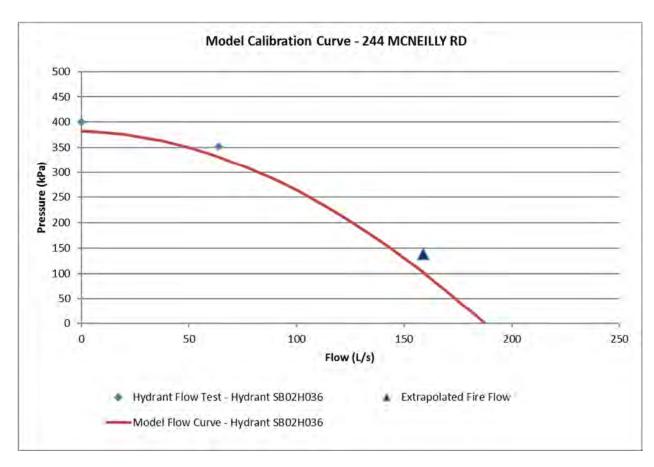


Figure E1 - Model Calibration Curve Verification (Hydrant Flow Test vs. Modeled Hydrant Curve)

Table E2 – Hydrant Flow Test vs. Modeled Hydrant Curve: Hydrant SB02H037 @ 257 McNeilly Road

Source	Static Pressure (kPa)	Residual Pressure (kPa)	Test Flow (L/s)	Theoretical Flow Available at 20 psi Residual (L/s)
Hydrant Test	414	372	65	181
Model Curve	396	345	63	152

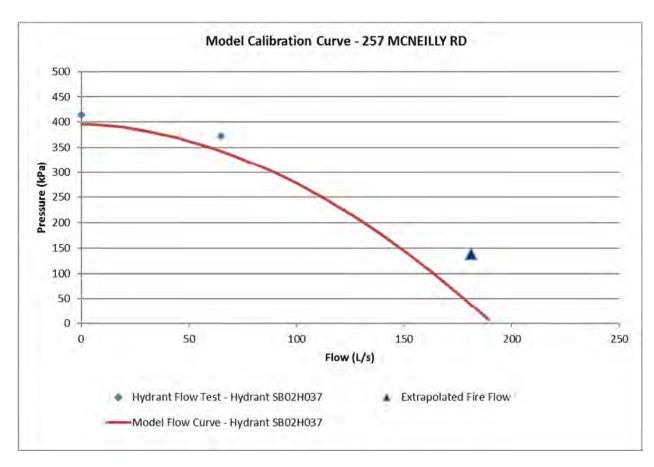


Figure E2 - Model Calibration Curve Verification (Hydrant Flow Test vs. Modeled Hydrant Curve)

Table E3 – Hydrant Flow Test vs. Modeled Hydrant Curve: Hydrant SA02H015 @ 1217 Barton Street

Source	Static Pressure (kPa)	Residual Pressure (kPa)	Test Flow (L/s)	Theoretical Flow Available at 20 psi Residual (L/s)
Hydrant Test	386	359	56	182
Model Curve	375	342	56	164

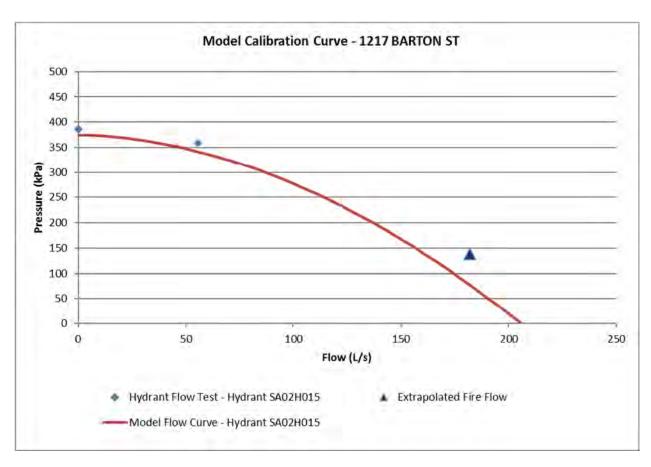


Figure E3 - Model Calibration Curve Verification (Hydrant Flow Test vs. Modeled Hydrant Curve)

Table E4 – Hydrant Flow Test vs. Modeled Hydrant Curve: Hydrant SA02H016 @ Barton Street

Source	Static Pressure (kPa)	Residual Pressure (kPa)	Test Flow (L/s)	Theoretical Flow Available at 20 psi Residual (L/s)
Hydrant Test	386	352	56	161
Model Curve	383	347	56	157

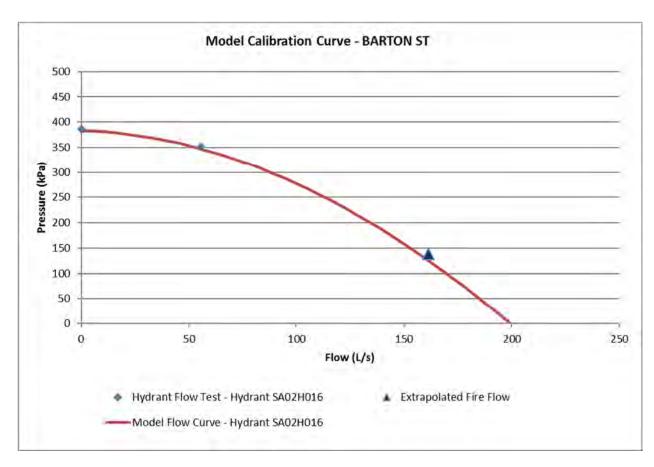
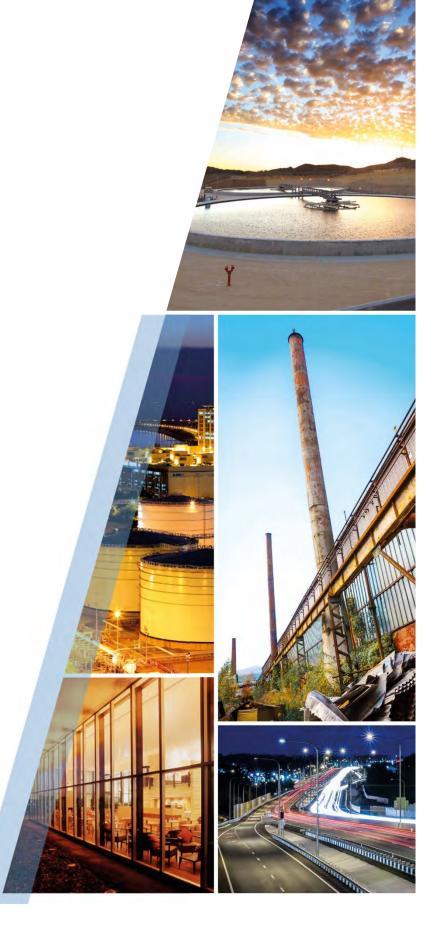


Figure E4 - Model Calibration Curve Verification (Hydrant Flow Test vs. Modeled Hydrant Curve)

APPENDIX K TRAFFIC IMPACT STUDY


K-1 Revised Traffic Impact Study (GHD, December 2019)

Fruitland-Winona Secondary Plan

Revised Traffic Impact Study December 2019

Branthaven Homes

Executive Summary

GHD Limited (GHD) was retained by the Block 3 Landowners Group to prepare a Traffic Impact Study (TIS) for the proposed Fruitland-Winona Secondary Plan, Block 3 Servicing Strategy Area, residential subdivision development located on the north side of Highway 8 and south side of Barton Street, between McNeilly road and Winona Road, in Stoney Creek, City of Hamilton. This report determines the site related traffic and the subsequent traffic-related impacts on the adjacent road network during the weekday AM and PM peak hours from the proposed development. These impacts are based on projected future background traffic and road network conditions derived for 2019 and 2024 planning horizon years.

Proposed Site Characteristics

The proposed Fruitland-Winona Secondary Plan (prepared by Glen Schnarr & Associated Inc., dated July 9, 2019, is expected to consist of a maximum total of 2,403 residential units. The maximum unit count consists of a maximum of 410 "Medium Density Residential Units" and 1993 "Low Density Residential Units".

New Site Traffic

The total subject development is estimated to generate a total of 1696 two-way trips during the AM peak hour consisting of 425 inbound and 1,271 outbound trips and a total of 2,206 two-way trips during the PM peak hour consisting of 1,419 inbound and 787 outbound trips.

Summary of Findings

Under full build-out, the total subject development is estimated to generate a total of 1,696 two-way trips during the AM peak hour consisting of 425 inbound and 1,271 outbound trips and a total of 2,206 two-way trips during the PM peak hour consisting of 1,419 inbound and 787 outbound trips.

The study intersections are expected to have acceptable future operating characteristics with reserve capacity under 2018 existing, 2019 future background, and 2019 and 2024 future total conditions. Although the operational impact of the added site traffic is likely to be noticeable to the immediate surrounding road network, as expected with a development of this size, it is not expected to contribute to any significant deterioration of overall network's operational performance.

Under 2024 future total traffic conditions, the existing all-way stop controlled intersections of McNeilly Road and Lewis Road on Barton Street are reported to have increased delays resulting in LOS "F".

With respect to noted delay concerns at the existing intersections along Highway 8 and Barton Street, future intersections improvements to mitigate any intersections capacity issues along either of these roads will be determined through the ongoing Highway 8 Improvements EA and the Barton Street and Fifty Road Improvements EA studies.

Summary of Recommendations

The Collector Road "D" proposed right-of-way (ROW) width is 26 metres from its western extent at McNeilly Road to its eastern extent at Barton Street; a short segment connecting Collector Road "D" to Highway 8 is proposed with a 20 metre ROW width. The Collector Road "E" proposed right-of-way (ROW) width is 26 metres throughout. The local road proposed right-of-way (ROW) widths are 20 metres throughout.

The following new intersections are proposed:

- Collector Road "D" at Lewis Road
- Collector Road "E" at Highway 8
- Collector Road "D" at Highway 8
- Collector Road "D" at McNeilly Road
- Collector Road "E" at Barton Street
- Collector Road "D" opposite Escarpment Drive at Barton Street
- Two proposed laneway connections on McNeilly Road just north of Highway 8.

As per the results of the all-way stop and traffic signal warrants, and satisfactory operating conditions under two-way stop control as per the results of the capacity analysis, two-way stop control is sufficient at all internal collector road intersections. Future intersection geometry and traffic control at these intersections will be determined through the respective draft plan or site plan applications as they proceed. Should draft plans proceed in advance of City work, they will be required to address temporary intersection improvements with each submission.

We trust that this satisfies your requirements, but do not hesitate to contact the undersigned if you have any questions.

Sincerely,

William Maria, P. Eng. Senior Project Manager

Table of Contents

1.	Intro	duction		1
	1.1	Retainer	and Objective	1
	1.2	Study Team		
2.	Site Characteristics			3
	2.1			
	2.2	•		
		2.2.1	Expected Maximum Unit Count	
		2.2.2	Proposed Road Network Layout	
		2.2.3	Proposed Right-of-Way Widths	
		2.2.4	Other Planned Right-of-Way Widths	4
3.	Exist	ing Condit	ions	6
	3.1	1 Existing road Network		
	3.2	Pedestria	an Routes	6
	3.3	Transit Services		6
	3.4	Existing	Traffic Data	6
4.	Futu	Future Background Traffic		9
	4.1	Background Growth		9
5.	Site Generated Traffic			12
	5.1	Modal Split		12
	5.2	Site Trip Generation		12
	5.3	Site Trip	Distribution and Assignment	12
6.	Futu	re total trat	ffic	14
	6.1	Future T	otal Traffic	14
7.	Inter	section Ca	pacity Analysis	17
		7.1.1	McNeilly Road at Barton Street	
		7.1.1	Collector Road "E" at Barton Street	
		7.1.2 7.1.3	Lewis Road at Barton StreetEscarpment Drive/Collector Road "D" at Barton Street	
		7.1.3 7.1.4	McNeilly Road at Collector Road "D" at Barton Street	
		7.1.5	Collector Road "D" at Collector Road "E"	
		7.1.6	Lewis Road at Collector Road "D"	
		7.1.7	Collector Road "D" at Collector Road "D"	
		7.1.8	McNeilly Road at Highway 8	
		7.1.9	Highway 8 at Collector Road "E"	
		7.1.10 7.1.11	Lewis Road at Highway 8Highway 8 at Collector Road "D"	
		1.1.11	riighway o at collector road D	20

	8.	Inter	section Control	26
		8.1	All-Way Stop Warrants	26
		8.2	Traffic Signal Warrants	26
		8.3	Roundabout Control	27
			8.3.1 Roundabout Warrant	
		8.4	Proposed Intersection Control	
		8.5	· Auxiliary Turning Lanes	
	9.	Cond	clusions	
		9.1	Summary of Findings	29
		9.2	Summary of Recommendations	29
Fi	gur	e In	dex	
	Figu	re 1	Site Location	2
	Figu	re 2	Secondary Plan	5
Figure 3		re 3	Existing Volumes 2019 Future Background Volumes 2024 Future Background Volumes Site Trips 2019 Future Total Volumes	
	Figure 4 Figure 5 Figure 6 Figure 7 Figure 8			
			2024 Future Total Volumes	
Ta	able	Inc	dex	
	Tabl	e 1	Site Trip Generation	12
	Tabl	e 2	Capacity Analyses of McNeilly Road at Barton Street	18
	Tabl	e 3	Capacity Analyses of Collector Road "E" at Barton Street	19
	Tabl	e 4	Capacity Analyses of Lewis Road at Barton Street	19
	Tabl	e 5	Capacity Analyses of Escarpment Drive/Collector Road "D" at Barton Street	20
	Tabl	e 6	Capacity Analyses of McNeilly Road at Collector Road "D"	21
	Tabl	e 7	Capacity Analyses of Collector Road "D" at Collector Road "E"	22
	Tabl	e 8	Capacity Analyses of Lewis Road at Collector Road "D"	22
	Tabl	e 9	Capacity Analyses of Collector Road "D" at Collector Road D	23
	Tabl	e 10	Capacity Analyses of McNeilly Road at Highway 8	23

Table 11	Capacity Analyses of Highway 8 at Collector Road "E"	24
Table 12	Capacity Analyses of Lewis Road at Highway 8	24
Table 13	Capacity Analyses of Highway 8 at Collector Road "D"	2
Table 14	Roundabout Analysis Results	27

Appendix Index

Appendix A	Turning Movement Counts
Appendix B	2016 Transportation Tomorrow Survey Data
Appendix C	Turning Movement Diagrams
Appendix D	Capacity Analysis
Appendix E	Signal Timing Plan
Appendix F	Traffic Signal Warrant
Appendix G	Arcady Data Sheets
Appendix H	Local Urban Residential – 20m R.O.W

1. Introduction

1.1 Retainer and Objective

GHD Limited (GHD) was retained by the Block 3 Landowners Group to prepare a Traffic Impact Study (TIS) for full build-out of the proposed Fruitland-Winona Secondary Plan, Block 3 Servicing Strategy Area, residential subdivision development located on the north side of Highway 8 and south side of Barton Street, between McNeilly Road and Winona Road, in Stoney Creek, City of Hamilton, to determine the following:

- Establish baseline traffic conditions for the study area and update the existing traffic conditions
 to derive the future background operating conditions for the study intersections at a future 2019
 and 2024 planning horizons.
- Determine the traffic volumes anticipated to be generated by build-out of the proposed Block 3
 Servicing Strategy Area during the weekday AM and PM peak hours; to assess the impact of
 this traffic on the study intersections and if needed, to recommend improvements to
 accommodate the forecasted traffic volumes.

The proposed site location is shown in Figure 1.

1.2 Study Team

The GHD team involved in the preparation of the study are

- · William Maria, P. Eng., Senior Project Manager
- Adam Mildenberger, B.A., C.E.T., Transportation Planner

Branthaven Homes Fruitland-Winona Secondary Plan Traffic Impact Study Site Location Job Number | 11115493 Revision | A Date | Oct 2018

Figure 01

2. Site Characteristics

2.1 Study Area

The study area includes the following intersections:

- Barton Street at McNeilly Road
- Barton Street at Lewis Road
- Barton Street at Escarpment Drive opposite proposed Collector Road 'D'
- Highway 8 at McNeilly Road
- Highway 8 at Lewis Road
- McNeilly Road at proposed Collector Road 'D'
- Barton Street at proposed Collector Road 'E'
- Highway 8 at proposed Collector Road 'E'
- Highway 8 at proposed Collector Road 'D'
- Proposed Collector Road 'D' at proposed Collector Road 'E'
- Proposed Collector Road 'D' at Lewis Road
- Proposed Collector Road 'D' at proposed Collector Road 'D'

2.2 Secondary Plan

2.2.1 Expected Maximum Unit Count

The proposed Fruitland-Winona Secondary Plan, Block 3 Servicing Strategy Area prepared by Glen Schnarr & Associated Inc., dated July 9, 2019, is expected to consist of a maximum total of 2,403 residential units. The maximum unit count consists of a maximum of 410 "Medium Density Residential Units" and 1,993 "Low Density Residential Units".

2.2.2 Proposed Road Network Layout

The external road network perimeter consists of Barton Street to the north, Highway 8 to the south, McNeilly Road to the west, and Tuscani Drive to the east. The existing alignment of Lewis Road will traverse through the centre of the proposed development, providing site access to Barton Street and Highway 8.

The internal road network provides access to the external road network via the following proposed connections:

- Collector Road 'D' at Lewis Road
- Collector Road 'E' at Highway 8
- Collector Road 'D' at Highway 8
- Collector Road 'D' at McNeilly Road

- Collector Road 'E' at Barton Street
- Collector Road 'D' opposite Escarpment Drive at Barton Street
- Two proposed laneway connections on McNeilly Road just north of Highway 8

In addition to proposed local roads, the internal road network will consist of two new proposed collector roads to be referred to as Collector Road "D" and Collector Road "E". Collector Road "D" will be oriented east-west from McNeilly Road, intersecting Collector Road "E" and Lewis Road, to just east of Lewis Road where it transitions to a north-south orientation and intersects Highway 8 to the south and Barton Street to the north. Collector Road "E" will be oriented north-south through the site from Highway 8 in the south to Barton Street in the north, intersecting Collector Road "D".

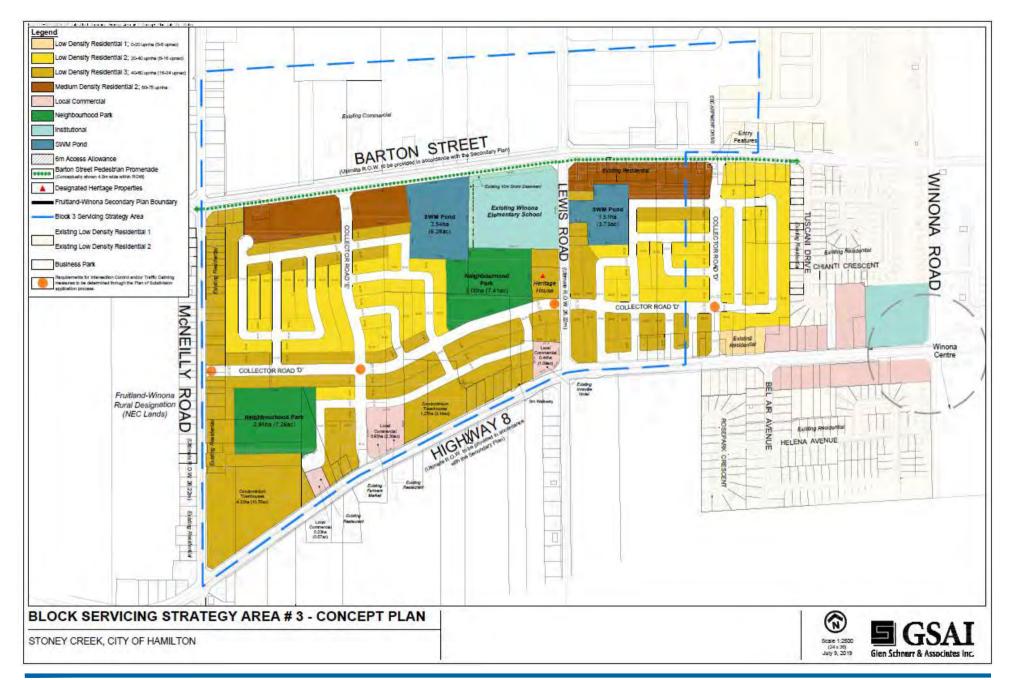
The proposed site plan is shown in **Figure 2**.

2.2.3 Proposed Right-of-Way Widths

The Collector Road "D" proposed right-of-way (ROW) width is 26 metres (m) from its western extent at McNeilly Road to its eastern extent at Barton Street. This will include a pavement width of at least 12.7 m, consisting of 3.5 m travel lanes, 1.5 m bikes lane, and 2.7 m on one side devoted to on-street parking. A short segment connecting Collector Road "D" to Highway 8 is proposed with a 20 m ROW width, which is proposed to include an 8 m pavement width (4 m travel lanes) with no on-street parking or bike lanes.

The Collector Road "E" proposed right-of-way (ROW) width is 26 m throughout, which will have a cross-section generally consistent with Collector Road "D".

The local road proposed right-of-way (ROW) widths are 20 m throughout and consistent with Hamilton Standard No. RD-113.01 (see Appendix H). This will include sidewalks on both sides of the road, a pavement width of 8 m and on-street parking.


All collector and local roads throughout the Secondary Plan will include sidewalks on both sides of the roadway.

2.2.4 Other Planned Right-of-Way Widths

Highway 8 and Barton Street ultimate right-of-ways are to be determined through their respective EA process. The existing cross-sections are described in Section 3.1 of this report, and the specific future cross-sections will be determined through the EA process. T

he ongoing Barton Street and Fifty Road Improvement EA is expected to conclude that a four lane cross-section (two travel lanes per direction) is the preferred design option along Barton Street, which is described in the Barton Street Pedestrian Promenade concept illustrated in the Fruitland-Winona Urban Design Principles and Guidelines.

McNeilly Road and Lewis Road will have ultimate right-of-ways of 26.22 m, and are expected to maintain existing cross-sections; specific cross-section features in approach to the Barton Street and Highway 8 intersections are expected to be determined upon completion of the EA process.

Branthaven Homes Fruitland-Winona Secondary Plan Traffic Impact Study Secondary Plan Job Number | 11115493 Revision | A Date | Oct 2018

Figure 02

3. Existing Conditions

3.1 Existing road Network

Barton Street is a two-lane arterial road with a posted speed limit of 60 km/h and a rural cross-section (gravel shoulders) through the study area. The road is oriented east-west and intersects McNeilly Road (all-way stop control), Lewis Road (all-way stop control) and Escarpment Drive (two-way stop control for Escarpment Drive). There are no significant horizontal or vertical curves in the roadway within the study area.

Highway 8 is a two-lane arterial road with a posted speed limit of 60 km/h and a rural cross-section (gravel shoulders) through the study area. The road is oriented east-west and intersects McNeilly Road (traffic signal) and Lewis Road (two-way stop control for Lewis Road). There is a noticeable horizontal curve in the road's alignment just west of McNeilly Road with an estimated radius of approximately 200 m; there are no significant vertical curves within the study area.

McNeilly Road is a two-lane collector road with a posted speed limit of 50 km/h and a rural cross-section (gravel shoulders) through the study area. The road is oriented north-south and intersects Highway 8 (traffic signal) and Barton Street (all-way stop control). There are no significant horizontal or vertical curves in the roadway within the study area.

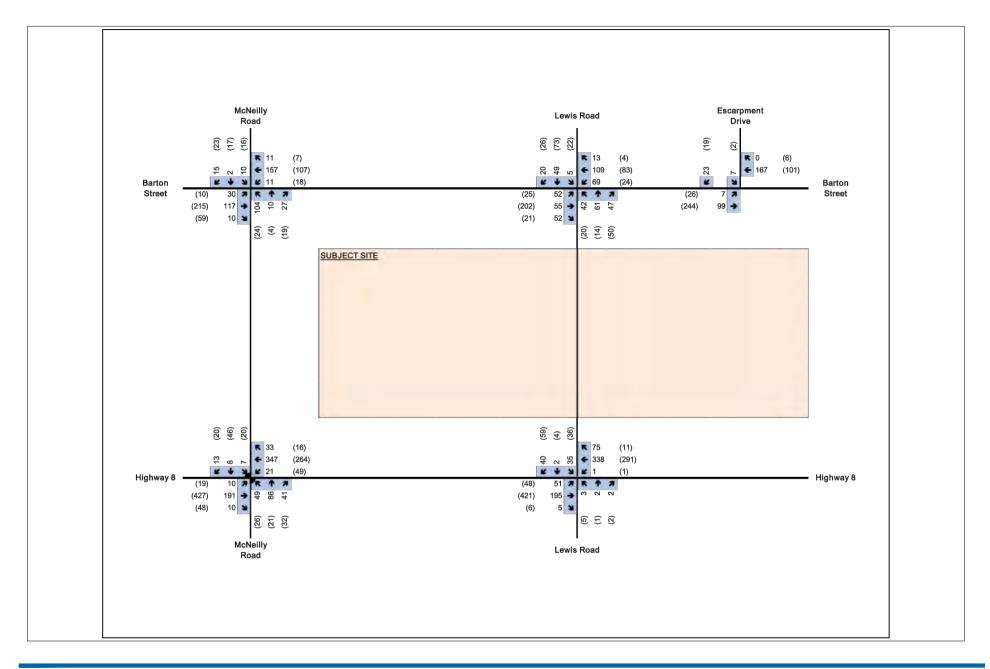
Lewis Road is a two-lane collector road with a posted speed limit of 50 km/h and a rural cross-section (gravel shoulders) through the study area. The road is oriented north-south and intersects Highway 8 (two-way stop control for Lewis Road) and Barton Street (all-way stop control). There are no significant horizontal or vertical curves in the roadway within the study area.

Escarpment Drive is a two-lane collector road with a posted speed limit of 50 km/h and an urban cross-section (curb and gutters) through the study area. The road is oriented north-south and T-intersects Barton Street (two-way stop control for Escarpment Drive). There is horizontal curve in the road's alignment with an estimated radius of approximately 15 m approximately 100 m north of Barton Street; there are no significant vertical curves in the roadway within the study area.

3.2 Pedestrian Routes

Sidewalks are currently provided on the south side of Barton Street west of McNeilly Road and the north side of Barton Street east of McNeilly Road, the east side of Escarpment Drive, the west side of McNeilly Road between Barton Street and Highway 8, on the south side of Highway 8, and fronting Winona Elementary Public School on Lewis Road and Barton Street.

3.3 Transit Services


Transit service is currently not provided on the surrounding road network.

3.4 Existing Traffic Data

GHD collected AM and PM peak hour turning movement counts in May 2016 at the study area intersections. The turning movement counts are included in **Appendix A**.

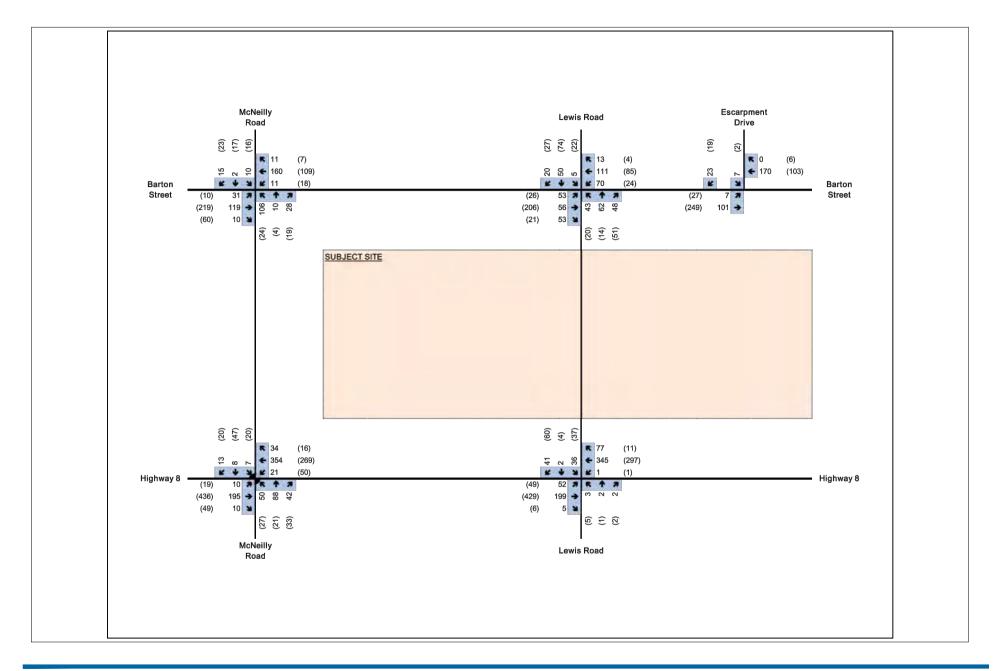
Figure 3 summarizes the adopted existing traffic volumes during the weekday AM and PM peak hours.

XX AM Peak Hour Volumes (XX) PM Peak Hour Volumes Signalized Intersection

Branthaven Homes
Fruitland-Winona Secondary Plan
Traffic Impact Study
Existing Volumes

Job Number | 11115493 Revision | A Date | Oct 2018

Figure 03


4. Future Background Traffic

4.1 Background Growth

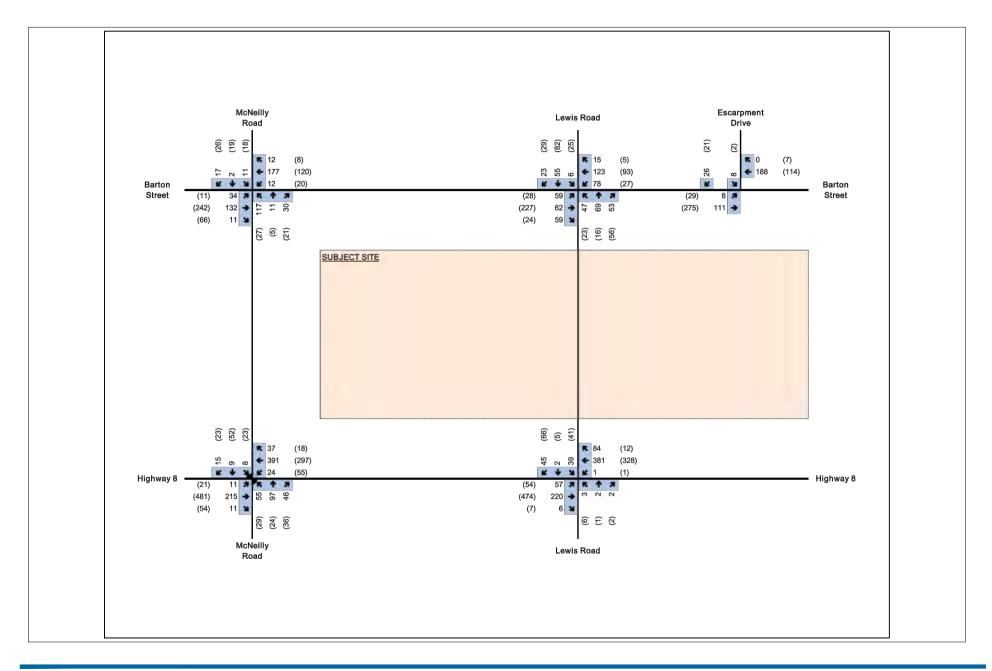
Future background growth was conservatively applied to all existing study area roads for the horizon years of 2019 (build-out) and 2024 (5-years post build-out). A conservative growth rate of 2 percent per annum was applied to account for regional traffic growth in the area.

Traffic generated by both Block 1 and 2 traffic or other future developments were not included in the development of future background traffic volumes. Traffic generated by external development blocks will not contribute additional traffic along Highway 8 and Barton Street and not through the internal road network within the Block 3 Servicing Strategy Area. Consequently, any future road or intersection improvements along these roads will be confirmed when the ongoing EA's for these roads is completed.

The 2019 and 2024 background growth traffic volumes are presented in **Figure 4** and **Figure 5**, respectively.

Legend

XX AM Peak Hour Volumes (XX) PM Peak Hour Volumes • Signalized Intersection



Branthaven Homes Fruitland-Winona Secondary Plan Traffic Impact Study

Job Number | 11115493 Revision A

Date Oct 2018 2019 Future Background Volumes

Figure 04

Legend

XX AM Peak Hour Volumes (XX) PM Peak Hour Volumes Signalized Intersection

Branthaven Homes Fruitland-Winona Secondary Plan Traffic Impact Study

Revi

Job Number | 11115493 Revision | A

2024 Future Background Volumes _____Date | Oct 2018

Figure 05

5. Site Generated Traffic

5.1 Modal Split

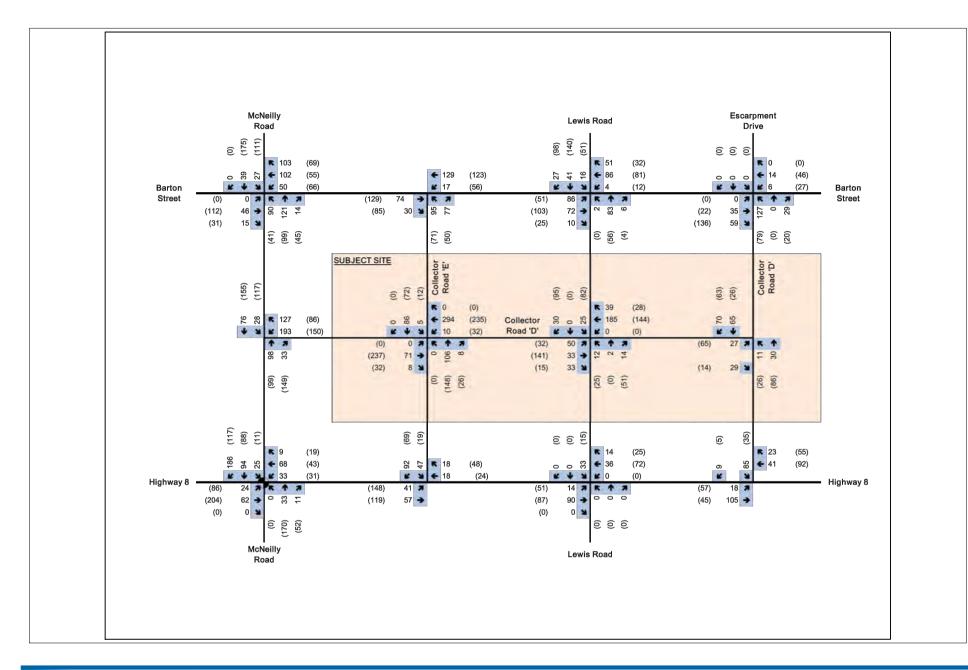
As a conservative measure no transit reduction was applied to the estimated site trips in the study analysis.

5.2 Site Trip Generation

Trip generation during the weekday peak hours for full build-out of the Block 3 Servicing Strategy Area was estimated using the Institute of Transportation Engineer's (ITE) 10th Edition Land Use Code (LUC) #210 for single family detached dwellings and #230 for residential condominium/townhouses, as presented in **Table 1**. A comparison of the trip generation between the trip generation rate method and the fitted curve equation method resulted in greater trips for trip generation rate method, thus these results were adopted accordingly as a conservative measure.

Table 1 Site Trip Generation

Land Use Code	Units	Parameters	Peak Hour Trip Generation					
			Weekd	ay AM		Weekda	у РМ	
			In	Out	Total	In	Out	Total
Single Family Detached	Single Family Detached 1,993 (LUC 210)	Trip Rate	0.20	0.56	0.76	0.64	0.36	1.00
(LUC 210)		Trip Ratio	26%	74%	-	64%	36%	-
		Gross Trips	394	1121	1515	1276	717	1993
Condominium Townhouse	410	Trip Rate	0.08	0.37	0.44	0.35	0.17	0.52
(LUC 230)		Trip Ratio	17%	83%	-	67%	33%	-
		Gross Trips	31	150	180	143	70	213
Total Trips			425	1,271	1,696	1,419	787	2,206


The Block 3 Servicing Strategy Area development is estimated to generate a total of 1,696 two-way trips during the AM peak hour consisting of 425 inbound and 1,271 outbound trips and a total of 2,206 two-way trips during the PM peak hour consisting of 1,419 inbound and 787 outbound trips.

5.3 Site Trip Distribution and Assignment

The distribution of site traffic between the subject site and the limits of the study area was based on 2016 Transportation Tomorrow Survey (TTS) data, which is provided in **Appendix B**.

Upon determining origin and destination points throughout the study area for all inbound and outbound trips, trips were assigned to individual turning movements at study area intersections based on route choice assignment with consideration for anticipated travel times. Turning Movement Diagrams (TMDs) illustrating site trips assigned to turning movements are provided in **Appendix C**.

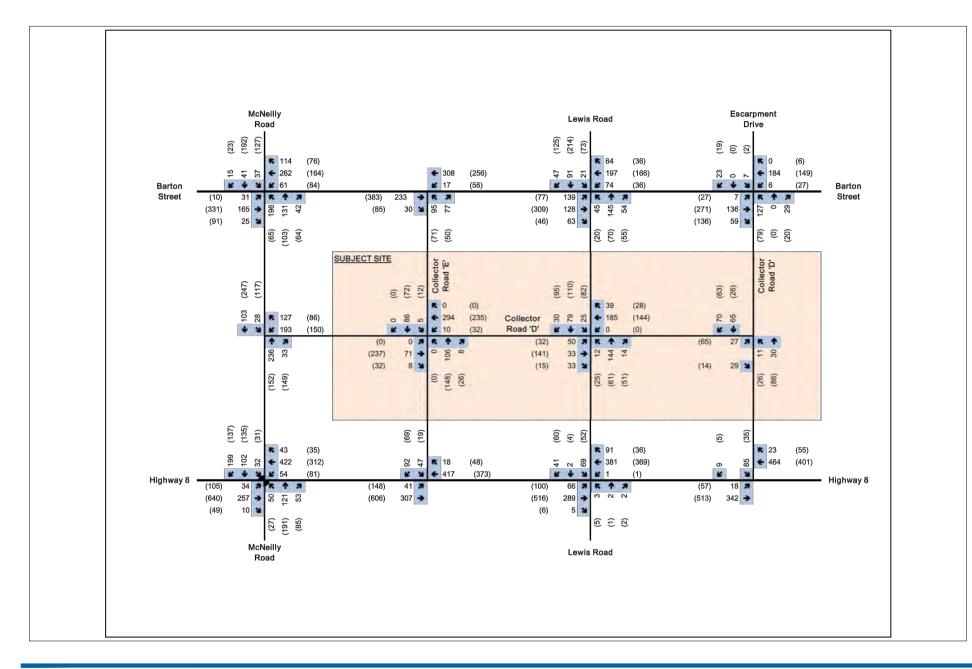
The estimated site trips generated by the proposed development as assigned to the nearby road network for the weekday AM and PM peak hours are shown in **Figure 6**.

Legend

XX AM Peak Hour Volumes (XX) PM Peak Hour Volumes Signalized Intersection

Branthaven Homes Fruitland-Winona Secondary Plan Traffic Impact Study Site Trips Job Number | 11115493 Revision | A Date | Oct 2018

Figure 06



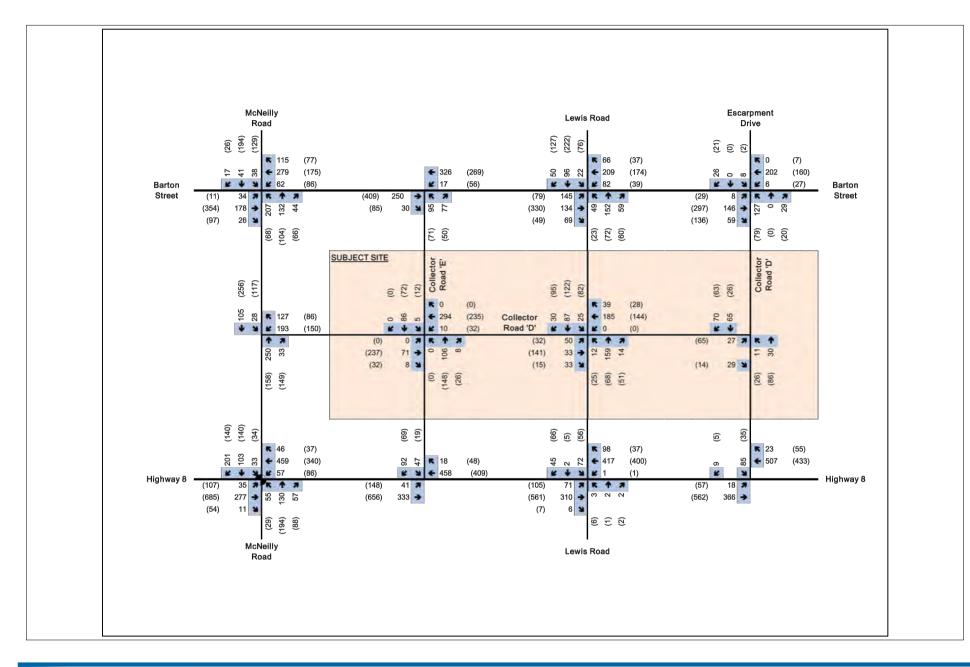
6. Future total traffic

6.1 Future Total Traffic

The future total traffic conditions for the peak study hours in the 2019 and 2024 planning horizons were derived by combining the projected future background traffic with the corresponding estimate of the total site generated traffic.

Figure 7 and **Figure 8** summarize the future total traffic volumes for the 2019 and 2024 planning horizons, respectively; during the weekday AM and PM peak hours.

XX AM Peak Hour Volumes
(XX) PM Peak Hour Volumes
Signalized Intersection



Branthaven Homes
Fruitland-Winona Secondary Plan
Traffic Impact Study
2019 Future Total Volumes

Job Number | 11115493 Revision | A Date | Oct 2018

Figure 07

XX AM Peak Hour Volumes
(XX) PM Peak Hour Volumes
Signalized Intersection

Branthaven Homes
Fruitland-Winona Secondary Plan
Traffic Impact Study
2024 Future Total Volumes

Job Number | 11115493 Revision | A Date | Oct 2018

Figure 08

7. Intersection Capacity Analysis

The capacity analysis identifies how well the intersections and driveways are operating. The analysis contained within this report utilized the Highway Capacity Manual (HCM) 2000 procedure within the Synchro Version 9 Software package. The reported intersection volume-to-capacity ratios (v/c) are a measure of the saturation volume for each turning movement, while the levels-of-service (LOS) are a measure of the average delay for each turning movement. Queuing characteristics are reported as the predicted 95th percentile queue for each turning movement.

Further discussion on completed warrants for the proposed method of intersection control for all study area intersections is provided in Section 8.

In accordance with the City of Hamilton's Traffic Impact Study Guidelines, the analysis includes identification of conditions at signalized intersections where:

- Volume/capacity (v/c) ratios for through movements or shared through/turning movements increased to 0.85 or above.
- V/c ratios for exclusive movements increased to 0.90 or above.
- 95th percentile queues for an individual movement are projected to exceed available turning lane storage.

The analysis includes identification of conditions at unsignalized intersections where:

- Level of service if LOS "D" or greater.
- 95th percentile queues for an individual movement are projected to exceed available turning lane storage.

The following tables summarize the HCM capacity results for the study intersections during the weekday AM and PM hours under existing 2018, future background 2019, future total 2019 and 2024 traffic conditions. The detailed calculation sheets are provided in **Appendix D**.

All proposed intersections were modelled as unsignalized, two-way stop controlled intersections. Further discussion on proposed intersection controls are provided later in this report.

The only signalized intersection within the study area, being Highway 8 at McNeilly Road, was modelled utilizing the existing signal timing plan, which is provided in **Appendix E**.

7.1.1 McNeilly Road at Barton Street

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 2** from detailed Synchro reports attached in the Appendix.

Table 2 Capacity Analyses of McNeilly Road at Barton Street

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Existing 2018	Overall 0.38 (A) NBLTR: 0.22 (A) <1 veh EBLTR: 0.24 (A) <1 veh WBLTR: 0.26 (A) <1 veh SBLTR: 0.04 (A) <1 veh	Overall 0.28 (A) NBLTR: 0.07 (A) <1 veh EBLTR: 0.36 (A) <1 veh WBLTR: 0.18 (A) <1 veh SBLTR: 0.08 (A) <1 veh	
Future Background 2019	Overall 0.39 (A) NBLTR: 0.22 (A) <1 veh EBLTR: 0.24 (A) <1 veh WBLTR: 0.27 (A) <1 veh SBLTR: 0.04 (A) <1 veh	Overall 0.28 (A) NBLTR: 0.07 (A) <1 veh EBLTR: 0.36 (A) <1 veh WBLTR: 0.18 (A) <1 veh SBLTR: 0.08 (A) <1 veh	
Future Background 2019	Overall 0.66 (C) NBLTR: 0.77 (D) <1 veh EBLTR: 0.49 (C) <1 veh WBLTR: 0.87 (E) 10 m SBLTR: 0.25 (B) <1 veh	Overall 0.79 (D) NBLTR: 0.60 (C) <1 veh EBLTR: 1.00 (F) 13 m WBLTR: 0.78 (E) <1 veh SBLTR: 0.84 (E) 1 veh	
Future Total 2024	Overall 0.68 (C) NBLTR: 0.83 (E) 1 veh <u>EBLTR</u> : 0.55 (C) <1 veh WBLTR: 0.95 (F) 12 m SBLTR: 0.25 (B) <1 veh	Overall 0.82 (D) NBLTR: 0.63 (D) <1 veh EBLTR: 1.08 (F) 13 m WBLTR: 0.82 (E) 1 veh SBLTR: 0.86 (E) 1 veh	

Under existing and 2019 future background conditions, which includes corridor growth, this intersection is expected to operate satisfactorily with substantial reserve capacity, low levels of delay and negligible queuing. Under 2019 future total traffic conditions the operational impact of the site traffic is noticeable, with increased delays during the PM peak hour. Under 2024 future total traffic conditions with the additional corridor growth, increased delays are now expected during the AM peak hour as well.

Despite the capacity and delay concerns for the westbound approach during the AM peak hour and eastbound approach during the PM peak hour, reported 95th percentile queue lengths generally do not exceed two vehicles.

This intersection is currently an all-way stop controlled intersection, does not warrant signalization due to insufficient overall volumes.

This intersection will be assessed further as part of the ongoing Municipal EA Study on Barton Street to address any future capacity constraints.

It is important to note that the ongoing EA is expected to conclude that a four lane cross-section (two travel lanes per direction) is the preferred design option, which will provide a capacity improvement to intersections along the Barton Street corridor. This is consistent with the Barton

Street Pedestrian Promenade concept illustrated in the Fruitland-Winona Urban Design Principles and Guidelines.

Therefore, GHD does not recommend any improvements to this intersection, at this time.

7.1.1 Collector Road "E" at Barton Street

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 3** from detailed Synchro reports attached in the Appendix.

Table 3 Capacity Analyses of Collector Road "E" at Barton Street

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Future Total 2019	Overall 0.47 (A) WBLT: 0.01 (A) <1 veh	Overall 0.59 (B) WBLT: 0.06 (A) <1 veh	
Future Total 2024	NBLR: 0.35 (C) 11 m <u>Overall 0.48 (A)</u> WBLT: 0.01 (A) <1 veh	NBLR: 0.34 (C) 11 m <u>Overall 0.61 (B)</u> WBLT: 0.06 (A) <1 veh	
	NBLR: 0.36 (C) 12 m	NBLR: 0.36 (C) 12 m	

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.2 Lewis Road at Barton Street

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 4** from detailed Synchro reports attached in the Appendix.

Table 4 Capacity Analyses of Lewis Road at Barton Street

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Existing 2018	Overall 0.36 (A) NBLTR: 0.28 (B) <1 veh EBLTR: 0.28 (A) <1 veh WBLTR: 0.35 (B) <1 veh SBLTR: 0.14 (A) <1 veh	Overall 0.30 (A) NBLTR: 0.12 (A) <1 veh EBLTR: 0.36 (B) <1 veh WBLTR: 0.17 (A) <1 veh SBLTR: 0.18 (A) <1 veh	
Future Background 2019	Overall 0.36 (A) NBLTR: 0.28 (B) <1 veh EBLTR: 0.29 (A) <1 veh WBLTR: 0.36 (B) <1 veh SBLTR: 0.14 (A) <1 veh	Overall 0.30 (A) NBLTR: 0.12 (A) <1 veh EBLTR: 0.37 (B) <1 veh WBLTR: 0.17 (A) <1 veh SBLTR: 0.19 (A) <1 veh	
Future Total 2019	Overall 0.60 (B) NBLTR: 0.67 (D) <1 veh EBLTR: 0.85 (E) 1 veh WBLTR: 0.87 (E) 9 m SBLTR: 0.46 (C) <1 veh	Overall 0.73 (C) NBLTR: 0.35 (C) <1 veh EBLTR: 0.94 (F) 11 m WBLTR: 0.55 (C) <1 veh SBLTR: 0.87 (E) 9 m	
Future Total 2024	Overall 0.62 (B) NBLTR: 0.76 (E) <1 veh EBLTR: 0.96 (F) 12 m	Overall 0.75 (D) NBLTR: 0.38 (C) <1 veh EBLTR: 1.02 (F) 13m	

Table 4 Capacity Analyses of Lewis Road at Barton Street

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
	WBLTR: 1.01 (F) 13 m SBLTR: 0.52 (C) <1 veh	WBLTR: 0.59 (C) <1 veh SBLTR: 0.92 (E) 11m	

Under existing and 2019 future background conditions, which includes corridor growth, this intersection is expected to operate satisfactorily with substantial reserve capacity, low levels of delay and negligible queuing. Under 2019 future total traffic conditions the operational impact of the site traffic is noticeable, although generally acceptable. The intersection is still expected to operate satisfactorily with reserve capacity, generally acceptable levels of delay and minimal queuing; however, the eastbound approach is expected to be nearing capacity with increase delays during the PM peak hour. Under 2024 future total traffic conditions with the additional corridor growth, increased delays are now expected during the AM peak hour as well.

The findings for this intersection, being increased delays for Barton Street during peak hours, are similar to the intersection of Barton Street at McNeilly Road; therefore the recommendations for future considerations are also consistent.

This intersection is currently an all-way stop controlled intersection, does not warrant signalization due to insufficient overall volumes.

This intersection will be assessed further as part of the ongoing Municipal EA Study on Barton Street to address any future capacity constraints.

It is important to note that the ongoing EA is expected to conclude that a four lane cross-section (two travel lanes per direction) is the preferred design option, which will provide a capacity improvement to intersections along the Barton Street corridor. This is consistent with the Barton Street Pedestrian Promenade concept illustrated in the Fruitland-Winona Urban Design Principles and Guidelines.

Therefore, GHD does not recommend any improvements to this intersection, at this time.

7.1.3 Escarpment Drive/Collector Road "D" at Barton Street

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 5** from detailed Synchro reports attached in the Appendix.

Table 5 Capacity Analyses of Escarpment Drive/Collector Road "D" at Barton Street

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Existing 2018	Overall 0.21 (A) EBLT: 0.01 (A) <1 veh SBLR: 0.06 (B) <1 veh	Overall 0.31 (A) EBLT: 0.02 (A) <1 veh SBLR: 0.02 (A) <1 veh	
Future Background 2019	Overall 0.21 (A) EBLT: 0.01 (A) <1 veh SBLR: 0.06 (B) <1 veh	Overall 0.31 (A) EBLT: 0.02 (A) <1 veh SBLR: 0.02 (A) <1 veh	

Table 5 Capacity Analyses of Escarpment Drive/Collector Road "D" at Barton Street

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue	
	AM Peak Hour	PM Peak Hour
Future Total 2019	Overall 0.36 (B) EBLTR: 0.01 (A) <1 veh WBLTR: 0.01 (A) <1 veh NBLTR: 0.48 (C) 20 m SBLTR: 0.07 (B) <1 veh	Overall 0.46 (A) EBLTR: 0.02 (A) <1 veh WBLTR: 0.02 (A) <1 veh NBLTR: 0.24 (C) <1 veh SBLTR: 0.03 (A) <1 veh
Future Total 2024	Overall 0.37 (A) EBLTR: 0.01 (A) <1 veh WBLTR: 0.01 (A) <1 veh NBLTR: 0.51 (C) 22 m SBLTR: 0.08 (B) <1 veh	Overall 0.48 (A) EBLTR: 0.02 (A) <1 veh WBLTR: 0.02 (A) <1 veh NBLTR: 0.26 (C) 1 veh SBLTR: 0.03 (A) <1 veh

Under existing and all future conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.4 McNeilly Road at Collector Road "D"

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 6** from detailed Synchro reports attached in the Appendix.

Table 6 Capacity Analyses of McNeilly Road at Collector Road "D"

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Future Total 2019	Overall 0.50 (A) WBLR: 0.55 (B) 26 m SBLT: 0.02 (A) <1 veh	Overall 0.60 (B) WBLR: 0.61 (D) 30 m SBLT: 0.10 (A) <1 veh	
Future Total 2024	Overall 0.51 (A) WBLR: 0.57 (C) 27 m SBLT: 0.02 (A) <1 veh	Overall 0.61 (B) WBLR: 0.62 (D) 31 m SBLT: 0.10 (A) <1 veh	

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.5 Collector Road "D" at Collector Road "E"

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 7** from detailed Synchro reports attached in the Appendix.

Table 7 Capacity Analyses of Collector Road "D" at Collector Road "E"

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Future Total 2019	Overall 0.38 (A)	Overall 0.53 (A)	
	WBLTR: 0.01 (A) <1 veh NBLTR: 0.23 (B) <1 veh SBLTR: 0.19 (B) <1 veh	WBLTR: 0.03 (A) <1 veh NBLTR: 0.43 (C) 16 m SBLTR: 0.25 (C) 1 veh	
Future Total 2024	Overall 0.38 (A) WBLTR: 0.01 (A) <1 veh NBLTR: 0.23 (B) <1 veh SBLTR: 0.19 (B) <1 veh	Overall `0.53 (A) WBLTR: 0.03 (A) <1 veh NBLTR: 0.43 (C) 16 m SBLTR: 0.25 (C) 1 veh	

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.6 Lewis Road at Collector Road "D"

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 8** from detailed Synchro reports attached in the Appendix.

Table 8 Capacity Analyses of Lewis Road at Collector Road "D"

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Future Total 2019	Overall 0.43 (A) EBLTR: 0.27 (C) 1 veh WBLTR: 0.41 (C) 8 m NBLTR: 0.01 (A) <1 veh SBLTR: 0.02 (A) <1 veh	Overall 0.52 (A) NBLTR: 0.51 (C) 21 m EBLTR: 0.41 (C) 15 m WBLTR: 0.02 (A) <1 veh SBLTR: 0.06 (A) <1 veh	
Future Total 2024	Overall 0.43 (A) EBLTR: 0.28 (C) 8 m WBLTR: 0.43 (C) 16 m NBLTR: 0.01 `(A) <1 veh SBLTR: 0.02 (A) <1 veh	Overall 0.53 (A) NBLTR: 0.53 (C) 23 m EBLTR: 0.42 (C) 16 m WBLTR: 0.02 (A) <1 veh SBLTR: 0.06 (A) <1 veh	

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.7 Collector Road "D" at Collector Road "D"

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 9** from detailed Synchro reports attached in the Appendix.

Table 9 Capacity Analyses of Collector Road "D" at Collector Road D

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Future Total 2019	Overall 0.21 (A) EBLR: 0.07 (A) <1 veh NBT: 0.01 (A) <1 veh	Overall 0.24 (A) EBLR: 0.11 (B) <1 veh NBT: 0.02 (A) <1 veh	
Future Total 2024	Overall 0.21 (A) EBLR: 0.07 (A) <1 veh NBT: 0.01 (A) <1 veh	Overall 0.24 (A) EBLR: 0.11 (B) <1 veh NBT: 0.02 (A) <1 veh	

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.8 McNeilly Road at Highway 8

Signalized capacity analyses during the weekday AM. and PM peak hours are summarized in **Table 10** from detailed Synchro reports attached in the Appendix.

Table 10 Capacity Analyses of McNeilly Road at Highway 8

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue		
	AM Peak Hour	PM Peak Hour	
Existing 2018	Overall 0.46 (A) EBL: 0.03 (A) <1 veh EBTR: 0.25 (A) 21 m WBL: 0.05 (A) <1 veh WBTR: 0.45 (A) 40 m NBLTR: 0.47 (B) 28 m SBLTR: 0.06 (B) <1 veh	Overall 0.46 (A) EBL: 0.04 (A) <1 veh EBTR: 0.51 (A) 46 m WBL: 0.12 (A) <1 veh WBTR: 0.30 (A) 24 m NBLTR: 0.23 (B) 15 m SBLTR: 0.29 (B) 17 m	
Future Background 2019	Overall 0.47 (A) EBL: 0.03 (A) <1 veh EBTR: 0.26 (A) 22 m WBL: 0.05 (A) <1 veh WBTR: 0.47 (A) 42 m NBLTR: 0.48 (B) 29 m SBLTR: 0.06 (B) <1 veh	Overall 0.46 (A) EBL: 0.04 (A) <1 veh EBTR: 0.52 (A) 47 m WBL: 0.13 (A) <1 veh WBTR: 0.31 (A) 25 m NBLTR: 0.24 (B) 15 m SBLTR: 0.30 (B) 18 m	
Future Total 2019	Overall 0.63 (B) EBL: 0.12 (A) <1 veh EBTR: 0.36 (A) 31 m WBL: 0.13 (A) 1 veh WBTR: 0.59 (B) 58 m NBLTR: 0.54 (B) 44 m SBLTR: 0.70 (C) 70 m	Overall 0.92 (F) EBL: 0.27 (A) 16 m EBTR: 0.77 (B) 110 m WBL: 0.42 (B) 17 m WBTR: 0.39 (A) 41 m NBLTR: 0.77 (C) 82 m SBLTR: 0.74 (C) 78 m	
Future Total 2024	Overall 0.83 (E) EBL: 0.13 (A) <1 veh EBTR: 0.37 (A) 30 m WBL: 0.14 (A) 1 veh WBTR: 0.62 (B) 64 m NBLTR: 0.62 (B) 60 m SBLTR: 0.72 (C) 77 m	Overall 0.96 (F) EBL: 0.28 (A) 16 m EBTR: 0.81 (B) 127 m WBL: 0.53 (B) 23 m WBTR: 0.42 (A) 45 m NBLTR: 0.81 (C) 87 m SBLTR: 0.80 (C) 84 m	

Under existing and all future conditions this intersection is expected to operate satisfactorily with reserve capacity, acceptable levels of delay and no critical queueing concerns. Under 2024 future

total traffic conditions, no individual movements are considered critical, with v/c ratios not exceeding 0.81, delays not exceeding LOS "C", and the highest reported 95th percentile queue length being the eastbound shared through/right-turn movement during the PM peak hour at 127 m, or approximately 18 vehicles. With a low delay representing LOS "B", this 95th percentile queue length is not concerning.

This intersection will be assessed further as part of the ongoing Municipal EA Study on Highway 8 to address any future capacity constraints.

Therefore, GHD does not recommend any improvements to this intersection, at this time.

7.1.9 Highway 8 at Collector Road "E"

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 11** from detailed Synchro reports attached in the Appendix.

Table 11 Capacity Analyses of Highway 8 at Collector Road "E"

Traffic Condition	Movement v/c (LOS) 95th Percentile Queue								
	AM Peak Hour	PM Peak Hour							
Future Total 2019	Overall 0.60 (B) EBLT: 0.04 (A) <1 veh SBLR: 0.33 (C) 11 m	Overall 0.78 (D) EBLT: 0.14 (A) <1 veh SBLR: 0.28 (C) 1 veh							
Future Total 2024	Overall 0.63 (B) EBLT: 0.04 (A) <1 veh SBLR: 0.36 (C) 12 m	Overall 0.83 (E) EBLT: 0.15 (A) <1 veh SBLR: 0.31 (C) 1 veh							

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

7.1.10 Lewis Road at Highway 8

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 12** from detailed Synchro reports attached in the Appendix.

Table 12 Capacity Analyses of Lewis Road at Highway 8

Traffic Condition	Movement v/c (LOS) 95th P	ercentile Queue
	AM Peak Hour	PM Peak Hour
Existing 2018	Overall 0.37 (A) EBL: 0.05 (A) <1 veh NBLTR: 0.02 (B) <1 veh SBLTR: 0.18 (B) <1 veh	Overall 0.42 (A) EBL: 0.04 (A) <1 veh NBLTR: 0.03 (C) <1 veh SBLTR: 0.24 (C) <1 veh
Future Background 2019	Overall 0.38 (A) EBL: 0.05 (A) <1 veh NBLTR: 0.02 (C) <1 veh SBLTR: 0.19 (B) <1 veh	Overall 0.43 (A) EBL: 0.04 (A) <1 veh NBLTR: 0.03 (C) <1 veh SBLTR: 0.25 (C) <1 veh
Future Total 2019	Overall 0.43 (A) EBL: 0.07 (A) <1 veh NBLTR: 0.03 (C) <1 veh SBLTR: 0.37 (C) 12m	Overall 0.48 (A) EBL: 0.09 (A) <1 veh NBLTR: 0.05 (D) <1 veh SBLTR: 0.45 (D) 17m

Table 12 Capacity Analyses of Lewis Road at Highway 8

Traffic Condition	Movement v/c (LOS) 95th P	ercentile Queue
	AM Peak Hour	PM Peak Hour
Future Total 2024	Overall 0.46 (A) EBL: 0.08 (A) <1 veh NBLTR: 0.03 (C) <1 veh SBLTR: 0.44 (D) 16m	Overall 0.51 (A) EBL: 0.10 (A) <1 veh NBLTR: 0.07 (D) <1 veh SBLTR: 0.56 (E) 23m

Under existing and all future conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

This intersection will be assessed further as part of the ongoing Municipal EA Study on Highway 8 to address any future capacity constraints.

Therefore, GHD does not recommend any improvements to this intersection, at this time.

7.1.11 Highway 8 at Collector Road "D"

Unsignalized capacity analyses during the weekday AM and PM peak hours are summarized in **Table 13** from detailed Synchro reports attached in the Appendix.

Table 13 Capacity Analyses of Highway 8 at Collector Road "D"

Traffic Condition	Movement v/c (LOS) 95th P	ercentile Queue
	AM Peak Hour	PM Peak Hour
Future Total 2019	Overall 0.60 (B) EBLR: 0.04 (A) <1 veh NBT: 0.33 (C) 11 m	Overall 0.78 (D) EBLR: 0.14 (A) <1 veh NBT: 0.28 (C) 1 veh
Future Total 2024	Overall 0.63 (B) EBLR: 0.04 (A) <1 veh NBT: 0.36 (C) 12 m	Overall 0.83 (E) EBLR: 0.15 (A) <1 veh NBT: 0.31 (C) 10 m

Under future total traffic conditions this intersection is expected to operate satisfactorily with substantial reserve capacity, acceptable levels of delay and minimal queuing.

This intersection will be assessed further as part of the ongoing Municipal EA Study on Highway 8 to address any future capacity constraints.

Therefore, GHD does not recommend any future improvements to this intersection, at this time.

8. Intersection Control

8.1 All-Way Stop Warrants

GHD undertook all-way stop control warrants for all proposed unsignalized intersections. As per the Ontario Traffic Manual (OTM) Book 5 for Regulatory Signs, unsignalized intersections should have at least 350 vehicles per hour for all approaches for minor intersections, and 500 vehicles per hour for all approaches for major intersections, during the peak hour, for an all-way stop to be warranted.

As per the forecasted 2024 future total traffic volumes presented in this report, none of the proposed unsignalized intersections meet the minimum volume threshold as per OTM.

8.2 External Intersection Traffic Signal Warrants

GHD undertook traffic signal warrants as per OTM Book 12 methodology for the following intersections:

- Barton Street at McNeilly Road
- Barton Street at Lewis Road
- Highway 8 at Lewis Road

As per the results of the traffic signal warrants, which are provided in **Appendix F**, none of these intersections warrant signalization under 2024 future total traffic conditions.

8.3 Internal Intersection Control

8.3.1 Roundabout Warrant

GHD has considered the feasibility of roundabouts internal to the subject subdivision, specifically at the future collector road intersections of:

- Collector Road "D" at McNeilly Road
- Collector Road "D" at Collector Road "E"
- Collector Road "D" at Lewis Road
- Collector Road "D" at Collector Road "D"

The City's Development Engineering Guidelines states, in referencing Hamilton's Installation of Modern Roundabouts Policy (2008), "if new signals are being considered for an intersection, the potential for a roundabout must also be examined."

Signals are not being considered at the proposed collector road intersections, and therefore the potential for roundabouts need not be examined based on this criterion.

The City's Development Engineering Guidelines further states that:

Modern roundabouts will be installed wherever possible, where a study confirms they are feasible, appropriate and advantageous in terms of traffic flow, traffic safety, community design functions or environmental considerations, under the following conditions:

- 1. Capacity or safety problems have been identified at existing intersections necessitating substantial improvements.
- 2. Traffic signals or all-way stops are warranted or expected to be warranted in the near future at existing or proposed intersections.
- 3. As part of a larger capital project, suitable intersections are identified as potential sites.
- 4. When, through planning approvals, new intersections are to be created.

As per the results of the capacity analysis, operational and safety problems at the aforementioned collector road intersections are not expected under future conditions.

Traffic signals and all-way stop controls are also not warranted at these internal intersections due to insufficient volumes.

8.3.2 Roundabout Analysis

Despite not being warranted, as requested by City staff, GHD has undertaken roundabout analysis at the proposed collector road intersections utilizing the industry-standard Arcady software. A capacity adjustment of 15 percent to the Y-intercept of the capacity equation was applied to approximate driver unfamiliarity with roundabout operations. The results of the analysis under 2024 Future Total traffic conditions are show in **Table 14**. The raw Arcady data sheets are provided in **Appendix G**.

Table 14 Roundabout Analysis Results

Traffic Condition	Movement v/c (LOS) 95th F	Percentile Queue
	AM Peak Hour	PM Peak Hour
Collector Road "D" at McNeilly Road	SB: 0.12 (A) <25 m NB: 0.25 (A) <25 m WB: 0.32 (A) <25 m	SB: 0.36 (A) <25 m NB: 0.26 (A) <25 m WB: 0.23 (A) <25 m
Collector Road "D" at Collector Road "E"	WB: 0.28 (A) <25 m SB: 0.09 (A) <25 m EB: 0.07 (A) <25 m NB: 0.10 (A) <25 m	WB: 0.25 (A) <25 m SB: 0.08 (A) <25 m EB: 0.25 (A) <25 m NB: 0.17 (A) <25 m
Collector Road "D" at Lewis Road	WB: 0.22 (A) <25 m SB: 0.13 (A) <25 m EB: 0.11 (A) <25 m NB: 0.17 (A) <25 m	WB: 0.16 (A) <25 m SB: 0.27 (A) <25 m EB: 0.19 (A) <25 m NB: 0.15 (A) <25 m
Collector Road "D" at Collector Road "D"	SB: 0.13 (A) <25 m EB: 0.05 (A) <25 m NB: 0.04 (A) <25 m	SB: 0.09 (A) <25 m EB: 0.07 (A) <25 m NB: 0.10 (A) <25 m

The results of the roundabout analysis indicate that all intersections configured as roundabouts would operate satisfactorily with reserve capacity, low levels of delay, and nominal queueing.

8.4 Proposed Internal Intersection Control

Within the Block 3 Servicing Strategy Area, the interim or ultimate intersection design and traffic control at internal intersections will be confirmed at the Draft Plan stage with submission of the corresponding Draft Plans of subdivision as development proceeds. In addition to stop control and traffic signals, mini roundabouts and traffic circles should be considered during the draft plan stage as a traffic control and calming measure to address capacity, safety and speeding issues.

8.5 Auxiliary Turning Lanes

As per the satisfactory results of the capacity analysis, which analyzed all existing intersections under their current configuration and all proposed intersections without auxiliary turning lanes, no new auxiliary turning lanes are recommended.

9. Conclusions

9.1 Summary of Findings

Full build-out of the Block 3 Servicing Strategy Area lands is estimated to generate a total of 1,696 two-way trips during the AM peak hour consisting of 425 inbound and 1,271 outbound trips and a total of 2,206 two-way trips during the PM peak hour consisting of 1,419 inbound and 787 outbound trips.

The study intersections are expected to have acceptable future operating characteristics with reserve capacity under 2018 existing, 2019 future background, and 2019 and 2024 future total conditions. Although the operational impact of the added site traffic is likely to be noticeable to the immediate surrounding road network, as expected with a development of this size, it is not expected to contribute to any significant deterioration of overall network's operational performance.

Under 2024 future total traffic conditions, the existing all-way stop controlled intersections of McNeilly Road and Lewis Road on Barton Street are reported to have increased delays resulting in LOS "F".

With respect to noted delay concerns at the existing intersections along Highway 8 and Barton Street, future intersections improvements to mitigate any intersections capacity issues along either of these roads will be determined through the ongoing Highway 8 Improvements EA and the Barton Street and Fifty Road Improvements EA studies.

9.2 Summary of Recommendations

The Collector Road "D" proposed right-of-way (ROW) width is 26 m from its western extent at McNeilly Road to its eastern extent at Barton Street; a short segment connecting Collector Road "D" to Highway 8 is proposed with a 20 m ROW width. The Collector Road "E" proposed right-of-way (ROW) width is 26 m throughout. The local road proposed right-of-way (ROW) widths are 20 m throughout.

The following new intersections are proposed:

- Collector Road "D" at Lewis Road
- Collector Road "E" at Highway 8
- Collector Road "D" at Highway 8
- Collector Road "D" at McNeilly Road
- Collector Road "E" at Barton Street
- Collector Road "D" opposite Escarpment Drive at Barton Street
- Two proposed laneway connections on McNeilly Road just north of Highway 8.

As per the results of the all-way stop and traffic signal warrants, and satisfactory operating conditions under two-way stop control as per the results of the capacity analysis, two-way stop control is sufficient at all internal collector road intersections. Future intersection geometry and traffic control at these intersections will be determined through the respective draft plan or site plan

applications as they proceed. In addition to stop control and traffic signals, mini roundabouts and traffic circles should be considered during the draft plan stage as a traffic control and calming measure to address capacity, safety and speeding issues.

Therefore, GHD is not recommending improvements at these intersections.

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

William Maria william.maria@ghd.com 905.814.4397

Adam Mildenberger adam.mildenberger@ghd.com 905.814.4404

www.ghd.com

Accu-Traffic Inc. **Morning Peak Diagram Specified Period One Hour Peak** From: 7:00:00 From: 7:45:00 To: 9:00:00 To: 8:45:00 Weather conditions: Municipality: Hamilton Site #: 1608500001 Intersection: Barton St & Escarpment Dr Person counted: TFR File #: Person prepared: Count date: 25-May-16 Person checked: ** Non-Signalized Intersection ** Major Road: Barton St runs W/E North Leg Total: 37 Heavys 1 0 1 Heavys 0 East Leg Total: 273 0 Trucks 0 0 Trucks 1 East Entering: North Entering: 30 167 North Peds: Cars 22 7 29 Cars 6 East Peds: 25 Totals 7 X Peds Cross: Totals 23 Peds Cross: Escarpment Dr Totals Trucks Heavys Totals Heavys Trucks Cars Cars 12 0 178 190 0 0 167 11 156 Barton St 156 11 Heavys Trucks Cars Totals Barton St

Peds Cross: X
West Peds: 0
West Entering: 106
West Leg Total: 296

1

2

88

94

99

9

Comments

Cars

2

95

Trucks Heavys Totals

106

9

Afternoo	n P	eak [Diagr	am	- 1 -	om:	16	Period ::00:00 ::00:00			ur Pe 16:00: 17:00:	00
Site #: ntersection: FFR File #: Count date:	1 25-Ma	00001 St & Esc /-16		Dr	Po Po	ersoi ersoi ersoi	n co n pi n cl	conditions ounted: repared: necked:				
* Non-Signalia	zed In	tersecti	ion **		M	ajor	Roa	ad: Barton	St run	s W/E		
North Leg Total: 53 North Entering: 21 North Peds: 4 Peds Cross: Heavys Trucks Cars 5 2 113 Heavys Trucks Cars 0 0 26	120 Ba] rton St) 19		1 0 20 Escarp	ment D	r	Heavys 0 Trucks 0 Cars 32 Totals 32	Cars 6 94 100 rton St	East Er East Pe Peds C	eds:	107 5 X
4 0 240	244	ightharpoons							Cars		s Heavy	
4 0 266									241	0	5	246
Peds Cross: X West Peds: 0 West Entering: 270 West Leg Total: 390												

Total Count Diagram

Municipality: Hamilton

Site #: 1608500001

Intersection: Barton St & Escarpment Dr

TFR File #: 1

Count date: 25-May-16

Weather conditions:

Person counted: Person prepared:

Person checked:

** Non-Signalized Intersection **

North Leg Total: 195
North Entering: 106
North Peds: 9

Peds Cross:

Barton St

Totals

73

614

 Heavys
 1
 1

 Trucks
 0
 1

 Cars
 83
 20

 Totals
 84
 22

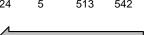
2 1 103

Escarpment Dr

Heavys 1

Trucks 1

Cars <u>87</u>


Totals 89

Major Road: Barton St runs W/E

East Leg Total: 1110
East Entering: 474
East Peds: 39

X

Heavys Trucks Cars Totals 24 5 513 542

72

587

659

Peds Cross:

Barton St

Cars

607

6

Trucks Heavys Totals

23

636

Peds Cross: X
West Peds: 0
West Entering: 687
West Leg Total: 1229

Heavys Trucks Cars

1

5

22

22

Accu-Traffic Inc. Traffic Count Summary

Intersection:	Barton S	St & Esc	arnment	Dr	Count D	Date: 25-May-1	6 M	unicipality: H	amilton			
			ach Tot				<u> </u>		th Appro	oach To	tals	
Hour			rucks, & F		Total	North/South Total	Hour		les Cars, T			Total
Ending	Left	Thru	Right	Grand	Peds	Approaches	Ending		Thru	Right	Grand	Peds
7:00:00	0	0	0 Right	Total 0	0	0	7:00:0		0	0	Total 0	0
8:00:00	7	Ö	25	32	3	32	8:00:0		0	Ö	o l	Ö
9:00:00	8	Ō	28	36	1	36	9:00:0		O	Ō	0	0
16:00:00	0	0	0	0	0	0	16:00:0		0	0	0	0
17:00:00	2	0	19	21	4	21	17:00:0		0	0	0	0
18:00:00	5	0	12	17	1	17	18:00:0	0 0	0	0	0	0
Totals:	22	0	84	106	9	106	S Total		0	0	0	0
			ach Tota			East/West			t Appro			
Hour Ending	Includ	es Cars, I	rucks, & F	leavys Grand	Total Peds	Total	Hour		les Cars, T T	rucks, & F	leavys Grand	Total Peds
	Left	Thru	Right	Total		Approaches	Ending	Left	Thru	Right	Total	
7:00:00	0	0	0	0	0	0	7:00:0		0	0	0	0
8:00:00 9:00:00	0 0	122 154	2	124 155	3 27	185 256	8:00:0 9:00:0		55 95	0	61 101	0 0
16:00:00	0	0	l o	0	0	0	16:00:0		0	0	0	0
17:00:00	Ö	101	6	107	5	377	17:00:0		244	Ö	270	Ö
18:00:00	0	81	7	88	4	343	18:00:0		220	0	255	0
		l								1		
Totals:	0	458	16	474	39	1161	W Total	s: 73	614	0	687	0
Totals:	0	458	•			1161 or Traffic Cr				0	687	0
Totals: Hours E	nding:	7:00	•					Major Str		0:00	687	0

Count	Date:	25-IVIAY	-16	Site #:	160850	0001														
		Passeng	ger Cars -	North A	pproach			True	cks - Nort	h Approa	ach			He	avys - No	rth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	4	1	0	0	10	6	0	0	0	0	0	0	0	0	0	0	0	0	3	3
7:45:00	6	2	0	0	22	12	0	0	0	0	0	0	0	0	0	0	0	0	3	0
8:00:00	7	1	0	0	25	3	0	0	0	0	0	0	0	0	0	0	0	0	3	0
8:15:00	9	2	0	0	28	3	0	0	0	0	0	0	0	0	0	0	0	0	3	0
8:30:00	12	3	0	0	36	8	0	0	0	0	0	0	0	0	0	0	1	1	3	0
8:45:00	13	1	0	0	44	8	0	0	0	0	0	0	0	0	0	0	1	0	4	1
9:00:00	15	2	0	0	52	8	0	0	0	0	0	0	0	0	0	0	1	0	4	0
9:15:00	15	0	0	0	52	0	0	0	0	0	0	0	0	0	0	0	1	0	4	0
16:00:00	15	0	0	0	52	0	0	0	0	0	0	0	0	0	0	0	1	0	4	0
16:15:00	15	0	0	0	54	2	0	0	0	0	0	0	0	0	0	0	1	0	8	4
16:30:00	16	11	0	0	61	7	0	0	0	0	0	0	0	0	0	0	1	0	8	0
16:45:00	16	0	0	0	66	5	0	0	0	0	0	0	1	1	0	0	1	0	8	0
17:00:00	16	0	0	0	71	5	0	0	0	0	0	0	1	0	0	0	11	0	8	0
17:15:00	17	11	0	0	72	11	0	0	0	0	0	0	1	0	0	0	1	0	9	1
17:30:00	17	0	0	0	75	3	0	0	0	0	0	0	1	0	0	0	1	0	9	0
17:45:00	20	3	0	0	79	4	0	0	0	0	0	0	1	0	0	0	1	0	9	0
18:00:00	20	0	0	0	83	4	1	11	0	0	0	0	1	0	0	0	1	0	9	0
18:15:00	20	0	0	0	83	0	1	0	0	0	0	0	1	0	0	0	1	0	9	0
18:15:15	20	0	0	0	83	0	1	0	0	0	0	0	1	0	0	0	1	0	9	0
							1						1							

		Passen	ger Cars	- East Ap	proach			Tru	cks - Eas	t Approa	ch			H	eavys - Ea	ast Appro	oach		Pedes	trians
Interval	Le	eft	Th	ıru	Ri	ght	Le	eft	Th	ru	Ri	ght	Le	eft	Th	ıru	Rig	ght	East	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	19	19	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	0	0	36	17	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1
7:45:00	0	0	78	42	2	1	0	0	1	1	0	0	0	0	2	1	0	0	3	2
8:00:00	0	0	118	40	2	0	0	0	1	0	0	0	0	0	3	1	0	0	3	0
8:15:00	0	0	150	32	2	0	0	0	1	0	0	0	0	0	6	3	0	0	14	11
8:30:00	0	0	207	57	2	0	0	0	1	0	0	0	0	0	13	7	0	0	28	14
8:45:00	0	0	234	27	2	0	0	0	1	0	0	0	0	0	13	0	0	0	28	0
9:00:00	0	0	259	25	2	0	0	0	1	0	0	0	0	0	16	3	1	1	30	2
9:15:00	0	0	259	0	2	0	0	0	1	0	0	0	0	0	16	0	1	0	30	0
16:00:00	0	0	259	0	2	0	0	0	1	0	0	0	0	0	16	0	1	0	30	0
16:15:00	0	0	285	26	2	0	0	0	2	1	0	0	0	0	19	3	1	0	33	3
16:30:00	0	0	311	26	5	3	0	0	2	0	0	0	0	0	21	2	1	0	33	0
16:45:00	0	0	331	20	7	2	0	0	3	1	0	0	0	0	21	0	1	0	35	2
17:00:00	0	0	353	22	8	1	0	0	3	0	0	0	0	0	21	0	1	0	35	0
17:15:00	0	0	371	18	9	1	0	0	5	2	0	0	0	0	21	0	1	0	35	0
17:30:00	0	0	391	20	10	1	0	0	5	0	0	0	0	0	22	1	1	0	37	2
17:45:00	0	0	412	21	11	1	0	0	5	0	0	0	0	0	23	1	1	0	39	2
18:00:00	0	0	430	18	15	4	0	0	5	0	0	0	0	0	23	0	1	0	39	0
18:15:00	0	0	430	0	15	0	0	0	5	0	0	0	0	0	23	0	1	0	39	0
18:15:15	0	0	430	0	15	0	0	0	5	0	0	0	0	0	23	0	1	0	39	0
10.10.10			100	- 0	- '0								"		20	- 0			00	

								Truc	ks - Sout	h Approa	ach			He	avys - So	uth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Riç	jht	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Passen	ger Cars	- West Ap	proach			Tru	cks - Wes	t Approa	ch			Не	avys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	jht	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	1	1	10	10	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
7:30:00	3	2	19	9	0	0	0	0	1	1	0	0	0	0	4	3	0	0	0	0
7:45:00	4	11	27	8	0	0	0	0	2	1	0	0	0	0	5	1	0	0	0	0
8:00:00	6	2	44	17	0	0	0	0	4	2	0	0	0	0	7	2	0	0	0	0
8:15:00	8	2	59	15	0	0	0	0	4	0	0	0	0	0	7	0	0	0	0	0
8:30:00	8	0	84	25	0	0	1	1	4	0	0	0	0	0	11	4	0	0	0	0
8:45:00	10	2	115	31	0	0	1	0	4	0	0	0	0	0	14	3	0	0	0	0
9:00:00	11	1	129	14	0	0	1	0	5	1	0	0	0	0	16	2	0	0	0	0
9:15:00	11	0	129	0	0	0	1	0	5	0	0	0	0	0	16	0	0	0	0	0
16:00:00	11	0	129	0	0	0	1	0	5	0	0	0	0	0	16	0	0	0	0	0
16:15:00	18	7	192	63	0	0	1	0	5	0	0	0	0	0	16	0	0	0	0	0
16:30:00	23	5	243	51	0	0	1	0	5	0	0	0	0	0	16	0	0	0	0	0
16:45:00	31	8	303	60	0	0	1	0	5	0	0	0	0	0	20	4	0	0	0	0
17:00:00	37	6	369	66	0	0	1	0	5	0	0	0	0	0	20	0	0	0	0	0
17:15:00	47	10	437	68	0	0	1	0	5	0	0	0	0	0	21	1	0	0	0	0
17:30:00	55	8	489	52	0	0	1	0	5	0	0	0	0	0	21	0	0	0	0	0
17:45:00	66	11	537	48	0	0	1	0	5	0	0	0	0	0	22	1	0	0	0	0
18:00:00	72	6	587	50	0	0	1	0	5	0	0	0	0	0	22	0	0	0	0	0
18:15:00	72	0	587	0	0	0	1	0	5	0	0	0	0	0	22	0	0	0	0	0
18:15:15	72	0	587	0	0	0	1	0	5	0	0	0	0	0	22	0	0	0	0	0

	Acc	cu-ira	attic II	nc.	
Morning Pe	eak Diagram	1	Specified From: 7 To: 9		One Hour Peak From: 7:45:00 To: 8:45:00
Intersection: Barto	ilton 3500002 on St & Lewis Rd lay-16		Person o	repared:	
** Non-Signalized	Intersection **		Major Ro	ad: Barton	St runs W/E
North Leg Total: 200 North Entering: 74 North Peds: 0 Peds Cross: Heavys Trucks Cars To 10 2 159 17	Heavys 1 0 Trucks 2 0 Cars 17 49 Totals 20 49 tals	0 1 2 5 71 5 Lee	wis Rd	Heavys 2 Trucks 1 Cars 123 Totals 126	East Leg Total: 298 East Entering: 191 East Peds: 0 Peds Cross: X Cars Trucks Heavys Totals 13 0 0 13 103 0 6 109
1	Barton St	w	E	Ç	63 0 6 69 179 0 12
Heavys Trucks Cars To 0 1 51 52 3 3 49 55		5	3	Bai	rton St
7 1 44 52 10 5 144	Ş	Lewis Rd	句 ①		Cars Trucks Heavys Totals 95 3 9 107
Peds Cross: X West Peds: 2 West Entering: 159 West Leg Total: 330	Cars 156 Trucks 1 Heavys 13 Totals 170	Truc Heavy	rs 39 59 ks 0 0 /s 3 2 ls 42 61	41 139 0 0 6 11	Peds Cross: South Peds: 43 South Entering: 150 South Leg Total: 320
	1	Comm	nante		-

Afternoon P	eak Diagra	Spe Froi To:	m: 16:	Period :00:00 :00:00		One Hour Peak From: 16:15:00 To: 17:15:00						
TFR File #: 1 Count date: 25-May	0002 St & Lewis Rd -16	Pers Pers	Weather conditions: Person counted: Person prepared: Person checked:									
North Leg Total: 164 North Entering: 121 North Peds: 0	Heavys 2 0 Trucks 1 0 Cars 23 73	0 2 0 1 22 118	The state of the s	Heavys 1 Trucks 3 Cars 39	E	East Leg Total: East Entering: East Peds:	385 111 0					
Peds Cross: ► Heavys Trucks Cars Totals 3 5 121 129 Bar	Totals 26 73	Lewis Rd	=	Totals 43	Cars 4 78 23	Trucks Heavy 0 0 4 1 0 1 4 2						
Heavys Trucks Cars Totals 1 2 22 25 4 1 197 0 0 21 5 3 240		W S		Ba		Trucks Heavy	rs Total					
Peds Cross: X West Peds: 4 West Entering: 248	Cars 117 Trucks 0 Heavys 1	Cars 20 Trucks 0 Heavys 0	13 1 0	50 83 0 1 0 0	5	Peds Cross: South Peds: South Entering: South Leg Tota						

Total Count Diagram

Municipality: Hamilton

Site #: 1608500002

Intersection: Barton St & Lewis Rd

TFR File #:

North Leg Total: 660

North Entering: 351

North Peds:

Peds Cross:

Count date: 25-May-16 Weather conditions:

Person counted: Person prepared:

Person checked:

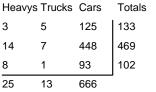
** Non-Signalized Intersection **

Heavys 10 1 Trucks 7 0 0 Cars 78 190 63

Totals 95 192 Major Road: Barton St runs W/E

Trucks 6 Cars 294

Heavys 9


Totals 309

East Leg Total: 1239 East Entering: 548 East Peds: X Peds Cross:

Heavys Trucks Cars Totals 28

X Peds Cross: West Peds: 10

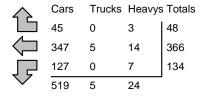
West Entering: West Leg Total: 1261

Cars 410 Trucks 1 Heavys 17 Totals 428

13

7

331


Lewis Rd

366 Cars 91 124 151 2 Trucks 1 1 0 Heavys 4 3 7 14 Totals 96 128 158

Barton St

Cars Trucks Heavys Totals 662 22 691

> Peds Cross: M South Peds: 56 South Entering: 382 South Leg Total: 810

Accu-Traffic Inc. Traffic Count Summary

Intersection:	Barton S	St & Lew	ris Rd		Count [Date: 25-May-1	ا 6	Munic	ipality: Ha	milton			
			ach Tot	als							ach To	tals	
Hour			rucks, & F		Total	North/South Total	Hour	. T	Include	es Cars, T	rucks, & F	leavys	Total
Ending	1 - 6	T1	District	Grand	Peds	Approaches	Ending					Grand	Peds
7.00.00	Left	Thru	Right	Total			7.00.0	$\frac{1}{2}$	Left	Thru	Right	Total	
7:00:00 8:00:00	0 5	0 23	0 19	0 47	0 0	0 118	7:00:0 8:00:0		0 18	0 43	0 10	0 71	0 3
9:00:00	8	49	21	78	0	227	9:00:0		43	57	49	149	44
16:00:00		0	0	0	o	0	16:00:		0	0	0	0	0
17:00:00		61	30	111	Ö	197	17:00:		20	13	53	86	5
18:00:00		59	25	115	Ö	191	18:00:		15	15	46	76	4
Totals:	64 Eas	192 t Appro	95 ach Tota	351 als	0	733 East/West	S Tota				158 ach Tot		56
Hour	includ	es Cars, i	rucks, & F	Grand	Total	Total	Hour		Include	es Cars, i	rucks, & F	Grand	Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Ending	9	Left	Thru	Right	Total	Peds
7:00:00	0	0	0	0	0	0	7:00:0		0	0	0	0	0
8:00:00	18	111	16	145	1	244	8:00:0		26	55	18	99	2
9:00:00	69	104	13	186	0	346	9:00:0		68	45	47	160	2
16:00:00		0	0	0	0	0	16:00:		0	0	0	0	0
17:00:00		89	7	123	0	354	17:00:		21	191	19	231	4
18:00:00	20	62	12	94	0	308	18:00:	.00	18	178	18	214	2
Totals:	134	366	48	548	1	1252	W Tota	_	133	469	102	704	10
			Calc	ulated \		1252 or Traffic Cr	ossing	, Ма	jor Stre	et		704	10
Totals: Hours E	nding:	7:00	•		1 /alues f 16:00 0			, Ма 0			0:00 0	704	10

		Passenger Cars - North Approach						True	cks - Nort	h Approa	ach		Heavys - North Approach							trians
Interval	Le	eft	Th	Thru		Right		eft	Th	ru	Rig	ght	Left		Thru		Right		North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	4	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	3	0	10	6	7	3	0	0	0	0	0	0	0	0	0	0	1	1	0	0
7:45:00	4	1	17	7	13	6	0	0	0	0	1	1	0	0	0	0	1	0	0	0
8:00:00	5	1	23	6	17	4	0	0	0	0	1	0	0	0	0	0	1	0	0	0
8:15:00	6	1	40	17	22	5	0	0	0	0	1	0	0	0	0	0	1	0	0	0
8:30:00	6	0	57	17	25	3	0	0	0	0	3	2	0	0	0	0	2	1	0	0
8:45:00	9	3	66	9	30	5	0	0	0	0	3	0	0	0	0	0	2	0	0	0
9:00:00	12	3	70	4	34	4	0	0	0	0	3	0	1	1	2	2	3	1	0	0
9:15:00	12	0	70	0	34	0	0	0	0	0	3	0	1	0	2	0	3	0	0	0
16:00:00	12	0	70	0	34	0	0	0	0	0	3	0	1	0	2	0	3	0	0	0
16:15:00	22	10	81	11	43	9	0	0	0	0	5	2	1	0	2	0	4	1	0	0
16:30:00	26	4	93	12	46	3	0	0	0	0	6	1	1	0	2	0	5	1	0	0
16:45:00	29	3	113	20	55	9	0	0	0	0	6	0	1	0	2	0	5	0	0	0
17:00:00	32	3	131	18	59	4	0	0	0	0	6	0	1	0	2	0	5	0	0	0
17:15:00	44	12	154	23	66	7	0	0	0	0	6	0	1	0	2	0	6	1	0	0
17:30:00	50	6	169	15	70	4	0	0	0	0	6	0	1	0	2	0	8	2	0	0
17:45:00	56	6	182	13	74	4	0	0	0	0	7	1	1	0	2	0	9	1	0	0
18:00:00	63	7	190	8	78	4	0	0	0	0	7	0	1	0	2	0	10	1	0	0
18:15:00	63	0	190	0	78	0	0	0	0	0	7	0	1	0	2	0	10	0	0	0
18:15:15	63	0	190	0	78	0	0	0	0	0	7	0	1	0	2	0	10	0	0	0

	Passenger Cars - East Approach						Tru	cks - Eas	t Approa	ch		Heavys - East Approach							trians	
Interval	Le	eft	Th	Thru		Right		Left		ru	Ri	ght	Left		Thru		Right		East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	18	18	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	6	3	36	18	5	3	0	0	0	0	0	0	0	0	1	1	0	0	1	1
7:45:00	12	6	75	39	12	7	0	0	1	1	0	0	0	0	2	1	0	0	1	0
8:00:00	18	6	107	32	16	4	0	0	1	0	0	0	0	0	3	1	0	0	1	0
8:15:00	26	8	134	27	17	1	0	0	1	0	0	0	0	0	6	3	0	0	1	0
8:30:00	60	34	159	25	22	5	0	0	1	0	0	0	6	6	8	2	0	0	1	0
8:45:00	75	15	178	19	25	3	0	0	1	0	0	0	6	0	8	0	0	0	1	0
9:00:00	81	6	204	26	28	3	0	0	1	0	0	0	6	0	10	2	1	1	1	0
9:15:00	81	0	204	0	28	0	0	0	1	0	0	0	6	0	10	0	1	0	1	0
16:00:00	81	0	204	0	28	0	0	0	1	0	0	0	6	0	10	0	1	0	1	0
16:15:00	87	6	225	21	31	3	0	0	1	0	0	0	6	0	13	3	1	0	1	0
16:30:00	94	7	248	23	32	1	0	0	2	1	0	0	7	1	14	1	1	0	1	0
16:45:00	103	9	265	17	34	2	0	0	3	1	0	0	7	0	14	0	1	0	1	0
17:00:00	107	4	287	22	35	1	0	0	3	0	0	0	7	0	14	0	1	0	1	0
17:15:00	110	3	303	16	35	0	0	0	5	2	0	0	7	0	14	0	1	0	1	0
17:30:00	114	4	319	16	38	3	0	0	5	0	0	0	7	0	14	0	1	0	1	0
17:45:00	122	8	331	12	44	6	0	0	5	0	0	0	7	0	14	0	3	2	1	0
18:00:00	127	5	347	16	45	1	0	0	5	0	0	0	7	0	14	0	3	0	1	0
18:15:00	127	0	347	0	45	0	0	0	5	0	0	0	7	0	14	0	3	0	1	0
18:15:15	127	0	347	0	45	0	0	0	5	0	0	0	7	0	14	0	3	0	1	0
10.10.10	121		047		-10	- 0		- 0		0				0				- 0		
			1						I		1				I		I			

Count	Date:		er Cars -		nproach	0002		Т.,	cks - Sout	h Annes	ach		1	Ua	avys - So	uth Ann	oach		Pedes	triana
Interval		eft	er cars -		 	ght	Le		Th		1	ght	Le		Th			ght	South	
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	13	13	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	8	5	19	6	5	2	1	1	0	0	0	0	0	0	1	1	0	0	1	1
7:45:00	13	5	31	12	7	2	1	0	0	0	0	0	0	0	1	0	1	1	3	2
8:00:00	17	4	42	11	9	2	1	0	0	0	0	0	0	0	1	0	1	0	3	0
8:15:00	22	5	52	10	13	4	1	0	0	0	0	0	0	0	2	1	1	0	8	5
8:30:00	30	8	73	21	27	14	1	0	0	0	0	0	1	1	3	1	4	3	33	25
8:45:00	52	22	90	17	48	21	1	0	0	0	0	0	3	2	3	0	7	3	46	13
9:00:00	56	4	97	7	52	4	1	0	0	0	0	0	4	1	3	0	7	0	47	1
9:15:00	56	0	97	0	52	0	1	0	0	0	0	0	4	0	3	0	7	0	47	0
16:00:00	56	0	97	0	52	0	1	0	0	0	0	0	4	0	3	0	7	0	47	0
16:15:00	61	5	101	4	70	18	1	0	0	0	0	0	4	0	3	0	7	0	48	1
16:30:00	66	5	105	4	86	16	1	0	0	0	0	0	4	0	3	0	7	0	51	3
16:45:00	71	5	108	3	101	15	1	0	1	1	0	0	4	0	3	0	7	0	51	0
17:00:00	76	5	109	1	105	4	1	0	1	0	0	0	4	0	3	0	7	0	52	1
17:15:00	81	5	114	5	120	15	1	0	1	0	0	0	4	0	3	0	7	0	52	0
17:30:00	83	2	117	3	134	14	1	0	1	0	0	0	4	0	3	0	7	0	53	1
17:45:00	89	6	119	2	145	11	1	0	1	0	0	0	4	0	3	0	7	0	55	2
18:00:00	91	2	124	5	151	6	1	0	1	0	0	0	4	0	3	0	7	0	56	1
18:15:00	91	0	124	0	151	0	1	0	1	0	0	0	4	0	3	0	7	0	56	0
18:15:15	91	0	124	0	151	0	1	0	1	0	0	0	4	0	3	0	7	0	56	0
																			1	

		Passen	ger Cars	- West Ap	proach			Tru	cks - Wes	t Approa	ch			He	avys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	jht	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	6	6	9	9	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0
7:30:00	10	4	17	8	4	3	0	0	1	1	0	0	0	0	5	4	0	0	0	0
7:45:00	17	7	26	9	12	8	1	1	2	1	0	0	0	0	5	0	0	0	2	2
8:00:00	25	8	44	18	17	5	1	0	4	2	0	0	0	0	7	2	1	1	2	0
8:15:00	39	14	56	12	30	13	2	1	4	0	0	0	0	0	7	0	2	1	2	0
8:30:00	51	12	66	10	44	14	2	0	5	1	0	0	0	0	8	1	6	4	3	1
8:45:00	68	17	75	9	56	12	2	0	5	0	1	1	0	0	8	0	7	1	4	1
9:00:00	90	22	85	10	56	0	3	1	6	1	1	0	1	1	9	1	8	1	4	0
9:15:00	90	0	85	0	56	0	3	0	6	0	1	0	1	0	9	0	8	0	4	0
16:00:00	90	0	85	0	56	0	3	0	6	0	1	0	1	0	9	0	8	0	4	0
16:15:00	93	3	127	42	60	4	3	0	6	0	1	0	1	0	9	0	8	0	4	0
16:30:00	95	2	163	36	66	6	4	1	6	0	1	0	1	0	9	0	8	0	7	3
16:45:00	103	8	211	48	69	3	4	0	7	1	1	0	2	1	12	3	8	0	7	0
17:00:00	109	6	272	61	75	6	4	0	7	0	1	0	2	0	12	0	8	0	8	1
17:15:00	115	6	324	52	81	6	5	1	7	0	1	0	2	0	13	1	8	0	8	0
17:30:00	117	2	363	39	85	4	5	0	7	0	1	0	2	0	13	0	8	0	8	0
17:45:00	120	3	405	42	91	6	5	0	7	0	1	0	3	1	14	1	8	0	10	2
18:00:00	125	5	448	43	93	2	5	0	7	0	1	0	3	0	14	0	8	0	10	0
18:15:00	125	0	448	0	93	0	5	0	7	0	1	0	3	0	14	0	8	0	10	0
18:15:15	125	0	448	0	93	0	5	0	7	0	1	0	3	0	14	0	8	0	10	0
10.15.15	123	- 0	770	0	33	0		- 0	,	U				- 0	17	0		0	10	
			1																1	

Morning Pe	ak Diag	ram	I -	ified F 7:00 9:00			ne Hour Per om: 7:30:00 : 8:30:00)
	500003 n St & McNeilly	⁄ Rd	Perso	on cou	onditions unted: pared: ecked:			
* Non-Signalized I	ntersection	**	Majo	r Road	: Barton	St runs	s W/E	
North Leg Total: 78 North Entering: 27 North Peds: 0 Peds Cross:	Heavys 0 Trucks 1 Cars 14 Totals 15	0 0 0 1 2 9 2 10	0 2 25		Heavys 2 Trucks 3 Cars 46 Totals 51	_	East Leg Total: East Entering: East Peds: Peds Cross:	333 179 1
Heavys Trucks Cars Tota 8 6 262 276	arton St		McNeilly Rd			Cars 10 146 10 166	Trucks Heavy: 0 1 4 7 0 1 4 9	s Totals 11 157 11
Heavys Trucks Cars Total 1 3 26 30 7 4 106 117 2 0 8 10			S	^	Bar	ton St Cars	Trucks Heavy	s Total:
10 7 140		McNei	lly Rd	T	Γ	140	6 8	154
Peds Cross: X West Peds: 0 West Entering: 157	Cars 20 Trucks 0 Heavys 3		Cars 102 Trucks 1 Heavys 1	10 0 0	25 137 1 2 1 2		Peds Cross: South Peds: South Entering:	⋈ 0 141

	4	ACCU-I	anic	IIIC.			
Afternoon F	Peak Dia	agram	1 -	fied Period : 16:00:00 18:00:00	F	One Hour P From: 16:19 o: 17:19	5:00
	500003 n St & McNeill	y Rd	Perso Perso	ner condition on counted on prepared on checked	: :		
** Non-Signalized I	ntersection	**	Major	Road: Ba	rton St ru	ıns W/E	
North Leg Total: 77 North Entering: 56 North Peds: 0 Peds Cross: ▶	Heavys 2 Trucks 1 Cars 20 Totals 23	1 1	2 3 51	Heavys Trucks Cars Totals	1	East Leg Tot East Entering East Peds: Peds Cross:	
Heavys Trucks Cars Tota 6 6 142 154	•	□ □	McNeilly Rd	·	$ \begin{array}{c} \text{Ca} \\ 6 \\ \hline & 100 \\ \hline & \frac{18}{124} \end{array} $	1 0 0 4 3 0 0	7 107 18
Heavys Trucks Cars Tota 0 0 10 10 6 3 206 215 0 0 59 59		w	S		Barton S		vys Total
6 3 275		McNeilly F	¹⁰ (-]	1 分	240		250
Peds Cross: X West Peds: 3	Cars 93 Trucks 1		Cars 22 ucks 1	4 19 0 0	45 1	Peds Cross: South Peds:	⊠ 0

Comments

Heavys 1

Totals 24

0

0

19

South Entering: 47

South Leg Total: 141

West Entering: 284

West Leg Total: 438

Heavys 0

Totals 94

Total Count Diagram

Municipality: Hamilton

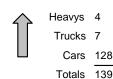
Site #: 1608500003

Intersection: Barton St & McNeilly Rd

TFR File #: 1

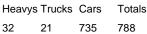
Count date: 25-May-16

Weather conditions:


Person counted: Person prepared:

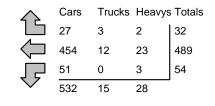
Person checked:

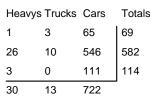
** Non-Signalized Intersection **


North Leg Total: 306 Heal
North Entering: 167 Tri
North Peds: 0 C
Peds Cross: ► To

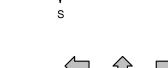
Heavys 6 1 0 7
Trucks 6 1 2 9
Cars 69 34 48 151
Totals 81 36 50

Major Road: Barton St runs W/E

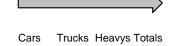

East Leg Total: 1294
East Entering: 575
East Peds: 7
Peds Cross: X



McNeilly Rd


Barton St

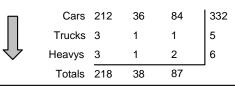
678



Barton St

McNeilly Rd

13


Peds Cross: X
West Peds: 11
West Entering: 765
West Leg Total: 1553

 Cars
 196

 Trucks
 1

 Heavys
 7

 Totals
 204

Peds Cross: ► South Peds: 2
South Entering: 343
South Leg Total: 547

28

719

Comments

Accu-Traffic Inc. Traffic Count Summary

Intersection:	Barton S	St & McN	leilly Rd		Count [Date: 25-May-1	6	Munic	cipality: Ha	milton			
	Nort	h Appro	ach Tot	als		Namela (Carrella			Sout	h Appro	oach To	tals	
Hour	Includ	es Cars, T	rucks, & H		Total	North/South Total	Hou	ır			rucks, & F	leavys	Total
Ending	Left	Thru	Right	Grand Total	Peds	Approaches	Endi		Left	Thru	Right	Grand Total	Peds
7:00:00 8:00:00 9:00:00 16:00:00 17:00:00 18:00:00	0 7 17 0 15 11	0 3 4 0 11 18	0 14 21 0 29 17	0 24 42 0 55 46	0 0 0 0 0 0	0 132 185 0 106 87	7:00 8:00 9:00 16:00 17:00 18:00	:00 :00 :00 ::00	0 79 90 0 29 20	0 11 18 0 6 3	0 18 35 0 16 18	0 108 143 0 51 41	0 0 0 0 0 2
Totals:	50 Eas i	36 t Appro	81 ach Tota	167 als	0	510	S Tot	als:	218 Wes	38 t Appro	87 ach Tot	343 als	2
Hour			rucks, & F	leavys	Total	East/West Total	Hou	ır	Include	es Cars, T	rucks, & F	leavys	Total
Ending	Left	Thru	Right	Grand Total	Peds	Approaches	Endi		Left	Thru	Right	Grand Total	Peds
7:00:00 8:00:00 9:00:00 16:00:00 17:00:00 18:00:00	0 9 11 0 23 11	0 138 145 0 114 92	0 9 11 0 7 5	0 156 167 0 144 108	0 3 1 0 2 1	0 268 318 0 411 343	7:00 8:00 9:00 16:00 17:00 18:00	:00 :00 0:00 0:00	0 18 32 0 10 9	0 84 108 0 208 182	0 10 11 0 49 44	0 112 151 0 267 235	003053
Totals:	54	489	32	575	7	•	W To	_	69	582	114	765	11
Hours E		7:00 :: 0	8:00 100	9:00 129	/alues f 16:00 0	or Traffic Cr	ossin 17:0 62	00	ajor Stre 18:00 53	0:00 0	0:00 0		

		Passenç	er Cars -	North A	pproach			True	cks - Nort	h Approa	ch			He	avys - No	rth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	2	2	2	2	3	3	0	0	0	0	0	0	0	0	0	0	1	1	0	0
7:30:00	4	2	2	0	6	3	0	0	0	0	2	2	0	0	0	0	11	0	0	0
7:45:00	5	1	2	0	9	3	0	0	0	0	2	0	0	0	0	0	1	0	0	0
8:00:00	6	11	3	1	11	2	1	1	0	0	2	0	0	0	0	0	11	0	0	0
8:15:00	10	4	3	0	16	5	1	0	0	0	2	0	0	0	0	0	1	0	0	0
8:30:00	13	3	4	1	20	4	1	0	0	0	3	1	0	0	0	0	1	0	0	0
8:45:00	17	4	4	0	20	0	1	0	0	0	3	0	0	0	0	0	3	2	0	0
9:00:00	23	6	6	2	28	8	1	0	0	0	4	1	0	0	1	11	3	0	0	0
9:15:00	23	0	6	0	28	0	1	0	0	0	4	0	0	0	1	0	3	0	0	0
16:00:00	23	0	6	0	28	0	1	0	0	0	4	0	0	0	1	0	3	0	0	0
16:15:00	27	4	11	5	40	12	1	0	0	0	4	0	0	0	1	0	4	1	0	0
16:30:00	32	5	13	2	43	3	1	0	0	0	5	1	0	0	1	0	6	2	0	0
16:45:00	35	3	14	1	46	3	2	1	0	0	5	0	0	0	1	0	6	0	0	0
17:00:00	37	2	17	3	53	7	2	0	0	0	5	0	0	0	1	0	6	0	0	0
17:15:00	42	5	27	10	60	7	2	0	1	1	5	0	0	0	1	0	6	0	0	0
17:30:00	43	1	30	3	63	3	2	0	1	0	5	0	0	0	1	0	6	0	0	0
17:45:00	46	3	33	3	66	3	2	0	1	0	5	0	0	0	1	0	6	0	0	0
18:00:00	48	2	34	1	69	3	2	0	1	0	6	1	0	0	1	0	6	0	0	0
18:15:00	48	0	34	0	69	0	2	0	1	0	6	0	0	0	1	0	6	0	0	0
18:15:15	48	0	34	0	69	0	2	0	1	0	6	0	0	0	1	0	6	0	0	0

		Passen	ger Cars	- East Ap	proach			Tru	cks - Eas	t Approa	ch			He	eavys - Ea	ast Appro	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	ght	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	19	19	4	4	0	0	0	0	1	1	0	0	1	1	0	0	0	0
7:30:00	5	2	44	25	5	1	0	0	1	1	1	0	0	0	4	3	0	0	2	2
7:45:00	7	2	90	46	7	2	0	0	2	1	1	0	1	1	5	1	0	0	3	1
8:00:00	8	11	129	39	8	1	0	0	3	1	1	0	1	0	6	1	0	0	3	0
8:15:00	12	4	159	30	9	1	0	0	4	1	1	0	1	0	9	3	0	0	3	0
8:30:00	15	3	190	31	15	6	0	0	5	1	1	0	1	0	11	2	1	1	3	0
8:45:00	16	11	231	41	15	0	0	0	6	1	1	0	1	0	13	2	1	0	4	1
9:00:00	18	2	262	31	17	2	0	0	6	0	1	0	2	1	15	2	2	1	4	0
9:15:00	18	0	262	0	17	0	0	0	6	0	1	0	2	0	15	0	2	0	4	0
16:00:00	18	0	262	0	17	0	0	0	6	0	1	0	2	0	15	0	2	0	4	0
16:15:00	27	9	291	29	18	1	0	0	7	1	2	1	2	0	19	4	2	0	4	0
16:30:00	31	4	314	23	19	1	0	0	8	1	2	0	2	0	21	2	2	0	6	2
16:45:00	35	4	341	27	21	2	0	0	9	1	2	0	2	0	21	0	2	0	6	0
17:00:00	41	6	366	25	23	2	0	0	10	1	2	0	2	0	21	0	2	0	6	0
17:15:00	45	4	391	25	24	1	0	0	11	1	3	1	2	0	22	1	2	0	6	0
17:30:00	49	4	408	17	24	0	0	0	11	0	3	0	3	1	22	0	2	0	7	1
17:45:00	51	2	430	22	24	0	0	0	12	1	3	0	3	0	23	1	2	0	7	0
18:00:00	51	0	454	24	27	3	0	0	12	0	3	0	3	0	23	0	2	0	7	0
18:15:00	51	0	454	0	27	0	0	0	12	0	3	0	3	0	23	0	2	0	7	0
18:15:15	51	0	454	0	27	0	0	0	12	0	3	0	3	0	23	0	2	0	7	0

		Passeng	er Cars -	South A	pproach			Truc	ks - Sout	h Approa	ach			He	avys - So	uth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	jht	Le	ft	Th	ru	Rig	ght	Le	eft	Th	ru	Riç	jht	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	13	13	4	4	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	26	13	8	4	7	2	0	0	0	0	0	0	1	1	0	0	0	0	0	0
7:45:00	51	25	11	3	11	4	0	0	0	0	0	0	2	1	0	0	0	0	0	0
8:00:00	77	26	11	0	17	6	0	0	0	0	1	11	2	0	0	0	0	0	0	0
8:15:00	104	27	12	1	24	7	0	0	0	0	1	0	2	0	0	0	0	0	0	0
8:30:00	128	24	18	6	32	8	1	11	0	0	1	0	2	0	0	0	1	1	0	0
8:45:00	143	15	21	3	40	8	1	0	0	0	1	0	2	0	0	0	1	0	0	0
9:00:00	166	23	27	6	51	11	1	0	1	1	1	0	2	0	1	1	1	0	0	0
9:15:00	166	0	27	0	51	0	1	0	1	0	1	0	2	0	1	0	1	0	0	0
16:00:00	166	0	27	0	51	0	1	0	1	0	1	0	2	0	1	0	1	0	0	0
16:15:00	175	9	29	2	55	4	1	0	1	0	1	0	2	0	1	0	1	0	0	0
16:30:00	180	5	29	0	58	3	1	0	1	0	1	0	2	0	1	0	1	0	0	0
16:45:00	186	6	29	0	64	6	1	0	1	0	1	0	3	1	1	0	1	0	0	0
17:00:00	193	7	33	4	67	3	2	1	1	0	1	0	3	0	1	0	1	0	0	0
17:15:00	197	4	33	0	74	7	2	0	1	0	1	0	3	0	1	0	1	0	0	0
17:30:00	204	7	33	0	78	4	3	1	1	0	1	0	3	0	1	0	1	0	2	2
17:45:00	209	5	35	2	82	4	3	0	1	0	1	0	3	0	1	0	2	1	2	0
18:00:00	212	3	36	1	84	2	3	0	1	0	1	0	3	0	1	0	2	0	2	0
18:15:00	212	0	36	0	84	0	3	0	1	0	1	0	3	0	1	0	2	0	2	0
18:15:15	212	0	36	0	84	0	3	0	1	0	1	0	3	0	1	0	2	0	2	0

		Passen	ger Cars	- West Ap	proach			Tru	cks - Wes	t Approa	ch			He	avys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	jht	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	7	7	11	11	3	3	0	0	0	0	0	0	0	0	2	2	1	1	0	0
7:30:00	8	1	21	10	3	0	0	0	0	0	0	0	0	0	5	3	1	0	0	0
7:45:00	13	5	44	23	5	2	0	0	1	1	0	0	0	0	5	0	3	2	0	0
8:00:00	16	3	74	30	7	2	2	2	2	1	0	0	0	0	8	3	3	0	0	0
8:15:00	22	6	102	28	8	1	2	0	2	0	0	0	0	0	8	0	3	0	0	0
8:30:00	34	12	127	25	11	3	3	1	4	2	0	0	1	1	12	4	3	0	0	0
8:45:00	39	5	151	24	17	6	3	0	5	1	0	0	1	0	15	3	3	0	3	3
9:00:00	46	7	168	17	18	1	3	0	6	1	0	0	1	0	18	3	3	0	3	0
9:15:00	46	0	168	0	18	0	3	0	6	0	0	0	1	0	18	0	3	0	3	0
16:00:00	46	0	168	0	18	0	3	0	6	0	0	0	1	0	18	0	3	0	3	0
16:15:00	47	1	213	45	25	7	3	0	6	0	0	0	1	0	18	0	3	0	5	2
16:30:00	51	4	246	33	38	13	3	0	8	2	0	0	1	0	20	2	3	0	7	2
16:45:00	52	1	304	58	62	24	3	0	8	0	0	0	1	0	22	2	3	0	7	0
17:00:00	56	4	368	64	67	5	3	0	9	1	0	0	1	0	23	1	3	0	8	1
17:15:00	57	1	419	51	84	17	3	0	9	0	0	0	1	0	24	1	3	0	8	0
17:30:00	58	1	460	41	94	10	3	0	10	1	0	0	1	0	25	1	3	0	11	3
17:45:00	62	4	502	42	104	10	3	0	10	0	0	0	1	0	26	1	3	0	11	0
18:00:00	65	3	546	44	111	7	3	0	10	0	0	0	1	0	26	0	3	0	11	0
18:15:00	65	0	546	0	111	0	3	0	10	0	0	0	1	0	26	0	3	0	11	0
18:15:15	65	0	546	0	111	0	3	0	10	0	0	0	1	0	26	0	3	0	11	0

		4CCU	- I rat	tic ir	IC.				
Morning Pe	eak Diag	ram		om: 7:	Period 00:00 00:00		One Ho From: To:	_)
Intersection: HWY	ilton 500004 ′ 8 & McNeilly F lay-16	₹d	P(erson c erson p	condition ounted: repared	: I:			
** Signalized Inters	section **		М	ajor Ro	ad: HW	/Y 8 rur	ns W/E		
North Leg Total: 157 North Entering: 28 North Peds: 1 Peds Cross: ▶	Heavys 2 Trucks 0 Cars 11 Totals 13	0 1 1 0 7 6 8 7	3 1 24	Î	Heavys Trucks Cars Totals	4	East F	Leg Total: Entering: Peds: Cross:	640 401 1
Heavys Trucks Cars Tot 9 2 398 409	•		McNeil N	y Rd ► E	< ·	<u> </u> 32	2 0 40 1 7 3	ks Heavys 1 6 1	s Totals 33 347 21
Heavys Trucks Cars Tot 1 0 9 10 12 3 176 2 0 8 10 15 3 193	<u></u>	MoN	s Ieilly Rd) 介				ks Heavy:	s Totals
Peds Cross: X West Peds: 5 West Entering: 211 West Leg Total: 620	Cars 32 Trucks 4 Heavys 3 Totals 39	IVICIN	Cars 4 Trucks 6 Heavys 6	4 0	2	167 7 2	South South	Cross: Peds: Entering:	
Trest Leg Total. 020	10(0)3		Commen		71		1 3000		

Comments

	A	ccu-ir	attic in	C.	
Afternoon F	Peak Dia	gram		Period ::00::00	One Hour Peak From: 16:30:00 To: 17:30:00
	500004 8 & McNeilly Rd	I	Weather of Person con Person ch	epared:	
** Signalized Inters	ection **		Major Roa	ad: HWY8r	uns W/E
North Leg Total: 142 North Entering: 86 North Peds: 0 Peds Cross: ► Heavys Trucks Cars Tota 3 3 324 330	Trucks 1 Cars 19 Totals 20 als HWY 8	♥ □	cNeilly Rd		East Leg Total: 828 East Entering: 349 East Peds: 0 Peds Cross: Cars Trucks Heavys Totals 15 1 0 16 280 2 2 284 49 0 0 0 344 3 2
Heavys Trucks Cars Tota 1 2 16 19 2 2 423 427 0 0 48 48		:	5	HWY	Cars Trucks Heavys Totals
3 4 487	₹>	McNeilly Rd			475 2 2 479
Peds Cross: X West Peds: 1 West Entering: 494 West Leg Total: 824	Cars 143 Trucks 0 Heavys 0 Totals 143	Truc	ars 25 20 20 20 21 25 25 20 21 25 25 20 21 25 25 25 26 21 25 25 25 25 25 25 25 25 25 25 25 25 25	32 77 0 1 0 1	Peds Cross: South Peds: 1 South Entering: 79 South Leg Total: 222
		Comn	nents		

Total Count Diagram

Municipality: Hamilton

Site #: 1608500004

Intersection: HWY 8 & McNeilly Rd

TFR File #: 1

Count date: 25-May-16

Weather conditions:

Person counted: Person prepared:

Person checked:

** Signalized Intersection **

North Leg Total: 534

North Entering: 196

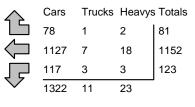
North Peds: 3

Peds Cross: ▶

Heavys 3 2 1 6
Trucks 1 1 0 2
Cars 47 90 51 188
Totals 51 93 52

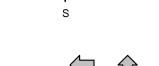
T H

Heavys 6
Trucks 10
Cars 322
Totals 338


Major Road: HWY 8 runs W/E

East Leg Total: 2676
East Entering: 1356
East Peds: 5
Peds Cross: X

Heavys Trucks Cars Totals 25 9 1322 1356


HWY 8

1274

14

8 YWH

McNeilly Rd

Peds Cross: X
West Peds: 7
West Entering: 1305
West Leg Total: 2661

Cars 297
Trucks 5
Heavys 7
Totals 309

McNeilly Rd

 Cars
 148
 193
 109
 450

 Trucks
 1
 6
 2
 9

 Heavys
 4
 1
 2
 7

 Totals
 153
 200
 113

Peds Cross:
South Peds: 4
South Entering: 466
South Leg Total: 775

32

1320

Comments

Accu-Traffic Inc. Traffic Count Summary

Intersection:	HWY 8	& McNei	illy Rd		Count E	Date: 25-May-1	6 N	Munici	ipality: Ha	milton			
			ach Tot	als			<u> </u>				oach To	tals	
Hour	Includ	es Cars, T	rucks, & F	leavys	Total	North/South Total	Hour				rucks, & F		Total
Ending	Left	Thru	Right	Grand Total	Peds	Approaches	Ending		Left	Thru	Right	Grand Total	Peds
7:00:00	0	0	0	0	0	0	7:00:0	20	0	0	0	0	0
8:00:00	8	9	7	24	3	182	8:00:0		54	69	35	158	2
9:00:00	10	8	13	31	0	175	9:00:0	00	31	83	30	144	0
16:00:00	0	0	0	0	0	0	16:00:0		0	0	0	0	0
17:00:00	13	45	14	72 60	0	163	17:00:0		39	30	22	91	0
18:00:00	21	31	17	69	0	142	18:00:0	00	29	18	26	73	2
Totals:	52	93	51	196	3	662	S Total	ls:	153	200	113	466	4
			ach Tota			East/West					ach Tot		
Hour Ending		es Cars, 1	rucks, & F	Grand	Total Peds	Total	Hour Ending			es Cars, I	rucks, & F	Grand	Total Peds
	Left	Thru	Right	Total		Approaches			Left	Thru	Right	Total	
7:00:00 8:00:00	0 23	0 285	0 23	0 331	0 5	0 4 89	7:00:0 8:00:0		0 9	0 141	0 8	150	0
9:00:00	23 21	314	36	331 371	0	4 69 591	9:00:0		9 15	199	6	158 220	2 4
16:00:00	0	0	0	0	Ö	0	16:00:0		0	0	Ö	0	Ö
17:00:00	43	268	12	323	0	819	17:00:0	00	12	439	45	496	1
18:00:00	36	285	10	331	0	762	18:00:0	00	21	376	34	431	0
Tatala	400	4450	0.4	4050	_	0004	\\\\ \T = 4 =	اما	-	4455	00	4005	7
Totals:	123	1152	81 Calc	1356	5 Zaluge f	2661 or Traffic Cr	W Tota		57	1155	93	1305	7
Hours E	ndina.	7:00	8:00	9:00	16:00	or framic Cl	0551119 17:00		18:00	0:00	0:00		
Crossing			138	128	0		98		81	0.00	0.00		
	-												

		Passeng	ger Cars -	North A	pproach			Truc	cks - Nort	h Approa	ach			He	avys - No	rth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	jht	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	2	2	4	4	1	1	0	0	0	0	0	0	0	0	2	2	0	0	0	0
7:30:00	4	2	4	0	1	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
7:45:00	5	1	7	3	3	2	0	0	0	0	0	0	1	1	2	0	2	2	3	1
8:00:00	7	2	7	0	5	2	0	0	0	0	0	0	1	0	2	0	2	0	3	0
8:15:00	7	0	10	3	9	4	0	0	0	0	0	0	1	0	2	0	2	0	3	0
8:30:00	10	3	11	11	12	3	0	0	1	1	0	0	1	0	2	0	2	0	3	0
8:45:00	16	6	14	3	14	2	0	0	1	0	0	0	1	0	2	0	2	0	3	0
9:00:00	17	1	14	0	17	3	0	0	1	0	0	0	1	0	2	0	3	1	3	0
9:15:00	17	0	14	0	17	0	0	0	1	0	0	0	1	0	2	0	3	0	3	0
16:00:00	17	0	14	0	17	0	0	0	1	0	0	0	1	0	2	0	3	0	3	0
16:15:00	17	0	28	14	19	2	0	0	1	0	0	0	1	0	2	0	3	0	3	0
16:30:00	23	6	33	5	24	5	0	0	1	0	0	0	1	0	2	0	3	0	3	0
16:45:00	29	6	53	20	26	2	0	0	1	0	0	0	1	0	2	0	3	0	3	0
17:00:00	30	11	59	6	31	5	0	0	1	0	0	0	1	0	2	0	3	0	3	0
17:15:00	39	9	71	12	36	5	0	0	1	0	1	1	1	0	2	0	3	0	3	0
17:30:00	43	4	79	8	43	7	0	0	1	0	1	0	1	0	2	0	3	0	3	0
17:45:00	48	5	87	8	45	2	0	0	1	0	1	0	1	0	2	0	3	0	3	0
18:00:00	51	3	90	3	47	2	0	0	1	0	1	0	1	0	2	0	3	0	3	0
18:15:00	51	0	90	0	47	0	0	0	1	0	1	0	1	0	2	0	3	0	3	0
18:15:15	51	0	90	0	47	0	0	0	1	0	1	0	1	0	2	0	3	0	3	0

		Passen	ger Cars	- East Ap	proach			Tru	cks - Eas	t Approa	ch			Не	eavys - Ea	ast Appro	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	42	42	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	11	8	87	45	7	4	0	0	1	1	0	0	1	1	2	2	0	0	4	4
7:45:00	17	6	183	96	18	11	0	0	1	0	0	0	1	0	6	4	1	1	4	0
8:00:00	22	5	278	95	22	4	0	0	1	0	0	0	1	0	6	0	1	0	5	1
8:15:00	25	3	352	74	32	10	2	2	1	0	0	0	2	1	7	1	1	0	5	0
8:30:00	28	3	427	75	39	7	3	1	2	1	0	0	2	0	8	11	1	0	5	0
8:45:00	34	6	514	87	45	6	3	0	3	1	0	0	2	0	9	11	2	1	5	0
9:00:00	38	4	583	69	57	12	3	0	4	1	0	0	3	1	12	3	2	0	5	0
9:15:00	38	0	583	0	57	0	3	0	4	0	0	0	3	0	12	0	2	0	5	0
16:00:00	38	0	583	0	57	0	3	0	4	0	0	0	3	0	12	0	2	0	5	0
16:15:00	43	5	637	54	60	3	3	0	4	0	0	0	3	0	14	2	2	0	5	0
16:30:00	52	9	708	71	61	1	3	0	4	0	0	0	3	0	16	2	2	0	5	0
16:45:00	66	14	786	78	63	2	3	0	5	1	0	0	3	0	17	11	2	0	5	0
17:00:00	81	15	845	59	68	5	3	0	5	0	1	11	3	0	17	0	2	0	5	0
17:15:00	93	12	913	68	72	4	3	0	5	0	1	0	3	0	18	1	2	0	5	0
17:30:00	101	8	988	75	76	4	3	0	6	1	1	0	3	0	18	0	2	0	5	0
17:45:00	110	9	1059	71	76	0	3	0	6	0	1	0	3	0	18	0	2	0	5	0
18:00:00	117	7	1127	68	78	2	3	0	7	1	1	0	3	0	18	0	2	0	5	0
18:15:00	117	0	1127	0	78	0	3	0	7	0	1	0	3	0	18	0	2	0	5	0
18:15:15	117	0	1127	0	78	0	3	0	7	0	1	0	3	0	18	0	2	0	5	0

		Passeng	er Cars -	South A	pproach			Truc	ks - Sout	h Approa	ach			He	avys - So	uth Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	Le	eft	Th	ru	Riç	jht	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	6	6	15	15	4	4	0	0	0	0	0	0	0	0	0	0	1	1	0	0
7:30:00	19	13	27	12	11	7	0	0	0	0	0	0	1	1	0	0	1	0	2	2
7:45:00	35	16	46	19	26	15	0	0	0	0	0	0	1	0	0	0	1	0	2	0
8:00:00	52	17	67	21	33	7	0	0	2	2	1	11	2	1	0	0	1	0	2	0
8:15:00	59	7	84	17	44	11	1	1	3	1	2	1	2	0	0	0	1	0	2	0
8:30:00	66	7	109	25	49	5	1	0	4	1	2	0	2	0	0	0	2	1	2	0
8:45:00	78	12	121	12	56	7	1	0	4	0	2	0	2	0	0	0	2	0	2	0
9:00:00	81	3	147	26	61	5	1	0	5	1	2	0	3	1	0	0	2	0	2	0
9:15:00	81	0	147	0	61	0	1	0	5	0	2	0	3	0	0	0	2	0	2	0
16:00:00	81	0	147	0	61	0	1	0	5	0	2	0	3	0	0	0	2	0	2	0
16:15:00	92	11	161	14	65	4	1	0	5	0	2	0	3	0	0	0	2	0	2	0
16:30:00	103	11	165	4	68	3	1	0	5	0	2	0	3	0	1	1	2	0	2	0
16:45:00	115	12	170	5	76	8	1	0	5	0	2	0	4	1	1	0	2	0	2	0
17:00:00	119	4	176	6	83	7	1	0	5	0	2	0	4	0	1	0	2	0	2	0
17:15:00	123	4	178	2	89	6	1	0	5	0	2	0	4	0	1	0	2	0	2	0
17:30:00	128	5	185	7	100	11	1	0	6	1	2	0	4	0	1	0	2	0	3	1
17:45:00	136	8	191	6	104	4	1	0	6	0	2	0	4	0	1	0	2	0	3	0
18:00:00	148	12	193	2	109	5	1	0	6	0	2	0	4	0	1	0	2	0	4	1
18:15:00	148	0	193	0	109	0	1	0	6	0	2	0	4	0	1	0	2	0	4	0
18:15:15	148	0	193	0	109	0	1	0	6	0	2	0	4	0	1	0	2	0	4	0

		Passen	ger Cars	- West Ap	pproach			Tru	cks - Wes	t Approa	ch			Не	avys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Riç	ght	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	2	2	24	24	1	1	0	0	1	1	0	0	0	0	1	1	0	0	1	1
7:30:00	5	3	56	32	2	1	0	0	1	0	0	0	1	1	3	2	0	0	1	0
7:45:00	7	2	91	35	4	2	0	0	1	0	0	0	1	0	4	1	0	0	2	1
8:00:00	8	1	129	38	6	2	0	0	1	0	0	0	1	0	11	7	2	2	2	0
8:15:00	9	1	182	53	8	2	0	0	2	1	0	0	2	1	12	1	2	0	6	4
8:30:00	14	5	232	50	10	2	0	0	4	2	0	0	2	0	15	3	2	0	6	0
8:45:00	17	3	282	50	10	0	0	0	6	2	0	0	2	0	18	3	2	0	6	0
9:00:00	22	5	314	32	12	2	0	0	7	1	0	0	2	0	19	1	2	0	6	0
9:15:00	22	0	314	0	12	0	0	0	7	0	0	0	2	0	19	0	2	0	6	0
16:00:00	22	0	314	0	12	0	0	0	7	0	0	0	2	0	19	0	2	0	6	0
16:15:00	23	1	415	101	23	11	0	0	7	0	1	1	2	0	22	3	2	0	6	0
16:30:00	26	3	516	101	31	8	0	0	9	2	1	0	2	0	24	2	2	0	6	0
16:45:00	28	2	623	107	48	17	0	0	10	1	1	0	3	1	25	1	2	0	6	0
17:00:00	33	5	743	120	56	8	0	0	11	1	1	0	3	0	25	0	2	0	7	1
17:15:00	38	5	842	99	69	13	2	2	11	0	1	0	3	0	25	0	2	0	7	0
17:30:00	42	4	939	97	79	10	2	0	11	0	1	0	3	0	26	1	2	0	7	0
17:45:00	48	6	1029	90	86	7	2	0	11	0	1	0	3	0	27	1	2	0	7	0
18:00:00	51	3	1114	85	90	4	3	1	12	1	1	0	3	0	29	2	2	0	7	0
18:15:00	51	0	1114	0	90	0	3	0	12	0	1	0	3	0	29	0	2	0	7	0
18:15:15	51	0	1114	0	90	0	3	0	12	0	1	0	3	0	29	0	2	0	7	0
10.10.10	- 01																			

	T T
Morning Peak Diagram	Specified Period One Hour Peak From: 7:00:00 From: 7:45:00 To: 9:00:00 To: 8:45:00
Municipality: Hamilton Site #: 1608500005 Intersection: HWY 8 & Lewis Rd TFR File #: 1 Count date: 25-May-16	Weather conditions: Person counted: Person prepared: Person checked:
** Non-Signalized Intersection **	Major Road: HWY 8 runs W/E
Peds Cross: ► Totals 40 2 35	i i i i i i i i i i i i i i i i i i i
HWY 8 W	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Heavys Trucks Cars Totals 1	HWY 8 Cars Trucks Heavys Totals
12 6 233 Lewis Ro	214 6 12 232
West Peds: 6 Trucks 0 Trucks	cars 3 2 2 7 Peds Cross: ▶ cks 0 0 0 0 South Peds: 12 vys 0 0 0 South Entering: 7

Comments

Accu-Traffic Inc. **Specified Period One Hour Peak Afternoon Peak Diagram** From: 16:00:00 From: 16:15:00 To: 18:00:00 To: 17:15:00 Weather conditions: Municipality: Hamilton Site #: 1608500005 Intersection: HWY 8 & Lewis Rd Person counted: TFR File #: Person prepared: Count date: 25-May-16 Person checked: ** Non-Signalized Intersection ** Major Road: HWY 8 runs W/E North Leg Total: 159 Heavys 1 0 1 Heavys 0 East Leg Total: 762 0 0 East Entering: 303 North Entering: 99 Trucks 0 0 Trucks 1 North Peds: Cars 58 36 98 Cars 59 East Peds: X Peds Cross: Totals 59 36 Totals 60 Peds Cross: Lewis Rd Totals Trucks Heavys Totals Heavys Trucks Cars Cars 1 355 0 0 349 11 286 291 4 0 0 4 298 8 YWH Heavys Trucks Cars Totals HWY 8 47 48 2 415 421 0 0 6 6 Cars Trucks Heavys Totals 468 453 2 459 X Cars 5 Peds Cross: 8 Peds Cross: M Cars 11 2 0 0 South Peds: West Peds: Trucks 0 Trucks 0 West Entering: Heavys Heavys 0 0 0 South Entering: 8

Comments

Totals 5

2

South Leg Total: 19

West Leg Total: 830

Totals 11

Total Count Diagram

Municipality: Hamilton

Site #: 1608500005

Intersection: HWY 8 & Lewis Rd

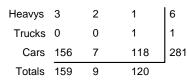
TFR File #: 1

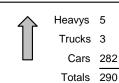
Count date: 25-May-16

Weather conditions:

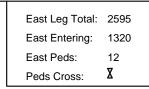
Person counted: Person prepared:

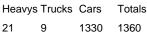
Person checked:

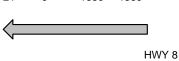

** Non-Signalized Intersection **

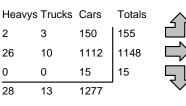

North Leg Total: 578

North Entering: 288

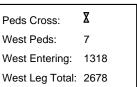

North Peds: 3

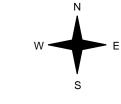

Peds Cross:



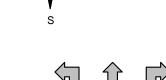


Major Road: HWY 8 runs W/E

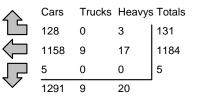


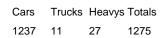

Cars 27

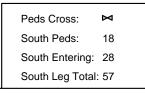
Trucks 0


Totals 29

Heavys




Lewis Rd



Cars	16	4	7	27
Trucks	0	0	0	0
Heavys	1	0	0	1
Totals	17	4	7	

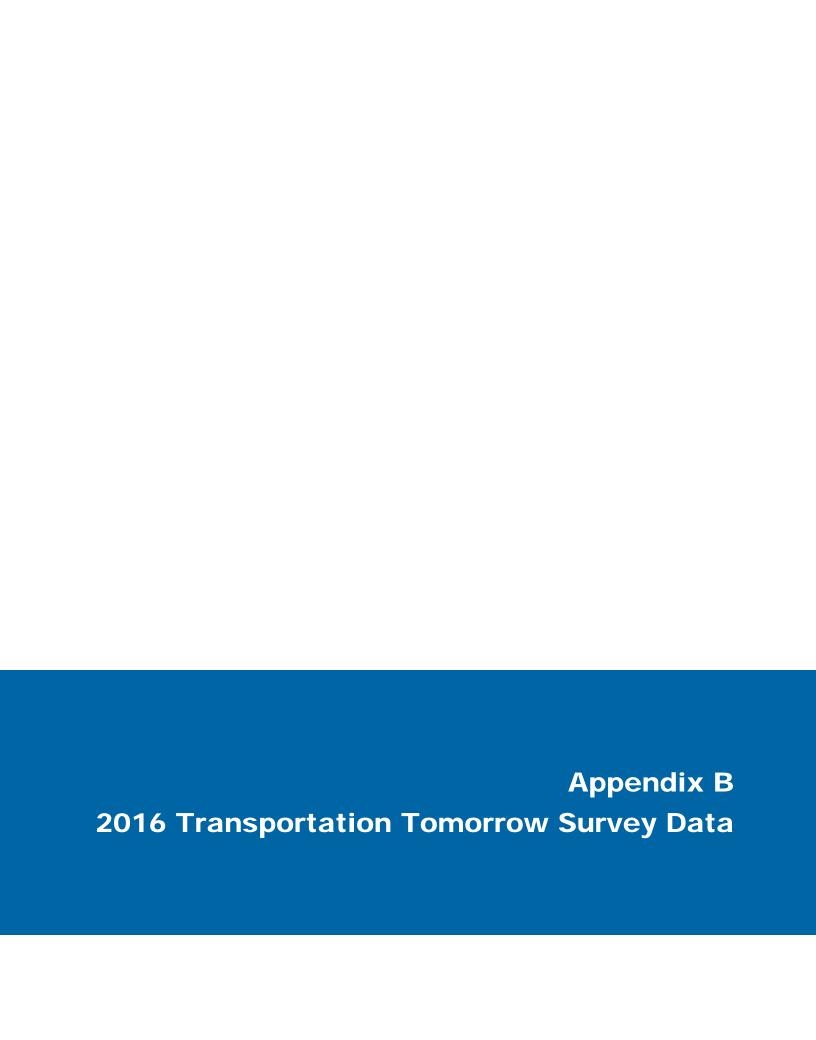
HWY 8

Comments

Accu-Traffic Inc. Traffic Count Summary

	& Lewis	Rd		Count E	Date: 25-May-1	6 l ^M	unicipality: Ha	amilton			
Nort		ach Tot	als					th Appro	pach To	tals	
			leavys	Total		Hour	Includ	les Cars, T	rucks, & F	leavys	Total
l eft	Thru	Right		Peds	Approaches	Ending	Left	Thru	Right		Peds
				0	0	7:00:0					0
11	0	17	28	0	37			1	1	9	2
		44							2		12
								1			0 0
				l				1			4
OZ.	Ŭ	10	07		00	10.00.0			_		,
120	9	159	288	3	316	S Total:	s: 17	4	7	28	18
					East/West						
Includ	es Cars, T	rucks, & H			Total	Hour		les Cars, T T	rucks, & F		Total Peds
Left	Thru	Right	Total		• • •		Left	Thru	Right	Total	
		0	0					1			0
								1			1 6
								1			0
2	273	13	288	Ö	<i>7</i> 53			419	5	465	Ö
2	289	10	301	1	735	18:00:0	00 43	388	3	434	0
_	4404	404	4000	40	2020	\\\ T-+-'	155	4440	45	4040	7
5	1184			•	or Traffic Cr				15	1318	7
nding:	7:00	8:00	9:00	16:00	or traine or	17:00	-	0:00	0:00		
	120 East Includ Left 0 11 35 0 42 32 120 Left 0 0 1 0 2	120 9 East Approx Includes Cars, T Left Thru 0 0 42 3 32 3 32 3 32 3 32 3 3	Left	Left Thru Right Grand Total 0 0 0 0 11 0 17 28 35 3 44 82 0 0 0 0 42 3 49 94 32 3 49 84 Fast Approach Totals Includes Cars, Trucks, & Heavys Left Thru Right Total O O O O O O 305 43 348 1 317 65 383 O O O O O 2 273 13 288 2 289 10 301 All Street Strucks Str	Includes Cars, Trucks, & Heavys Carand Total Peds	Includes Cars, Trucks, & Heavys Total Peds Total Approaches	Includes Cars, Trucks, & Heavys Carand Peds Peds	Includes Cars, Trucks, & Heavys Total Peds Pe	Total Peds Peds	Includes Cars, Trucks, & Heavys Cars Total Cars Trucks Cars Total Cars Total	Includes Cars, Trucks, & Heavys Peds Peds Total Peds Peds

		Passenç	ger Cars -	North A	pproacn			iru	cks - Nort	n Approa	icn			не	avys - No	orth Appr	oacn		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	ght	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Inc
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	3	3	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30:00	6	3	0	0	8	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45:00	8	2	0	0	13	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00:00	11	3	0	0	17	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15:00	16	5	0	0	26	9	0	0	0	0	0	0	0	0	1	1	0	0	0	0
8:30:00	30	14	1	1	39	13	0	0	0	0	0	0	1	1	1	0	0	0	0	0
8:45:00	41	11	1	0	52	13	1	1	0	0	0	0	1	0	1	0	1	1	1	1
9:00:00	44	3	1	0	59	7	1	0	0	0	0	0	1	0	2	1	2	1	3	2
9:15:00	44	0	1	0	59	0	1	0	0	0	0	0	1	0	2	0	2	0	3	0
16:00:00	44	0	1	0	59	0	1	0	0	0	0	0	1	0	2	0	2	0	3	0
16:15:00	57	13	1	0	64	5	1	0	0	0	0	0	1	0	2	0	2	0	3	0
16:30:00	63	6	3	2	79	15	1	0	0	0	0	0	1	0	2	0	3	1	3	0
16:45:00	75	12	4	1	95	16	1	0	0	0	0	0	1	0	2	0	3	0	3	0
17:00:00	86	11	4	0	107	12	1	0	0	0	0	0	1	0	2	0	3	0	3	0
17:15:00	93	7	5	1	122	15	1	0	0	0	0	0	1	0	2	0	3	0	3	0
17:30:00	101	8	5	0	135	13	1	0	0	0	0	0	1	0	2	0	3	0	3	0
17:45:00	114	13	6	1	146	11	1	0	0	0	0	0	1	0	2	0	3	0	3	0
18:00:00	118	4	7	1	156	10	1	0	0	0	0	0	1	0	2	0	3	0	3	0
18:15:00	118	0	7	0	156	0	1	0	0	0	0	0	1	0	2	0	3	0	3	0
18:15:15	118	0	7	0	156	0	1	0	0	0	0	0	1	0	2	0	3	0	3	0


		Passen	ger Cars	- East Ap	proach			Tru	cks - Eas	t Approa	ch			He	eavys - Ea	ast Appro	oach		Pedes	trians
Interval	Le	eft	Th	ıru	Rig	ght	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Rig	ght	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	0	0	43	43	11	11	0	0	0	0	0	0	0	0	0	0	1	1	1	1
7:30:00	0	0	97	54	17	6	0	0	11	1	0	0	0	0	4	4	1	0	2	1
7:45:00	0	0	198	101	27	10	0	0	1	0	0	0	0	0	8	4	1	0	2	0
8:00:00	0	0	296	98	42	15	0	0	1	0	0	0	0	0	8	0	1	0	2	0
8:15:00	0	0	372	76	63	21	0	0	3	2	0	0	0	0	9	1	1	0	2	0
8:30:00	0	0	446	74	83	20	0	0	6	3	0	0	0	0	10	11	2	11	2	0
8:45:00	1	11	529	83	101	18	0	0	6	0	0	0	0	0	10	0	2	0	7	5
9:00:00	1	0	604	75	105	4	0	0	7	1	0	0	0	0	11	11	3	1	11	4
9:15:00	1	0	604	0	105	0	0	0	7	0	0	0	0	0	11	0	3	0	11	0
16:00:00	1	0	604	0	105	0	0	0	7	0	0	0	0	0	11	0	3	0	11	0
16:15:00	2	1	656	52	108	3	0	0	7	0	0	0	0	0	13	2	3	0	11	0
16:30:00	2	0	729	73	114	6	0	0	7	0	0	0	0	0	14	1	3	0	11	0
16:45:00	2	0	805	76	116	2	0	0	7	0	0	0	0	0	16	2	3	0	11	0
17:00:00	3	11	872	67	118	2	0	0	7	0	0	0	0	0	16	0	3	0	11	0
17:15:00	3	0	942	70	119	1	0	0	8	1	0	0	0	0	17	1	3	0	11	0
17:30:00	3	0	1020	78	120	1	0	0	8	0	0	0	0	0	17	0	3	0	11	0
17:45:00	4	11	1087	67	125	5	0	0	9	1	0	0	0	0	17	0	3	0	11	0
18:00:00	5	11	1158	71	128	3	0	0	9	0	0	0	0	0	17	0	3	0	12	1
18:15:00	5	0	1158	0	128	0	0	0	9	0	0	0	0	0	17	0	3	0	12	0
18:15:15	5	0	1158	0	128	0	0	0	9	0	0	0	0	0	17	0	3	0	12	0

		Passenç	ger Cars -	South A	pproach			Truc	ks - Sout	h Appro	ach			He	avys - So	uth Appr	roach		Pedes	trians
Interval	Le	eft	Th	ru	Riç	ght	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Rig	ght	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
7:30:00	3	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:45:00	5	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
8:00:00	7	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
8:15:00	7	0	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	4	2
8:30:00	7	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	11	7
8:45:00	8	1	2	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	14	3
9:00:00	9	1	3	1	3	0	0	0	0	0	0	0	1	1	0	0	0	0	14	0
9:15:00	9	0	3	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	14	0
16:00:00	9	0	3	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	14	0
16:15:00	10	1	3	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	14	0
16:30:00	11	1	4	1	5	2	0	0	0	0	0	0	1	0	0	0	0	0	14	0
16:45:00	13	2	4	0	5	0	0	0	0	0	0	0	1	0	0	0	0	0	14	0
17:00:00	13	0	4	0	5	0	0	0	0	0	0	0	1	0	0	0	0	0	14	0
17:15:00	15	2	4	0	5	0	0	0	0	0	0	0	1	0	0	0	0	0	16	2
17:30:00	15	0	4	0	6	1	0	0	0	0	0	0	1	0	0	0	0	0	17	1
17:45:00	16	1	4	0	7	1	0	0	0	0	0	0	1	0	0	0	0	0	17	0
18:00:00	16	0	4	0	7	0	0	0	0	0	0	0	1	0	0	0	0	0	18	1
18:15:00	16	0	4	0	7	0	0	0	0	0	0	0	1	0	0	0	0	0	18	0
18:15:15	16	0	4	0	7	0	0	0	0	0	0	0	1	0	0	0	0	0	18	0
			-							•										
					1															

		Passen	ger Cars -	West Ap	proach			Tru	cks - Wes	t Approa	ch			He	avys - W	est Appr	oach		Pedes	trians
Interval	Le	eft	Th	ru	Rig	ght	Le	eft	Th	ru	Riç	ght	Le	ft	Th	ru	Riç	ght	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
7:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15:00	4	4	28	28	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0
7:30:00	8	4	63	35	2	2	1	0	0	0	0	0	1	1	3	2	0	0	0	0
7:45:00	14	6	104	41	2	0	1	0	0	0	0	0	1	0	4	1	0	0	1	1
8:00:00	22	8	141	37	4	2	1	0	2	2	0	0	1	0	10	6	0	0	1	0
8:15:00	33	11	187	46	4	0	1	0	2	0	0	0	1	0	11	1	0	0	1	0
8:30:00	55	22	234	47	4	0	1	0	3	1	0	0	2	1	13	2	0	0	7	6
8:45:00	63	8	283	49	7	3	2	1	5	2	0	0	2	0	15	2	0	0	7	0
9:00:00	67	4	320	37	7	0	2	0	5	0	0	0	2	0	16	1	0	0	7	0
9:15:00	67	0	320	0	7	0	2	0	5	0	0	0	2	0	16	0	0	0	7	0
16:00:00	67	0	320	0	7	0	2	0	5	0	0	0	2	0	16	0	0	0	7	0
16:15:00	76	9	416	96	7	0	2	0	5	0	0	0	2	0	20	4	0	0	7	0
16:30:00	88	12	516	100	9	2	2	0	5	0	0	0	2	0	22	2	0	0	7	0
16:45:00	98	10	624	108	10	1	3	1	7	2	0	0	2	0	22	0	0	0	7	0
17:00:00	107	9	729	105	12	2	3	0	9	2	0	0	2	0	22	0	0	0	7	0
17:15:00	123	16	831	102	13	1	3	0	9	0	0	0	2	0	22	0	0	0	7	0
17:30:00	139	16	935	104	13	0	3	0	9	0	0	0	2	0	23	1	0	0	7	0
17:45:00	148	9	1026	91	14	1	3	0	9	0	0	0	2	0	24	1	0	0	7	0
18:00:00	150	2	1112	86	15	1	3	0	10	1	0	0	2	0	26	2	0	0	7	0
18:15:00	150	0	1112	0	15	0	3	0	10	0	0	0	2	0	26	0	0	0	7	0
18:15:15	150	0	1112	0	15	0	3	0	10	0	0	0	2	0	26	0	0	0	7	0

Zone 35 Stoney Creek 2011 Home to Work 6-9 am

						_
1	500	3%	Toronto	QEW	Stoney Cree	-
2	0	0%	Toronto	QEW	QEW	58.31%
3	0	0%	Toronto	QEW	Hamilton	40.25%
4	100	1%	Toronto	QEW	Glanbrook	1.39%
5	100	1%	Toronto	QEW		100%
6	0	0%	Toronto	QEW		
7	0	0%	Durham	QEW		
8	0	0%	Durham	QEW		
9	0	0%	Durham	QEW		
10	0	0%	Durham	QEW		
11	0	0%	Durham	QEW		
12	0	0%	Durham	QEW		
13	0	0%	Durham	QEW		
14	0	0%	Durham	QEW		
15	0	0%	York	QEW		
16	0	0%	York	QEW		
17	0	0%	York	QEW		
18	0	0%	York	QEW		
19	0	0%	York	QEW		
20	0	0%	York	QEW		
21	0	0%	York	QEW		
22	0	0%	York	QEW		
23	100	1%	York	QEW		
24	0	0%	Peel	QEW		
25	200	1%	Peel	QEW		
26	800	6%	Peel	QEW		
27	0	0%	Halton	QEW		
28	0	0%	Halton	QEW		
29	700	5%	Halton	QEW		
30	2600	18%	Halton	QEW		
31	100	1%	Flamborough	QEW		
32	100	1%	Dundas	QEW		
33	400	3%	Ancaster	Hamilton		
34	200	1%	Glanbrook	South		
35	2300	16%	Stoney Creek	Hamilton		
36A	6200	22%	Hamilton (lower)	QEW		
36B	n/a	22%	Hamilton (upper)	Hamilton		
	14400	100%				

	A	M OUT	PM IN
		1271	1419
EB	40%	508	568
WB-QEW	35%	445	496
WB-Hamilton	24%	307	343
WB-McNeilly	1%	11	12
	100%	1271	1419
	A	M IN	PM OUT
		425	787
EB	60%	425 255	787 472
EB WB-QEW	60% 23%		_
		255	472
WB-QEW	23%	255 99	472 184

| Public | P

15%

15%

5% 5% 0% 15% 5%

10% 10%

Ancaster Stoney Creek Hamilton Grimsby

PLANNING DISTRICTS

Tue Oct 23 2018 14:02:44 GMT-0400 (Eastern Daylight Time) - Run Time: 2704ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: Planning district of destination - pd_dest Column: 2006 GTA zone of origin - gta06_orig

RowG: ColG:(5061)

TblG:

Filters:

(Start time of trip - start_time In 600-900

and

Type of dwelling unit - dwell_type In 1,3

and

Trip purpose of origin - purp_orig In H

and

Primary travel mode of trip - mode_prime In D,N,P,T)

Trip 2016 Table:

			West	West	North
TAZ	PD	Trips	N Lewis Rd (QEW)	N McNeily Rd (QEW)	Lewis Rd
	PD 8 of Toronto	25	0.5	0.5	
	Mississauga	25	0.5	0.5	
	Oakville	58	0.5	0.5	
	Burlington	128	0.5	0.5	
5036	Ancaster	55	0.25	0.25	
5061	Stoney Creek	144			
5088	Stoney Creek	24			0.5
5093	Stoney Creek	125			
5106	Stoney Creek	96			
5108	Stoney Creek	47			0.2
5136	Stoney Creek	55			0.2
5126	Hamilton	37			
5145	Hamilton	50			0.3
5153	Hamilton	18			0.3
5159	Hamilton	16	0.5	0.5	
5192	Hamilton	45	0.5	0.5	
5194	Hamilton	21	0.5	0.5	
5195	Hamilton	21	0.5	0.5	
5198	Hamilton	19	0.5	0.5	
6006	Grimsby	22			
6007	Grimsby	22			
6009	Grimsby	22			
	Lincoln	46			
	St. Catharines	55			
	City of Guelph	14	0.5	0.5	
	Total	1190			

	PD	TAZ
Ancaster	55	55
Stoney Creek	490	491

 Hamilton
 226
 227

 Grimsby
 67
 66

2006 GTA Traffic Anaylsis Zones

Tue Oct 23 2018 14:28:27 GMT-0400 (Eastern Daylight Time) - Run Time: 2078ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06_dest Column: 2006 GTA zone of origin - gta06_orig

RowG: ColG:(5061)

TbIG:

Filters:

(Start time of trip - start_time In 600-900

and

Type of dwelling unit - dwell_type In 1,3

and

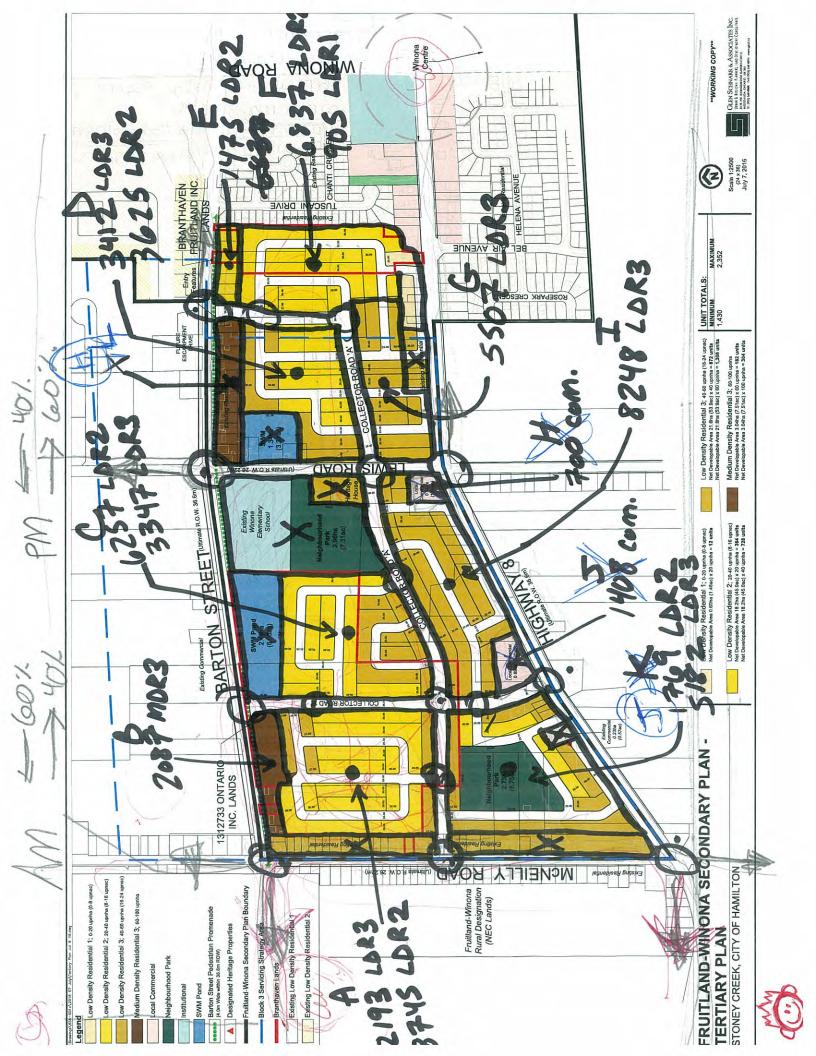
Trip purpose of origin - purp_orig In H

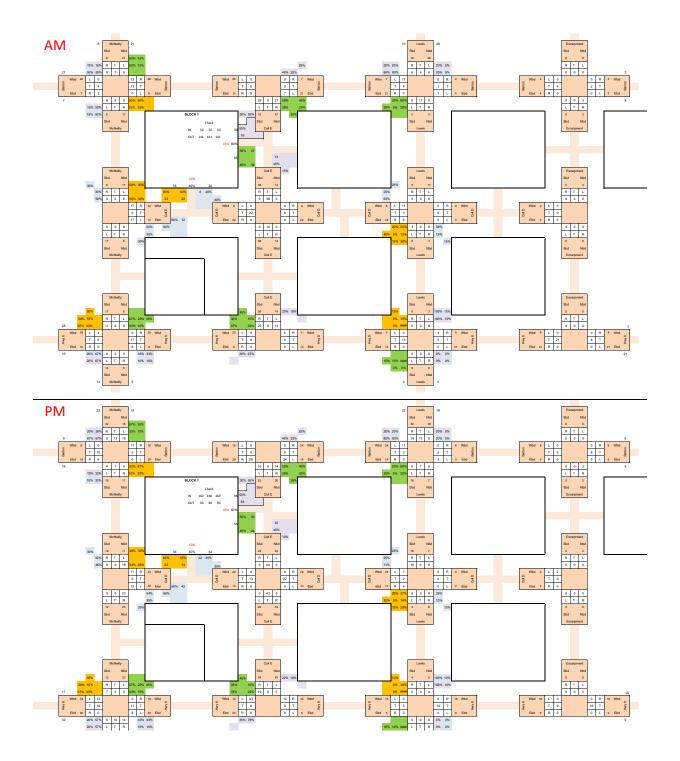
and

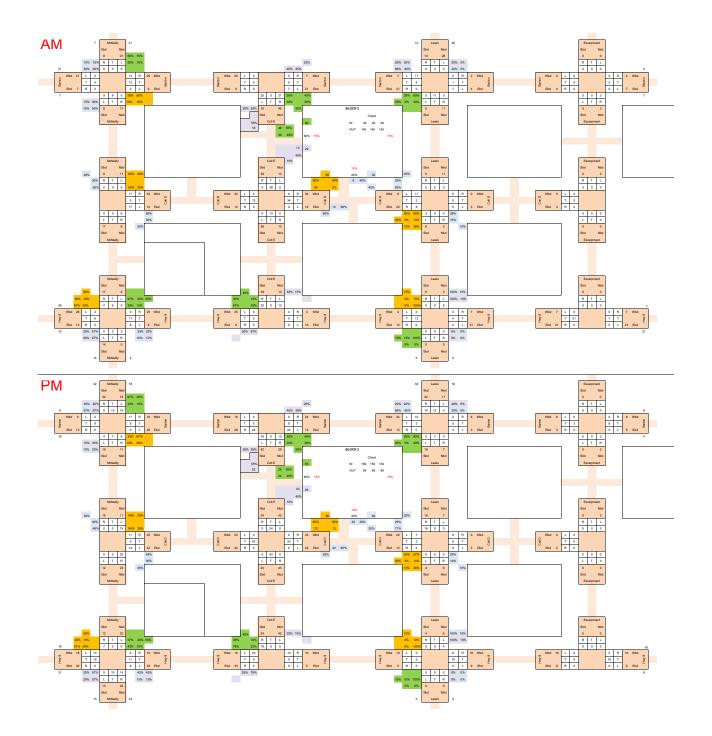
Primary travel mode of trip - mode_prime In D,N,P,T)

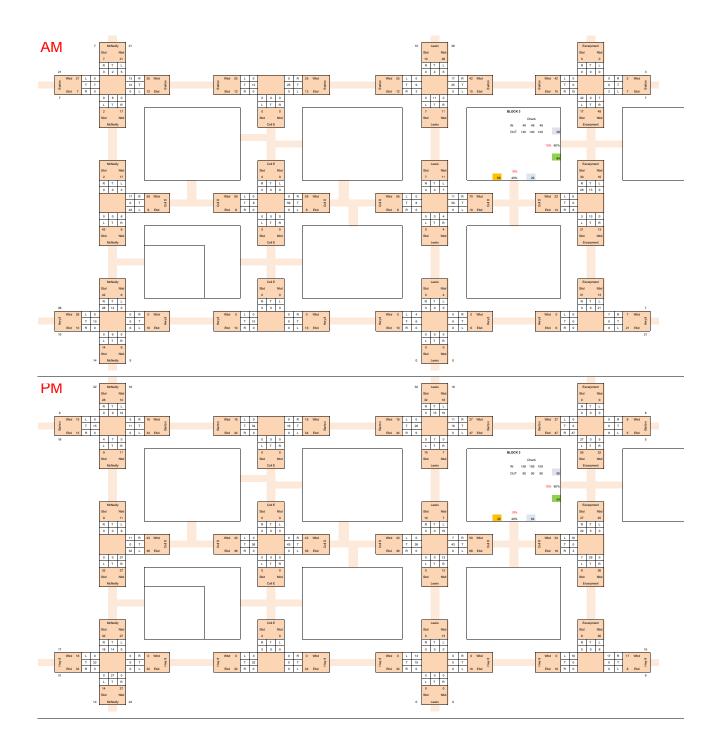
Trip 2016 Table:

	West	West	East	East	South	South	North
	Hwy 8	Barton St	Hwy 8	Barton St	McNeily Rd	Lewis Rd	McNeily Rd
1							
1							
1							
1							
1	0.25	0.25					
1			0.5	0.5			
1							0.5
1	0.5				0.5		
1	0.5	0.5					
1	0.4	0.4					
1	0.4	0.4					
1	0.5	0.5					
1	0.3	0.4					
1	0.3	0.4					
1							
1							
1							
1							
1							
1			0		1		
1			0		1		
1	l		0		1		
1	1		1				
1			1				
1			<u> </u>				1
<u> </u>							

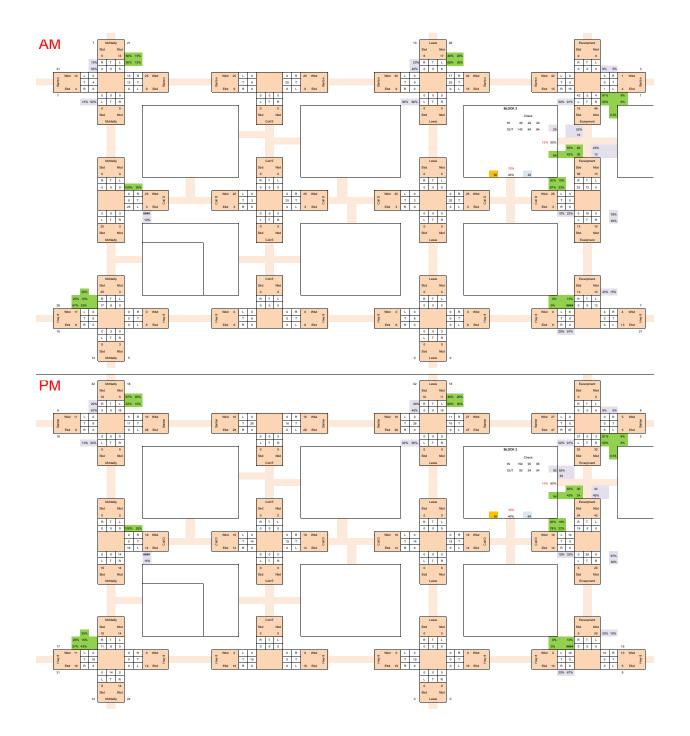

To/From	To/From	AM IN	AM OUT	PM IN	PM OUT
West (QEW)	via North Lewis Rd	15%	15%	15%	15%
West (QEW)	via North McNeily Rd	15%	15%	15%	15%
North	Lewis Road	5%	5%	5%	5%
North	McNeily Road	0%	0%	5%	5%
South	Lewis Road	0%	0%	0%	0%
South	McNeily Road	10%	10%	15%	15%
East	Barton Street	5%	5%	5%	5%
East	Highway 8	15%	15%	10%	10%
West	Barton Street	15%	15%	10%	10%
West	Highway 8	20%	20%	20%	20%
		100%	100%	100%	100%

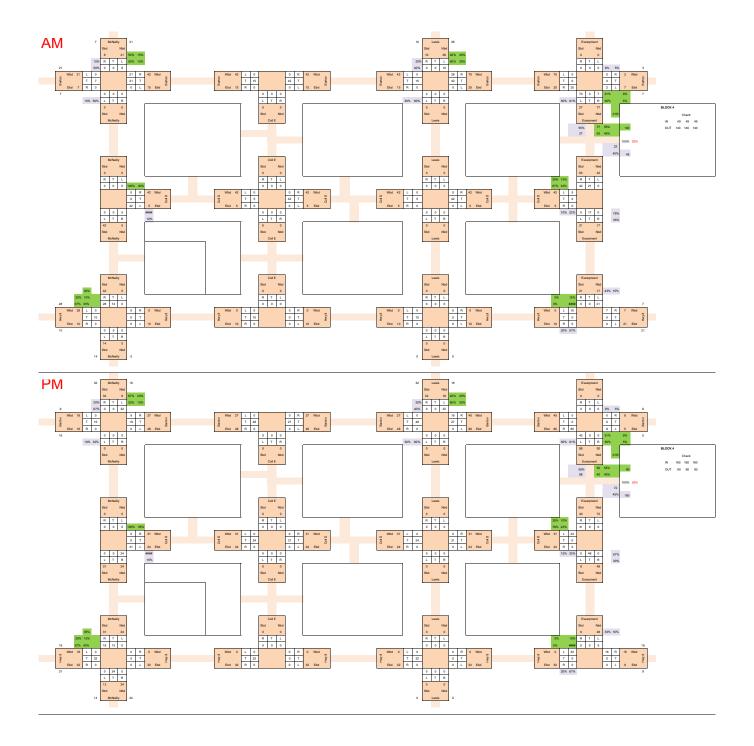

West	West	North	North	South	South	East
N Lewis Rd (QEW)	N McNeily Rd (QEW)	Lewis Rd	McNeily Rd	Lewis Rd	McNeily Rd	Barton St
12.5	12.5	0	0	0	0	0
12.5	12.5	0	0	0	0	0
29	29	0	0	0	0	0
64	64	0	0	0	0	0
13.75	13.75	0	0	0	0	0
0	0	0	0	0	0	72
0	0	12	12	0	0	0
0	0	0	0	0	62.5	0
0	0	0	0	0	0	0
0	0	9.4	0	0	0	0
0	0	11	0	0	0	0
0	0	0	0	0	0	0
0	0	15	0	0	0	0
0	0	5.4	0	0	0	0
8	8	0	0	0	0	0
22.5	22.5	0	0	0	0	0
10.5	10.5	0	0	0	0	0
10.5	10.5	0	0	0	0	0
9.5	9.5	0	0	0	0	0
0	0	0	0	0	22	0
0	0	0	0	0	22	0
0	0	0	0	0	22	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
7	7	0	0	0	0	0
199.75	199.75	52.8	12	0	128.5	72
200	200	53	12	0	128	72
16.8%	16.8%	4.5%	1.0%	0.0%	10.8%	6.1%
15%	15%	5%	0%	0%	10%	5%

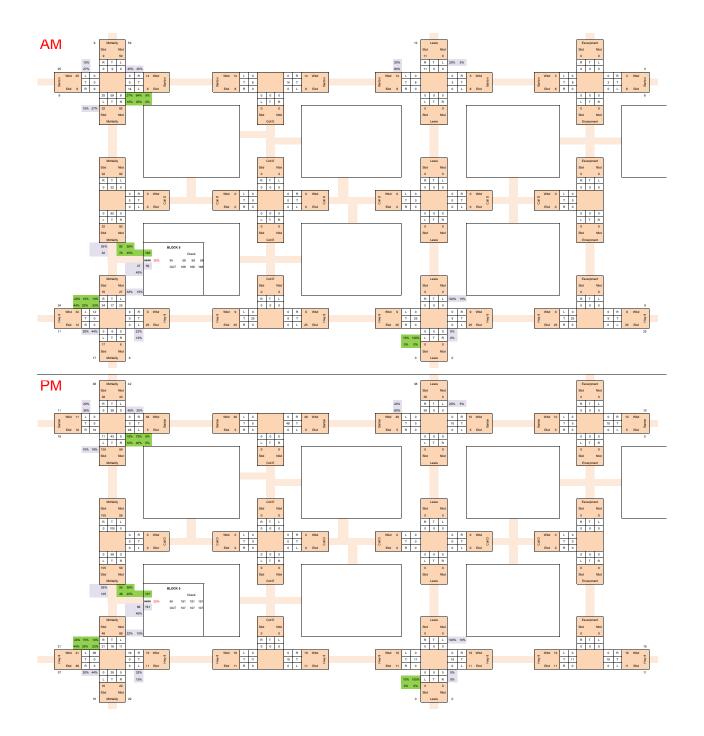

15% 5% 5% 0% 15% 5%

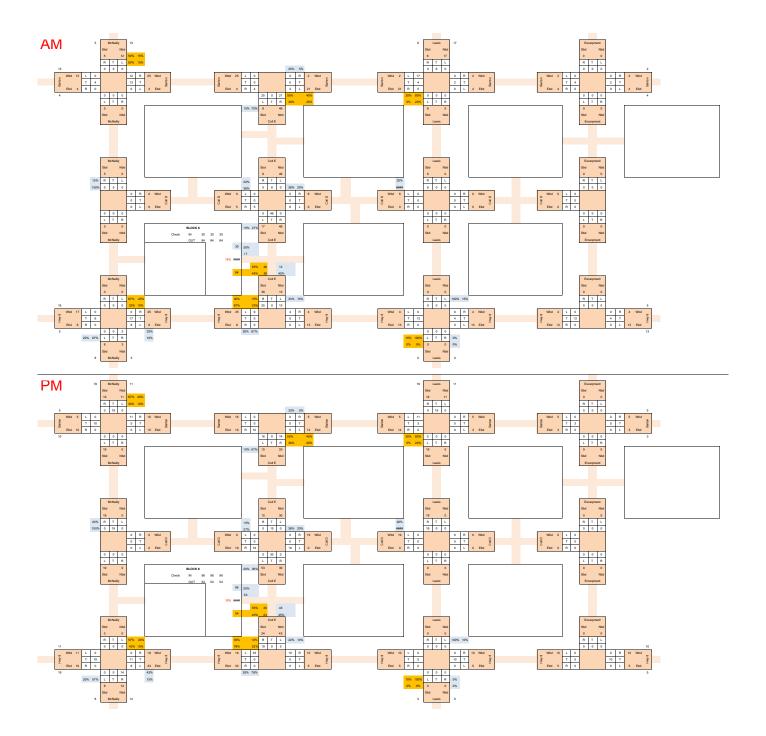

East	West	West
Hwy 8	Barton St	Hwy 8
0	0	0
0	0	0
0	0	0
0	0	0
0	13.75	13.75
0 72	0	0
0	0	0
0 0 0	0	62.5
0	48	48
0	18.8	18.8
0	22	22
0	18.5	18.5
0	20	15
0	7.2	5.4
0	0	0
0	0	0
0	0 0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
46	0	0
55	0	0
0	0	0
173	148.25	203.95
173	148	204
14.5%	12.4%	17.1%
15%	15%	20%

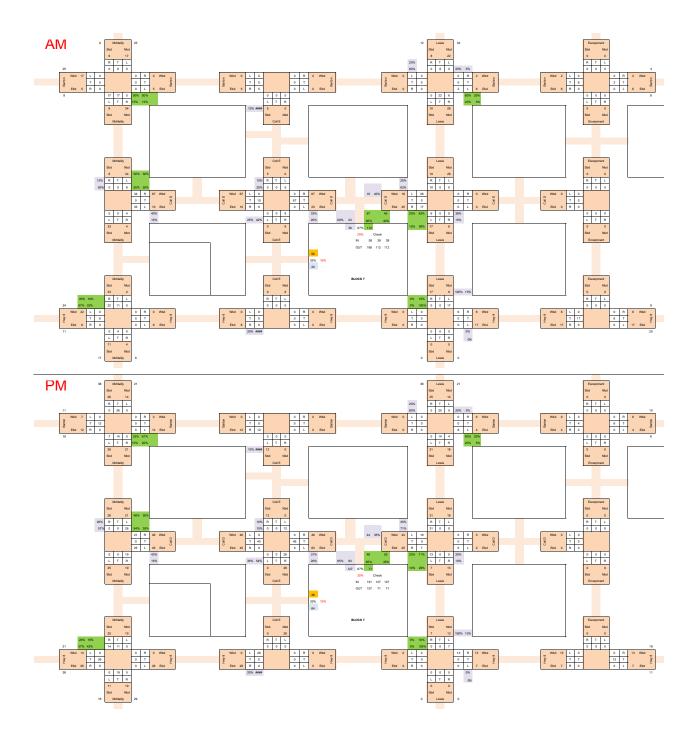


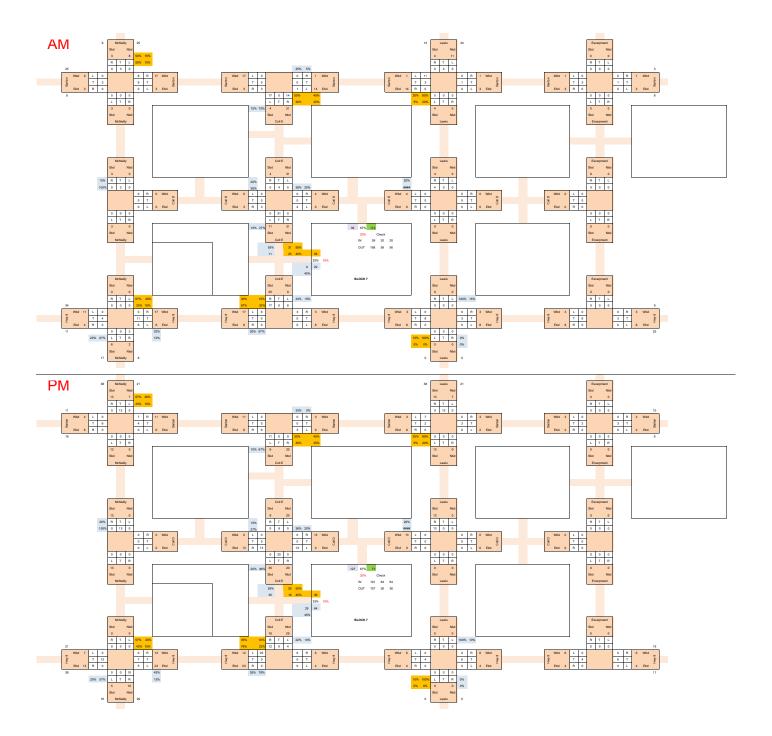


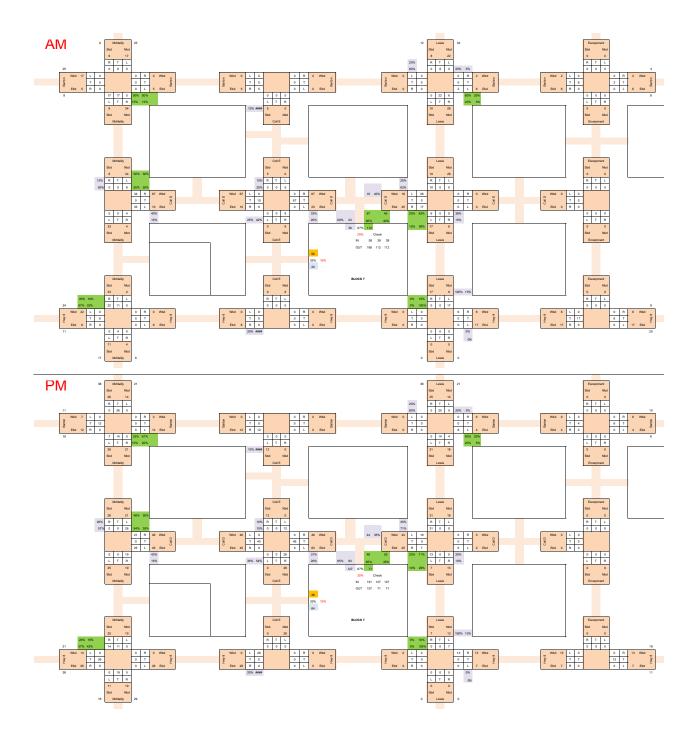


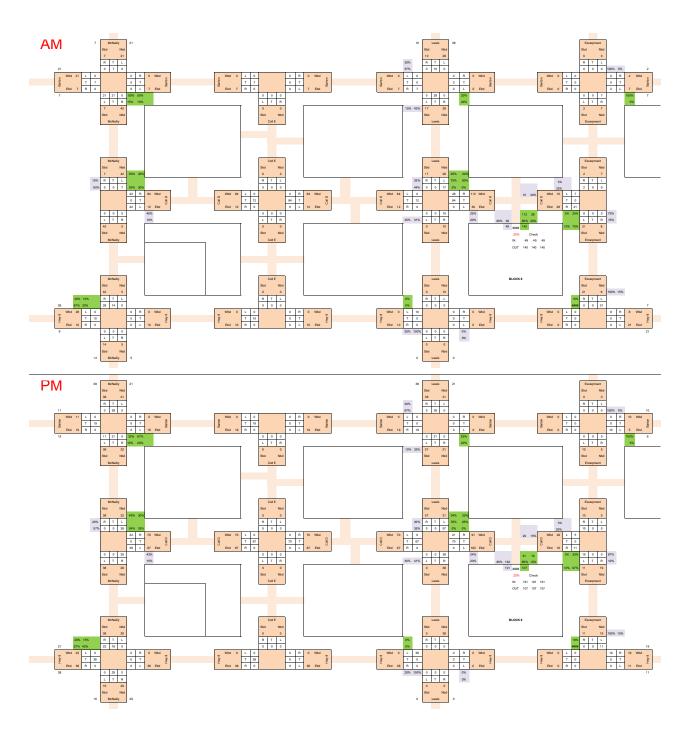


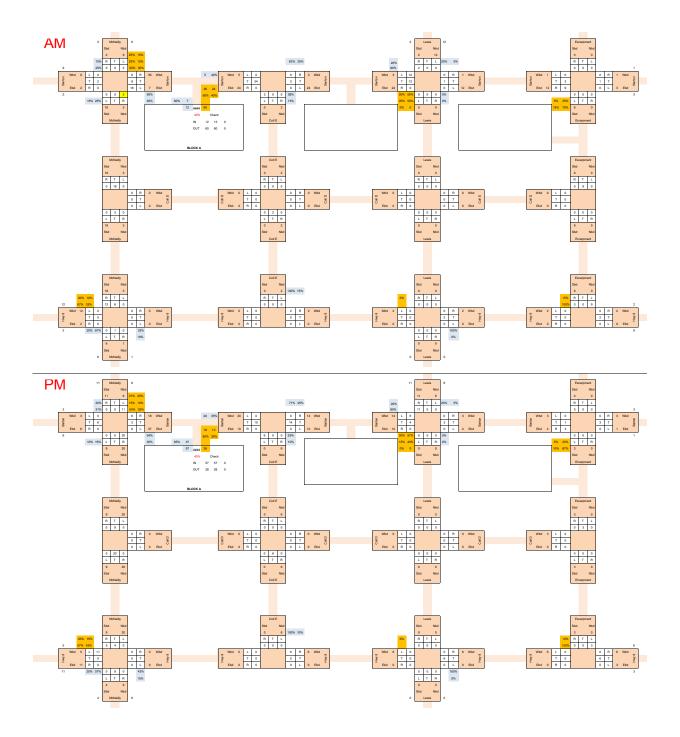


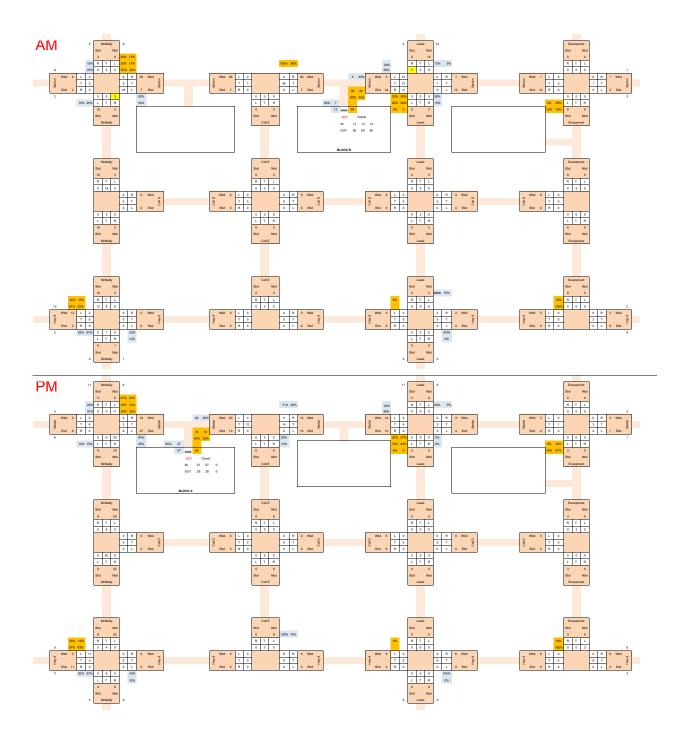


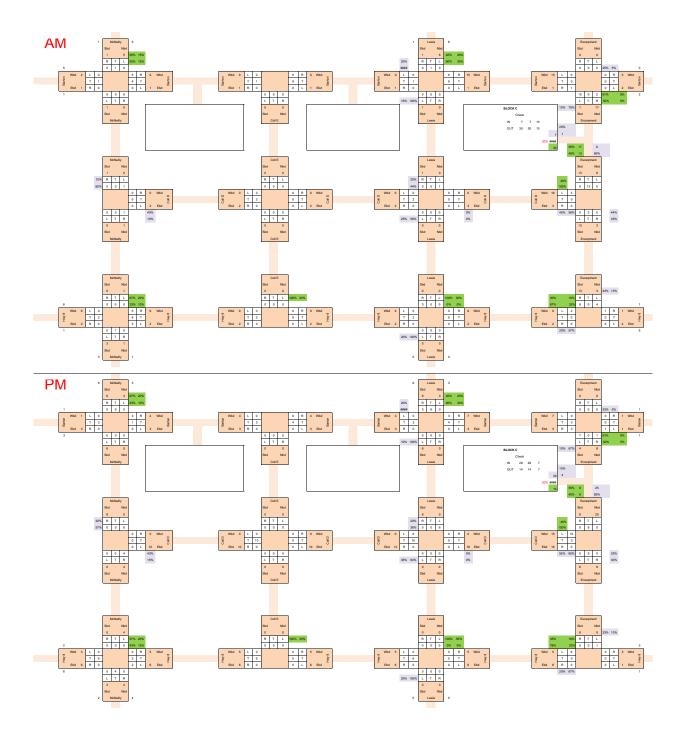


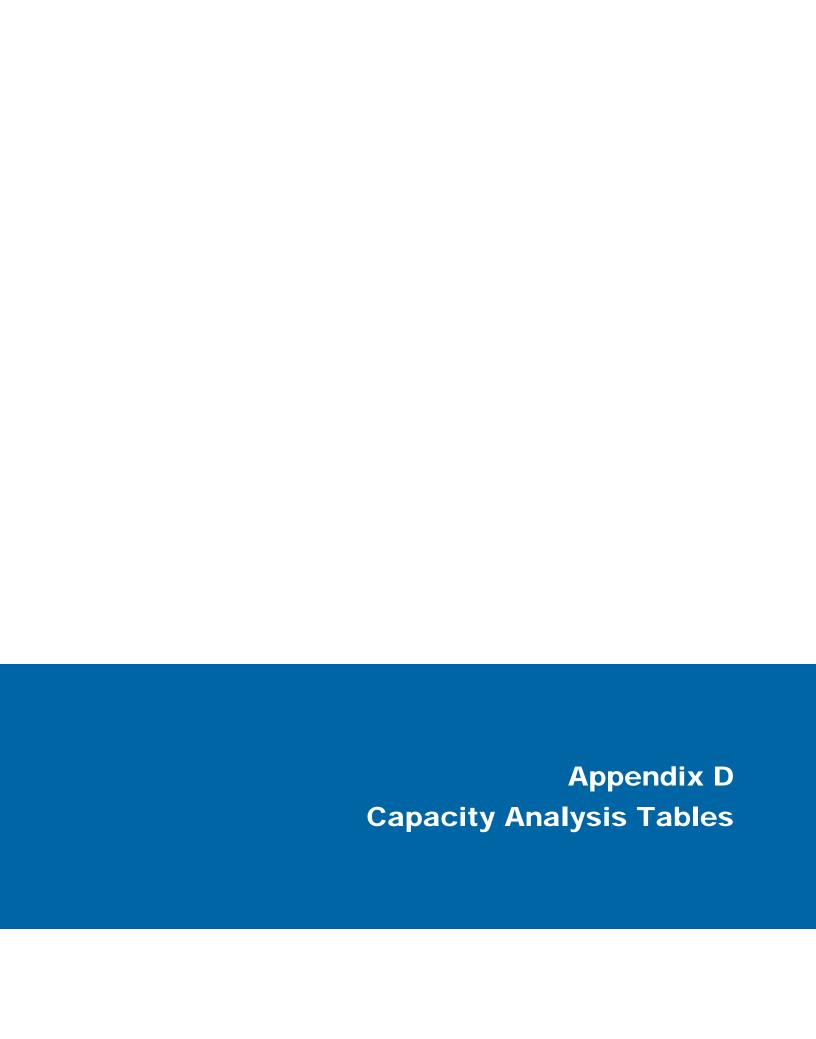












	۶	→	•	•	←	4	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	30	117	10	11	157	11	104	10	27	10	2	15
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	34	131	11	12	176	12	117	11	30	11	2	17
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	176	201	158	30								
Volume Left (vph)	34	12	117	11								
Volume Right (vph)	11	12	30	17								
Hadj (s)	0.18	0.10	0.08	-0.13								
Departure Headway (s)	4.8	4.7	4.9	4.9								
Degree Utilization, x	0.24	0.26	0.22	0.04								
Capacity (veh/h)	704	725	679	655								
Control Delay (s)	9.3	9.4	9.3	8.1								
Approach Delay (s)	9.3	9.4	9.3	8.1								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.3									
Level of Service			Α									
Intersection Capacity Utilizat	ion		38.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	9.3											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	30	117	10	0	11	157	11	0	104	10	27
Peak Hour Factor	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	13	9	20	0	9	7	9	0	2	0	7
Mvmt Flow	0	34	131	11	0	12	176	12	0	117	11	30
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	9.4	9.4	9.3
HCM LOS	Α	Α	Α

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	74%	19%	6%	37%	
Vol Thru, %	7%	75%	88%	7%	
Vol Right, %	19%	6%	6%	56%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	141	157	179	27	
LT Vol	104	30	11	10	
Through Vol	10	117	157	2	
RT Vol	27	10	11	15	
Lane Flow Rate	158	176	201	30	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.216	0.237	0.263	0.042	
Departure Headway (Hd)	4.906	4.831	4.714	4.929	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	729	741	760	722	
Service Time	2.951	2.873	2.755	2.987	
HCM Lane V/C Ratio	0.217	0.238	0.264	0.042	
HCM Control Delay	9.3	9.4	9.4	8.2	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.8	0.9	1.1	0.1	

Internation Delay about				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	10	2	15
Peak Hour Factor	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	10	0	7
Mvmt Flow	0	11	2	17
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
		8.2		
HCM Control Delay				

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	52	55	52	69	109	13	42	61	47	5	49	20
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Hourly flow rate (vph)	67	71	67	88	140	17	54	78	60	6	63	26
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	204	245	192	95								
Volume Left (vph)	67	88	54	6								
Volume Right (vph)	67	17	60	26								
Hadj (s)	0.03	0.14	-0.01	-0.08								
Departure Headway (s)	5.1	5.1	5.2	5.3								
Degree Utilization, x	0.29	0.35	0.28	0.14								
Capacity (veh/h)	659	660	636	605								
Control Delay (s)	10.1	10.9	10.2	9.2								
Approach Delay (s)	10.1	10.9	10.2	9.2								
Approach LOS	В	В	В	Α								
Intersection Summary												
Delay			10.3									
Level of Service			В									
Intersection Capacity Utilizat	ion		35.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	10.1											
Intersection LOS	В											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	52	55	52	0	69	109	13	0	42	61	47
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, %	0	2	11	15	0	9	6	0	0	7	3	13
Mvmt Flow	0	67	71	67	0	88	140	17	0	54	78	60
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	9.8	10.8	10.1
HCM LOS	А	В	В

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	28%	33%	36%	7%	
Vol Thru, %	41%	35%	57%	66%	
Vol Right, %	31%	33%	7%	27%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	150	159	191	74	
LT Vol	42	52	69	5	
Through Vol	61	55	109	49	
RT Vol	47	52	13	20	
Lane Flow Rate	192	204	245	95	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.273	0.275	0.344	0.138	
Departure Headway (Hd)	5.106	4.849	5.063	5.223	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	696	732	703	691	
Service Time	3.199	2.942	3.154	3.223	
HCM Lane V/C Ratio	0.276	0.279	0.349	0.137	
HCM Control Delay	10.1	9.8	10.8	9.1	
HCM Lane LOS	В	Α	В	Α	
HCM 95th-tile Q	1.1	1.1	1.5	0.5	

ntersection Delay, s/veh				
Intersection LOS				
IIILEISECLIOII LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	5	49	20
Peak Hour Factor	0.92	0.78	0.78	0.78
Heavy Vehicles, %	0	0	0	15
Mvmt Flow	0	6	63	26
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		9.1		
1 TOWN CONTROL DOING		Α		

	۶	→	←	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		¥	
Volume (veh/h)	7	99	167	0	7	23
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71
Hourly flow rate (vph)	10	139	235	0	10	32
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	235				394	235
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	235				394	235
tC, single (s)	4.2				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.3				3.5	3.3
p0 queue free %	99				98	96
cM capacity (veh/h)	1265				609	799
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	149	235	42			
Volume Left	10	0	10			
Volume Right	0	0	32			
cSH	1265	1700	745			
Volume to Capacity	0.01	0.14	0.06			
Queue Length 95th (m)	0.2	0.0	1.4			
Control Delay (s)	0.6	0.0	10.1			
Lane LOS	Α		В			
Approach Delay (s)	0.6	0.0	10.1			
Approach LOS			В			
Intersection Summary						
Average Delay			1.2			
Intersection Capacity Utilizati	ion		21.0%	IC	U Level o	of Service
Analysis Period (min)	1011					

	۶	-	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	11	214	22	404	187	30
v/c Ratio	0.03	0.26	0.05	0.46	0.50	0.09
Control Delay	6.9	8.0	7.0	9.9	18.5	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.9	8.0	7.0	9.9	18.5	10.9
Queue Length 50th (m)	0.4	8.2	0.8	17.4	10.4	0.9
Queue Length 95th (m)	2.4	20.7	3.8	40.3	28.0	5.9
Internal Link Dist (m)		209.0		438.7	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	792	1563	897	1656	627	560
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.14	0.02	0.24	0.30	0.05
Intersection Summary						

	•	→	•	•	←	•	•	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ»		ሻ	ĵ»			4			4	
Volume (vph)	10	191	10	21	347	33	49	86	41	7	8	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.99			0.97			0.94	
Flt Protected	0.95	1.00		0.95	1.00			0.99			0.99	
Satd. Flow (prot)	1586	1678		1466	1776			1667			1490	
Flt Permitted	0.51	1.00		0.62	1.00			0.90			0.90	
Satd. Flow (perm)	849	1678		963	1776			1514			1358	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	11	203	11	22	369	35	52	91	44	7	9	14
RTOR Reduction (vph)	0	3	0	0	6	0	0	15	0	0	11	0
Lane Group Flow (vph)	11	211	0	22	398	0	0	172	0	0	19	0
Heavy Vehicles (%)	10%	8%	20%	19%	2%	3%	4%	5%	7%	14%	13%	15%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	23.1	23.1		23.1	23.1			11.2			11.2	
Effective Green, g (s)	23.1	23.1		23.1	23.1			11.2			11.2	
Actuated g/C Ratio	0.50	0.50		0.50	0.50			0.24			0.24	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	420	831		477	880			363			326	
v/s Ratio Prot	•	0.13			c0.22							
v/s Ratio Perm	0.01			0.02				c0.11			0.01	
v/c Ratio	0.03	0.25		0.05	0.45			0.47			0.06	
Uniform Delay, d1	6.0	6.8		6.1	7.6			15.2			13.6	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.0	0.2		0.0	0.4			0.7			0.1	
Delay (s)	6.0	7.0		6.1	8.1			15.9			13.7	
Level of Service	A	A		A	A			В			В	
Approach Delay (s)	• •	6.9			8.0			15.9			13.7	
Approach LOS		Α			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			9.6	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.46									
Actuated Cycle Length (s)			46.6	Sı	um of lost	time (s)			12.3			
Intersection Capacity Utilizat	ion		44.0%		U Level		!		A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	↑	7		4			4	
Volume (veh/h)	51	195	5	1	338	75	3	2	2	35	2	40
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	55	210	5	1	363	81	3	2	2	38	2	43
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	444			215			732	768	212	688	690	363
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	444			215			732	768	212	688	690	363
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.2	7.0	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.5	3.3
p0 queue free %	95			100			99	99	100	89	99	94
cM capacity (veh/h)	1105			1367			304	317	833	339	298	679
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	55	215	1	363	81	8	83					
Volume Left	55	0	1	0	0	3	38					
Volume Right	0	5	0	0	81	2	43					
cSH	1105	1700	1367	1700	1700	377	456					
Volume to Capacity	0.05	0.13	0.00	0.21	0.05	0.02	0.18					
Queue Length 95th (m)	1.2	0.0	0.0	0.0	0.0	0.5	5.0					
Control Delay (s)	8.4	0.0	7.6	0.0	0.0	14.7	14.6					
Lane LOS	Α		Α			В	В					
Approach Delay (s)	1.7		0.0			14.7	14.6					
Approach LOS						В	В					
Intersection Summary												
Average Delay			2.2				_					
Intersection Capacity Utilization	on		37.0%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	+	•	•	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	10	215	59	18	107	7	24	4	19	16	17	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	11	231	63	19	115	8	26	4	20	17	18	25
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	305	142	51	60								
Volume Left (vph)	11	19	26	17								
Volume Right (vph)	63	8	20	25								
Hadj (s)	-0.07	0.10	-0.07	-0.04								
Departure Headway (s)	4.3	4.6	4.9	4.9								
Degree Utilization, x	0.36	0.18	0.07	0.08								
Capacity (veh/h)	817	743	661	656								
Control Delay (s)	9.7	8.6	8.3	8.4								
Approach Delay (s)	9.7	8.6	8.3	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.2									
Level of Service			Α									
Intersection Capacity Utilizat	tion		28.0%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	9.1											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	10	215	59	0	18	107	7	0	24	4	19
Peak Hour Factor	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93
Heavy Vehicles, %	0	0	4	0	0	0	7	14	0	8	0	0
Mvmt Flow	0	11	231	63	0	19	115	8	0	26	4	20
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	9.6	8.5	8.4
HCM LOS	Α	Α	Α

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	51%	4%	14%	29%	
Vol Thru, %	9%	76%	81%	30%	
Vol Right, %	40%	21%	5%	41%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	47	284	132	56	
LT Vol	24	10	18	16	
Through Vol	4	215	107	17	
RT Vol	19	59	7	23	
Lane Flow Rate	51	305	142	60	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.357	0.177	0.081	
Departure Headway (Hd)	4.956	4.213	4.484	4.86	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	722	855	801	736	
Service Time	2.99	2.234	2.51	2.894	
HCM Lane V/C Ratio	0.071	0.357	0.177	0.082	
HCM Control Delay	8.4	9.6	8.5	8.3	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	1.6	0.6	0.3	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	16	17	23
Peak Hour Factor	0.92	0.93	0.93	0.93
Heavy Vehicles, %	0	6	6	13
Mvmt Flow	0	17	18	25
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		8.3		
HCM LOS		Α		

	٠	→	•	•	←	•	4	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	25	202	21	24	83	4	20	14	50	22	73	26
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	27	222	23	26	91	4	22	15	55	24	80	29
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	273	122	92	133								
Volume Left (vph)	27	26	22	24								
Volume Right (vph)	23	4	55	29								
Hadj (s)	0.02	0.11	-0.29	-0.05								
Departure Headway (s)	4.6	4.9	4.8	4.9								
Degree Utilization, x	0.35	0.17	0.12	0.18								
Capacity (veh/h)	733	682	685	666								
Control Delay (s)	10.2	8.9	8.4	9.0								
Approach Delay (s)	10.2	8.9	8.4	9.0								
Approach LOS	В	Α	Α	Α								
Intersection Summary												
Delay			9.4									
Level of Service			Α									
Intersection Capacity Utiliza	tion		29.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	9.6											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	25	202	21	0	24	83	4	0	20	14	50
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	0	12	2	0	0	4	6	0	0	0	7	0
Mvmt Flow	0	27	222	23	0	26	91	4	0	22	15	55
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	10.5	8.9	8.4
HCM LOS	В	А	А

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	24%	10%	22%	18%	
Vol Thru, %	17%	81%	75%	60%	
Vol Right, %	60%	8%	4%	21%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	84	248	111	121	
LT Vol	20	25	24	22	
Through Vol	14	202	83	73	
RT Vol	50	21	4	26	
Lane Flow Rate	92	273	122	133	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.121	0.36	0.165	0.18	
Departure Headway (Hd)	4.717	4.762	4.862	4.875	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	755	752	733	733	
Service Time	2.776	2.812	2.92	2.93	
HCM Lane V/C Ratio	0.122	0.363	0.166	0.181	
HCM Control Delay	8.4	10.5	8.9	9	
HCM Lane LOS	Α	В	Α	Α	
HCM 95th-tile Q	0.4	1.6	0.6	0.7	

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
Movement	SBU	SBL	SBT	SBR	ı	
Vol, veh/h	0	22	73	26		
Peak Hour Factor	0.92	0.91	0.91	0.91		
Heavy Vehicles, %	0	0	0	12		
Mvmt Flow	0	24	80	29		
Number of Lanes	0	0	1	0		
Approach		SB				
Opposing Approach		NB			 	
Opposing Lanes		1				
Conflicting Approach Left		WB				
Conflicting Lanes Left		1				
Conflicting Approach Right		EB				
Conflicting Lanes Right		1				
HCM Control Delay		9				
HCM LOS		Α				

	٠	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		¥	
Volume (veh/h)	26	244	101	6	2	19
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	27	249	103	6	2	19
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	109				408	106
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	109				408	106
tC, single (s)	4.1				6.7	6.2
tC, 2 stage (s)						
tF(s)	2.2				3.8	3.3
p0 queue free %	98				100	98
cM capacity (veh/h)	1494				534	954
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	276	109	21			
Volume Left	27	0	2			
Volume Right	0	6	19			
cSH	1494	1700	887			
Volume to Capacity	0.02	0.06	0.02			
Queue Length 95th (m)	0.4	0.0	0.6			
Control Delay (s)	0.9	0.0	9.2			
Lane LOS	0.5 A	0.0	Α.			
Approach Delay (s)	0.9	0.0	9.2			
Approach LOS	0.0	0.0	Α			
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utiliza	ation		30.9%	IC	ع امرا ا	of Service
Analysis Period (min)	ation		15	10	O LEVEL) OCIVICE
Analysis Feliou (IIIIII)			13			

Queues 9: McNeilly Road & Highway 8

	•	→	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	21	527	54	311	88	95
v/c Ratio	0.04	0.48	0.11	0.28	0.25	0.26
Control Delay	5.5	8.6	6.4	6.8	13.6	16.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	5.5	8.6	6.4	6.8	13.6	16.2
Queue Length 50th (m)	0.8	24.8	2.0	12.6	3.0	4.4
Queue Length 95th (m)	2.9	45.5	6.0	24.0	14.6	17.3
Internal Link Dist (m)		209.0		438.7	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	851	1688	738	1692	620	664
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.31	0.07	0.18	0.14	0.14
Intersection Summary						

	۶	-	•	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£		ň	f)			44			4	
Volume (vph)	19	427	48	49	264	16	26	21	32	20	46	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.98		1.00	0.99			0.94			0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1504	1793		1745	1798			1663			1739	
Flt Permitted	0.57	1.00		0.43	1.00			0.85			0.89	
Satd. Flow (perm)	904	1793		785	1798			1443			1573	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	21	474	53	54	293	18	29	23	36	22	51	22
RTOR Reduction (vph)	0	6	0	0	3	0	0	30	0	0	16	0
Lane Group Flow (vph)	21	521	0	54	308	0	0	58	0	0	79	0
Heavy Vehicles (%)	16%	1%	0%	0%	1%	6%	4%	5%	0%	0%	0%	5%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	26.7	26.7		26.7	26.7			8.1			8.1	
Effective Green, g (s)	26.7	26.7		26.7	26.7			8.1			8.1	
Actuated g/C Ratio	0.57	0.57		0.57	0.57			0.17			0.17	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	512	1016		445	1019			248			270	
v/s Ratio Prot		c0.29			0.17							
v/s Ratio Perm	0.02			0.07				0.04			c0.05	
v/c Ratio	0.04	0.51		0.12	0.30			0.23			0.29	
Uniform Delay, d1	4.5	6.2		4.7	5.3			16.8			17.0	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.0	0.5		0.1	0.2			0.4			0.4	
Delay (s)	4.6	6.7		4.9	5.5			17.2			17.4	
Level of Service	Α	Α		Α	Α			В			В	
Approach Delay (s)		6.7			5.4			17.2			17.4	
Approach LOS		Α			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			8.0	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.46									
Actuated Cycle Length (s)	•		47.1	S	um of lost	time (s)			12.3			
Intersection Capacity Utilizat	tion		59.3%		U Level o)		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	+	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		*	†	7		4			4	
Volume (veh/h)	48	421	6	1	291	11	5	1	2	36	4	59
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	51	443	6	1	306	12	5	1	2	38	4	62
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	318			449			920	867	446	855	859	306
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	318			449			920	867	446	855	859	306
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	96			100			98	100	100	86	99	92
cM capacity (veh/h)	1242			1122			222	281	616	270	284	734
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	51	449	1	306	12	8	104					
Volume Left	51	0	1	0	0	5	38					
Volume Right	0	6	0	0	12	2	62					
cSH	1242	1700	1122	1700	1700	273	434					
Volume to Capacity	0.04	0.26	0.00	0.18	0.01	0.03	0.24					
Queue Length 95th (m)	1.0	0.0	0.0	0.0	0.0	0.7	7.0					
Control Delay (s)	8.0	0.0	8.2	0.0	0.0	18.6	15.9					
Lane LOS	Α		Α			С	С					
Approach Delay (s)	8.0		0.0			18.6	15.9					
Approach LOS						С	С					
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utiliza	tion		41.9%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
, ,												

	•	→	•	•	+	•	•	†	<i>></i>	\	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	31	119	10	11	160	11	106	10	28	10	2	15
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	35	134	11	12	180	12	119	11	31	11	2	17
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	180	204	162	30								
Volume Left (vph)	35	12	119	11								
Volume Right (vph)	11	12	31	17								
Hadj (s)	0.18	0.10	0.08	-0.13								
Departure Headway (s)	4.8	4.7	5.0	5.0								
Degree Utilization, x	0.24	0.27	0.22	0.04								
Capacity (veh/h)	701	722	677	650								
Control Delay (s)	9.4	9.5	9.4	8.2								
Approach Delay (s)	9.4	9.5	9.4	8.2								
Approach LOS	А	Α	Α	А								
Intersection Summary												
Delay			9.3									
Level of Service			Α									
Intersection Capacity Utilization	on		39.0%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
- ,												

Intersection												
Intersection Delay, s/veh	9.4											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	31	119	10	0	11	160	11	0	106	10	28
Peak Hour Factor	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	13	9	20	0	9	7	9	0	2	0	7
Mvmt Flow	0	35	134	11	0	12	180	12	0	119	11	31
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	9.4	9.5	9.4
HCM LOS	А	A	Α

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	74%	19%	6%	37%	
Vol Thru, %	7%	74%	88%	7%	
Vol Right, %	19%	6%	6%	56%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	144	160	182	27	
LT Vol	106	31	11	10	
Through Vol	10	119	160	2	
RT Vol	28	10	11	15	
Lane Flow Rate	162	180	204	30	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.221	0.242	0.269	0.042	
Departure Headway (Hd)	4.922	4.847	4.729	4.954	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	726	739	759	719	
Service Time	2.969	2.89	2.77	3.013	
HCM Lane V/C Ratio	0.223	0.244	0.269	0.042	
HCM Control Delay	9.4	9.4	9.5	8.2	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	8.0	0.9	1.1	0.1	

Internation Delay about				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	10	2	15
Peak Hour Factor	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	10	0	7
Mvmt Flow	0	11	2	17
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
		8.2		
HCM Control Delay				

	۶	→	•	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	53	56	53	70	111	13	43	62	48	5	50	20
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Hourly flow rate (vph)	68	72	68	90	142	17	55	79	62	6	64	26
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	208	249	196	96								
Volume Left (vph)	68	90	55	6								
Volume Right (vph)	68	17	62	26								
Hadj (s)	0.03	0.15	-0.01	-0.08								
Departure Headway (s)	5.1	5.2	5.3	5.4								
Degree Utilization, x	0.29	0.36	0.29	0.14								
Capacity (veh/h)	655	656	623	600								
Control Delay (s)	10.2	11.0	10.3	9.2								
Approach Delay (s)	10.2	11.0	10.3	9.2								
Approach LOS	В	В	В	Α								
Intersection Summary												
Delay			10.4									
Level of Service			В									
Intersection Capacity Utilizati	ion		36.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	10.2											
Intersection LOS	В											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	53	56	53	0	70	111	13	0	43	62	48
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, %	0	2	11	15	0	9	6	0	0	7	3	13
Mvmt Flow	0	68	72	68	0	90	142	17	0	55	79	62
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	9.9	11	10.2
HCM LOS	А	В	В

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	28%	33%	36%	7%	
Vol Thru, %	41%	35%	57%	67%	
Vol Right, %	31%	33%	7%	27%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	153	162	194	75	
LT Vol	43	53	70	5	
Through Vol	62	56	111	50	
RT Vol	48	53	13	20	
Lane Flow Rate	196	208	249	96	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.28	0.281	0.351	0.14	
Departure Headway (Hd)	5.13	4.872	5.085	5.259	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	692	727	699	686	
Service Time	3.226	2.968	3.179	3.259	
HCM Lane V/C Ratio	0.283	0.286	0.356	0.14	
HCM Control Delay	10.2	9.9	11	9.1	
HCM Lane LOS	В	Α	В	Α	
HCM 95th-tile Q	1.1	1.2	1.6	0.5	

Intersection						I	
Intersection Delay, s/veh					<u> </u>		
Intersection LOS							
Movement	SBU	SBL	SBT	SBR			
Vol, veh/h	0	5	50	20			
Peak Hour Factor	0.92	0.78	0.78	0.78			
Heavy Vehicles, %	0	0	0	15			
Mvmt Flow	0	6	64	26			
Number of Lanes	0	0	1	0			
Approach		SB					
Opposing Approach		NB	•	•			
Opposing Lanes		1					
Conflicting Approach Left		WB					
Conflicting Lanes Left		1					
Conflicting Approach Right		EB					
Conflicting Lanes Right		1					
HCM Control Delay		9.1					
HCM LOS		Α					

	•	→	•	4	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		¥	
Volume (veh/h)	7	101	170	0	7	23
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71
Hourly flow rate (vph)	10	142	239	0	10	32
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	239				401	239
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	239				401	239
tC, single (s)	4.2				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.3				3.5	3.3
p0 queue free %	99				98	96
cM capacity (veh/h)	1260				604	795
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	152	239	42			
Volume Left	10	0	10			
Volume Right	0	0	32			
cSH	1260	1700	740			
Volume to Capacity	0.01	0.14	0.06			
Queue Length 95th (m)	0.01	0.0	1.4			
Control Delay (s)	0.6	0.0	10.2			
Lane LOS	Α	0.0	В			
Approach Delay (s)	0.6	0.0	10.2			
Approach LOS	0.0	0.0	В			
Intersection Summary						
Average Delay			1.2			
Intersection Capacity Utiliza	ation		21.1%	IC	CU Level o	of Service
Analysis Period (min)			15		2 23.01	
, analysis i snow (illin)			10			

	ᄼ	→	•	←	†	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	
Lane Group Flow (vph)	11	218	22	413	192	30	
v/c Ratio	0.03	0.26	0.05	0.47	0.50	0.09	
Control Delay	7.0	8.1	7.1	10.1	18.7	10.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	7.0	8.1	7.1	10.1	18.7	10.9	
Queue Length 50th (m)	0.4	8.3	0.8	17.9	10.8	0.9	
Queue Length 95th (m)	2.4	21.4	3.8	42.0	28.9	6.0	
Internal Link Dist (m)		209.0		438.7	135.3	482.6	
Turn Bay Length (m)	30.0		30.0				
Base Capacity (vph)	779	1570	898	1662	629	562	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.14	0.02	0.25	0.31	0.05	
Intersection Summary							

	۶	→	•	•	←	•	4	†	/	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ĭ	f)		¥	ĵ»			4			4	
Volume (vph)	10	195	10	21	354	34	50	88	42	7	8	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.99			0.97			0.94	
Flt Protected	0.95	1.00		0.95	1.00			0.99			0.99	
Satd. Flow (prot)	1586	1678		1466	1776			1668			1490	
Flt Permitted	0.50	1.00		0.62	1.00			0.90			0.90	
Satd. Flow (perm)	833	1678		960	1776			1515			1358	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	11	207	11	22	377	36	53	94	45	7	9	14
RTOR Reduction (vph)	0	3	0	0	6	0	0	15	0	0	11	0
Lane Group Flow (vph)	11	215	0	22	407	0	0	177	0	0	19	0
Heavy Vehicles (%)	10%	8%	20%	19%	2%	3%	4%	5%	7%	14%	13%	15%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	22.9	22.9		22.9	22.9			11.3			11.3	
Effective Green, g (s)	22.9	22.9		22.9	22.9			11.3			11.3	
Actuated g/C Ratio	0.49	0.49		0.49	0.49			0.24			0.24	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	410	826		472	874			368			330	
v/s Ratio Prot		0.13			c0.23							
v/s Ratio Perm	0.01			0.02				c0.12			0.01	
v/c Ratio	0.03	0.26		0.05	0.47			0.48			0.06	
Uniform Delay, d1	6.1	6.9		6.1	7.8			15.1			13.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.0	0.2		0.0	0.5			0.7			0.1	
Delay (s)	6.1	7.1		6.2	8.2			15.8			13.6	
Level of Service	Α	Α		Α	Α			В			В	
Approach Delay (s)		7.0			8.1			15.8			13.6	
Approach LOS		Α			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			9.7	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.47									
Actuated Cycle Length (s)			46.5	Sı	um of lost	time (s)			12.3			
Intersection Capacity Utiliza	ition		44.7%		U Level o				Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		Ť	†	7		4			4	
Volume (veh/h)	52	199	5	1	345	77	3	2	2	36	2	41
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	56	214	5	1	371	83	3	2	2	39	2	44
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	454			219			747	784	217	702	704	371
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	454			219			747	784	217	702	704	371
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.2	7.0	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.5	3.3
p0 queue free %	95			100			99	99	100	88	99	93
cM capacity (veh/h)	1096			1362			296	310	828	331	292	673
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	56	219	1	371	83	8	85					
Volume Left	56	0	1	0	0	3	39					
Volume Right	0	5	0	0	83	2	44					
cSH	1096	1700	1362	1700	1700	369	448					
Volume to Capacity	0.05	0.13	0.00	0.22	0.05	0.02	0.19					
Queue Length 95th (m)	1.2	0.0	0.0	0.0	0.0	0.5	5.3					
Control Delay (s)	8.5	0.0	7.6	0.0	0.0	15.0	14.9					
Lane LOS	Α		Α			В	В					
Approach Delay (s)	1.7		0.0			15.0	14.9					_
Approach LOS						В	В					
Intersection Summary												
Average Delay			2.3									
Intersection Capacity Utilizati	on		37.5%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	٠	→	•	•	•	•	4	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	10	219	60	18	109	7	24	4	19	16	17	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	11	235	65	19	117	8	26	4	20	17	18	25
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	311	144	51	60								
Volume Left (vph)	11	19	26	17								
Volume Right (vph)	65	8	20	25								
Hadj (s)	-0.07	0.10	-0.07	-0.04								
Departure Headway (s)	4.3	4.6	4.9	5.0								
Degree Utilization, x	0.37	0.19	0.07	0.08								
Capacity (veh/h)	817	741	658	653								
Control Delay (s)	9.8	8.7	8.3	8.4								
Approach Delay (s)	9.8	8.7	8.3	8.4								
Approach LOS	Α	Α	Α	Α								
Intersection Summary												
Delay			9.2									
Level of Service			Α									
Intersection Capacity Utiliza	ition		28.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	9.1											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	10	219	60	0	18	109	7	0	24	4	19
Peak Hour Factor	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93
Heavy Vehicles, %	0	0	4	0	0	0	7	14	0	8	0	0
Mvmt Flow	0	11	235	65	0	19	117	8	0	26	4	20
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	9.6	8.5	8.4
HCM LOS	Α	Α	Α

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	51%	3%	13%	29%	
Vol Thru, %	9%	76%	81%	30%	
Vol Right, %	40%	21%	5%	41%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	47	289	134	56	
LT Vol	24	10	18	16	
Through Vol	4	219	109	17	
RT Vol	19	60	7	23	
Lane Flow Rate	51	311	144	60	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.07	0.364	0.18	0.082	
Departure Headway (Hd)	4.971	4.214	4.49	4.875	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	720	855	798	734	
Service Time	3.009	2.239	2.519	2.912	
HCM Lane V/C Ratio	0.071	0.364	0.18	0.082	
HCM Control Delay	8.4	9.6	8.5	8.4	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	1.7	0.7	0.3	

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
Movement	SBU	SBL	SBT	SBR		
Vol, veh/h	0	16	17	23		
Peak Hour Factor	0.92	0.93	0.93	0.93		
Heavy Vehicles, %	0	6	6	13		
Mvmt Flow	0	17	18	25		
Number of Lanes	0	0	1	0		
Approach		SB				
Opposing Approach		NB				
Opposing Lanes		1				
Conflicting Approach Left		WB				
Conflicting Lanes Left		1				
Conflicting Approach Right		EB				
Conflicting Lanes Right		1				
HCM Control Delay		8.4				
HCM LOS		Α				

	ၨ	→	•	•	←	•	•	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	26	206	21	24	85	4	20	14	51	22	74	27
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	29	226	23	26	93	4	22	15	56	24	81	30
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	278	124	93	135								
Volume Left (vph)	29	26	22	24								
Volume Right (vph)	23	4	56	30								
Hadj (s)	0.02	0.11	-0.29	-0.05								
Departure Headway (s)	4.7	4.9	4.8	5.0								
Degree Utilization, x	0.36	0.17	0.12	0.19								
Capacity (veh/h)	731	679	680	662								
Control Delay (s)	10.3	9.0	8.5	9.1								
Approach Delay (s)	10.3	9.0	8.5	9.1								
Approach LOS	В	Α	Α	Α								
Intersection Summary												
Delay			9.5									
Level of Service			Α									
Intersection Capacity Utilization	on		30.4%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
) ii				O LOVGI (JI JUI VIOC			R			

Intersection												
Intersection Delay, s/veh	9.6											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	26	206	21	0	24	85	4	0	20	14	51
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	0	12	2	0	0	4	6	0	0	0	7	0
Mvmt Flow	0	29	226	23	0	26	93	4	0	22	15	56
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	10.6	8.9	8.5
HCM LOS	В	А	Α

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	24%	10%	21%	18%	
Vol Thru, %	16%	81%	75%	60%	
Vol Right, %	60%	8%	4%	22%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	85	253	113	123	
LT Vol	20	26	24	22	
Through Vol	14	206	85	74	
RT Vol	51	21	4	27	
Lane Flow Rate	93	278	124	135	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.123	0.369	0.168	0.184	
Departure Headway (Hd)	4.739	4.778	4.882	4.894	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	751	751	730	729	
Service Time	2.8	2.828	2.941	2.951	
HCM Lane V/C Ratio	0.124	0.37	0.17	0.185	
HCM Control Delay	8.5	10.6	8.9	9.1	
HCM Lane LOS	Α	В	Α	Α	
HCM 95th-tile Q	0.4	1.7	0.6	0.7	

Intersection Delay, s/veh						
Intersection LOS						
Movement	SBU	SBL	SBT	SBR		
Vol, veh/h	0	22	74	27		
Peak Hour Factor	0.92	0.91	0.91	0.91		
Heavy Vehicles, %	0	0	0	12		
Mvmt Flow	0	24	81	30		
Number of Lanes	0	0	1	0		
Approach		SB				
Opposing Approach		NB				
Opposing Lanes		1				
Conflicting Approach Left		WB				
Conflicting Lanes Left		1				
Conflicting Approach Right		EB				
Conflicting Lanes Right		1				
HCM Control Delay		9.1				
HCM LOS		Α				

	٠	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		¥	
Volume (veh/h)	27	249	103	6	2	19
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	28	254	105	6	2	19
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	111				417	108
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	111				417	108
tC, single (s)	4.1				6.7	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.8	3.3
p0 queue free %	98				100	98
cM capacity (veh/h)	1491				527	951
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	282	111	21			
Volume Left	28	0	2			
Volume Right	0	6	19			
cSH	1491	1700	883			
Volume to Capacity	0.02	0.07	0.02			
Queue Length 95th (m)	0.4	0.0	0.6			
Control Delay (s)	0.9	0.0	9.2			
Lane LOS	A	0.0	Α			
Approach Delay (s)	0.9	0.0	9.2			
Approach LOS	0.0	0.0	A			
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utiliza	ation		31.3%	IC	U Level o	of Service
Analysis Period (min)			15			
, analysis i snisa (min)			10			

	•	→	•	←	†	ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	21	538	56	317	90	96
v/c Ratio	0.04	0.49	0.12	0.29	0.26	0.26
Control Delay	5.5	8.7	6.4	6.8	13.7	16.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	5.5	8.7	6.4	6.8	13.7	16.4
Queue Length 50th (m)	0.8	25.7	2.1	12.9	3.1	4.5
Queue Length 95th (m)	2.9	47.0	6.2	24.6	14.9	17.7
Internal Link Dist (m)		209.0		438.7	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	843	1684	722	1687	616	662
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.32	0.08	0.19	0.15	0.15
Intersection Summary						

	۶	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		¥	ĵ»			4			4	
Volume (vph)	19	436	49	50	269	16	27	21	33	20	47	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.98		1.00	0.99			0.94			0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1504	1793		1745	1798			1663			1740	
Flt Permitted	0.57	1.00		0.42	1.00			0.85			0.89	
Satd. Flow (perm)	900	1793		770	1798			1439			1574	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	21	484	54	56	299	18	30	23	37	22	52	22
RTOR Reduction (vph)	0	6	0	0	3	0	0	31	0	0	16	0
Lane Group Flow (vph)	21	532	0	56	314	0	0	59	0	0	80	0
Heavy Vehicles (%)	16%	1%	0%	0%	1%	6%	4%	5%	0%	0%	0%	5%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	-	2		-	2		-	4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	27.0	27.0		27.0	27.0			8.1			8.1	
Effective Green, g (s)	27.0	27.0		27.0	27.0			8.1			8.1	
Actuated g/C Ratio	0.57	0.57		0.57	0.57			0.17			0.17	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	512	1021		438	1024			245			268	
v/s Ratio Prot	•	c0.30			0.17							
v/s Ratio Perm	0.02			0.07				0.04			c0.05	
v/c Ratio	0.04	0.52		0.13	0.31			0.24			0.30	
Uniform Delay, d1	4.5	6.2		4.7	5.3			17.0			17.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.0	0.6		0.2	0.2			0.4			0.5	
Delay (s)	4.5	6.8		4.9	5.5			17.4			17.6	
Level of Service	A	A		A	A			В			В	
Approach Delay (s)		6.7			5.4			17.4			17.6	
Approach LOS		Α			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			8.1	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	city ratio		0.47									
Actuated Cycle Length (s)	,		47.4	Sı	um of lost	time (s)			12.3			
Intersection Capacity Utilizat	tion		60.1%		U Level		!		В			
Analysis Period (min)			15		, , , ,							
c Critical Lane Group												

	۶	→	•	•	←	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	†	7		4			4	
Volume (veh/h)	49	429	6	1	297	11	5	1	2	37	4	60
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	52	452	6	1	313	12	5	1	2	39	4	63
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	324			458			938	884	455	872	876	313
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	324			458			938	884	455	872	876	313
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	96			100			98	100	100	85	98	91
cM capacity (veh/h)	1236			1114			215	274	610	263	277	728
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	52	458	1	313	12	8	106					
Volume Left	52	0	1	0	0	5	39					
Volume Right	0	6	0	0	12	2	63					
cSH	1236	1700	1114	1700	1700	265	425					
Volume to Capacity	0.04	0.27	0.00	0.18	0.01	0.03	0.25					
Queue Length 95th (m)	1.0	0.0	0.0	0.0	0.0	0.7	7.4					
Control Delay (s)	8.0	0.0	8.2	0.0	0.0	19.0	16.3					
Lane LOS	Α		Α			С	С					
Approach Delay (s)	0.8		0.0			19.0	16.3					
Approach LOS						С	С					
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utilization	n		42.5%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	•	→	*	•	+	•	•	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	31	165	25	61	262	114	196	131	42	37	41	15
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	35	185	28	69	294	128	220	147	47	42	46	17
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	248	491	415	104								
Volume Left (vph)	35	69	220	42								
Volume Right (vph)	28	128	47	17								
Hadj (s)	0.14	0.00	0.07	0.07								
Departure Headway (s)	7.1	6.4	6.7	7.8								
Degree Utilization, x	0.49	0.88	0.78	0.23								
Capacity (veh/h)	469	491	504	401								
Control Delay (s)	16.8	39.1	29.3	13.0								
Approach Delay (s)	16.8	39.1	29.3	13.0								
Approach LOS	С	E	D	В								
Intersection Summary												
Delay			29.3									
Level of Service			D									
Intersection Capacity Utiliza	ition		65.8%	IC	CU Level	of Service			С			
Analysis Period (min)			15									
· ,												

Intersection												
Intersection Delay, s/veh	28.8											
Intersection LOS	D											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	31	165	25	0	61	262	114	0	196	131	42
Peak Hour Factor	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	13	9	20	0	9	7	9	0	2	0	7
Mvmt Flow	0	35	185	28	0	69	294	128	0	220	147	47
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	16.8	38.2	28.7
HCM LOS	С	Е	D

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	53%	14%	14%	40%	
Vol Thru, %	36%	75%	60%	44%	
Vol Right, %	11%	11%	26%	16%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	369	221	437	93	
LT Vol	196	31	61	37	
Through Vol	131	165	262	41	
RT Vol	42	25	114	15	
Lane Flow Rate	415	248	491	104	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.768	0.487	0.869	0.227	
Departure Headway (Hd)	6.672	7.163	6.371	7.829	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	539	507	565	462	
Service Time	4.755	5.163	4.453	5.829	
HCM Lane V/C Ratio	0.77	0.489	0.869	0.225	
HCM Control Delay	28.7	16.8	38.2	13.1	
HCM Lane LOS	D	С	Е	В	
HCM 95th-tile Q	6.9	2.6	9.7	0.9	

datama attam Dalam ahuah				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	37	41	15
Peak Hour Factor	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	10	0	7
Mvmt Flow	0	42	46	17
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
O (1) - (1) 1 D' - 1-1		1		
Conflicting Lanes Right		13.1		
HCM Control Delay		10.1		

Anne Configurations		-	•	•	•	•	/	
Anne Configurations	Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Volume (veh/h)								
Free Free Stop	Volume (veh/h)		30	17			77	
Carade	Sign Control							
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Grade							
Pourly flow rate (vph) 253 33 18 335 103 84 Pedestrians 258 25	Peak Hour Factor		0.92	0.92			0.92	
Pedestrians Lane Width (m) Valking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) Dix, platoon unblocked CC, conflicting volume CC1, stage 1 conf vol CC2, stage 2 conf vol CC4, stage (s) F (s) Diverestion, Lane # EB 1 WB 1 NB 1 Volume Total Colume Right Colume Right Control Delay (s) Compression Summary Expression Summary Average Delay Average Delay Intersection Capacity Utilization None Non	Hourly flow rate (vph)							
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) DVX, platoon unblocked CC, conflicting volume 286 641 270 CC1, stage 1 conf vol CC2, stage 2 conf vol CC2, stage 3 CC3 CC4 CC4 CC5 CC6 CC7 CC7 <td>Pedestrians</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Pedestrians							
Valking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) DX, platoon unblocked CC, conflicting volume 286 641 270 CC1, stage 1 conf vol 226 641 270	Lane Width (m)							
Percent Blockage Right turn flare (veh) Median type								
Right turn flare (veh) Median type								
Median type None None Median storage veh) Upstream signal (m) VX, platoon unblocked VC, conflicting volume C286 C3 stage 1 conf vol C4, stage 2 conf vol C5, stage 2 conf vol C6, single (s) C7, 2 stage (s) C8, 2 stage (s) C9, 3 3.5 C9, 3 3.3 C9, 3 3.3 C9, 4 3.5 C9, 4 4.5 C9, 4 4.5 C9, 4 5.5 C9, 4 5.7 C9, 4 6.7 C9,								
Median storage veh) Upstream signal (m) DX, platoon unblocked MC, conflicting volume MC2, stage 1 conf vol MC2, stage 2 conf vol MC2, stage 2 conf vol MC3, stage 3 conf vol MC4, unblocked vol MC5, single (s) MC6, single (s) MC7, stage (s) MC8, stage (s) MC9, st	Median type	None			None			
Upstream signal (m) DX, platoon unblocked DC, conflicting volume DC1, stage 1 conf vol DC2, stage 2 conf vol DC2, stage 2 conf vol DC3, single (s) DC4, single (s) DC5, single (s) DC6, single (s) DC7, stage (s) DC7, stage (s) DC8, single (s) DC9, single (single (s) DC9, single (single (s) DC9, single (single (s) DC9, single (single (s) DC9, single (s) DC9, single (single (s) DC9, single (single (s) DC9, single (
OX, platoon unblocked OC, conflicting volume OC2, stage 1 conf vol OC2, stage 2 conf vol OC3, single (s) OC4, single (s) OC5, single (s) OC5, single (s) OC6, single (s) OC7,								
## CC, conflicting volume ## CC1, stage 1 conf vol ## CC2, stage 2 conf vol ## CC2, stage 2 conf vol ## CC2, stage 2 conf vol ## CC2, stage (s) ## CC2, stage (s) ## CC3, stag								
C1, stage 1 conf vol C2, stage 2 conf vol C0, unblocked vol C2, single (s) C3, stage (s) F (s) C3, stage (s) F (s) C4, unblocked vol C5, single (s) C6, single (s) C7, stage (s) C7, stage (s) C8, stage (s) C9, stage (s) F (s) C9, stage (s)				286		641	270	
C2, stage 2 conf vol C0, unblocked vol 286 641 270 C1, single (s) 4.1 6.4 6.2 C2, 2 stage (s) C3, 2 stage (s) C4, unblocked vol 4.1 6.4 6.2 C5, 2 stage (s) C5, 2 stage (s) C6, 2 stage (s) C7, 2 stage (s) C8, 3.5 3.3 C9, 3.7 3 C9,								
Cu, unblocked vol 286 641 270 C, single (s) 4.1 6.4 6.2 C, 2 stage (s) F (s) 2.2 3.5 3.3 D0 queue free % 99 76 89 EM capacity (veh/h) 1288 436 774 Direction, Lane # EB 1 WB 1 NB 1 Volume Total 286 353 187 Volume Left 0 18 103 Volume Right 33 0 84 ESH 1700 1288 542 Volume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Approach Delay (s) 0.0 0.5 15.1 Approach LOS A C Approach LOS C Intersection Summary Average Delay Intersection Capacity Utilization 46.7% ICU Level of Service								
C, single (s) C, 2 stage (s) F (s) 2.2 3.5 3.3 00 queue free % 99 76 89 6M capacity (veh/h) 1288 436 774 Direction, Lane # EB 1 WB 1 NB 1 Volume Total 286 353 187 Volume Right 33 0 84 6SH 1700 1288 542 Volume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) Approach Delay (s) Approach LOS Contessection Summary Average Delay ntersection Capacity Utilization 46.7% ICU Level of Service	vCu, unblocked vol			286		641	270	
C, 2 stage (s) F (s)								
Section Sect								
99 76 89 EM capacity (veh/h) 1288 436 774 Direction, Lane # EB 1 WB 1 NB 1 Volume Total 286 353 187 Volume Left 0 18 103 Volume Right 33 0 84 ESH 1700 1288 542 Volume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service	tF (s)			2.2		3.5	3.3	
## Capacity (veh/h) ## EB 1 WB 1 NB 1 ## Volume Total 286 353 187 ## Volume Left 0 18 103 ## Volume Right 33 0 84 ## SSH 1700 1288 542 ## Volume to Capacity 0.17 0.01 0.35 ## Queue Length 95th (m) 0.0 0.3 11.6 ## Control Delay (s) 0.0 0.5 15.1 ## Approach Delay (s) 0.0 0.5 15.1 ## Approach LOS Contessed on the proach Los Contessed on the proof Los Contessed on the proach Los Contes								
Direction, Lane # EB 1 WB 1 NB 1								
//olume Total 286 353 187 //olume Left 0 18 103 //olume Right 33 0 84 SSH 1700 1288 542 //olume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C C Intersection Summary 3.7 Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service		ED 4	MD 4					
Volume Left 0 18 103 Volume Right 33 0 84 SSH 1700 1288 542 Volume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service								
Volume Right 33 0 84 SSH 1700 1288 542 Volume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service								
1700 1288 542								
Volume to Capacity 0.17 0.01 0.35 Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service								
Queue Length 95th (m) 0.0 0.3 11.6 Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service								
Control Delay (s) 0.0 0.5 15.1 Lane LOS A C Approach Delay (s) 0.0 0.5 15.1 Approach LOS C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service								
Approach Delay (s) Approach LOS Approach LOS C Intersection Summary Average Delay ntersection Capacity Utilization A C C 3.7 ICU Level of Service								
Approach Delay (s) Approach LOS C Intersection Summary Average Delay Intersection Capacity Utilization 3.7 ICU Level of Service		0.0						
Approach LOS C Intersection Summary Average Delay 3.7 Intersection Capacity Utilization 46.7% ICU Level of Service								
ntersection Summary Average Delay ntersection Capacity Utilization 3.7 ICU Level of Service		0.0	0.5					
Average Delay 3.7 ICU Level of Service	Approach LOS			С				
ntersection Capacity Utilization 46.7% ICU Level of Service	Intersection Summary							
	Average Delay							
Analysis Period (min) 15		ition		46.7%	IC	U Level o	of Service	
	Analysis Period (min)			15				

	۶	→	•	•	←	•	•	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	139	128	63	74	197	64	45	145	54	21	91	47
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Hourly flow rate (vph)	178	164	81	95	253	82	58	186	69	27	117	60
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	423	429	313	204								
Volume Left (vph)	178	95	58	27								
Volume Right (vph)	81	82	69	60								
Hadj (s)	0.11	0.02	0.01	-0.08								
Departure Headway (s)	7.5	7.4	7.9	8.3								
Degree Utilization, x	0.88	0.88	0.68	0.47								
Capacity (veh/h)	423	429	421	385								
Control Delay (s)	43.5	43.6	26.2	18.4								
Approach Delay (s)	43.5	43.6	26.2	18.4								
Approach LOS	E	Е	D	С								
Intersection Summary												
Delay			35.8									
Level of Service			Е									
Intersection Capacity Utilization	on		59.8%	IC	U Level o	of Service			В			
Analysis Period (min)			15									
. , ,												

Intersection												
Intersection Delay, s/veh	33.4											
Intersection LOS	D											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	139	128	63	0	74	197	64	0	45	145	54
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, %	0	2	11	15	0	9	6	0	0	7	3	13
Mvmt Flow	0	178	164	81	0	95	253	82	0	58	186	69
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	38.6	41.3	25.7
HCM LOS	E	E	D

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	18%	42%	22%	13%	
Vol Thru, %	59%	39%	59%	57%	
Vol Right, %	22%	19%	19%	30%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	244	330	335	159	
LT Vol	45	139	74	21	
Through Vol	145	128	197	91	
RT Vol	54	63	64	47	
Lane Flow Rate	313	423	429	204	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.677	0.844	0.863	0.459	
Departure Headway (Hd)	7.795	7.319	7.37	8.106	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	466	499	494	446	
Service Time	5.811	5.319	5.37	6.126	
HCM Lane V/C Ratio	0.672	0.848	0.868	0.457	
HCM Control Delay	25.7	38.6	41.3	17.8	
HCM Lane LOS	D	Е	Е	С	
HCM 95th-tile Q	5	8.6	9.1	2.4	

Intersection					_
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Vol, veh/h	0	21	91	47	
Peak Hour Factor	0.92	0.78	0.78	0.78	
Heavy Vehicles, %	0	0	0	15	
Mvmt Flow	0	27	117	60	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			
Conflicting Approach Left		WB			
Conflicting Lanes Left		1			
Conflicting Approach Right		EB			
Conflicting Lanes Right		1			
HCM Control Delay		17.8			
HCM LOS		С			

	٠	→	•	•	←	•	1	†	<i>></i>	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	7	136	59	6	184	0	127	0	29	7	0	23
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Hourly flow rate (vph)	10	192	83	8	259	0	179	0	41	10	0	32
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	259			275			561	529	233	570	570	259
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	259			275			561	529	233	570	570	259
tC, single (s)	4.2			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			57	100	95	98	100	96
cM capacity (veh/h)	1239			1300			418	451	811	409	428	775
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	285	268	220	42								
Volume Left	10	8	179	10								
Volume Right	83	0	41	32								
cSH	1239	1300	459	641								
Volume to Capacity	0.01	0.01	0.48	0.07								
Queue Length 95th (m)	0.2	0.1	19.3	1.6								
Control Delay (s)	0.3	0.3	19.8	11.0								
Lane LOS	Α	Α	С	В								
Approach Delay (s)	0.3	0.3	19.8	11.0								
Approach LOS			С	В								
Intersection Summary												
Average Delay			6.1									
Intersection Capacity Utilization	n		36.0%	IC	CU Level c	of Service			Α			
Analysis Period (min)			15									

	•	•	†	~	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		∱			4
Volume (veh/h)	193	127	236	33	28	103
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	210	138	257	36	30	112
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	447	274			292	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	447	274			292	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	62	82			98	
cM capacity (veh/h)	559	769			1281	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	348	292	142			
Volume Left	210	0	30			
Volume Right	138	36	0			
cSH	627	1700	1281			
Volume to Capacity	0.55	0.17	0.02			
Queue Length 95th (m)	25.9	0.0	0.6			
Control Delay (s)	17.7	0.0	1.8			
Lane LOS	С		Α			
Approach Delay (s)	17.7	0.0	1.8			
Approach LOS	С					
Intersection Summary						
Average Delay		•	8.2		_	_
Intersection Capacity Utiliza	ation		49.9%	IC	U Level c	of Service
Analysis Period (min)			15			
, ,						

	•	→	•	•	←	•	4	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	71	8	10	294	0	0	106	8	5	86	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	77	9	11	320	0	0	115	9	5	93	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	320			86			470	423	82	489	427	320
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	320			86			470	423	82	489	427	320
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	78	99	99	82	100
cM capacity (veh/h)	1252			1523			435	522	984	403	519	726
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	86	330	124	99								
Volume Left	0	11	0	5								
Volume Right	9	0	9	0								
cSH	1252	1523	540	511								
Volume to Capacity	0.00	0.01	0.23	0.19								
Queue Length 95th (m)	0.0	0.2	6.7	5.4								
Control Delay (s)	0.0	0.3	13.6	13.7								
Lane LOS		Α	В	В								
Approach Delay (s)	0.0	0.3	13.6	13.7								
Approach LOS			В	В								
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utiliza	ation		38.0%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	50	33	33	0	185	39	12	144	14	25	79	30
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	54	36	36	0	201	42	13	157	15	27	86	33
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	490	354	102	401	363	164	118			172		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	490	354	102	401	363	164	118			172		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	83	94	96	100	64	95	99			98		
cM capacity (veh/h)	329	558	958	505	552	886	1482			1418		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	126	243	185	146								
Volume Left	54	0	13	27								
Volume Right	36	42	15	33								
cSH	473	591	1482	1418								
Volume to Capacity	0.27	0.41	0.01	0.02								
Queue Length 95th (m)	8.1	15.3	0.2	0.4								
Control Delay (s)	15.4	15.3	0.6	1.5								
Lane LOS	С	С	Α	Α								
Approach Delay (s)	15.4	15.3	0.6	1.5								
Approach LOS	С	С										
Intersection Summary												
Average Delay			8.6									
Intersection Capacity Utilizat	ion		42.6%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	f)	
Volume (veh/h)	27	29	11	30	65	70
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	29	32	12	33	71	76
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	165	109	147			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	165	109	147			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	96	97	99			
cM capacity (veh/h)	823	950	1448			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	61	45	147			
Volume Left	29	12	0			
Volume Right	32	0	76			
cSH	885	1448	1700			
Volume to Capacity	0.07	0.01	0.09			
Queue Length 95th (m)	1.7	0.2	0.0			
Control Delay (s)	9.4	2.1	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.4	2.1	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utiliza	ation		21.2%	IC	CU Level o	f Service
Analysis Period (min)			15			
,						

	•	→	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	36	284	57	495	238	355
v/c Ratio	0.12	0.36	0.14	0.59	0.56	0.75
Control Delay	9.5	10.7	9.4	13.9	21.4	25.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.5	10.7	9.4	13.9	21.4	25.1
Queue Length 50th (m)	1.9	16.8	3.0	33.4	15.2	18.9
Queue Length 95th (m)	6.0	31.0	8.3	58.3	44.3	#69.6
Internal Link Dist (m)		209.0		440.9	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	559	1425	765	1503	524	570
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.20	0.07	0.33	0.45	0.62
Intersection Summary						

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	→	\rightarrow	•	←	•	4	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		ň	֔			4			4	
Volume (vph)	34	257	10	54	422	43	50	121	53	32	102	199
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.99			0.97			0.92	
Flt Protected	0.95	1.00		0.95	1.00			0.99			1.00	
Satd. Flow (prot)	1586	1683		1466	1774			1671			1470	
Flt Permitted	0.40	1.00		0.59	1.00			0.83			0.94	
Satd. Flow (perm)	661	1683		904	1774			1401			1394	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	36	273	11	57	449	46	53	129	56	34	109	212
RTOR Reduction (vph)	0	3	0	0	6	0	0	14	0	0	67	0
Lane Group Flow (vph)	36	281	0	57	489	0	0	224	0	0	288	0
Heavy Vehicles (%)	10%	8%	20%	19%	2%	3%	4%	5%	7%	14%	13%	15%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	24.7	24.7		24.7	24.7			15.5			15.5	
Effective Green, g (s)	24.7	24.7		24.7	24.7			15.5			15.5	
Actuated g/C Ratio	0.47	0.47		0.47	0.47			0.30			0.30	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	310	791		425	834			413			411	
v/s Ratio Prot		0.17			c0.28							
v/s Ratio Perm	0.05			0.06				0.16			c0.21	
v/c Ratio	0.12	0.36		0.13	0.59			0.54			0.70	
Uniform Delay, d1	7.8	8.8		7.9	10.2			15.5			16.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.2	0.3		0.2	1.1			1.1			4.9	
Delay (s)	8.0	9.2		8.0	11.3			16.7			21.4	
Level of Service	Α	Α		Α	В			В			С	
Approach Delay (s)		9.0			11.0			16.7			21.4	
Approach LOS		Α			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			14.0	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.63									
Actuated Cycle Length (s)			52.5	Sı	um of lost	time (s)			12.3			
Intersection Capacity Utilizat	tion		78.1%		U Level o		:		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		¥	
Volume (veh/h)	41	307	417	18	47	92
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	45	334	453	20	51	100
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	473				886	463
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	473				886	463
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	96				83	83
cM capacity (veh/h)	1100				305	603
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	378	473	151			
Volume Left	45	0	51			
Volume Right	0	20	100			
cSH	1100	1700	453			
Volume to Capacity	0.04	0.28	0.33			
Queue Length 95th (m)	1.0	0.0	11.0			
Control Delay (s)	1.4	0.0	16.9			
Lane LOS	Α		С			
Approach Delay (s)	1.4	0.0	16.9			
Approach LOS			С			
Intersection Summary						
Average Delay			3.1			
Intersection Capacity Utiliza	ation		59.7%	IC	U Level o	of Service
Analysis Period (min)			15			
,a., 510 i 5110a (111111)			.0			

	۶	→	\rightarrow	•	←	•	•	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	ĵ.		Ť	†	7		4			4	
Volume (veh/h)	66	289	5	1	381	91	3	2	2	69	2	41
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	71	311	5	1	410	98	3	2	2	74	2	44
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	508			316			912	965	313	868	870	410
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	508			316			912	965	313	868	870	410
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.2	7.0	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.5	3.3
p0 queue free %	93			100			99	99	100	71	99	93
cM capacity (veh/h)	1047			1255			225	239	732	252	227	640
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	71	316	1	410	98	8	120					
Volume Left	71	0	1	0	0	3	74					
Volume Right	0	5	0	0	98	2	44					
cSH	1047	1700	1255	1700	1700	286	323					
Volume to Capacity	0.07	0.19	0.00	0.24	0.06	0.03	0.37					
Queue Length 95th (m)	1.7	0.0	0.0	0.0	0.0	0.6	12.7					
Control Delay (s)	8.7	0.0	7.9	0.0	0.0	17.9	22.6					
Lane LOS	Α		Α			С	С					
Approach Delay (s)	1.6		0.0			17.9	22.6					
Approach LOS						С	С					
Intersection Summary												
Average Delay			3.4									
Intersection Capacity Utilization	on		43.4%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		W	
Volume (veh/h)	18	342	464	23	85	9
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	372	504	25	92	10
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	529				928	517
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	529				928	517
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF(s)	2.2				3.5	3.3
p0 queue free %	98				69	98
cM capacity (veh/h)	1048				294	562
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	391	529	102			
Volume Left	20	0	92			
Volume Right	0	25	10			
cSH	1048	1700	309			
Volume to Capacity	0.02	0.31	0.33			
Queue Length 95th (m)	0.4	0.0	10.7			
Control Delay (s)	0.6	0.0	22.3			
Lane LOS	Α	0.0	C			
Approach Delay (s)	0.6	0.0	22.3			
Approach LOS	0.0	0.0	C			
Intersection Summary						
Average Delay			2.5			
Intersection Capacity Utilization	ation		44.6%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	→	*	•	+	•	•	†	<i>></i>	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	10	331	91	84	164	76	65	103	64	127	192	23
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	11	356	98	90	176	82	70	111	69	137	206	25
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	465	348	249	368								
Volume Left (vph)	11	90	70	137								
Volume Right (vph)	98	82	69	25								
Hadj (s)	-0.07	0.03	-0.07	0.14								
Departure Headway (s)	7.9	8.2	8.6	8.3								
Degree Utilization, x	1.00	0.80	0.60	0.85								
Capacity (veh/h)	465	420	389	368								
Control Delay (s)	70.4	36.3	23.7	42.5								
Approach Delay (s)	70.4	36.3	23.7	42.5								
Approach LOS	F	E	С	Е								
Intersection Summary												
Delay			46.8									
Level of Service			Е									
Intersection Capacity Utiliza	ation		79.0%	IC	CU Level	of Service	!		D			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	47.2											
Intersection LOS	Е											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	10	331	91	0	84	164	76	0	65	103	64
Peak Hour Factor	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93
Heavy Vehicles, %	0	0	4	0	0	0	7	14	0	8	0	0
Mvmt Flow	0	11	356	98	0	90	176	82	0	70	111	69
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	70.3	36.4	24.8
HCM LOS	F	E	С

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	28%	2%	26%	37%	
Vol Thru, %	44%	77%	51%	56%	
Vol Right, %	28%	21%	23%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	232	432	324	342	
LT Vol	65	10	84	127	
Through Vol	103	331	164	192	
RT Vol	64	91	76	23	
Lane Flow Rate	249	465	348	368	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.615	1	0.798	0.85	
Departure Headway (Hd)	8.757	7.811	8.25	8.32	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	414	465	446	438	
Service Time	6.757	5.858	6.15	6.32	
HCM Lane V/C Ratio	0.601	1	0.78	0.84	
HCM Control Delay	24.8	70.3	36.4	43.3	
HCM Lane LOS	С	F	Е	Е	
HCM 95th-tile Q	4	13.1	7.2	8.4	

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Vol, veh/h	0	127	192	23	
Peak Hour Factor	0.92	0.93	0.93	0.93	
Heavy Vehicles, %	0	6	6	13	
Mvmt Flow	0	137	206	25	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			
Conflicting Approach Left		WB			
Conflicting Lanes Left		1			
Conflicting Approach Right		EB			
Conflicting Lanes Right		1			
HCM Control Delay		43.3			
HCM LOS		Е			

	→	•	•	•	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f)			4	¥		
Volume (veh/h)	383	85	56	256	71	50	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	416	92	61	278	77	54	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			509		862	462	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			509		862	462	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			94		75	91	
cM capacity (veh/h)			1067		309	603	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	509	339	132				
Volume Left	0	61	77				
Volume Right	92	0	54				
cSH	1700	1067	387				
Volume to Capacity	0.30	0.06	0.34				
Queue Length 95th (m)	0.0	1.4	11.2				
Control Delay (s)	0.0	2.0	19.0				
Lane LOS		A	С				
Approach Delay (s)	0.0	2.0	19.0				
Approach LOS			С				
Intersection Summary							
Average Delay			3.3				
Intersection Capacity Utiliza	ation		58.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	→	•	•	-	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	77	309	46	36	166	36	20	70	55	73	214	125
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	85	340	51	40	182	40	22	77	60	80	235	137
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	475	262	159	453								
Volume Left (vph)	85	40	22	80								
Volume Right (vph)	51	40	60	137								
Hadj (s)	0.03	0.02	-0.14	-0.08								
Departure Headway (s)	7.1	7.7	8.0	7.0								
Degree Utilization, x	0.93	0.56	0.36	0.89								
Capacity (veh/h)	475	442	409	453								
Control Delay (s)	50.9	19.9	15.4	43.3								
Approach Delay (s)	50.9	19.9	15.4	43.3								
Approach LOS	F	С	С	Е								
Intersection Summary												
Delay			38.1									
Level of Service			Ε									
Intersection Capacity Utiliza	ition		73.0%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	37.7											
Intersection LOS	Е											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	77	309	46	0	36	166	36	0	20	70	55
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	0	12	2	0	0	4	6	0	0	0	7	0
Mvmt Flow	0	85	340	51	0	40	182	40	0	22	77	60
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	52.4	19.5	15.2
HCM LOS	F	С	С

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	14%	18%	15%	18%	
Vol Thru, %	48%	72%	70%	52%	
Vol Right, %	38%	11%	15%	30%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	145	432	238	412	
LT Vol	20	77	36	73	
Through Vol	70	309	166	214	
RT Vol	55	46	36	125	
Lane Flow Rate	159	475	262	453	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.352	0.935	0.548	0.87	
Departure Headway (Hd)	7.96	7.093	7.543	6.916	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	454	508	476	521	
Service Time	5.96	5.174	5.643	4.996	
HCM Lane V/C Ratio	0.35	0.935	0.55	0.869	
HCM Control Delay	15.2	52.4	19.5	40.7	
HCM Lane LOS	С	F	С	Е	
HCM 95th-tile Q	1.6	11.4	3.2	9.4	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	73	214	125
Peak Hour Factor	0.92	0.91	0.91	0.91
Heavy Vehicles, %	0	0	0	12
Mvmt Flow	0	80	235	137
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		40.7		
HCM LOS		Е		

	۶	-	•	•	←	•	•	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	27	271	136	27	149	6	79	0	20	2	0	19
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	28	277	139	28	152	6	81	0	20	2	0	19
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	158			415			631	614	346	632	681	155
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	158			415			631	614	346	632	681	155
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.4	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.8	4.0	3.3
p0 queue free %	98			98			79	100	97	99	100	98
cM capacity (veh/h)	1434			1155			375	392	702	331	359	896
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	443	186	101	21								
Volume Left	28	28	81	2								
Volume Right	139	6	20	19								
cSH	1434	1155	414	771								
Volume to Capacity	0.02	0.02	0.24	0.03								
Queue Length 95th (m)	0.4	0.6	7.2	0.7								
Control Delay (s)	0.7	1.4	16.5	9.8								
Lane LOS	Α	Α	С	Α								
Approach Delay (s)	0.7	1.4	16.5	9.8								
Approach LOS			С	Α								
Intersection Summary												
Average Delay			3.2									
Intersection Capacity Utiliza	ation		45.9%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	†	~	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĵ.			र्स
Volume (veh/h)	150	86	152	149	117	247
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	163	93	165	162	127	268
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	769	246			327	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	769	246			327	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	51	88			90	
cM capacity (veh/h)	334	797			1244	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	257	327	396			
Volume Left	163	0	127			
Volume Right	93	162	0			
cSH	424	1700	1244			
Volume to Capacity	0.61	0.19	0.10			
Queue Length 95th (m)	29.5	0.0	2.6			
Control Delay (s)	25.7	0.0	3.3			
Lane LOS	D		Α			
Approach Delay (s)	25.7	0.0	3.3			
Approach LOS	D					
Intersection Summary						
Average Delay			8.1			
Intersection Capacity Utiliza	ation		60.2%	IC	CU Level o	f Service
Analysis Period (min)			15			
, , ,						

	۶	→	•	•	←	•	•	†	<i>></i>	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	237	32	32	235	0	0	148	26	12	72	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	258	35	35	255	0	0	161	28	13	78	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	255			292			639	600	275	709	617	255
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	255			292			639	600	275	709	617	255
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			100	60	96	94	80	100
cM capacity (veh/h)	1321			1281			325	406	769	230	397	788
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	292	290	189	91								
Volume Left	0	35	0	13								
Volume Right	35	0	28	0								
cSH	1321	1281	437	359								
Volume to Capacity	0.00	0.03	0.43	0.25								
Queue Length 95th (m)	0.0	0.6	16.3	7.5								
Control Delay (s)	0.0	1.2	19.4	18.4								
Lane LOS		Α	С	С								
Approach Delay (s)	0.0	1.2	19.4	18.4								
Approach LOS			С	С								
Intersection Summary												
Average Delay			6.6									
Intersection Capacity Utilization	on		52.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	•	•	†	~	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	32	141	15	0	144	28	25	61	51	82	110	95
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	35	153	16	0	157	30	27	66	55	89	120	103
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	607	526	171	591	549	94	223			122		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	607	526	171	591	549	94	223			122		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	87	64	98	100	62	97	98			94		
cM capacity (veh/h)	265	424	878	281	411	968	1358			1478		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	204	187	149	312								
Volume Left	35	0	27	89								
Volume Right	16	30	55	103								
cSH	399	453	1358	1478								
Volume to Capacity	0.51	0.41	0.02	0.06								
Queue Length 95th (m)	21.4	15.1	0.5	1.5								
Control Delay (s)	23.1	18.4	1.5	2.5								
Lane LOS	C	С	A	A								
Approach Delay (s)	23.1	18.4	1.5	2.5								
Approach LOS	С	С										
Intersection Summary												
Average Delay			10.8									
Intersection Capacity Utilization	on		52.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			†	†	
Volume (veh/h)	65	14	26	86	26	63
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	71	15	28	93	28	68
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	212	62	97			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	212	62	97			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	91	98	98			
cM capacity (veh/h)	766	1008	1509			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	86	122	97			
Volume Left	71	28	0			
Volume Right	15	0	68			
cSH	800	1509	1700			
Volume to Capacity	0.11	0.02	0.06			
Queue Length 95th (m)	2.7	0.4	0.0			
Control Delay (s)	10.0	1.8	0.0			
Lane LOS	В	Α				
Approach Delay (s)	10.0	1.8	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			3.6			
Intersection Capacity Utilizat	tion		23.8%	IC	CU Level o	of Service
Analysis Period (min)			15			
. ,			. •			

	٠	→	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	117	765	90	386	336	336
v/c Ratio	0.27	0.78	0.42	0.40	0.79	0.77
Control Delay	9.7	17.9	16.1	9.5	38.2	34.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.7	17.9	16.1	9.5	38.2	34.7
Queue Length 50th (m)	7.3	69.6	6.2	25.0	37.7	34.2
Queue Length 95th (m)	15.7	110.9	17.3	40.9	#82.4	#77.6
Internal Link Dist (m)		209.0		438.7	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	564	1271	275	1260	501	506
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.60	0.33	0.31	0.67	0.66
Intersection Summary						

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	-	•	•	←	•	•	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, J	ĵ.		¥	ĵ»			4			4	
Volume (vph)	105	640	49	81	312	35	27	191	85	31	135	137
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.98			0.96			0.94	
Flt Protected	0.95	1.00		0.95	1.00			1.00			0.99	
Satd. Flow (prot)	1504	1800		1745	1782			1700			1678	
Flt Permitted	0.51	1.00		0.21	1.00			0.93			0.91	
Satd. Flow (perm)	801	1800		391	1782			1589			1542	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	117	711	54	90	347	39	30	212	94	34	150	152
RTOR Reduction (vph)	0	4	0	0	6	0	0	19	0	0	39	0
Lane Group Flow (vph)	117	761	0	90	380	0	0	317	0	0	297	0
Heavy Vehicles (%)	16%	1%	0%	0%	1%	6%	4%	5%	0%	0%	0%	5%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	35.2	35.2		35.2	35.2			16.6			16.6	
Effective Green, g (s)	35.2	35.2		35.2	35.2			16.6			16.6	
Actuated g/C Ratio	0.55	0.55		0.55	0.55			0.26			0.26	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	439	988		214	978			411			399	
v/s Ratio Prot		c0.42			0.21							
v/s Ratio Perm	0.15			0.23				c0.20			0.19	
v/c Ratio	0.27	0.77		0.42	0.39			0.77			0.74	
Uniform Delay, d1	7.6	11.3		8.5	8.3			22.0			21.8	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.4	3.9		1.6	0.3			8.4			7.0	
Delay (s)	8.0	15.2		10.0	8.6			30.4			28.8	
Level of Service	Α	В		В	Α			С			С	
Approach Delay (s)		14.2			8.9			30.4			28.8	
Approach LOS		В			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			18.0	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.77									
Actuated Cycle Length (s)			64.1	Sı	um of lost	time (s)			12.3			
Intersection Capacity Utilizat	tion		92.2%		U Level o				F			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	←	•	>	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	1>		¥		
Volume (veh/h)	148	606	373	48	19	69	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	161	659	405	52	21	75	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	458				1412	432	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	458				1412	432	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	86				84	88	
cM capacity (veh/h)	1114				131	628	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	820	458	96				
Volume Left	161	0	21				
Volume Right	0	52	75				
cSH	1114	1700	346				
Volume to Capacity	0.14	0.27	0.28				
Queue Length 95th (m)	3.8	0.0	8.4				
Control Delay (s)	3.4	0.0	19.3				
Lane LOS	3. 4	0.0	C				
Approach Delay (s)	3.4	0.0	19.3				
Approach LOS	J. T	0.0	13.5 C				
Intersection Summary			2.4				
Average Delay	· C · · ·		3.4		MIII!	(0	
Intersection Capacity Utiliza	ation		77.9%	IC	CU Level o	of Service	
Analysis Period (min)			15				

	۶	→	•	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	£		7	^	7		4			44	
Volume (veh/h)	100	516	6	1	369	36	5	1	2	52	4	60
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	105	543	6	1	388	38	5	1	2	55	4	63
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	426			549			1213	1185	546	1147	1151	388
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	426			549			1213	1185	546	1147	1151	388
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	91			100			96	99	100	67	98	90
cM capacity (veh/h)	1133			1030			132	173	541	164	181	660
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	105	549	1	388	38	8	122					
Volume Left	105	0	1	0	0	5	55					
Volume Right	0	6	0	0	38	2	63					
cSH	1133	1700	1030	1700	1700	169	269					
Volume to Capacity	0.09	0.32	0.00	0.23	0.02	0.05	0.45					
Queue Length 95th (m)	2.3	0.0	0.0	0.0	0.0	1.2	16.9					
Control Delay (s)	8.5	0.0	8.5	0.0	0.0	27.4	29.0					
Lane LOS	Α		Α			D	D					
Approach Delay (s)	1.4		0.0			27.4	29.0					
Approach LOS						D	D					
Intersection Summary												
Average Delay			3.9									
Intersection Capacity Utilization	on		48.2%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	٠	-	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		†	↑		W	
Volume (veh/h)	57	513	401	55	35	5
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	62	558	436	60	38	5
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	496				1147	466
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	496				1147	466
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	94				82	99
cM capacity (veh/h)	1079				209	601
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	620	496	43			
Volume Left	62	0	38			
Volume Right	02	60	5			
cSH	1079	1700	228			
Volume to Capacity	0.06	0.29	0.19			
Queue Length 95th (m)	1.4	0.29	5.2			
Control Delay (s)	1.4	0.0	24.5			
Lane LOS	1.5 A	0.0	24.5 C			
Approach Delay (s)	1.5	0.0	24.5			
Approach LOS	1.0	0.0	24.5 C			
••			<u> </u>			
Intersection Summary						
Average Delay			1.7			
Intersection Capacity Utiliza	ation		67.9%	IC	U Level c	of Service
Analysis Period (min)			15			

	•	→	*	•	+	•	•	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	34	178	26	62	279	115	207	132	44	38	41	17
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	38	200	29	70	313	129	233	148	49	43	46	19
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	267	512	430	108								
Volume Left (vph)	38	70	233	43								
Volume Right (vph)	29	129	49	19								
Hadj (s)	0.15	0.01	0.07	0.06								
Departure Headway (s)	7.4	6.7	7.0	8.2								
Degree Utilization, x	0.55	0.95	0.84	0.25								
Capacity (veh/h)	462	512	506	402								
Control Delay (s)	19.2	53.3	36.6	13.8								
Approach Delay (s)	19.2	53.3	36.6	13.8								
Approach LOS	С	F	E	В								
Intersection Summary												
Delay			37.7									
Level of Service			Ε									
Intersection Capacity Utiliza	ition		67.5%	IC	CU Level	of Service	!		С			
Analysis Period (min)			15									
· ,												

Intersection												
Intersection Delay, s/veh	36.3											
Intersection LOS	Е											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	34	178	26	0	62	279	115	0	207	132	44
Peak Hour Factor	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89	0.92	0.89	0.89	0.89
Heavy Vehicles, %	0	13	9	20	0	9	7	9	0	2	0	7
Mvmt Flow	0	38	200	29	0	70	313	129	0	233	148	49
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	19.3	50.8	35.1
HCM LOS	С	F	E

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	54%	14%	14%	40%	
Vol Thru, %	34%	75%	61%	43%	
Vol Right, %	11%	11%	25%	18%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	383	238	456	96	
LT Vol	207	34	62	38	
Through Vol	132	178	279	41	
RT Vol	44	26	115	17	
Lane Flow Rate	430	267	512	108	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.825	0.553	0.938	0.246	
Departure Headway (Hd)	7.027	7.441	6.715	8.222	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	521	487	543	438	
Service Time	5.027	5.451	4.715	6.246	
HCM Lane V/C Ratio	0.825	0.548	0.943	0.247	
HCM Control Delay	35.1	19.3	50.8	13.9	
HCM Lane LOS	Е	С	F	В	
HCM 95th-tile Q	8.2	3.3	11.8	1	

SBU	SBL	SBT	SBR
0	38	41	17
0.92	0.89	0.89	0.89
0	10	0	7
0	43	46	19
0	0	1	0
	SB		
	NB		
	1		
	WB		
	1		
	EB		
	1		
	13.9		
	В		
	0 0.92 0 0	0 38 0.92 0.89 0 10 0 43 0 0 SB NB 1 WB 1 EB 13.9	0 38 41 0.92 0.89 0.89 0 10 0 0 43 46 0 0 1 SB NB 1 WB 1 EB 1 13.9

	→	•	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f _a			4	W	
Volume (veh/h)	250	30	17	326	95	77
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	272	33	18	354	103	84
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			304		679	288
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			304		679	288
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			99		75	89
cM capacity (veh/h)			1268		414	756
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	304	373	187			
Volume Left	0	18	107			
Volume Right	33	0	84			
cSH	1700	1268	519			
Volume to Capacity	0.18	0.01	0.36			
Queue Length 95th (m)	0.10	0.01	12.4			
Control Delay (s)	0.0	0.5	15.8			
Lane LOS	0.0	0.5 A	C			
Approach Delay (s)	0.0	0.5	15.8			
Approach LOS	0.0	0.5	C			
Intersection Summary			2.0			
Average Delay	· C · ·		3.6		MIII!	
Intersection Capacity Utiliza	ation		47.7%	IC	U Level c	of Service
Analysis Period (min)			15			

	۶	→	•	•	•	•	4	†	/	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	145	134	69	82	209	66	49	152	59	22	96	50
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Hourly flow rate (vph)	186	172	88	105	268	85	63	195	76	28	123	64
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	446	458	333	215								
Volume Left (vph)	186	105	63	28								
Volume Right (vph)	88	85	76	64								
Hadj (s)	0.10	0.03	0.00	-0.08								
Departure Headway (s)	7.9	8.0	8.4	8.9								
Degree Utilization, x	0.98	1.00	0.77	0.53								
Capacity (veh/h)	446	458	422	382								
Control Delay (s)	66.8	71.0	34.6	21.6								
Approach Delay (s)	66.8	71.0	34.6	21.6								
Approach LOS	F	F	D	С								
Intersection Summary												
Delay			54.0									
Level of Service			F									
Intersection Capacity Utiliza	tion		62.3%	IC	U Level	of Service			В			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	53.4											
Intersection LOS	F											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	145	134	69	0	82	209	66	0	49	152	59
Peak Hour Factor	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78	0.92	0.78	0.78	0.78
Heavy Vehicles, %	0	2	11	15	0	9	6	0	0	7	3	13
Mvmt Flow	0	186	172	88	0	105	268	85	0	63	195	76
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	64.4	71.1	35.1
HCM LOS	F	F	E

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	19%	42%	23%	13%	
Vol Thru, %	58%	39%	59%	57%	
Vol Right, %	23%	20%	18%	30%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	260	348	357	168	
LT Vol	49	145	82	22	
Through Vol	152	134	209	96	
RT Vol	59	69	66	50	
Lane Flow Rate	333	446	458	215	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.779	0.976	1	0.53	
Departure Headway (Hd)	8.408	7.875	8.028	8.859	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	437	464	453	411	
Service Time	6.354	5.844	6.028	6.822	
HCM Lane V/C Ratio	0.762	0.961	1.011	0.523	
HCM Control Delay	35.1	64.4	71.1	21.3	
HCM Lane LOS	Е	F	F	С	
HCM 95th-tile Q	6.7	12.3	13	3	

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Vol, veh/h	0	22	96	50	
Peak Hour Factor	0.92	0.78	0.78	0.78	
Heavy Vehicles, %	0	0	0	15	
Mvmt Flow	0	28	123	64	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			
Conflicting Approach Left		WB			
Conflicting Lanes Left		1			
Conflicting Approach Right		EB			
Conflicting Lanes Right		1			
HCM Control Delay		21.3			
HCM LOS		С			

	•	-	•	•	←	•	4	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	8	146	59	6	202	0	127	0	29	8	0	26
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Hourly flow rate (vph)	11	206	83	8	285	0	179	0	41	11	0	37
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	285			289			608	571	247	612	613	285
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	285			289			608	571	247	612	613	285
tC, single (s)	4.2			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			54	100	95	97	100	95
cM capacity (veh/h)	1212			1285			386	427	796	383	404	750
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	300	293	220	48								
Volume Left	11	8	179	11								
Volume Right	83	0	41	37								
cSH	1212	1285	427	612								
Volume to Capacity	0.01	0.01	0.51	0.08								
Queue Length 95th (m)	0.2	0.2	21.8	1.9								
Control Delay (s)	0.4	0.3	22.0	11.4								
Lane LOS	Α	Α	С	В								
Approach Delay (s)	0.4	0.3	22.0	11.4								
Approach LOS			С	В								
Intersection Summary												
Average Delay			6.5									
Intersection Capacity Utiliza	ation		37.1%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	†	~	\	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1>			ની
Volume (veh/h)	193	127	250	33	28	105
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	210	138	272	36	30	114
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	465	290			308	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	465	290			308	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	62	82			98	
cM capacity (veh/h)	546	754			1264	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	348	308	145			
Volume Left	210	0	30			
Volume Right	138	36	0			
cSH	613	1700	1264			
Volume to Capacity	0.57	0.18	0.02			
Queue Length 95th (m)	27.0	0.0	0.6			
Control Delay (s)	18.3	0.0	1.8			
Lane LOS	С		Α			
Approach Delay (s)	18.3	0.0	1.8			
Approach LOS	С					
Intersection Summary						
Average Delay			8.3			
Intersection Capacity Utiliza	ation		50.7%	IC	U Level o	f Service
Analysis Period (min)			15			
J (·····)						

	•	→	•	•	←	•	4	†	<i>></i>	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	71	8	10	294	0	0	106	8	5	86	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	77	9	11	320	0	0	115	9	5	93	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	320			86			470	423	82	489	427	320
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	320			86			470	423	82	489	427	320
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	78	99	99	82	100
cM capacity (veh/h)	1252			1523			435	522	984	403	519	726
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	86	330	124	99								
Volume Left	0	11	0	5								
Volume Right	9	0	9	0								
cSH	1252	1523	540	511								
Volume to Capacity	0.00	0.01	0.23	0.19								
Queue Length 95th (m)	0.0	0.2	6.7	5.4								
Control Delay (s)	0.0	0.3	13.6	13.7								
Lane LOS		Α	В	В								
Approach Delay (s)	0.0	0.3	13.6	13.7								
Approach LOS			В	В								
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utiliza	ation		38.0%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	۶	-	•	•	←	•	1	†	<i>></i>	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	50	33	33	0	185	39	12	159	14	25	87	30
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	54	36	36	0	201	42	13	173	15	27	95	33
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	515	379	111	426	388	180	127			188		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	515	379	111	426	388	180	127			188		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	83	93	96	100	62	95	99			98		
cM capacity (veh/h)	312	540	948	485	534	867	1471			1398		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	126	243	201	154								
Volume Left	54	0	13	27								
Volume Right	36	42	15	33								
cSH	453	573	1471	1398								
Volume to Capacity	0.28	0.43	0.01	0.02								
Queue Length 95th (m)	8.6	16.0	0.2	0.5								
Control Delay (s)	16.0	15.9	0.6	1.5								
Lane LOS	С	С	A	A								
Approach Delay (s)	16.0	15.9	0.6	1.5								
Approach LOS	С	С										
Intersection Summary												
Average Delay			8.6									
Intersection Capacity Utilization	on		43.4%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	•	4	†	ļ	✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ∍	
Volume (veh/h)	27	29	11	30	65	70
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	29	32	12	33	71	76
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	165	109	147			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	165	109	147			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	96	97	99			
cM capacity (veh/h)	823	950	1448			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	61	45	147			
Volume Left	29	12	0			
Volume Right	32	0	76			
cSH	885	1448	1700			
Volume to Capacity	0.07	0.01	0.09			
Queue Length 95th (m)	1.7	0.2	0.0			
Control Delay (s)	9.4	2.1	0.0			
Lane LOS	A	A	0.0			
Approach Delay (s)	9.4	2.1	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utiliza	ation		21.2%	IC	CU Level o	of Service
Analysis Period (min)			15			
. ,			. •			

	•	→	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	37	307	61	537	258	359
v/c Ratio	0.13	0.38	0.14	0.63	0.63	0.76
Control Delay	9.4	10.7	9.2	14.3	26.1	27.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.4	10.7	9.2	14.3	26.1	27.2
Queue Length 50th (m)	2.1	19.5	3.5	39.6	18.6	21.3
Queue Length 95th (m)	6.1	33.1	8.6	63.8	#60.0	#77.3
Internal Link Dist (m)		209.0		440.9	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	490	1373	721	1449	490	554
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.22	0.08	0.37	0.53	0.65
Intersection Summary						

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ»		ሻ	ĵ»			4			4	
Volume (vph)	35	277	11	57	459	46	55	130	57	33	103	201
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.99			0.97			0.92	
Flt Protected	0.95	1.00		0.95	1.00			0.99			1.00	
Satd. Flow (prot)	1586	1683		1466	1774			1670			1471	
Flt Permitted	0.36	1.00		0.57	1.00			0.80			0.95	
Satd. Flow (perm)	601	1683		885	1774			1358			1398	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	37	295	12	61	488	49	59	138	61	35	110	214
RTOR Reduction (vph)	0	3	0	0	6	0	0	14	0	0	67	0
Lane Group Flow (vph)	37	304	0	61	531	0	0	244	0	0	292	0
Heavy Vehicles (%)	10%	8%	20%	19%	2%	3%	4%	5%	7%	14%	13%	15%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			2			4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	26.5	26.5		26.5	26.5			16.0			16.0	
Effective Green, g (s)	26.5	26.5		26.5	26.5			16.0			16.0	
Actuated g/C Ratio	0.48	0.48		0.48	0.48			0.29			0.29	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	290	813		427	857			396			408	
v/s Ratio Prot		0.18			c0.30							
v/s Ratio Perm	0.06			0.07				0.18			c0.21	
v/c Ratio	0.13	0.37		0.14	0.62			0.62			0.72	
Uniform Delay, d1	7.8	8.9		7.8	10.4			16.7			17.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.2	0.3		0.2	1.4			2.4			5.5	
Delay (s)	8.0	9.3		8.0	11.8			19.2			22.8	
Level of Service	А	Α		Α	В			В			С	
Approach Delay (s)		9.1			11.5			19.2			22.8	
Approach LOS		Α			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.65									
Actuated Cycle Length (s)	•		54.8	S	um of lost	time (s)			12.3			
Intersection Capacity Utiliza	tion		82.5%		U Level o)		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	4	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	ĵ»		¥	
Volume (veh/h)	41	333	458	18	47	92
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	45	362	498	20	51	100
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	517				959	508
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	517				959	508
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	96				81	82
cM capacity (veh/h)	1059				276	569
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	407	517	151			
Volume Left	45	0	51			
Volume Right	0	20	100			
cSH	1059	1700	418			
Volume to Capacity	0.04	0.30	0.36			
Queue Length 95th (m)	1.0	0.0	12.3			
Control Delay (s)	1.3	0.0	18.4			
Lane LOS	A		С			
Approach Delay (s)	1.3	0.0	18.4			
Approach LOS			С			
Intersection Summary						
Average Delay			3.1			
Intersection Capacity Utiliza	ation		63.3%	IC	U Level o	of Service
Analysis Period (min)			15			
, ()						

	•	→	•	•	—	•	1	†	<i>></i>	/	†	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		Ĭ	^	7		4			4	
Volume (veh/h)	71	310	6	1	417	98	3	2	2	72	2	45
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	76	333	6	1	448	105	3	2	2	77	2	48
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	554			340			989	1045	337	940	943	448
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	554			340			989	1045	337	940	943	448
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.2	7.0	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.5	3.3
p0 queue free %	92			100			98	99	100	65	99	92
cM capacity (veh/h)	1006			1231			196	213	710	223	202	608
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	76	340	1	448	105	8	128					
Volume Left	76	0	1	0	0	3	77					
Volume Right	0	6	0	0	105	2	48					
cSH	1006	1700	1231	1700	1700	254	293					
Volume to Capacity	0.08	0.20	0.00	0.26	0.06	0.03	0.44					
Queue Length 95th (m)	1.9	0.0	0.0	0.0	0.0	0.7	16.0					
Control Delay (s)	8.9	0.0	7.9	0.0	0.0	19.6	26.5					
Lane LOS	Α		Α			С	D					
Approach Delay (s)	1.6		0.0			19.6	26.5					
Approach LOS						С	D					
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utiliza	ation		46.1%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	٠	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	1>		¥	
Volume (veh/h)	18	366	507	23	85	9
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	398	551	25	92	10
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	576				1001	564
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	576				1001	564
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	98				65	98
cM capacity (veh/h)	1007				266	529
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	417	576	102			
Volume Left	20	0	92			
Volume Right	0	25	10			
cSH	1007	1700	280			
Volume to Capacity	0.02	0.34	0.37			
Queue Length 95th (m)	0.5	0.0	12.2			
Control Delay (s)	0.6	0.0	25.1			
Lane LOS	Α		D			
Approach Delay (s)	0.6	0.0	25.1			
Approach LOS			D			
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Utiliza	ation		45.8%	IC	CU Level of	of Service
Analysis Period (min)			15			

	٠	→	•	•	←	•	•	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	11	354	97	86	175	77	68	104	66	129	194	26
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	12	381	104	92	188	83	73	112	71	139	209	28
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	497	363	256	375								
Volume Left (vph)	12	92	73	139								
Volume Right (vph)	104	83	71	28								
Hadj (s)	-0.07	0.03	-0.07	0.14								
Departure Headway (s)	8.1	8.3	8.8	8.4								
Degree Utilization, x	1.00	0.84	0.62	0.88								
Capacity (veh/h)	497	416	371	375								
Control Delay (s)	71.3	42.2	25.3	47.5								
Approach Delay (s)	71.3	42.2	25.3	47.5								
Approach LOS	F	Е	D	Е								
Intersection Summary												
Delay			50.3									
Level of Service			F									
Intersection Capacity Utilization	tion		81.7%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	49											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	11	354	97	0	86	175	77	0	68	104	66
Peak Hour Factor	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93	0.92	0.93	0.93	0.93
Heavy Vehicles, %	0	0	4	0	0	0	7	14	0	8	0	0
Mvmt Flow	0	12	381	104	0	92	188	83	0	73	112	71
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	70.8	39.8	25.6
HCM LOS	F	E	D

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	29%	2%	25%	37%	
Vol Thru, %	44%	77%	52%	56%	
Vol Right, %	28%	21%	23%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	238	462	338	349	
LT Vol	68	11	86	129	
Through Vol	104	354	175	194	
RT Vol	66	97	77	26	
Lane Flow Rate	256	497	363	375	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.627	1	0.826	0.86	
Departure Headway (Hd)	8.815	7.915	8.183	8.402	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	409	457	443	435	
Service Time	6.848	5.967	6.208	6.402	
HCM Lane V/C Ratio	0.626	1.088	0.819	0.862	
HCM Control Delay	25.6	70.8	39.8	45	
HCM Lane LOS	D	F	Е	Е	
HCM 95th-tile Q	4.1	13	7.8	8.6	

Lane

Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	129	194	26
Peak Hour Factor	0.92	0.93	0.93	0.93
Heavy Vehicles, %	0	6	6	13
Mvmt Flow	0	139	209	28
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
		45		
HCM Control Delay				

	-	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ĵ.			4	¥		
Volume (veh/h)	409	85	56	269	71	50	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	445	92	61	292	77	54	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			537		905	491	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			537		905	491	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			94		74	91	
cM capacity (veh/h)			1041		291	582	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	537	353	132				
Volume Left	0	61	77				
Volume Right	92	0	54				
cSH	1700	1041	367				
Volume to Capacity	0.32	0.06	0.36				
Queue Length 95th (m)	0.0	1.4	12.1				
Control Delay (s)	0.0	2.0	20.2				
Lane LOS		Α	С				
Approach Delay (s)	0.0	2.0	20.2				
Approach LOS			С				
Intersection Summary							
Average Delay			3.3				
Intersection Capacity Utiliza	ation		60.9%	IC	U Level o	of Service	
Analysis Period (min)			15				
, , ,							

	•	→	•	•	•	•	4	†	/	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	79	330	49	39	174	37	23	72	60	76	222	127
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	87	363	54	43	191	41	25	79	66	84	244	140
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	503	275	170	467								
Volume Left (vph)	87	43	25	84								
Volume Right (vph)	54	41	66	140								
Hadj (s)	0.03	0.02	-0.15	-0.08								
Departure Headway (s)	7.4	7.9	8.3	7.2								
Degree Utilization, x	1.00	0.60	0.39	0.94								
Capacity (veh/h)	503	437	404	467								
Control Delay (s)	67.9	22.2	16.5	53.2								
Approach Delay (s)	67.9	22.2	16.5	53.2								
Approach LOS	F	С	С	F								
Intersection Summary												
Delay			48.0									
Level of Service			E									
Intersection Capacity Utiliza	ition		74.5%	IC	U Level	of Service			D			
Analysis Period (min)			15									

Intersection												
Intersection Delay, s/veh	46.9											
Intersection LOS	E											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Vol, veh/h	0	79	330	49	0	39	174	37	0	23	72	60
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	0	12	2	0	0	4	6	0	0	0	7	0
Mvmt Flow	0	87	363	54	0	43	191	41	0	25	79	66
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0

Approach	EB	WB	NB
Opposing Approach	WB	EB	SB
Opposing Lanes	1	1	1
Conflicting Approach Left	SB	NB	EB
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NB	SB	WB
Conflicting Lanes Right	1	1	1
HCM Control Delay	68.2	21.6	16.2
HCM LOS	F	С	С

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	15%	17%	16%	18%	
Vol Thru, %	46%	72%	70%	52%	
Vol Right, %	39%	11%	15%	30%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	155	458	250	425	
LT Vol	23	79	39	76	
Through Vol	72	330	174	222	
RT Vol	60	49	37	127	
Lane Flow Rate	170	503	275	467	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.383	1	0.592	0.923	
Departure Headway (Hd)	8.105	7.426	7.762	7.113	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	443	493	464	509	
Service Time	6.183	5.426	5.831	5.141	
HCM Lane V/C Ratio	0.384	1.02	0.593	0.917	
HCM Control Delay	16.2	68.2	21.6	50	
HCM Lane LOS	С	F	С	Е	
HCM 95th-tile Q	1.8	13.5	3.8	11	

Lane

Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Vol, veh/h	0	76	222	127
Peak Hour Factor	0.92	0.91	0.91	0.91
Heavy Vehicles, %	0	0	0	12
Mvmt Flow	0	84	244	140
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		50		
		Е		

	•	→	•	•	+	•	1	†	<i>></i>	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	29	297	136	27	160	7	79	0	20	2	0	21
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	30	303	139	28	163	7	81	0	20	2	0	21
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	170			442			675	657	372	674	723	167
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	170			442			675	657	372	674	723	167
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.4	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.8	4.0	3.3
p0 queue free %	98			98			77	100	97	99	100	98
cM capacity (veh/h)	1419			1129			349	370	678	309	339	883
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	471	198	101	23								
Volume Left	30	28	81	2								
Volume Right	139	7	20	21								
cSH	1419	1129	387	760								
Volume to Capacity	0.02	0.02	0.26	0.03								
Queue Length 95th (m)	0.5	0.6	7.8	0.7								
Control Delay (s)	0.7	1.3	17.6	9.9								
Lane LOS	Α	Α	С	Α								
Approach Delay (s)	0.7	1.3	17.6	9.9								
Approach LOS			С	Α								
Intersection Summary												
Average Delay			3.3									
Intersection Capacity Utiliza	ation		47.9%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

	/	-	↓
Movement WBL WBR NBT	NBR	SBL	SBT
Lane Configurations 🌃			4
Volume (veh/h) 150 86 158	149	117	256
Sign Control Stop Free			Free
Grade 0% 0%			0%
Peak Hour Factor 0.92 0.92 0.92	0.92	0.92	0.92
Hourly flow rate (vph) 163 93 172	162	127	278
Pedestrians			
Lane Width (m)			
Walking Speed (m/s)			
Percent Blockage			
Right turn flare (veh)			
Median type None			None
Median storage veh)			
Upstream signal (m)			
pX, platoon unblocked			
vC, conflicting volume 785 253		334	
vC1, stage 1 conf vol			
vC2, stage 2 conf vol			
vCu, unblocked vol 785 253		334	
tC, single (s) 6.4 6.2		4.1	
tC, 2 stage (s)			
tF (s) 3.5 3.3		2.2	
p0 queue free % 50 88		90	
cM capacity (veh/h) 327 791		1237	
Direction, Lane # WB 1 NB 1 SB 1			
· · · · · · · · · · · · · · · · · · ·			
Volume Total 257 334 405			
Volume Left 163 0 127			
Volume Right 93 162 0			
cSH 416 1700 1237			
Volume to Capacity 0.62 0.20 0.10			
Queue Length 95th (m) 30.6 0.0 2.6			
Control Delay (s) 26.7 0.0 3.3			
Lane LOS D A			
Approach Delay (s) 26.7 0.0 3.3			
Approach LOS D			
Intersection Summary			
Average Delay 8.2			
Intersection Capacity Utilization 60.9%	IC	U Level o	f Service
Analysis Period (min) 15			

	۶	→	•	•	+	•	1	†	<i>></i>	>	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	237	32	32	235	0	0	148	26	12	72	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	258	35	35	255	0	0	161	28	13	78	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	255			292			639	600	275	709	617	255
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	255			292			639	600	275	709	617	255
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			100	60	96	94	80	100
cM capacity (veh/h)	1321			1281			325	406	769	230	397	788
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	292	290	189	91								
Volume Left	0	35	0	13								
Volume Right	35	0	28	0								
cSH	1321	1281	437	359								
Volume to Capacity	0.00	0.03	0.43	0.25								
Queue Length 95th (m)	0.0	0.6	16.3	7.5								
Control Delay (s)	0.0	1.2	19.4	18.4								
Lane LOS		Α	С	С								
Approach Delay (s)	0.0	1.2	19.4	18.4								
Approach LOS			С	С								
Intersection Summary												
Average Delay	_		6.6									
Intersection Capacity Utiliza	ation		52.5%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									
• , ,												

	۶	-	•	√	←	•	•	†	~	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	32	141	15	0	144	28	25	68	51	82	122	95
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	35	153	16	0	157	30	27	74	55	89	133	103
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	627	546	184	611	570	102	236			129		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	627	546	184	611	570	102	236			129		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	86	63	98	100	61	97	98			94		
cM capacity (veh/h)	253	412	863	269	399	959	1343			1469		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	204	187	157	325								
Volume Left	35	0	27	89								
Volume Right	16	30	55	103								
cSH	387	441	1343	1469								
Volume to Capacity	0.53	0.42	0.02	0.06								
Queue Length 95th (m)	22.6	15.7	0.5	1.5								
Control Delay (s)	24.3	19.0	1.5	2.5								
Lane LOS	C	C	A	A								
Approach Delay (s)	24.3	19.0	1.5	2.5								
Approach LOS	С	С										
Intersection Summary												
Average Delay			10.9									
Intersection Capacity Utilization	on		52.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			†	†	
Volume (veh/h)	65	14	26	86	26	63
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	71	15	28	93	28	68
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	212	62	97			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	212	62	97			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	91	98	98			
cM capacity (veh/h)	766	1008	1509			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	86	122	97			
Volume Left	71	28	0			
Volume Right	15	0	68			
cSH	800	1509	1700			
Volume to Capacity	0.11	0.02	0.06			
Queue Length 95th (m)	2.7	0.4	0.0			
Control Delay (s)	10.0	1.8	0.0			
Lane LOS	В	Α				
Approach Delay (s)	10.0	1.8	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			3.6			
Intersection Capacity Utilizat	tion		23.8%	IC	CU Level o	of Service
Analysis Period (min)			15			
. ,			. •			

	•	→	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	119	821	96	419	346	350
v/c Ratio	0.28	0.82	0.53	0.42	0.83	0.83
Control Delay	10.0	20.2	22.4	9.8	42.4	40.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.0	20.2	22.4	9.8	42.4	40.3
Queue Length 50th (m)	7.5	78.9	7.2	28.0	43.2	40.3
Queue Length 95th (m)	16.4	127.3	23.2	45.2	#86.7	#84.1
Internal Link Dist (m)		209.0		438.7	135.3	482.6
Turn Bay Length (m)	30.0		30.0			
Base Capacity (vph)	512	1219	221	1209	471	473
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.23	0.67	0.43	0.35	0.73	0.74
Intersection Summary						

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	4	1	†	~	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		ň	4î			4			44	
Volume (vph)	107	685	54	86	340	37	29	194	88	34	140	140
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.99			0.96			0.94	
Flt Protected	0.95	1.00		0.95	1.00			1.00			0.99	
Satd. Flow (prot)	1504	1800		1745	1783			1699			1679	
Flt Permitted	0.48	1.00		0.18	1.00			0.92			0.89	
Satd. Flow (perm)	757	1800		327	1783			1565			1507	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	119	761	60	96	378	41	32	216	98	38	156	156
RTOR Reduction (vph)	0	4	0	0	6	0	0	19	0	0	39	0
Lane Group Flow (vph)	119	817	0	96	413	0	0	327	0	0	311	0
Heavy Vehicles (%)	16%	1%	0%	0%	1%	6%	4%	5%	0%	0%	0%	5%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	-	2		-	2		-	4			4	
Permitted Phases	2			2			4			4		
Actuated Green, G (s)	37.3	37.3		37.3	37.3			17.2			17.2	
Effective Green, g (s)	37.3	37.3		37.3	37.3			17.2			17.2	
Actuated g/C Ratio	0.56	0.56		0.56	0.56			0.26			0.26	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.5	3.5		3.5	3.5			2.5			2.5	
Lane Grp Cap (vph)	422	1005		182	995			402			388	
v/s Ratio Prot		c0.45			0.23							
v/s Ratio Perm	0.16			0.29				c0.21			0.21	
v/c Ratio	0.28	0.81		0.53	0.42			0.81			0.80	
Uniform Delay, d1	7.7	11.9		9.2	8.5			23.3			23.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.4	5.2		3.1	0.3			11.7			11.1	
Delay (s)	8.2	17.2		12.4	8.8			35.0			34.3	
Level of Service	Α	В		В	A			С			С	
Approach Delay (s)		16.0		_	9.5			35.0			34.3	
Approach LOS		В			A			С			С	
Intersection Summary												
HCM 2000 Control Delay			20.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.81			_0.5.01	2					
Actuated Cycle Length (s)	only radio		66.8	Sı	um of lost	time (s)			12.3			
Intersection Capacity Utiliza	tion		95.8%			of Service			12.5 F			
Analysis Period (min)			15	10	O LOVOI (J. OCI VICE	·		'			
c Critical Lane Group			10									
o ontion carie oroup												

	۶	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	^		¥	
Volume (veh/h)	148	656	409	48	19	69
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	161	713	445	52	21	75
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	497				1505	471
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	497				1505	471
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	85				82	87
cM capacity (veh/h)	1078				115	597
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	874	497	96			
Volume Left	161	0	21			
Volume Right	0	52	75			
cSH	1078	1700	313			
Volume to Capacity	0.15	0.29	0.31			
Queue Length 95th (m)	4.0	0.0	9.6			
Control Delay (s)	3.5	0.0	21.5			
Lane LOS	Α		С			
Approach Delay (s)	3.5	0.0	21.5			
Approach LOS			С			
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utiliza	ation		82.5%	IC	U Level o	of Service
Analysis Period (min)			15			
- ()						

	•	→	•	•	+	•	1	†	<i>></i>	\	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		Ĭ	^	7		4			4	
Volume (veh/h)	105	561	7	1	400	37	6	1	2	56	5	66
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	111	591	7	1	421	39	6	1	2	59	5	69
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	460			598			1311	1277	594	1237	1242	421
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	460			598			1311	1277	594	1237	1242	421
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	90			100			94	99	100	58	97	89
cM capacity (veh/h)	1101			989			110	151	508	141	158	632
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	SB 1					
Volume Total	111	598	1	421	39	9	134					
Volume Left	111	0	1	0	0	6	59					
Volume Right	0	7	0	0	39	2	69					
cSH	1101	1700	989	1700	1700	138	238					
Volume to Capacity	0.10	0.35	0.00	0.25	0.02	0.07	0.56					
Queue Length 95th (m)	2.5	0.0	0.0	0.0	0.0	1.7	23.6					
Control Delay (s)	8.6	0.0	8.6	0.0	0.0	33.0	37.9					
Lane LOS	Α		Α			D	Е					
Approach Delay (s)	1.3		0.0			33.0	37.9					
Approach LOS						D	Ε					
Intersection Summary												
Average Delay	_		4.8				_					
Intersection Capacity Utiliza	ition		51.1%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									

→ ← < ↓ √	
Movement EBL EBT WBT WBR SBL SBR	
Lane Configurations	
Volume (veh/h) 57 562 433 55 35 5	
Sign Control Free Free Stop	
Grade 0% 0% 0%	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92	
Hourly flow rate (vph) 62 611 471 60 38 5	
Pedestrians	
Lane Width (m)	
Walking Speed (m/s)	
Percent Blockage	
Right turn flare (veh)	
Median type None None	
Median storage veh)	
Upstream signal (m)	
pX, platoon unblocked	
vC, conflicting volume 530 1235 501	
vC1, stage 1 conf vol	
vC2, stage 2 conf vol	
vCu, unblocked vol 530 1235 501	
tC, single (s) 4.1 6.4 6.2	
tC, 2 stage (s)	
tF (s) 2.2 3.5 3.3	
p0 queue free % 94 79 99	
cM capacity (veh/h) 1047 185 574	
Direction, Lane # EB 1 WB 1 SB 1	
Volume Total 673 530 43	
Volume Left 62 0 38	
Volume Right 0 60 5	
cSH 1047 1700 202	
Volume to Capacity 0.06 0.31 0.22	
Queue Length 95th (m) 1.4 0.0 6.0	
Control Delay (s) 1.5 0.0 27.6	
Lane LOS A D	
Approach Delay (s) 1.5 0.0 27.6	
Approach LOS D	
Intersection Summary	
Average Delay 1.8	
Intersection Capacity Utilization 72.2% ICU Level of Service	
Analysis Period (min) 15	

Appendix E Signal Timing Plan

WORK ORDER PUBLIC WORKS TRAFFIC SECTION CITY OF HAMILTON		ISSUE DD M SIGNS SIGN R: SIGN	M YY VALS PAINTING	HANSE	EN CUSTOMER SERVICE NUMBE
OCATION: MC NEILLY	& QUEE,				DISTRICT:
WORK TO BE DONE: REPLACE (AGINET + 3000 E) ISSUED BY: ROB (Crew initials)	TIME K. AUTHORIZED BY:	TIMINGS I	ATTACHES	T.s.	SPECIAL PROJECT WORK ORDER NO: 75R 10 OPERATIONS CENTER: TO INIT. SUPT SIGNS FOREMEN
FROM ENGINEERING SECTION MAINTENANCE/OTHER ORIGIN:	TROUBLE CALL RECEIVED BY: TIME (24 HR); DISPATCHED (24 HR):		BY-LAW NUMBER: DATE: APP'D	20	SIGNAL FOREMEN MARKING FOREMEN UPDATE INVENTORY TO LOCATION FILE
NORTH Ready at Toc FIELD REMARKS (CONDITION FOUND & ACTION TAKEN		NOTE: NO POUNDI EXCAVATING UNTIL BEEN CHECKED. Hydro: Bell Tell: Union Gas: CATV: Other:	UNDERGE NG, DIGGING OR ALL UTILITIES HAVE	NOTE	
ARRIVAL (TROUBLE CALL) TE: DD MM YY	WORK COMPLETE BY:	DATE		1	TRAFFIC ENGINEERING PARKING OPERATIONS HSR FENTION: MMENTS:
AE: 24 HR CLOCK		TIME	DD MM YY		O LOCATION FILE

CITY OF HAMILTON TRAFFIC DIVISION TRAFFIC SIGNAL CONTROLLER TIMING DATA

INTERSECTION Hwy 8	& Mc NEULY
CONTROLLER TYPE 3000 E PROGRAMMED BY ROG-	PAGE _ OF _ O
DATE MAR 15/10	DATE
Mc pt	
Hwy 8	
	[wp2 @2
\$2 LOOP 6 []	4-4-
/ HH	-LASH OPPRATION
	RED: MCNEILLY
FILLY LEGISLA	AMBAR: Huy 8
- FULLY ACTUATED - FREE OPERATION	
- REST IN GREEN ON HWYS	
2-EB/WB HWY B, NORTH-SO 4-NB/SB MCNEILLY, EAST-1	WEST PEDS, LOOPS.

SEQUENCE/START-UP (MM-3-1-1)

HWY 8 / McNeilly

START-UP PHASES/INTERVAL/SEQUENCE

(X = Enable for start-up phases. Must be compatible if more than one)

Friases A			-	2 ^	3 4	20	2 9	18	0	到0字 個17點		13	14 15	15	16
0 (0=Red, 1=Yel, 2 10 (0-255 seconds of 0 (0-25.5 secs = le 2 (2=single ring, 3=		Fliases		<			-								
10 (0-255 seconds of the conds	START-	Interval	0	(0=Red, 1=	:Yel, 2= Gm, (determines ca	olor of selec	ted phases	above on	start-up)					
0 (0-25.5 secs = le	JP	Flash	10	(0-255 sec	onds start-up	flash time)									
Z (2=single ring, 3:		Red	0	(0-25.5 sec	s = length of	first red after	start-up if s	tart-up in ye	ellow or re	p					
		Sequence		(2=single ri	ng, 3=dual rin	ig, 4=123/56	7+48, 5=12/	56+3478, 6	=1234/56	+78, 7=12;	34/5678.8	=dual qua	1. 9=12ph		T

PHASE RING ASSIGNMENTS X = Phase assigned to ring (if used). Phases in different rings but same co-phase group can time together.

18				
2			+	
		$oxed{\bot}$	1	_
14				
60				
		L	ig	-
12				
Ξ				
		-		ļ
10				
6				
		_	┝	
8				
1				
		<u> </u>	_	
ю				
2				
-	~			
3	_			
3				
2	×			
				H
+				
	Ring 1	Ring 2	Ring 3	Ring 4
	~	ድ	2	8
		ON:		
		II.		

CO-PHASE GRP 1-4 ASSIGNMENTS X = phase assigned to co-phase group. All ph's assigned to rings must be assigned to co-phase group.

·				
11- 12- 13- 13- 14- 15 16- 16- 16- 16- 16- 16- 16- 16- 16- 16-	,			
9 1				
				T
1	1		ļ	
		+	╁	╁
3 3				ł
		+	╀	╀
€				
	-	╀	$oldsymbol{\perp}$	1
2		ł	ļ	
			$oxed{oxed}$	L
4				ļ
7				
-				
		1	T	T
6		İ		
			┢	╁╌
8				
	H	├	┝	├
۲.				
	-	_	<u> </u>	L
ø				
6				
		^		
8				
				-
N	×			
		_	_	\vdash
-				
	-	2	3	4
	CO PH 1	CO PH 2	CO PH 3	ᆽ
	OF	OF	OF	CO PH
	Ö	Ó	Ó	Ō
			ES.	
		8	H	

CONTROLLER DATA PHASE RECALLS/MODES; MIN, MAX, etc. (MM-3-1-2-1-PGDN, etc.) HWY 8 / McNeilly

Г		T	Т	T	T	T	Т	T	Ţ	Τ	T	T
	16											
	15											
	4				T	\dagger	1	-				
			-	-				-		-	-	-
	2											
	12											
	-		╁╴							-		-
					-		_				L	-
ကြ	10											
TP1 PHASE RECALLS	6											
E RE	8					-						
HAS						-	_	_	-			
7 P	2											
F	9											
	5											_
			_	_		_		_	_	1		
ABLE)	¥					×						
(X = ENAE	3											
3	2	×				×						
	-											
		MIN RCL	MAX RCL	PED RCL	SOFT REC	NON-LOCK	VEH OMIT	PED OMIT	WLK REST	MAX II	RED REST	NO SKIP
		X	MA	PE	SOF	NON	VEH	PEC	WLK		RED	ž
			111	2								
			PHASE	RECALLS								

ONLY 1 PLAN PER UNIT PHASE RECALLS/MODES; CNA, INH MAX, PED OPTIONS, etc. (MM-3-1-2-2)

Г		T	Т	1	Τ	T	Т	T-	T-	T	T -	Т
	16											
	15											
1	4				†							
	6		-		-	-						
		Ž.		-	-	-			-	_	_	-
1	1.2		_	L	_	_						L
į	11											
	9											
	6											
	8			-		_	_	-		-		
								_		_	_	
	2.3				-							
	9											
	9											
3LE)	4											
(X = ENAB	3											
×								_				
	2											
	1											
		CNA 1	CNA 2	CNA 3	CNA 4	WRM	INH MAX	PED RECY	FL WALK	FDW->YEL	FDW->RED	COND PED
							Z	PEC	F	FDV	FDW	S
			8	SECALLS								
				B								

HWY 8 / McNeilly PHASE TIMES (MM-3-1-3-PGDN, etc.)


CONTROLLER DATA USE 1 TO ALL 4 TIMING PLANS

	4															
	15															
	1												1	T		
	13	8		-	1					-			-		\dagger	
	12					-	1									
	-		-	-			_		-		-		-			
	7			-	-	-	-	_			-	\vdash				
	10		<u> </u>	_					<u> </u>		-					
	6		_	_					_							
TPT	8	<u> </u>	_		—		! ! 									
	2													-		
	9					 		l I								
	2															
	4	9	2.5	3.3	2.9	_	6	25								
	3								-	-						
	2	20	3.5	4.2	1.9	12	2	20								
	1															
		ial	Эe	Μ(ρ	ılk	늣	:1	x 2	Ξ	p	TBR	TTR	ар	1ct	u
		Initial	Passage	Yellow	Red	Walk	Ped Clr	Max 1	Max 2	Mx 3 Lim	Mx 3 Adh	Ţ	1	Min Gap	Al/Act	Max In
	į		Ш	·												
			PHASE	TIMES												

VEHICLE DETECTOR ASSIGNMENTS (MM-3-1-4-1, PGDN etc.)

(X = ASSIGN VEH DETECTOR TO THAT PHASE)

48	2							
45				T		1		<u> </u>
	-	-		1				
14	\vdash	+	╀	╀	+	╁	-	\vdash
61								
1						1		-
0		┢	<u> </u>	-	-	-	-	┝
		-	<u> </u>	-	<u> </u>	-	-	ļ
6								
8		i						
7								
8				_				
		_			<u> </u>		_	
2			<u> </u>	ļ				
þ				×				×
3								
. 2		×				×		
+	_							
DET/PH	1	2	3	4	5	9	7	8
	I	-	SIGN	SEN				
	W	H	Q	Щ				

CONTROLLER DATA

PED DETECTOR ASSIGNMENTS (MM-3-1-4-2)

HWY 8 / McNeilly

	18								
	12								
	2.			/					
	5								
	- 72						-		-
	-								
	- 01							-	
	6					-			
ш Ш				ļ. 					_
PHAS	8			_					_
THAT	7								
IOR IC	ω								
DETEC	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
N PED	7				×				
ASSIG									
" *	3								
	-2		×						
	1								
	PH.								
	H	_	2	3	4	5	9	7	8
•				ż	2				
		DED	占	ASSE	MEN				

DETECTOR MODES (MM-3-1-4-3)

9		
1O		
_		
7		
ای		
		၂
		ž
2		5
		4
		9N
 		\\
		E
		3
		10
		ETECTOR
%		H
		ם
8 2		က
		님
		₹
		2
		_
60		USE 1
		Š
4 8		
		4
20		4
		7
		Š
		Ξ
		ິ
_ 0		틸
DET		Ē
		임
		_
b	Ø	
9	Ħ.	
9	MO	

	18 E	2	
	8	0	
TP1	4 Sept 2014	2	
	2 (1945) 13 (1949)		
	1. 1. 1. 2. P. D.	0	
	1		
	DET	Delay	Str/Stp
		四日	TIMES

Detector Plans selected by TOD or cycle/split association. Plan 1 = default

STR/STP DELAY

= Amount of time during phase red that phase call is delayed before it is registered.

= If DET mode = 2, this value is stretch time. If DET mode = 4, this is stop bar disconnect time (I.e. passage for stop bar)

CONTROLLER DATA

HWY 8 / McNeilly DUAL ENTRY (MM-3-1-6)

Γ	7			Т	- _[-	Т	T	7	T	Т
reen.		•	2	-	1		-	-	1	
roller so		ų	2							
ch cont										
on eac		5								
appears		\$								T
ough it		.								
ven the		10			lacksquare					
setting e		o.		-	-	1	-			
lable Dual Entry. Note this is only one setting even though it appears on each controller screen.		93				-	_	-	-	-
is is on		2			-	_	-		-	
Note th				_			-	-		
Entry.		9					_	<u> </u>		
le Dual		50						L		
∕=Enab		7								Ļ
χ̈́		63								
3		2								
üi		-								
TRY ENABLE:		MILS	1	2	3	4	5	9	7	8
ENTR		Ŧ								
DUA		PG1	UAL	MRY	SSIGN	ENTS				

Dual Entry = Left column phase automatically places call on selected phase(s) if no other real calls within selected phases ring and co-phase group

Appendix F
Traffic Signal Warrant

TRAFFIC SIGNAL WARRANT DATA INPUT

PROJECTED VOLUMES FOR JUSTIFICATION 7

44 66

110

28

Study Period:	Future Total 2024	
•		
Major Street x Major Street	Minor Street	
Major Street	Minor Street	х

East/West Street Name North/South Street Name

: Barton Street	
: McNeilley Street	

68

275

69

Minor Street McNeilley Street

Northbound

RIGHT THRU LEFT

132 207

104

236

59

Major Street	
Barton Street	

Westbound

RIGHT THRU LEFT

279 175

454

114

115 77

192

48

M	inor Stre	et		
McN	leilley S	treet		
Southbound				
RIGHT	THRU	LEFT		
17	41	38		
26	194	129		
12	225	167		

59

42

	_
Pedestrians	
Crossing	Splits
Major Street	Totals E-W N-S
0	1173 59% 41%
0	1387 58% 42%
0	
0	

		Barton Street					
	PEAK	Ш	Eastbound				
	HOUR	RIGHT	THRU	LEFT			
1	AM	26	178	34			
2	PM	97	354	11			
PHV (AM+PM)		123	532	45			
Average Hourly Volume (PHV/4)		31	133	11			

The <u>crossing</u> volume is defined as the sum of:

(1) Left turns from both minor street apporaches (2) The heaviest through volume from the minor street

Major Street

(3) 50% of the heavier left turn movement from major street when both of the following criteria are met:

(a) The left turn volume > 120 vph

(b) The left turn volume plus the opposing volume > 720 vph heavier left turn = 37 opposing though=

T=TRUE F=FALSE

0 170

11

111 59

sum:

62 86

148 37

(4) Pedestrians crossing the major street

AWS Warrant

Major

Total peak hourly exceeds 500 vph? TRUE WARRANTED Volumes Split does not exceed 70/30? TRUE WARRANTED

Total peak hourly exceeds 500 vph? FALSE NOT WARRANTED Volumes Split does not exceed 70/30? TRUE WARRANTED

TRAFFIC SIGNAL WARRANT ANLYSIS FORM FOR INTERSECTION CONTROL.

Traffic Signal Justifica	ation 7 fo	or Futur	e Deve	lopmen	- Traffic Impact Studies (page 88 OTM Book 12)			Fu	ture Total 20)24	
	arton St							No.	of lanes :	1	
FREE FLOW CONDI					IS THIS A T - INTERSECT IS THIS AN EXISTING INT		TION	YES YES	X	NO NO	X
RESTRICTED FLOW	/ COND	ITIONS	(URBA	N)	x IS THIS A NEW INTERSEC	CTION		YES		NO	X
WARRANT 1 - MINIM	/UM VE	HICUL	AR VOL	UME	100 %	SATISF	IED -	YES		NO	Χ
					80 % S	ATISFII	ED -	YES		NO	X
		MUM RE			PERCENTAGE WARRANT						
APPROACH LANES		1	2 or N	MORE							
FLOW CONDITION	FREE	RESTR. FLOW	FREE	RESTR.	AVERAGE HOURLY VOLUME			TAL ROSS			
	0	864	0	0	640						
A. ALL		100% FL	JLFILLED	0				0			
APPROACHES		80% FU	LFILLED					0	SECTIONAL PERCENT	-	
	В	ACTUA ELOW 8		JE	74			74			
		cation Inc				TOTAL DOWN	74	/ 1 =	74		
	0	204	0	0	267			TAL ROSS			
B. MINOR STREET	100% FULFILLED				100			100			
BOTH APPROACHES*		80% FU	LFILLED					0	SECTIONAL PERCENT		
ACTUAL % IF BELOW 80% VAL			15				0	PERCEINI			
* FOR 'T' INTERSECTIONS M					SED BY AN ADDITIONAL 50%	TOTAL DOWN	100	/ 1 =	100		
WARRANT 2 - DELA	у то с	ROSS	TRAFFI	С	100 %	SATISF	IED -	YES	Ш	NO	Χ
					80 % S	ATISFII	ED -	YES		NO	X
		MUM RE			PERCENTAGE WARRANT						
APPROACH LANES	FREE	1 RESTR.	2 or N	MORE RESTR.							
FLOW CONDITION	FLOW	FLOW	FLOW	FLOW	AVERAGE HOURLY VOLUME			TAL ROSS			
	0	864	0	0	374						
A. MAJOR STREET		100% FL	JLFILLED)				0			
APPROACHES		80% FU						0	SECTIONAL PERCENT	-	
ACTUAL % IF BELOW 80% VAL			JE	43			43				
	luctifie	cation Inc	proposed b	200/		TOTAL DOWN	43	/ 1 =	43		
			neaseu i	Jy 20 /6	118			TAL			
	0	90	0	0	110		ACF	ROSS			
B. CRAFFIC	0			ŭ	100			ROSS 100			
B. TRAFFIC CROSSING MAJOR STREET	0	90	JLFILLEC)			1		SECTIONAL PERCENT		
B. CROSSING	0	90 100% FL 80% FU	JLFILLED LFILLED AL % IF)			1	100		-	

NOTES:

- 1. The warrant values are based on annual average daily traffic (AADT) which apporximates May and October traffic
 2. For warrants 1, 2, 3 and 4, <u>each</u> hourly volume must exceed the minimum requirements for the warrant to be 100% satisfied
 3. For warrant 5 the 8 hour <u>average</u> must exceed the minimum requirements for the warrant to be 100% satisfied
 4. The <u>crossing</u> volume is defined as the sum of:
 (1) Left turns from both minor street apporaches
 (2) The heaviest through volume from the minor street
 (3) 50% of the heavier left turn movement from major street when both of the following criteria are met:
 (a) The left turn volume > 120 vph
 (b) The left turn volume plus the opposing volume > 720 vph
 (4) Pedestrians crossing the major street

Traffic Analysis-29Oct2018-DC Page 2

TRAFFIC SIGNAL WARRANT DATA INPUT

: Barton Street

: Lewis Road

PROJECTED VOLUMES FOR JUSTIFICATION 7

Study Period:	Future Total 2024	
	_	
Major Street x	Minor Street	
Major Street x Major Street	Minor Street	Х

East/West Street Name North/South Street Name

HOUR

AM PM

PHV (AM+PM)

Average Hourly Volume (PHV/4)

ajor Stre	et			
rton Street				
astboun	d			
THRU	LEFT			
134	145			
000	70			

224

56

Mi	nor Stree	et			
Le	wis Roa	d			
Northbound					
RIGHT	THRU	LEFT			
59	152	49			
60	72	23			
119	224	72			
30	56	18			

Major Street					
Ba	arton Stre	eet			
٧	/estbour	nd			
RIGHT	THRU	LEFT			
66	209	82			
37	174	39			
103	383	121			
26	96	30			

Minor Street							
Lewis Road							
Southbound							
RIGHT	THRU	LEFT					
50	96	22					
127	222	76					
177	318	98					
44	80	25					

Pedestrians Crossing Major Street	Splits Totals E-W N-S
0	1133 62% 38%
0	1288 55% 45%
0	
0	

The <u>crossing</u> volume is defined as the sum of:

(1) Left turns from both minor street apporaches

Ма

RIGHT

69 49

118

30

(2) The heaviest through volume from the minor street

464

116

(3) 50% of the heavier left turn movement from major street when both of the following criteria are met:

(a) The left turn volume > 120 vph

T=TRUE F=FALSE

(b) The left turn volume plus the opposing volume > 720 vph heavier left turn = 56 opposing though=

(4) Pedestrians crossing the major street

122 sum:

AWS Warrant

Major

Total peak hourly exceeds 500 vph? TRUE WARRANTED Volumes Split does not exceed 70/30? TRUE WARRANTED

Total peak hourly exceeds 500 vph? FALSE NOT WARRANTED Volumes Split does not exceed 70/30? TRUE WARRANTED

TRAFFIC SIGNAL WARRANT ANLYSIS FORM FOR INTERSECTION CONTROL.

Traffic Signal Justifica	ation 7 f	or Futur	e Deve	lopmen	- Traffic Impa	ct Studies (page 88 OTM Book 12)		Fu	ture Total 20)24	
	arton S ewis Ro							No.	of lanes :	1	
FREE FLOW CONDI	TIONS	(RURAL	∟)		IS THIS A T - INTERSECTION		YES		NO	Χ	
RESTRICTED FLOW CONDITIONS (URBAN)				AN)	x	IS THIS AN EXISTING INTERSECTION			X	NO NO	Х
WARRANT 1 - MINIMUM VEHICULAR VOLUME				LUME		100 %	SATISI	FIED - YES		NO	X
						80 %	SATISF	ED - YES	П	NO	Х
	MINII	MUM REG	QUIREN	ENTS				Ī			
APPROACH LANES	Justification Increased by 20%			PERCENTAGE WARRANT							
FLOW CONDITION	FREE	RESTR. FLOW	FREE FLOW	RESTR. FLOW		AVERAGE HOURLY VOLUME		TOTAL ACROSS			
	0	864	0	0		605					
A. ALL		100% FU	JLFILLE)				0			
APPROACHES		80% FU	LFILLED)				0	SECTIONAL PERCENT		
	R	ACTUA SELOW 80	AL % IF	IF		70		70	. 2.102.11		
		LLOW O	070 VAL	<u>, , , , , , , , , , , , , , , , , , , </u>			TOTAL DOWN	70 / 1 =	70		
		cation Inc				252		TOTAL			
B MINOR STREET	0 204 0 0 100% FULFILLED					100		ACROSS 100			
B. BOTH APPROACHES*	80% FULFILLED							0	SECTIONAL		
	ACTUAL % IF							0	PERCENT		
	В	ELOW 80	0% VALI	JE			TOTAL	100 / 1 =	100		
WARRANT 2 - DELA								FIED - YES		NO NO	X
		MUM REG				PERCENTAGE WARRANT					
APPROACH LANES	FREE	1 2 or MORE									
FLOW CONDITION	FLOW	FLOW	FLOW	FLOW	AVERAGE HOURLY VOLUME			TOTAL ACROSS			
	0	864	0	0		353				_	
A. MAJOR STREET BOTH		100% FU	JLFILLE)				0			
APPROACHES		80% FU)				0	SECTIONAL PERCENT		
	В	ACTUA ELOW 80		JE	41		41				
							TOTAL DOWN	41 / 1 =	41		
	Justifi	cation Inc	reased I	oy 20% 0		136		TOTAL			
TRAFFIC		100% FU				100		ACROSS 100			
B. TRAFFIC CROSSING MAJOR STREET						100		0	SECTIONAL		
	80% FULFILLED ACTUAL % IF							0	PERCENT		
	В	SELOW 80	0% VALI	JE			TOTAL	100 / 1 =	100		
2. For warra 3. For warra 4. The <u>cross</u> (1) Le (2) Th (3) 50	nts 1, 2, 3; nt 5 the 8 h ing volume ift turns fro he heaviest 1% of the h (a) The le (b) The le	and 4, each nour average is defined om both min t through vo leavier left t eft turn volu	h hourly vo ge must ex- as the sum for street a plume from turn move ime > 120 ime plus the	olume must acced the m m of: apporaches a the minor ment from vph ne opposing	exceed the minimur inimum requirement street	ich apporximates May and October traffic in requirements for the warrant to be 100% satisfie is for the warrant to be 100% satisfied oth of the following criteria are met:	DOWN				

Page 2

Traffic Analysis-29Oct2018-DC

TRAFFIC SIGNAL WARRANT DATA INPUT

: Lewis Road

PROJECTED VOLUMES FOR JUSTIFICATION 7

: Highway 8

Study Period:	Future Total 2024	
	_	
Major Street x	Minor Street	
Major Street x Major Street	Minor Street	Х

East/West Street Name North/South Street Name

		Major Street				
		H	lighway	8		
ſ	PEAK	E	astboun	d		
ſ	HOUR	RIGHT	THRU	LEFT		
1	AM	6	310	71		
2	PM	7	561	105		
PHV (AM+PM)		13	871	176		
Average Hourly Volume (PHV/4)		3	218	44		

Minor Street							
Le	wis Roa	d					
Northbound							
RIGHT	THRU	LEFT					
2	2	3					
2	1	6					
4	3	9					
1	1	2					

Major Street								
Highway 8								
Westbound								
RIGHT	THRU	LEFT						
98	417	1						
37	400	1						
135	817	2						
34	204	1						

Minor Street							
Lewis Road							
Southbound							
RIGHT	THRU	LEFT					
45	2	72					
66	5	56					
111	7	128					
28	2	32					

Pedestrians Crossing Major Street	Totals		lits N-S
0		88%	
0		89%	
0			
0			

The <u>crossing</u> volume is defined as the sum of:

(1) Left turns from both minor street apporaches

- (2) The heaviest through volume from the minor street
- (3) 50% of the heavier left turn movement from major street when both of the following criteria are met:

T=TRUE F=FALSE

(a) The left turn volume > 120 vph
(b) The left turn volume plus the opposing volume > 720 vph
heavier left turn= 44 oppposing though=

sum:

36

(4) Pedestrians crossing the major street

AWS Warrant

Total peak hourly exceeds 500 vph? TRUE WARRANTED
Volumes Split does not exceed 70/30? FALSE NOT WARRANTED

Total peak hourly exceeds 500 vph? FALSE NOT WARRANTED Volumes Split does not exceed 70/30? TRUE WARRANTED

TRAFFIC SIGNAL WARRANT ANLYSIS FORM FOR INTERSECTION CONTROL.

Traffic Signal Justifica	ation 7 fo	or Futur	e Deve	lopmen	- Traffic Impact Studies (page 88 OTM Book 12)			Fu	ture Total 2	024	
Major street : Highway 8 Minor street : Lewis Road									of lanes :	1	
FREE FLOW CONDITIONS (RURAL)					IS THIS A T - INTERSECTION IS THIS AN EXISTING INTERSECT		ION	YES YES	X	NO NO	
RESTRICTED FLOW	COND	ITIONS	(URBA	N)	x IS THIS A NEW INTERSECT	ΓΙΟΝ		YES		NO	X
WARRANT 1 - MINIM	MUM VE	HICUL	AR VOL	UME	100 % SA	ATISFII	ED -	YES		NO	X
					80 % SAT	TISFIE	D -	YES		NO	X
		MUM RE			PERCENTAGE WARRANT						
Justification Increased by 20% APPROACH LANES 1 2 or MORE				MORE							
FLOW CONDITION FLOW FLOW FLOW FLOW			FLOW	FLOW	AVERAGE HOURLY VOLUME			OTAL ROSS			
	0	864	0	0	569						
A. ALL		100% FL	JLFILLED)				0			
APPROACHES		80% FU	LFILLED					0	SECTIONAL PERCENT	-	
	В	ACTU/ ELOW 8		JE	66			66			
		cation Inc				OTAL OWN	66	/ 1 =	66		
	0	204	0	0	66			OTAL ROSS			
B. MINOR STREET	100% FULFILLED						7101	0			
BOTH APPROACHES*	80% FULFILLED							0	SECTIONAL PERCENT	-	
	ь	ACTUAL % IF BELOW 80% VALUE			32			32	FERCEIVI		
* FOR 'T' INTERSECTIONS IV						OTAL	32	/ 1 =	32		
WARRANT 2 - DELA	Y TO C	ROSS	TRAFFI	С	100 % SA	ATISFII	ED -	YES		NO	X
					80 % SAT	TISFIE	D -	YES		NO	Χ
		MUM RE			PERCENTAGE WARRANT						
APPROACH LANES	FREE	1 RESTR.	2 or N	NORE RESTR.							
FLOW CONDITION				FLOW	AVERAGE HOURLY VOLUME			OTAL ROSS			
	0	864	0	0	504						
A. MAJOR STREET		100% FL	JLFILLED)				0			
APPROACHES			LFILLED	1				0	SECTIONAL PERCENT	-	
	В	ACTU/ ELOW 8	AL % IF 0% VALU	JE	58			58			
	1			200/		OTAL	58	/ 1 =	58		
	0	90	0	0	3			OTAL ROSS			
B. TRAFFIC		100% FULFILLED					7101	0			
CROSSING MAJOR STREET									0=0=10111	- 1	
			LFILLED					0	SECTIONAL	-	
		80% FU	AL % IF		3			3	PERCENT	-	

NOTES:

- 1. The warrant values are based on annual average daily traffic (AADT) which apporximates May and October traffic
 2. For warrants 1, 2, 3 and 4, <u>each</u> hourly volume must exceed the minimum requirements for the warrant to be 100% satisfied
 3. For warrant 5 the 8 hour <u>average</u> must exceed the minimum requirements for the warrant to be 100% satisfied
 4. The <u>crossing</u> volume is defined as the sum of:
 (1) Left turns from both minor street apporaches
 (2) The heaviest through volume from the minor street
 (3) 50% of the heavier left turn movement from major street when both of the following criteria are met:
 (a) The left turn volume > 120 vph
 (b) The left turn volume plus the opposing volume > 720 vph
 (4) Pedestrians crossing the major street

Traffic Analysis-29Oct2018-DC Page 2

Appendix G Arcady Data Sheets

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: CA01 - Coll D at Coll D.arc8
Path: G:\Legacy\SernasTransTech\Projects\2018\Fruitland TIS\Analysis\Arcady

Report generation date: 10/28/2018 10:48:08 PM

Summary of intersection performance

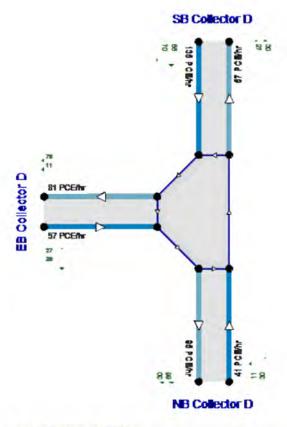
		АМ							РМ					
	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
		C-85 - 2024												
SB Collector D	~1	3.68	0.13	А			574 %	~1	3.53	0.09	А			607 %
EB Collector D	~1	3.51	0.05	А	3.59	A	[SB	~1	3.48	0.07	А	3.57	A	[NB
NB Collector D	~1	3.36	0.04	А			Collector D]	~1	3.67	0.10	Α			Collector D]

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

"D1 - 2024, AM " model duration: 7:45 AM - 9:15 AM "D2 - 2024, PM" model duration: 7:45 AM - 9:15 AM

Run using Junctions 8.0.6.541 at 10/28/2018 10:47:59 PM

File summary


Title	(untitled)
Location	
Site Number	
Date	11/18/2014
Version	
Status	Conceptual
Identifier	
Client	
Jobnumber	
Analyst	
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.00	✓	✓	Delay	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	Veh	Veh	perHour	S	-Min	perMin

20.00 m

Showing original traffic demand (PCE/hi). Time Segment: (07:45-08:00)

Showing Analysis Set "A1 - C-85"; Demand Set "D1 - 2024, AM"

The intersection diagram reflects the last run of ARCADY.

C-85 - 2024, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	DemandSets	D1 - 2024, AM	Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, AM	2024	AM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	3,4,1				3.59	Α

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold
Right	Normal/unknown	574	SB Collector D

Legs

Legs

Name	Leg	Name	Description
SB Collector D	3	SB Collector D	
EB Collector D	4	EB Collector D	
NB Collector D	1	NB Collector D	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
SB Collector D	0.00	99999.00		0.00
EB Collector D	0.00	99999.00		0.00
NB Collector D	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half-width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
SB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
EB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
NB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
SB Collector D	Percentage			85.00
EB Collector D	Percentage			85.00
NB Collector D	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
SB Collector D		(calculated)	(calculated)	0.579	1132.570
EB Collector D		(calculated)	(calculated)	0.579	1132.570
NB Collector D		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Type	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
SB Collector D	None			
EB Collector D	Percentage			100.00
NB Collector D	Percentage			100.00

Traffic Flows

Demand Set Data Options

Ve	efault ehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
			✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
SB Collector D	ONE HOUR	✓	135.00	100.000
EB Collector D	ONE HOUR	✓	56.00	89.000
NB Collector D	ONE HOUR	✓	41.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	SB Collector D	121.36	121.36		
08:00-08:15	EB Collector D	50.34	50.86		
08:00-08:15	NB Collector D	36.86	37.06		
08:15-08:30	SB Collector D	148.64	148.64		
08:15-08:30	EB Collector D	61.66	62.30		
08:15-08:30	NB Collector D	45.14	45.38		
08:30-08:45	SB Collector D	148.64	148.64		
08:30-08:45	EB Collector D	61.66	62.30		
08:30-08:45	NB Collector D	45.14	45.38		
08:45-09:00	SB Collector D	121.36	121.36		
08:45-09:00	EB Collector D	50.34	50.86		
08:45-09:00	NB Collector D	36.86	37.06		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

	То								
		SB Collector D	EB Collector D	NB Collector D					
Erom	SB Collector D	0.000	70.000	65.000					
From	EB Collector D	27.000	0.000	29.000					
	NB Collector D	30.000	11.000	0.000					

Turning Proportions (Veh) - untitled (for whole period)

		Т	o		
		SB Collector D	EB Collector D	NB Collector D	
Eram	SB Collector D	0.00	0.52	0.48	
From	EB Collector D	0.48	0.00	0.52	
	NB Collector D	0.73	0.27	0.00	

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

		То									
		SB Collector D	EB Collector D	NB Collector D							
From	SB Collector D	1.000	1.000	1.000							

EB Collector D	1.000	1.020	1.020
NB Collector D	1.000	1.020	1.020

Truck Percentages - untitled (for whole period)

		То									
		SB Collector D		NB Collector D							
From	SB Collector D	0.0	0.0	0.0							
	EB Collector D	0.0	2.0	2.0							
	NB Collector D	0.0	2.0	2.0							

Results

Results Summary for whole modelled period

Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)
SB Collector D	0.13	3.68	0.15	~1	А	135.00	135.00	8.13	3.62	0.09	11.10	3.58
EB Collector D	0.05	3.51	0.05	~1	А	49.84	49.84	2.88	3.47	0.03	3.94	3.45
NB Collector D	0.04	3.36	0.04	~1	А	36.49	36.49	2.03	3.33	0.02	2.78	3.32

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	121.36	30.34	121.28	45.58	8.80	0.00	1127.38	991.36	0.108	0.10	0.12	3.577	A
EB Collector D	44.81	11.20	44.78	71.68	58.39	0.00	1087.49	847.42	0.041	0.04	0.04	3.451	A
NB Collector D	32.80	8.20	32.78	81.58	21.59	0.00	1114.09	891.21	0.029	0.03	0.03	3.328	А

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	148.64	37.16	148.51	55.81	10.77	0.00	1126.21	991.36	0.132	0.12	0.15	3.681	A
EB Collector D	54.87	13.72	54.83	87.78	71.51	0.00	1079.98	847.42	0.051	0.04	0.05	3.510	A
NB Collector D	40.18	10.04	40.15	99.90	26.44	0.00	1111.29	891.21	0.036	0.03	0.04	3.360	A

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	148.64	37.16	148.64	55.85	10.78	0.00	1126.20	991.36	0.132	0.15	0.15	3.681	A
EB Collector D	54.87	13.72	54.87	87.85	71.57	0.00	1079.94	847.42	0.051	0.05	0.05	3.511	А
NB Collector D	40.18	10.04	40.18	99.98	26.46	0.00	1111.28	891.21	0.036	0.04	0.04	3.360	А

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	121.36	30.34	121.48	45.65	8.81	0.00	1127.37	991.36	0.108	0.15	0.12	3.578	A
EB Collector D	44.81	11.20	44.85	71.80	58.49	0.00	1087.44	847.42	0.041	0.05	0.04	3.452	A
NB Collector D	32.80	8.20	32.83	81.72	21.62	0.00	1114.07	891.21	0.029	0.04	0.03	3.331	A

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	1.78	0.12	3.577	А	A
EB Collector D	0.63	0.04	3.451	А	А
NB Collector D	0.45	0.03	3.328	Α	A

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	2.24	0.15	3.681	А	A
EB Collector D	0.79	0.05	3.510	А	А
NB Collector D	0.55	0.04	3.360	А	А

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	2.27	0.15	3.681	А	А
EB Collector D	0.80	0.05	3.511	А	А
NB Collector D	0.56	0.04	3.360	Α	А

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	1.84	0.12	3.578	А	А
EB Collector D	0.66	0.04	3.452	А	А
NB Collector D	0.46	0.03	3.331	А	А

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.04	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector D	0.03	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.05	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

NB Collector D	0.04	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A	
Collector D						because the mean queue is very small or very big.			

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.05	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector D	0.04	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.04	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector D	0.03	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

C-85 - 2024, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Warning DemandSets D2 - 2024, PM Time results are shown for central hour only. (Model is run for a 90 minute period.)		Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, PM	2024	PM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	3,4,1				3.57	Α

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold	
Right	Normal/unknown	607	NB Collector D	

Legs

Legs

Name	Leg	Name	Description
SB Collector D	3	SB Collector D	
EB Collector D	4	EB Collector D	
NB Collector D	1	NB Collector D	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
SB Collector D	0.00	99999.00		0.00
EB Collector D	0.00	99999.00		0.00
NB Collector D	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half-width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
SB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
EB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
NB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
SB Collector D	Percentage			85.00
EB Collector D	Percentage			85.00
NB Collector D	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
SB Collector D		(calculated)	(calculated)	0.579	1132.570
EB Collector D		(calculated)	(calculated)	0.579	1132.570
NB Collector D		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Type	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
SB Collector D	None			
EB Collector D	Percentage			100.00
NB Collector D	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Source fruck	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
SB Collector D	ONE HOUR	✓	89.00	100.000
EB Collector D	ONE HOUR	✓	79.00	89.000
NB Collector D	ONE HOUR	✓	112.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)

08:00-08:15	SB Collector D	80.01	80.01	
08:00-08:15	EB Collector D	71.02	71.27	
08:00-08:15	NB Collector D	100.69	101.15	
08:15-08:30	SB Collector D	97.99	97.99	
08:15-08:30	EB Collector D	86.98	87.29	
08:15-08:30	NB Collector D	123.31	123.89	
08:30-08:45	SB Collector D	97.99	97.99	
08:30-08:45	EB Collector D	86.98	87.29	
08:30-08:45	NB Collector D	123.31	123.89	
08:45-09:00	SB Collector D	80.01	80.01	
08:45-09:00	EB Collector D	71.02	71.27	
08:45-09:00	NB Collector D	100.69	101.15	

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

	То										
		SB Collector D	EB Collector D	NB Collector D							
From	SB Collector D	0.000	63.000	26.000							
FIOIII	EB Collector D	65.000	0.000	14.000							
	NB Collector D	86.000	26.000	0.000							

Turning Proportions (Veh) - untitled (for whole period)

		Т	о			
		SB Collector D	EB Collector D	NB Collector D		
From	SB Collector D	0.00	0.71	0.29		
FIOIII	EB Collector D	0.82	0.00	0.18		
	NB Collector D	0.77	0.23	0.00		

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

		Т	o			
		SB Collector D	EB Collector D	NB Collector D		
From	SB Collector D	1.000	1.000	1.000		
FIOIII	EB Collector D	1.000	1.020	1.020		
	NB Collector D	1.000	1.020	1.020		

Truck Percentages - untitled (for whole period)

		Т	o	
		SB Collector D	EB Collector D	NB Collector D
From	SB Collector D	0.0	0.0	0.0
From	EB Collector D	0.0	2.0	2.0
	NB Collector D	0.0	2.0	2.0

Results

Results Summary for whole modelled period

	Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)
- 1													

SB Collector D	0.09	3.53	0.10	~1	А	89.00	89.00	5.16	3.48	0.06	7.06	3.46
EB Collector D	0.07	3.48	0.07	~1	А	70.31	70.31	4.03	3.44	0.04	5.51	3.42
NB Collector D	0.10	3.67	0.11	~1	А	99.68	99.68	5.99	3.61	0.07	8.18	3.58

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	80.01	20.00	79.96	120.73	20.79	0.00	1120.29	1039.98	0.071	0.06	0.08	3.459	A
EB Collector D	63.21	15.80	63.17	77.39	23.36	0.00	1115.10	953.28	0.057	0.05	0.06	3.421	А
NB Collector D	89.61	22.40	89.55	34.55	51.97	0.00	1097.39	675.29	0.082	0.07	0.09	3.571	А

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	97.99	24.50	97.91	147.85	25.46	0.00	1117.54	1039.98	0.088	0.08	0.10	3.530	A
EB Collector D	77.41	19.35	77.35	94.77	28.60	0.00	1112.07	953.28	0.070	0.06	0.07	3.478	А
NB Collector D	109.75	27.44	109.66	42.31	63.65	0.00	1090.66	675.29	0.101	0.09	0.11	3.669	А

Main results: (08:30-08:45)

	•	•											
Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	97.99	24.50	97.99	147.96	25.48	0.00	1117.52	1039.98	0.088	0.10	0.10	3.530	А
EB Collector D	77.41	19.35	77.41	94.84	28.63	0.00	1112.06	953.28	0.070	0.07	0.07	3.478	А
NB Collector D	109.75	27.44	109.75	42.34	63.69	0.00	1090.63	675.29	0.101	0.11	0.11	3.669	А

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB Collector D	80.01	20.00	80.08	120.93	20.82	0.00	1120.27	1039.98	0.071	0.10	0.08	3.463	А
EB Collector D	63.21	15.80	63.26	77.51	23.40	0.00	1115.08	953.28	0.057	0.07	0.06	3.424	А
NB Collector D	89.61	22.40	89.70	34.61	52.05	0.00	1097.34	675.29	0.082	0.11	0.09	3.572	А

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service	
SB Collector D	1.14	0.08	3.459	А	А	

EB Collector D	0.89	0.06	3.421	А	А
NB Collector D	1.31	0.09	3.571	A	А

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	1.42	0.09	3.530	А	А
EB Collector D	1.10	0.07	3.478	А	А
NB Collector D	1.65	0.11	3.669	А	А

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	1.44	0.10	3.530	А	А
EB Collector D	1.12	0.07	3.478	А	А
NB Collector D	1.67	0.11	3.669	А	А

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB Collector D	1.17	0.08	3.463	А	A
EB Collector D	0.92	0.06	3.424	А	А
NB Collector D	1.36	0.09	3.572	А	А

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

			•		,				
Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.08	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.06	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector D	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.10	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector D	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.10	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector D	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB Collector D	0.08	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.06	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

NB Collector D	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
-------------------	------	----	----	----	----	--	-----	-----

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: CA01 - Coll D at Coll E.arc8
Path: G:\Legacy\SernasTransTech\Projects\2018\Fruitland TIS\Analysis\Arcady

Report generation date: 10/28/2018 10:36:41 PM

Summary of intersection performance

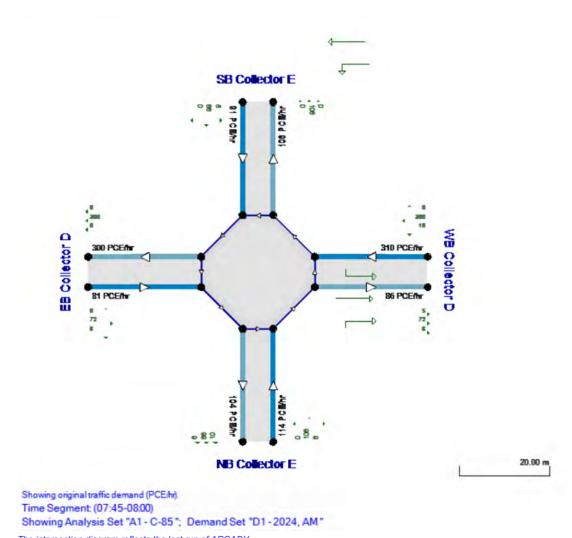
		AM							PM					
	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
		C-85 - 2024												
WB Collector D	~1	4.78	0.28	Α			186 %	~1	4.70	0.25	Α			196 %
SB Collector E	~1	3.41	0.09	Α	4.20			~1	3.32	0.08	Α	4.46		[[
EB Collector D	~1	3.71	0.07	Α	4.20	A	[WB Collector	~1	4.64	0.25	Α		A	[WB Collector
NB Collector E	~1	3.69	0.10	Α			D]	~1	4.42	0.17	Α			D]

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

"D1 - 2024, AM " model duration: 7:45 AM - 9:15 AM "D2 - 2024, PM" model duration: 7:45 AM - 9:15 AM

Run using Junctions 8.0.6.541 at 10/28/2018 10:36:07 PM

File summary


Title	(untitled)
Location	
Site Number	
Date	11/18/2014
Version	
Status	Conceptual
Identifier	
Client	
Jobnumber	
Analyst	
Description	

Analysis Options

Ve	hicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
	7.00	✓	✓	Delay	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	Veh	Veh	perHour	s	-Min	perMin

The intersection diagram reflects the last run of ARCADY.

C-85 - 2024, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	DemandSets	D1 - 2024, AM	Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, AM	2024	AM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	2,3,4,1				4.20	Α

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold
Right	Normal/unknown	186	WB Collector D

Legs

Legs

Name	Leg	Name	Description
WB Collector D	2	WB Collector D	
SB Collector E	3	SB Collector E	
EB Collector D	4	EB Collector D	
NB Collector E	1	NB Collector E	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
WB Collector D	0.00	99999.00		0.00
SB Collector E	0.00	99999.00		0.00
EB Collector D	0.00	99999.00		0.00
NB Collector E	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
WB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
SB Collector E	4.25	4.25	0.00	20.00	40.00	20.00	
EB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
NB Collector E	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Type	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
WB Collector D	Percentage			85.00
SB Collector E	None			
EB Collector D	Percentage			85.00
NB Collector E	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
WB Collector D		(calculated)	(calculated)	0.579	1132.570
SB Collector E		(calculated)	(calculated)	0.579	1332.435
EB Collector D		(calculated)	(calculated)	0.579	1132.570
NB Collector E		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Туре	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
WB Collector D	Percentage			100.00
SB Collector E	None			
EB Collector D	Percentage			100.00
NB Collector E	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry	
		✓	✓	Truck Percentages	2.00				✓	√	

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
WB Collector D	ONE HOUR	✓	304.00	89.000
SB Collector E	ONE HOUR	✓	91.00	100.000
EB Collector D	ONE HOUR	✓	79.00	89.000
NB Collector E	ONE HOUR	✓	114.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	WB Collector D	273.29	278.76		
08:00-08:15	SB Collector E	81.81	81.81		
08:00-08:15	EB Collector D	71.02	72.44		
08:00-08:15	NB Collector E	102.48	102.63		
08:15-08:30	WB Collector D	334.71	341.40		
08:15-08:30	SB Collector E	100.19	100.19		
08:15-08:30	EB Collector D	86.98	88.72		
08:15-08:30	NB Collector E	125.52	125.69		
08:30-08:45	WB Collector D	334.71	341.40		
08:30-08:45	SB Collector E	100.19	100.19		
08:30-08:45	EB Collector D	86.98	88.72		
08:30-08:45	NB Collector E	125.52	125.69		
08:45-09:00	WB Collector D	273.29	278.76		
08:45-09:00	SB Collector E	81.81	81.81		
08:45-09:00	EB Collector D	71.02	72.44		
08:45-09:00	NB Collector E	102.48	102.63		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

		То											
From		WB Collector D	SB Collector E	EB Collector D	NB Collector E								
	WB Collector D	0.000	0.000	294.000	10.000								
	SB Collector E	5.000	0.000	0.000	86.000								
	EB Collector D	71.000	0.000	0.000	8.000								
	NB Collector E	8.000	106.000	0.000	0.000								

Turning Proportions (Veh) - untitled (for whole period)

		То											
		WB Collector D	SB Collector E	EB Collector D	NB Collector E								
From	WB Collector D	0.00	0.00	0.97	0.03								
	SB Collector E	0.05	0.00	0.00	0.95								
	EB Collector D	0.90	0.00	0.00	0.10								
	NB Collector E	0.07	0.93	0.00	0.00								

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

		То											
		WB Collector D	SB Collector E	EB Collector D	NB Collector E								
	WB Collector D	1.020	1.000	1.020	1.020								
From	SB Collector E	1.000	1.000	1.000	1.000								
	EB Collector D	1.020	1.000	1.020	1.020								
	NB Collector E	1.020	1.000	1.020	1.020								

Truck Percentages - untitled (for whole period)

		То											
From		WB Collector D	SB Collector E	EB Collector D	NB Collector E								
	WB Collector D	2.0	0.0	2.0	2.0								
	SB Collector E	0.0	0.0	0.0	0.0								
	EB Collector D	2.0	0.0	2.0	2.0								
	NB Collector E	2.0	0.0	2.0	2.0								

Results

Results Summary for whole modelled period

Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min) Average Queueing Delay (s)		Queueing Queueing		Inclusive Average Queueing Delay (s)
WB Collector D	0.28	4.78	0.39	~1	А	270.56	270.56 270.56		4.57	0.23	27.63	4.45
SB Collector E	0.09	3.41	0.09	~1	А	91.00	91.00	5.04	3.32	0.06	6.83	3.27
EB Collector D	0.07	3.71	0.08	~1	А	70.31	70.31	4.27	3.65	0.05	5.83	3.62
NB Collector E	0.10	3.69	0.11	~1	А	101.46	101.46	6.13	3.62	0.07	8.36	3.59

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	243.23	60.81	242.98	67.65	84.75	0.00	1062.25	688.92	0.229	0.23	0.30	4.393	A
SB Collector E	81.81	20.45	81.75	84.75	242.98	0.00	1188.93	925.57	0.069	0.06	0.07	3.250	А
EB Collector D	63.21	15.80	63.16	234.99	89.74	0.00	1059.33	571.84	0.060	0.05	0.06	3.613	А
NB Collector E	91.21	22.80	91.15	91.65	61.26	0.00	1094.91	798.48	0.083	0.07	0.09	3.585	А

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	297.89	74.47	297.50	82.85	103.78	0.00	1051.45	688.92	0.283	0.30	0.39	4.773	А
SB Collector	100.19	25.05	100.11	103.78	297.50	0.00	1156.73	925.57	0.087	0.07	0.09	3.406	А

E													
EB Collector D	77.41	19.35	77.35	287.72	109.90	0.00	1047.87	571.84	0.074	0.06	0.08	3.708	А
NB Collector E	111.71	27.93	111.62	112.23	75.02	0.00	1086.81	798.48	0.103	0.09	0.11	3.691	A

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	297.89	74.47	297.89	82.92	103.87	0.00	1051.40	688.92	0.283	0.39	0.39	4.777	A
SB Collector E	100.19	25.05	100.19	103.87	297.89	0.00	1156.51	925.57	0.087	0.09	0.09	3.407	A
EB Collector D	77.41	19.35	77.41	288.09	109.99	0.00	1047.81	571.84	0.074	0.08	0.08	3.708	А
NB Collector E	111.71	27.93	111.71	112.33	75.08	0.00	1086.77	798.48	0.103	0.11	0.11	3.691	А

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	243.23	60.81	243.61	67.77	84.90	0.00	1062.17	688.92	0.229	0.39	0.30	4.401	А
SB Collector E	81.81	20.45	81.89	84.90	243.61	0.00	1188.56	925.57	0.069	0.09	0.07	3.255	А
EB Collector D	63.21	15.80	63.27	235.59	89.90	0.00	1059.24	571.84	0.060	0.08	0.06	3.613	А
NB Collector E	91.21	22.80	91.30	91.81	61.36	0.00	1094.85	798.48	0.083	0.11	0.09	3.586	А

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	4.35	0.29	4.393	А	А
SB Collector E	1.09	0.07	3.250	A	A
EB Collector D	0.94	0.06	3.613	А	А
NB Collector	1.34	0.09	3.585	А	А

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	5.77	0.38	4.773	А	А
SB Collector E	1.40	0.09	3.406	A	A
EB Collector D	1.18	0.08	3.708	А	А
NB Collector E	1.69	0.11	3.691	А	А

Queueing Delay results: (08:30-08:45)

	•	•			
Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	5.90	0.39	4.777	А	A
SB Collector E	1.42	0.09	3.407	A	A
EB Collector D	1.19	0.08	3.708	А	А
NB Collector E	1.71	0.11	3.691	А	A

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	4.57	0.30	4.401	А	А
SB Collector E	1.13	0.08	3.255	Α	A
EB Collector D	0.97	0.06	3.613	А	А
NB Collector E	1.39	0.09	3.586	A	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.30	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.06	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.39	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.08	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.39	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.08	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.30	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.06	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

C-85 - 2024, PM

Data Errors and Warnings

Severity	•		Description
Warning	•		Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Na	ame	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)			Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C	-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, PM	2024	PM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection Name Intersection Ty		Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	2,3,4,1				4.46	Α

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold
Right	Normal/unknown	196	WB Collector D

Legs

Legs

Name	Leg	Name	Description
WB Collector D	2	WB Collector D	
SB Collector E	3	SB Collector E	
EB Collector D	4	EB Collector D	
NB Collector E	1	NB Collector E	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
WB Collector D	0.00	99999.00		0.00
SB Collector E	0.00	99999.00		0.00
EB Collector D	0.00	99999.00		0.00
NB Collector E	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
WB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
SB Collector E	4.25	4.25	0.00	20.00	40.00	20.00	
EB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
NB Collector E	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
WB Collector D	Percentage			85.00
SB Collector E	None			
EB Collector D	Percentage			85.00
NB Collector E	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
WB Collector D		(calculated)	(calculated)	0.579	1132.570
SB Collector E		(calculated)	(calculated)	0.579	1332.435
EB Collector D		(calculated)	(calculated)	0.579	1132.570
NB Collector E		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Type	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
WB Collector D	Percentage			100.00
SB Collector E	None			
EB Collector D	Percentage			100.00
NB Collector E	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
WB Collector D	ONE HOUR	✓	267.00	89.000
SB Collector E	ONE HOUR	✓	84.00	100.000
EB Collector D	ONE HOUR	✓	269.00	89.000
NB Collector E	ONE HOUR	✓	174.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	WB Collector D	240.03	244.83		
08:00-08:15	SB Collector E	75.51	75.51		
08:00-08:15	EB Collector D	241.83	246.66		
08:00-08:15	NB Collector E	156.42	156.89		
08:15-08:30	WB Collector D	293.97	299.85		
08:15-08:30	SB Collector E	92.49	92.49		
08:15-08:30	EB Collector D	296.17	302.10		
08:15-08:30	NB Collector E	191.58	192.15		
08:30-08:45	WB Collector D	293.97	299.85		
08:30-08:45	SB Collector E	92.49	92.49		
08:30-08:45	EB Collector D	296.17	302.10		
08:30-08:45	NB Collector E	191.58	192.15		
08:45-09:00	WB Collector D	240.03	244.83		
08:45-09:00	SB Collector E	75.51	75.51		
08:45-09:00	EB Collector D	241.83	246.66		
08:45-09:00	NB Collector E	156.42	156.89		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

То											
	WB Collector D	SB Collector E	EB Collector D	NB Collector E							
WB Collector D	0.000	0.000	235.000	32.000							

	SB Collector E	12.000	0.000	0.000	72.000
From	EB Collector D	237.000	0.000	0.000	32.000
	NB Collector E	26.000	148.000	0.000	0.000

Turning Proportions (Veh) - untitled (for whole period)

			То		
		WB Collector D	SB Collector E	EB Collector D	NB Collector E
	WB Collector D	0.00	0.00	0.88	0.12
From	SB Collector E	0.14	0.00	0.00	0.86
	EB Collector D	0.88	0.00	0.00	0.12
	NB Collector E	0.15	0.85	0.00	0.00

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

			То		
		WB Collector D	SB Collector E	EB Collector D	NB Collector E
	WB Collector D	1.020	1.000	1.020	1.020
From	SB Collector E	1.000	1.000	1.000	1.000
	EB Collector D	1.020	1.000	1.020	1.020
Ì	NB Collector E	1.020	1.000	1.020	1.020

Truck Percentages - untitled (for whole period)

			То		
		WB Collector D	SB Collector E	EB Collector D	NB Collector E
	WB Collector D	2.0	0.0	2.0	2.0
From	SB Collector E	0.0	0.0	0.0	0.0
	EB Collector D	2.0	0.0	2.0	2.0
	NB Collector E	2.0	0.0	2.0	2.0

Results

Results Summary for whole modelled period

Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)
WB Collector D	0.25	4.70	0.34	~1	А	237.63	237.63	17.82	4.50	0.20	23.94	4.39
SB Collector E	0.08	3.32	0.09	~1	А	84.00	84.00	4.54	3.24	0.05	6.16	3.20
EB Collector D	0.25	4.64	0.34	~1	А	239.41	239.41	17.76	4.45	0.20	23.87	4.35
NB Collector E	0.17	4.42	0.21	~1	А	154.86	154.86	10.99	4.26	0.12	14.81	4.17

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	213.62	53.41	213.41	221.00	118.31	0.00	1043.21	738.71	0.205	0.20	0.26	4.337	А
SB Collector E	75.51	18.88	75.46	118.31	213.41	0.00	1206.40	896.16	0.063	0.05	0.07	3.182	А
EB Collector	215.22	53.81	215.02	187.84	101.04	0.00	1052.71	550.39	0.204	0.20	0.26	4.296	А

	D													
Col	NB lector E	139.22	34.80	139.09	115.84	200.22	0.00	1011.42	769.76	0.138	0.13	0.16	4.127	А

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	261.64	65.41	261.30	270.60	144.86	0.00	1028.13	738.71	0.254	0.26	0.34	4.692	A
SB Collector E	92.49	23.12	92.41	144.86	261.30	0.00	1178.11	896.16	0.079	0.07	0.08	3.315	A
EB Collector D	263.60	65.90	263.27	229.99	123.73	0.00	1039.77	550.39	0.254	0.26	0.34	4.634	А
NB Collector E	170.50	42.63	170.31	141.85	245.15	0.00	984.99	769.76	0.173	0.16	0.21	4.417	А

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	261.64	65.41	261.63	270.92	145.02	0.00	1028.04	738.71	0.255	0.34	0.34	4.696	А
SB Collector E	92.49	23.12	92.49	145.02	261.63	0.00	1177.92	896.16	0.079	0.08	0.09	3.315	А
EB Collector D	263.60	65.90	263.59	230.27	123.84	0.00	1039.71	550.39	0.254	0.34	0.34	4.638	A
NB Collector E	170.50	42.63	170.50	141.99	245.45	0.00	984.82	769.76	0.173	0.21	0.21	4.420	А

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	213.62	53.41	213.95	221.53	118.58	0.00	1043.05	738.71	0.205	0.34	0.26	4.345	А
SB Collector E	75.51	18.88	75.59	118.58	213.95	0.00	1206.08	896.16	0.063	0.09	0.07	3.186	А
EB Collector D	215.22	53.81	215.54	188.31	101.23	0.00	1052.61	550.39	0.204	0.34	0.26	4.302	А
NB Collector E	139.22	34.80	139.41	116.07	200.70	0.00	1011.14	769.76	0.138	0.21	0.16	4.130	А

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service	
WB Collector D	3.78	0.25	4.337	А	А	
SB Collector E	0.99	0.07	3.182	А	A	
EB Collector D	3.77	0.25	4.296	А	А	
NB Collector E	2.35	0.16	4.127	А	А	

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	4.99	0.33	4.692	А	А
SB Collector E	1.26	0.08	3.315	A	A
EB Collector D	4.97	0.33	4.634	А	А
NB Collector E	3.07	0.20	4.417	А	А

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	5.10	0.34	4.696	А	А
SB Collector E	1.27	0.08	3.315	А	A
EB Collector D	5.07	0.34	4.638	А	А
NB Collector E	3.13	0.21	4.420	A	A

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	3.96	0.26	4.345	А	А
SB Collector E	1.02	0.07	3.186	А	A
EB Collector D	3.95	0.26	4.302	А	А
NB Collector E	2.45	0.16	4.130	A	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.16	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.08	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.21	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.09	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.21	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Collector E	0.07	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Collector E	0.16	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: CA01 - Coll D at Lewis.arc8
Path: G:\Legacy\SernasTransTech\Projects\2018\Fruitland TIS\Analysis\Arcady

Report generation date: 10/28/2018 10:43:41 PM

Summary of intersection performance

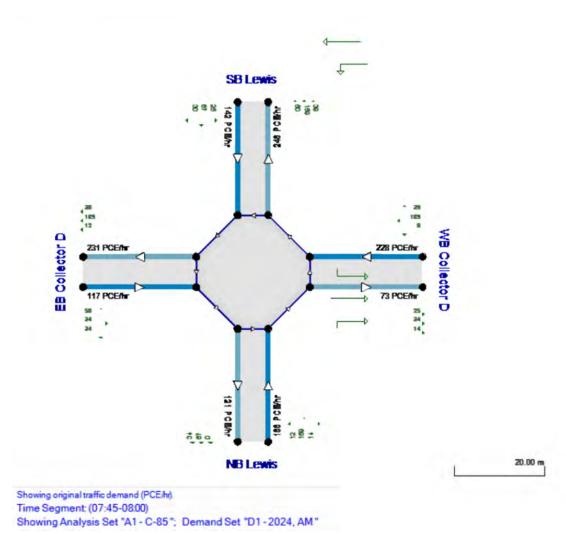
		AM								РМ						
	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity		
							C-85 -	2024								
WB Collector D	~1	4.67	0.22	Α			197 %	~1	4.11	0.16	Α			191 %		
SB Lewis	~1	3.39	0.13	Α	4.07		EMAD	~1	3.98	0.27	Α	4.10		191 %		
EB Collector D	~1	3.85	0.11	Α	4.07	A C	[WB Collector	~1	4.49	0.19	Α	4.18	A	[SB		
NB Lewis	~1	4.07	0.17	Α			D]	~1	4.34	0.15	Α			Lewis]		

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

"D1 - 2024, AM " model duration: 7:45 AM - 9:15 AM "D2 - 2024, PM" model duration: 7:45 AM - 9:15 AM

Run using Junctions 8.0.6.541 at 10/28/2018 10:43:18 PM

File summary


Title	(untitled)
Location	
Site Number	
Date	11/18/2014
Version	
Status	Conceptual
Identifier	
Client	
Jobnumber	
Analyst	
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.00	✓	✓	Delay	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	Veh	Veh	perHour	s	-Min	perMin

The intersection diagram reflects the last run of ARCADY.

C-85 - 2024, AM

Data Errors and Warnings

Severity	Severity Area Item		Description
Warning	Warning DemandSets D1 - 2024, AM		Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, AM	2024	AM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	2,3,4,1				4.07	Α

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold	
Right	Normal/unknown	197	WB Collector D	

Legs

Legs

Name	Leg	Name	Description
WB Collector D	2	WB Collector D	
SB Lewis	3	SB Lewis	
EB Collector D	4	EB Collector D	
NB Lewis	1	NB Lewis	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
WB Collector D	0.00	99999.00		0.00
SB Lewis	0.00	99999.00		0.00
EB Collector D	0.00	99999.00		0.00
NB Lewis	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
WB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
SB Lewis	4.25	4.25	0.00	20.00	40.00	20.00	
EB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
NB Lewis	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Type	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
WB Collector D	Percentage			85.00
SB Lewis	None			
EB Collector D	Percentage			85.00
NB Lewis	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
WB Collector D		(calculated)	(calculated)	0.579	1132.570
SB Lewis		(calculated)	(calculated)	0.579	1332.435
EB Collector D		(calculated)	(calculated)	0.579	1132.570
NB Lewis		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Туре	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
WB Collector D	Percentage			100.00
SB Lewis	None			
EB Collector D	Percentage			100.00
NB Lewis	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry	
		✓	✓	Truck Percentages	2.00				✓	✓	

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
WB Collector D	ONE HOUR	✓	224.00	89.000
SB Lewis	ONE HOUR	✓	142.00	100.000
EB Collector D	ONE HOUR	✓	116.00	89.000
NB Lewis	ONE HOUR	✓	185.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	WB Collector D	201.37	204.70		
08:00-08:15	SB Lewis	127.66	127.66		
08:00-08:15	EB Collector D	104.28	105.47		
08:00-08:15	NB Lewis	166.31	166.78		
08:15-08:30	WB Collector D	246.63	250.70		
08:15-08:30	SB Lewis	156.34	156.34		
08:15-08:30	EB Collector D	127.72	129.17		
08:15-08:30	NB Lewis	203.69	204.26		
08:30-08:45	WB Collector D	246.63	250.70		
08:30-08:45	SB Lewis	156.34	156.34		
08:30-08:45	EB Collector D	127.72	129.17		
08:30-08:45	NB Lewis	203.69	204.26		
08:45-09:00	WB Collector D	201.37	204.70		
08:45-09:00	SB Lewis	127.66	127.66		
08:45-09:00	EB Collector D	104.28	105.47		
08:45-09:00	NB Lewis	166.31	166.78		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

			То		
		WB Collector D	SB Lewis	EB Collector D	NB Lewis
	WB Collector D	0.000	39.000	185.000	0.000
From	SB Lewis	25.000	0.000	30.000	87.000
	EB Collector D	33.000	50.000	0.000	33.000
	NB Lewis	14.000	159.000	12.000	0.000

Turning Proportions (Veh) - untitled (for whole period)

			То		
		WB Collector D	SB Lewis	EB Collector D	NB Lewis
	WB Collector D	0.00	0.17	0.83	0.00
From	SB Lewis	0.18	0.00	0.21	0.61
	EB Collector D	0.28	0.43	0.00	0.28
	NB Lewis	0.08	0.86	0.06	0.00

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

			То		
		WB Collector D	SB Lewis	EB Collector D	NB Lewis
	WB Collector D	1.020	1.000	1.020	1.020
From	SB Lewis	1.000	1.000	1.000	1.000
	EB Collector D	1.020	1.000	1.020	1.020
	NB Lewis	1.020	1.000	1.020	1.020

Truck Percentages - untitled (for whole period)

	То													
		WB Collector D	SB Lewis	EB Collector D	NB Lewis									
	WB Collector D	2.0	0.0	2.0	2.0									
From	SB Lewis	0.0	0.0	0.0	0.0									
	EB Collector D	2.0	0.0	2.0	2.0									
	NB Lewis	2.0	0.0	2.0	2.0									

Results

Results Summary for whole modelled period

Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)
WB Collector D	0.22	4.67	0.28	~1	А	199.36	199.36	14.87	4.47	0.17	19.97	4.37
SB Lewis	0.13	3.39	0.15	~1	Α	142.00	142.00	7.82	3.30	0.09	10.61	3.26
EB Collector D	0.11	3.85	0.12	~1	А	103.24	103.24	6.48	3.77	0.07	8.82	3.72
NB Lewis	0.17	4.07	0.20	~1	Α	164.65	164.65	10.85	3.95	0.12	14.70	3.89

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	179.22	44.81	179.04	60.03	176.68	0.00	1013.42	557.03	0.177	0.17	0.21	4.313	А
SB Lewis	127.66	31.91	127.57	198.26	157.46	0.00	1239.44	1031.92	0.103	0.09	0.11	3.237	А
EB Collector D	92.81	23.20	92.74	184.42	100.62	0.00	1062.22	653.87	0.087	0.08	0.10	3.712	А
NB Lewis	148.02	37.00	147.90	104.54	88.82	0.00	1077.81	752.22	0.137	0.13	0.16	3.871	А

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	219.50	54.87	219.22	73.52	216.35	0.00	990.80	557.03	0.222	0.21	0.28	4.665	A
SB Lewis	156.34	39.09	156.22	242.77	192.80	0.00	1218.57	1031.92	0.128	0.11	0.15	3.388	Α
EB Collector D	113.67	28.42	113.57	225.80	123.21	0.00	1049.29	653.87	0.108	0.10	0.12	3.847	А
NB Lewis	181.28	45.32	181.10	128.02	108.76	0.00	1066.23	752.22	0.170	0.16	0.20	4.066	Α

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	219.50	54.87	219.50	73.58	216.56	0.00	990.68	557.03	0.222	0.28	0.28	4.667	A
SB Lewis	156.34	39.09	156.34	243.01	193.04	0.00	1218.43	1031.92	0.128	0.15	0.15	3.388	Α
EB Collector D	113.67	28.42	113.67	226.07	123.31	0.00	1049.23	653.87	0.108	0.12	0.12	3.847	А
NB Lewis	181.28	45.32	181.28	128.12	108.86	0.00	1066.17	752.22	0.170	0.20	0.20	4.068	Α

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	179.22	44.81	179.49	60.14	177.03	0.00	1013.22	557.03	0.177	0.28	0.22	4.319	A
SB Lewis	127.66	31.91	127.78	198.67	157.85	0.00	1239.21	1031.92	0.103	0.15	0.12	3.241	Α
EB Collector D	92.81	23.20	92.91	184.85	100.79	0.00	1062.13	653.87	0.087	0.12	0.10	3.713	А
NB Lewis	148.02	37.00	148.19	104.72	88.98	0.00	1077.72	752.22	0.137	0.20	0.16	3.874	Α

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	3.15	0.21	4.313	А	A
SB Lewis	1.70	0.11	3.237	А	A
EB Collector D	1.41	0.09	3.712	А	A
NB Lewis	2.34	0.16	3.871	А	A

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	4.17	0.28	4.665	А	A
SB Lewis	2.17	0.14	3.388	A	A
EB Collector D	1.79	0.12	3.847	А	А
NB Lewis	3.01	0.20	4.066	А	A

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	4.25	0.28	4.667	А	А
SB Lewis	2.20	0.15	3.388	А	Α
EB Collector D	1.82	0.12	3.847	А	Α
NB Lewis	3.06	0.20	4.068	A	A

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service	
WB Collector D	3.30	0.22	4.319	А	А	
SB Lewis	1.75 0.12		3.241	А	А	
EB Collector D	1.46	0.10	3.713	А	А	
NB Lewis	2.44	0.16	3.874	A	A	

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.21	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

SB Lewis	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
EB Collector D	0.10	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
NB Lewis	0.16	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker	
WB Collector D	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
SB Lewis	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
EB Collector D	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
NB Lewis	0.20	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker	
WB Collector D	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
SB Lewis	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
EB Collector D	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
NB Lewis	0.20	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker	
WB Collector D	0.22	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
SB Lewis	0.12	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
EB Collector D	0.10	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	
NB Lewis	0.16	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A	

C-85 - 2024, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	DemandSets	D2 - 2024, PM	Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

ı	Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
:	2024, PM	2024	PM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Inters	ection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
	1	untitled	Roundabout	2,3,4,1				4.18	А

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold	
Right	Normal/unknown	191	SB Lewis	

Legs

Legs

Name	Leg	Name	Description
WB Collector D	2	WB Collector D	
SB Lewis	3	SB Lewis	
EB Collector D	4	EB Collector D	
NB Lewis	1	NB Lewis	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
WB Collector D	0.00	99999.00		0.00
SB Lewis	0.00	99999.00		0.00
EB Collector D	0.00	99999.00		0.00
NB Lewis	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
WB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
SB Lewis	4.25	4.25	0.00	20.00	40.00	20.00	
EB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	
NB Lewis	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
WB Collector D	Percentage			85.00
SB Lewis	None			
EB Collector D	Percentage			85.00
NB Lewis	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
WB Collector D		(calculated)	(calculated)	0.579	1132.570
SB Lewis		(calculated)	(calculated)	0.579	1332.435
EB Collector D		(calculated)	(calculated)	0.579	1132.570
NB Lewis		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Type	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
WB Collector D	Percentage			100.00
SB Lewis	None			
EB Collector D	Percentage			100.00
NB Lewis	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck	2.00				✓	✓

| Percentages | |

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
WB Collector D	ONE HOUR	✓	172.00	89.000
SB Lewis	ONE HOUR	✓	299.00	100.000
EB Collector D	ONE HOUR	✓	188.00	89.000
NB Lewis	ONE HOUR	✓	144.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	WB Collector D	154.62	157.21		
08:00-08:15	SB Lewis	268.79	268.79		
08:00-08:15	EB Collector D	169.01	171.81		
08:00-08:15	NB Lewis	129.45	130.82		
08:15-08:30	WB Collector D	189.38	192.55		
08:15-08:30	SB Lewis	329.21	329.21		
08:15-08:30	EB Collector D	206.99	210.43		
08:15-08:30	NB Lewis	158.55	160.22		
08:30-08:45	WB Collector D	189.38	192.55		
08:30-08:45	SB Lewis	329.21	329.21		
08:30-08:45	EB Collector D	206.99	210.43		
08:30-08:45	NB Lewis	158.55	160.22		
08:45-09:00	WB Collector D	154.62	157.21		
08:45-09:00	SB Lewis	268.79	268.79		
08:45-09:00	EB Collector D	169.01	171.81		
08:45-09:00	NB Lewis	129.45	130.82		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

	То								
		WB Collector D	SB Lewis	EB Collector D	NB Lewis				
	WB Collector D	0.000	28.000	144.000	0.000				
From	SB Lewis	82.000	0.000	95.000	122.000				
	EB Collector D	141.000	32.000	0.000	15.000				
	NB Lewis	51.000	68.000	25.000	0.000				

Turning Proportions (Veh) - untitled (for whole period)

			То		
		WB Collector D	SB Lewis	EB Collector D	NB Lewis
	WB Collector D	0.00	0.16	0.84	0.00
From	SB Lewis	0.27	0.00	0.32	0.41
	EB Collector D	0.75	0.17	0.00	0.08
	NB Lewis	0.35	0.47	0.17	0.00

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

			То		
		WB Collector D	SB Lewis	EB Collector D	NB Lewis
	WB Collector D	1.020	1.000	1.020	1.020
From	SB Lewis	1.000	1.000	1.000	1.000
	EB Collector D	1.020	1.000	1.020	1.020
	NB Lewis	1.020	1.000	1.020	1.020

Truck Percentages - untitled (for whole period)

	То									
		WB Collector D	SB Lewis	EB Collector D	NB Lewis					
	WB Collector D	2.0	0.0	2.0	2.0					
From	SB Lewis	0.0	0.0	0.0	0.0					
	EB Collector D	2.0	0.0	2.0	2.0					
	NB Lewis	2.0	0.0	2.0	2.0					

Results

Results Summary for whole modelled period

Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)
WB Collector D	0.16	4.11	0.19	~1	А	153.08	153.08	10.20	4.00	0.11	13.83	3.94
SB Lewis	0.27	3.98	0.36	~1	Α	299.00	299.00	18.97	3.81	0.21	25.44	3.71
EB Collector D	0.19	4.49	0.23	~1	А	167.32	167.32	12.06	4.32	0.13	16.24	4.23
NB Lewis	0.15	4.34	0.17	~1	Α	128.16	128.16	8.96	4.19	0.10	12.09	4.11

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	137.62	34.40	137.50	227.13	99.92	0.00	1056.79	828.49	0.130	0.12	0.15	3.916	A
SB Lewis	268.79	67.20	268.57	102.32	135.10	0.00	1252.64	864.56	0.215	0.22	0.27	3.658	Α
EB Collector D	150.42	37.60	150.28	220.43	183.24	0.00	1009.71	778.12	0.149	0.14	0.17	4.189	А
NB Lewis	115.21	28.80	115.11	121.57	211.94	0.00	998.01	567.94	0.115	0.10	0.13	4.077	Α

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	168.54	42.14	168.37	278.11	122.35	0.00	1043.97	828.49	0.161	0.15	0.19	4.110	A
SB Lewis	329.21	82.30	328.85	125.29	165.43	0.00	1234.73	864.56	0.267	0.27	0.36	3.972	Α
EB Collector D	184.22	46.06	184.01	269.92	224.36	0.00	986.29	778.12	0.187	0.17	0.23	4.486	А
NB Lewis	141.11	35.28	140.95	148.86	259.51	0.00	970.46	567.94	0.145	0.13	0.17	4.340	Α

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	168.54	42.14	168.54	278.42	122.49	0.00	1043.89	828.49	0.161	0.19	0.19	4.112	A
SB Lewis	329.21	82.30	329.20	125.43	165.60	0.00	1234.63	864.56	0.267	0.36	0.36	3.975	Α
EB													

Collector D	184.22	46.06	184.22	270.20	224.61	0.00	986.15	778.12	0.187	0.23	0.23	4.488	A	
NB Lewis	141.11	35.28	141.10	149.02	259.80	0.00	970.29	567.94	0.145	0.17	0.17	4.341	Α	

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
WB Collector D	137.62	34.40	137.78	227.64	100.15	0.00	1056.66	828.49	0.130	0.19	0.15	3.918	А
SB Lewis	268.79	67.20	269.15	102.55	135.38	0.00	1252.48	864.56	0.215	0.36	0.27	3.664	Α
EB Collector D	150.42	37.60	150.63	220.90	183.63	0.00	1009.49	778.12	0.149	0.23	0.18	4.192	А
NB Lewis	115.21	28.80	115.37	121.84	212.42	0.00	997.73	567.94	0.115	0.17	0.13	4.081	Α

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	2.20	0.15	3.916	А	A
SB Lewis	4.02	0.27	3.658	A	A
EB Collector D	2.57	0.17	4.189	А	А
NB Lewis	1.92	0.13	4.077	A	A

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	2.83	0.19	4.110	А	А
SB Lewis	5.33	0.36	3.972	Α	A
EB Collector D	3.37	0.22	4.486	А	А
NB Lewis	2.50	0.17	4.340	Α	A

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	2.88	0.19	4.112	А	А
SB Lewis	5.43	0.36	3.975	A	Α
EB Collector D	3.43	0.23	4.488	А	А
NB Lewis	2.54	0.17	4.341	A	Α

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
WB Collector D	2.29	0.15	3.918	А	A
SB Lewis	4.19	0.28	3.664	А	A
EB Collector D	2.68	0.18	4.192	А	A
NB Lewis	2.00	0.13	4.081	A	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Lewis	0.27	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.17	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Lewis	0.13	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.19	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Lewis	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Lewis	0.17	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.19	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Lewis	0.36	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.23	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Lewis	0.17	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
WB Collector D	0.15	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
SB Lewis	0.27	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
EB Collector D	0.18	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB Lewis	0.13	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2018

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: CA01 - Coll D at McNeilly.arc8
Path: G:\Legacy\SernasTransTech\Projects\2018\Fruitland TIS\Analysis\Arcady

Report generation date: 10/28/2018 10:20:49 PM

Summary of intersection performance

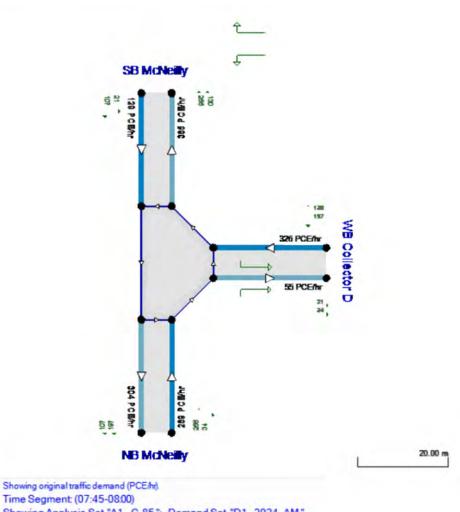
		AM						РМ						
	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
		C-85 - 2024												
SB McNeilly	~1	4.10	0.12	Α			123 %	1.00	5.46	0.36	Α			126 %
NB McNeilly	~1	4.38	0.25	Α	4.82	A	[WB	~1	4.84	0.29	Α	5.02	A	[SB
WB Collector D	1.00	5.50	0.32	Α			Collector D]	~1	4.56	0.23	Α			McNeilly]

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

"D1 - 2024, AM " model duration: 7:45 AM - 9:15 AM "D2 - 2024, PM" model duration: 7:45 AM - 9:15 AM

Run using Junctions 8.0.6.541 at 10/28/2018 10:20:38 PM

File summary


Title	(untitled)
Location	
Site Number	
Date	11/18/2014
Version	
Status	Conceptual
Identifier	
Client	
Jobnumber	
Analyst	
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.00	✓	✓	Delay	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	Veh	Veh	perHour	S	-Min	perMin

Showing Analysis Set "A1 - C-85"; Demand Set "D1 - 2024, AM"

The intersection diagram reflects the last run of ARCADY.

C-85 - 2024, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	DemandSets	D1 - 2024, AM	Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, AM	2024	AM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	1,3,4				4.82	A

Intersection Network Options

Driving Side	Lighting	Network Residual Capacity (%)	First Leg Reaching Threshold
Right	Normal/unknown	123	WB Collector D

Legs

Legs

Name	Leg	Name	Description
SB McNeilly	1	SB McNeilly	
NB McNeilly	3	NB McNeilly	
WB Collector D	4	WB Collector D	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
SB McNeilly	0.00	99999.00		0.00
NB McNeilly	0.00	99999.00		0.00
WB Collector D	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
SB McNeilly	4.25	4.25	0.00	20.00	40.00	20.00	
NB McNeilly	4.25	4.25	0.00	20.00	40.00	20.00	
WB Collector D	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
SB McNeilly	Percentage			85.00
NB McNeilly	Percentage			85.00
WB Collector D	Percentage			85.00

Roundabout Slope and Intercept used in model

	Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
SI	B McNeilly		(calculated)	(calculated)	0.579	1132.570
N	B McNeilly		(calculated)	(calculated)	0.579	1132.570
WB	Collector D		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Туре	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
SB McNeilly	Percentage			100.00
NB McNeilly	Percentage			100.00
WB Collector D	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
SB McNeilly	ONE HOUR	✓	126.00	89.000
NB McNeilly	ONE HOUR	✓	283.00	89.000
WB Collector D	ONE HOUR	✓	320.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	SB McNeilly	113.27	115.54		
08:00-08:15	NB McNeilly	254.41	259.50		
08:00-08:15	WB Collector D	287.67	293.43		
08:15-08:30	SB McNeilly	138.73	141.50		
08:15-08:30	NB McNeilly	311.59	317.82		
08:15-08:30	WB Collector D	352.33	359.37		
08:30-08:45	SB McNeilly	138.73	141.50		
08:30-08:45	NB McNeilly	311.59	317.82		
08:30-08:45	WB Collector D	352.33	359.37		
08:45-09:00	SB McNeilly	113.27	115.54		
08:45-09:00	NB McNeilly	254.41	259.50		
08:45-09:00	WB Collector D	287.67	293.43		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

	То								
		SB McNeilly	NB McNeilly	WB Collector D					
Erom	SB McNeilly	0.000	105.000	21.000					
From	NB McNeilly	NB McNeilly 250.000		33.000					
	WB Collector D	127.000	193.000	0.000					

Turning Proportions (Veh) - untitled (for whole period)

	То								
		SB McNeilly	NB McNeilly	WB Collector D					
	SB McNeilly	0.00	0.83	0.17					
From	NB McNeilly	0.88	0.00	0.12					
	WB Collector D	0.40	0.60	0.00					

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

	То							
		SB McNeilly	NB McNeilly	WB Collector D				
From	SB McNeilly	1.020	1.020	1.020				
From	NB McNeilly	1.020	1.020	1.020				
	WB Collector D	1.020	1.020	1.020				

Truck Percentages - untitled (for whole period)

		•	•	
	T	o		

		SB McNeilly	NB McNeilly	WB Collector D
From	SB McNeilly	2.0	2.0	2.0
	NB McNeilly	2.0	2.0	2.0
	WB Collector D	2.0	2.0	2.0

Results

Results Summary for whole modelled period

Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)
SB McNeilly	0.12	4.10	0.14	~1	Α	112.14	112.14	7.46	3.99	0.08	10.12	3.93
NB McNeilly	0.25	4.38	0.34	~1	А	251.87	251.87	17.77	4.23	0.20	23.98	4.15
WB Collector D	0.32	5.50	0.48	1.00	A	284.80	284.80	24.51	5.16	0.27	32.53	4.98

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	100.81	25.20	100.73	301.33	154.23	0.00	1021.06	905.34	0.099	0.09	0.11	3.911	Α
NB McNeilly	226.43	56.61	226.22	238.17	16.79	0.00	1100.64	1023.00	0.206	0.21	0.26	4.116	Α
WB Collector D	256.03	64.01	255.72	43.17	199.84	0.00	994.65	587.11	0.257	0.27	0.34	4.869	А

Main results: (08:15-08:30)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	123.47	30.87	123.34	368.94	188.81	0.00	1001.04	905.34	0.123	0.11	0.14	4.101	А
NB McNeilly	277.31	69.33	277.00	291.60	20.56	0.00	1098.46	1023.00	0.252	0.26	0.34	4.382	А
WB Collector D	313.57	78.39	313.05	52.86	244.70	0.00	968.68	587.11	0.324	0.34	0.47	5.486	А

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	123.47	30.87	123.47	369.42	189.12	0.00	1000.86	905.34	0.123	0.14	0.14	4.102	А
NB McNeilly	277.31	69.33	277.31	292.01	20.58	0.00	1098.45	1023.00	0.252	0.34	0.34	4.383	А
WB Collector D	313.57	78.39	313.56	52.91	244.97	0.00	968.52	587.11	0.324	0.47	0.48	5.496	А

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	100.81	25.20	100.93	302.11	154.73	0.00	1020.78	905.34	0.099	0.14	0.11	3.915	А
NB McNeilly	226.43	56.61	226.73	238.84	16.82	0.00	1100.62	1023.00	0.206	0.34	0.26	4.122	А
WB Collector D	256.03	64.01	256.54	43.26	200.29	0.00	994.39	587.11	0.257	0.48	0.35	4.881	А

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	1.61	0.11	3.911	Α	A
NB McNeilly	3.80	0.25	4.116	Α	A
WB Collector D	5.07	0.34	4.869	А	А

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	2.07	0.14	4.101	Α	Α
NB McNeilly	4.95	0.33	4.382	Α	Α
WB Collector D	6.96	0.46	5.486	Α	А

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	2.10	0.14	4.102	А	Α
NB McNeilly	5.04	0.34	4.383	А	A
WB Collector D	7.14	0.48	5.496	А	А

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	1.68	0.11	3.915	Α	A
NB McNeilly	3.97	0.26	4.122	A	A
WB Collector D	5.35	0.36	4.881	А	А

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB McNeilly	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
WB Collector D	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.14	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB McNeilly	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
WB Collector D	0.47	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.14	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB McNeilly	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
WB Collector D	0.48	0.00	0.00	0.00	1.00			N/A	N/A

Queue Variation results: (08:45-09:00)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.11	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB						Percentiles could not be calculated. This may be			

McNeilly	0.26	~1	~1	~1	~1	because the mean queue is very small or very big.	N/A	N/A
WB Collector D	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

C-85 - 2024, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	DemandSets	D2 - 2024, PM	Time results are shown for central hour only. (Model is run for a 90 minute period.)

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
C-85	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2024, PM	2024	PM		ONE HOUR	07:45	09:15	90	15	✓			✓		

Intersection Network

Intersections

Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	untitled	Roundabout	1,3,4				5.02	Α

Intersection Network Options

Driving Side Lighting		Network Residual Capacity (%)	First Leg Reaching Threshold	
Right	Normal/unknown	126	SB McNeilly	

Legs

Legs

Name	Leg	Name	Description
SB McNeilly	1	SB McNeilly	
NB McNeilly	3	NB McNeilly	
WB Collector D	4	WB Collector D	

Capacity Options

Name	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
SB McNeilly	0.00	99999.00		0.00
NB McNeilly	0.00	99999.00		0.00
WB Collector D	0.00	99999.00		0.00

Roundabout Geometry

Name	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
SB McNeilly	4.25	4.25	0.00	20.00	40.00	20.00	
NB McNeilly	4.25	4.25	0.00	20.00	40.00	20.00	
WB Collector	4.25	4.25	0.00	20.00	40.00	20.00	

Slope / Intercept / Capacity

Leg Intercept Adjustments

Name	Туре	Reason	Direct Intercept Adjustment (PCE/hr)	Percentage Intercept Adjustment (%)
SB McNeilly	Percentage			85.00
NB McNeilly	Percentage			85.00
WB Collector D	Percentage			85.00

Roundabout Slope and Intercept used in model

Name	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
SB McNeilly		(calculated)	(calculated)	0.579	1132.570
NB McNeilly		(calculated)	(calculated)	0.579	1132.570
WB Collector D		(calculated)	(calculated)	0.579	1132.570

The slope and intercept shown above include any corrections and adjustments.

Leg Capacity Adjustments

Name	Туре	Reason	Direct Capacity Adjustment (PCE/hr)	Percentage Capacity Adjustment (%)
SB McNeilly	Percentage			100.00
NB McNeilly	Percentage			100.00
WB Collector D	Percentage			100.00

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Name	Profile Type	Use Turning Counts	Average Demand Flow (Veh/hr)	Flow Scaling Factor (%)
SB McNeilly	ONE HOUR	✓	373.00	89.000
NB McNeilly	ONE HOUR	✓	307.00	89.000
WB Collector D	ONE HOUR	✓	236.00	89.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Name	Direct Demand Entry Flow (Veh/hr)	DirectDemandEntryFlowInPCE (PCE/hr)	Direct Demand Exit Flow (Veh/hr)	Direct Demand Pedestrian Flow (Ped/hr)
08:00-08:15	SB McNeilly	335.32	342.03		
08:00-08:15	NB McNeilly	275.99	281.51		
08:00-08:15	WB Collector D	212.16	216.40		
08:15-08:30	SB McNeilly	410.68	418.89		
08:15-08:30	NB McNeilly	338.01	344.77		
08:15-08:30	WB Collector D	259.84	265.04		
08:30-08:45	SB McNeilly	410.68	418.89		
08:30-08:45	NB McNeilly	338.01	344.77		
08:30-08:45	WB Collector D	259.84	265.04		
08:45-09:00	SB McNeilly	335.32	342.03		
08:45-09:00	NB McNeilly	275.99	281.51		
08:45-09:00	WB Collector D	212.16	216.40		

Turning Proportions

Turning Counts / Proportions (Veh/hr) - untitled (for whole period)

		Т	о			
		SB McNeilly	NB McNeilly	WB Collector D		
	SB McNeilly	0.000	256.000	117.000		
From	NB McNeilly	158.000	0.000	149.000		
	WB Collector D	86.000	150.000	0.000		

Turning Proportions (Veh) - untitled (for whole period)

		Т	o	
		SB McNeilly	NB McNeilly	WB Collector D
	SB McNeilly	0.00	0.69	0.31
From	NB McNeilly	0.51	0.00	0.49
	WB Collector D	0.36	0.64	0.00

Vehicle Mix

Average PCE Per Vehicle - untitled (for whole period)

		То										
		SB McNeilly	NB McNeilly	WB Collector D								
From	SB McNeilly	1.020	1.020	1.020								
FIOIII	NB McNeilly	1.020	1.020	1.020								
	WB Collector D	1.020	1.020	1.020								

Truck Percentages - untitled (for whole period)

		Т	О	
		SB McNeilly	NB McNeilly	WB Collector D
	SB McNeilly	2.0	2.0	2.0
From	NB McNeilly	2.0	2.0	2.0
	WB Collector D	2.0	2.0	2.0

Results

Results Summary for whole modelled period

		_				-								
Name	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)	Total Queueing Delay (Veh- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (Veh- min/min)	Inclusive Total Queueing Delay (Veh-min)	Inclusive Average Queueing Delay (s)		
SB McNeilly	0.36	5.46	0.55	1.00	А	331.97	331.97	28.38	5.13	0.32	37.69	4.95		
NB McNeilly	0.29	4.84	0.40	~1	А	273.23	273.23	21.05	4.62	0.23	28.21	4.50		
WB Collector D	0.23	4.56	0.29	~1	А	210.04	210.04	15.35	4.38	0.17	20.66	4.29		

Main Results for each time segment

Main results: (08:00-08:15)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	298.43	74.61	298.08	195.03	119.90	0.00	1040.94	807.40	0.287	0.31	0.40	4.844	А
NB McNeilly	245.63	61.41	245.38	324.48	93.50	0.00	1056.23	963.72	0.233	0.24	0.30	4.439	Α
WB Collector D	188.82	47.21	188.64	212.59	126.28	0.00	1037.24	823.18	0.182	0.18	0.22	4.241	А

Main results: (08:15-08:30)

Name	Total	lustava a ati a u	Fata Flam	Fuit Flam	Cinavilation.	Pedestrian	Camaaitu	Saturation	V/C	Start	End	Dalau	LOS]
	Demand	Intersection	Entry Flow	Exit Flow	Circulating	Demand	Capacity	Capacity	V/C	Queue	Queue	Delay		

	(Veh/hr)	Arrivals (Veh)	(Veh/hr)	(Veh/hr)	Flow (Veh/hr)	(Ped/hr)	(Veh/hr)	(Veh/hr)	Ratio	(Veh)	(Veh)	(s)	
SB McNeilly	365.51	91.38	364.91	238.79	146.81	0.00	1025.36	807.40	0.356	0.40	0.55	5.446	А
NB McNeilly	300.83	75.21	300.43	397.25	114.46	0.00	1044.09	963.72	0.288	0.30	0.40	4.839	А
WB Collector D	231.26	57.81	230.98	260.27	154.62	0.00	1020.84	823.18	0.227	0.22	0.29	4.557	А

Main results: (08:30-08:45)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	365.51	91.38	365.50	239.09	146.98	0.00	1025.26	807.40	0.357	0.55	0.55	5.456	A
NB McNeilly	300.83	75.21	300.83	397.83	114.65	0.00	1043.98	963.72	0.288	0.40	0.40	4.843	А
WB Collector D	231.26	57.81	231.25	260.65	154.82	0.00	1020.72	823.18	0.227	0.29	0.29	4.559	A

Main results: (08:45-09:00)

Name	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Entry Flow (Veh/hr)	Exit Flow (Veh/hr)	Circulating Flow (Veh/hr)	Pedestrian Demand (Ped/hr)	Capacity (Veh/hr)	Saturation Capacity (Veh/hr)	V/C Ratio	Start Queue (Veh)	End Queue (Veh)	Delay (s)	LOS
SB McNeilly	298.43	74.61	299.02	195.52	120.19	0.00	1040.77	807.40	0.287	0.55	0.40	4.856	А
NB McNeilly	245.63	61.41	246.02	325.41	93.79	0.00	1056.05	963.72	0.233	0.40	0.31	4.446	А
WB Collector D	188.82	47.21	189.09	213.20	126.62	0.00	1037.05	823.18	0.182	0.29	0.22	4.248	А

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	5.87	0.39	4.844	Α	A
NB McNeilly	4.44	0.30	4.439	Α	A
WB Collector D	3.27	0.22	4.241	Α	A

Queueing Delay results: (08:15-08:30)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	8.04	0.54	5.446	А	A
NB McNeilly	5.91	0.39	4.839	A	А
WB Collector D	4.29	0.29	4.557	А	А

Queueing Delay results: (08:30-08:45)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	8.26	0.55	5.456	А	A
NB McNeilly	6.04	0.40	4.843	Α	A
WB Collector D	4.37	0.29	4.559	А	A

Queueing Delay results: (08:45-09:00)

Name	Queueing Total Delay (Veh- min)	Queueing Rate Of Delay (Veh- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
SB McNeilly	6.21	0.41	4.856	А	A
NB McNeilly	4.66	0.31	4.446	А	A
WB Collector D	3.42	0.23	4.248	Α	A

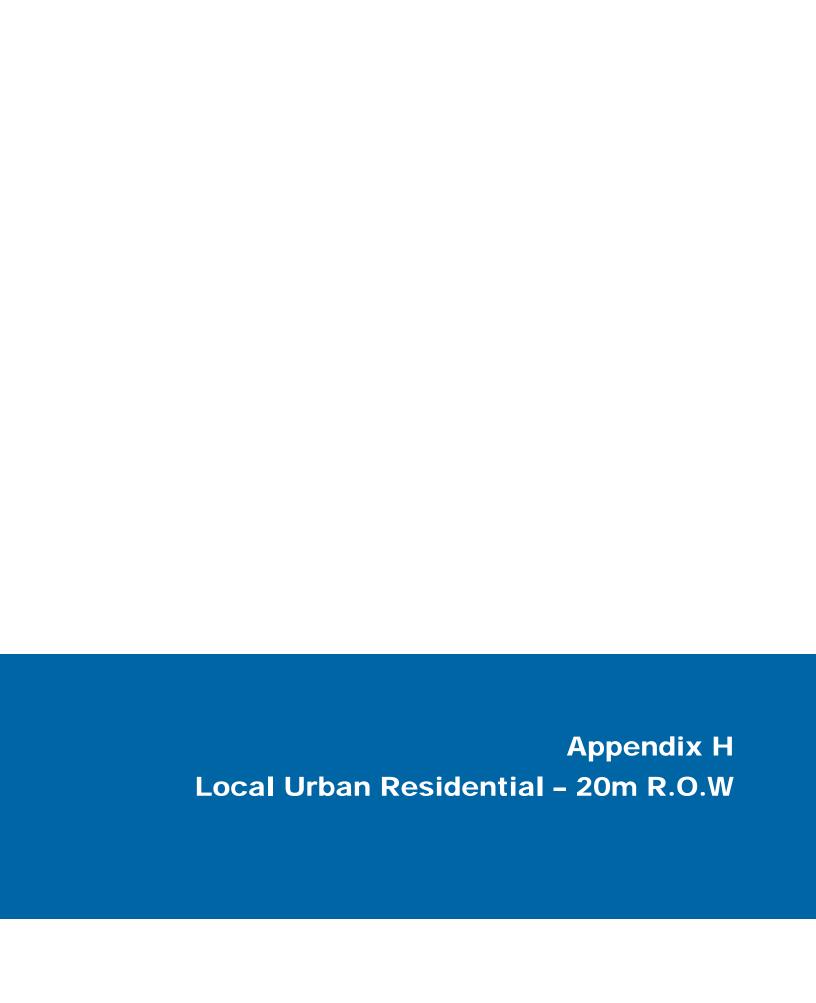
Queue Variation Results for each time segment

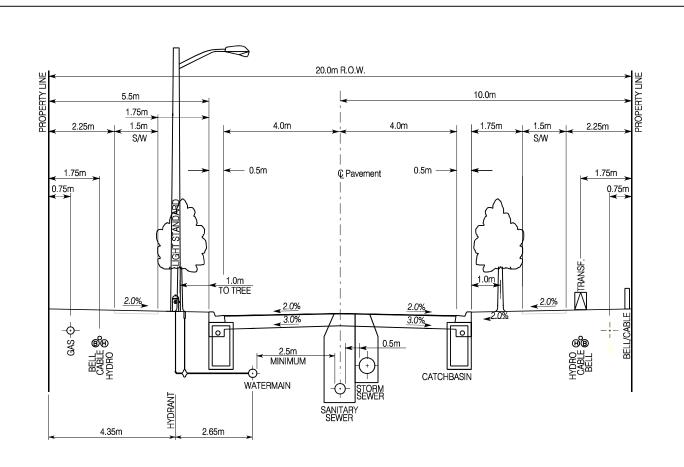
Queue Variation results: (08:00-08:15)

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB						Percentiles could not be calculated. This may be			

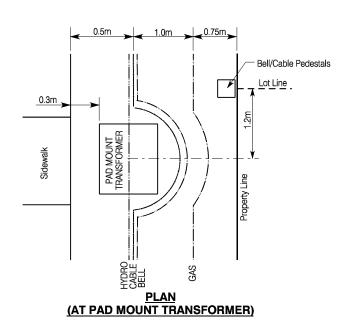
McNeilly	0.40	~1	~1	~1	~1	because the mean queue is very small or very big.	N/A	N/A
NB McNeilly	0.30	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
WB Collector D	0.22	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Queue Variation results: (08:15-08:30)

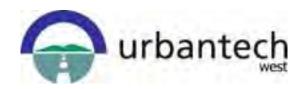

Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.55	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB McNeilly	0.40	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
WB Collector D	0.29	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A


Queue Variation results: (08:30-08:45)

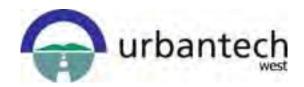
Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.55	0.00	0.00	0.00	1.00			N/A	N/A
NB McNeilly	0.40	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
WB Collector D	0.29	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A


Queue Variation results: (08:45-09:00)

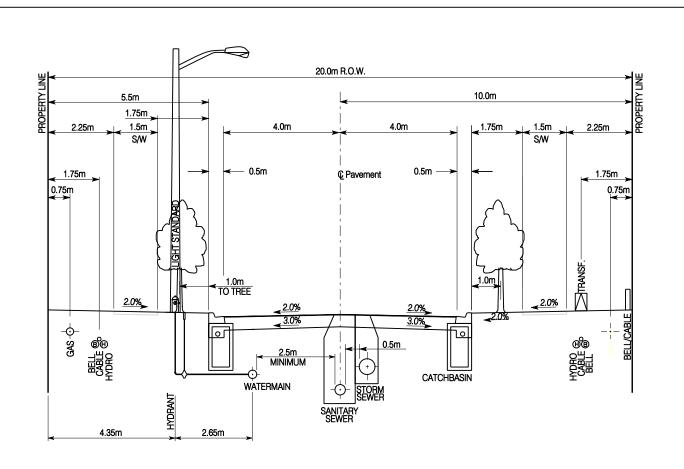
Name	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
SB McNeilly	0.40	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
NB McNeilly	0.31	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
WB Collector D	0.22	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A


MINIMUM DEPTH OF COVER
SANITARY SEWER - 2.75m
STORM SEWER - 2.75m
WATERMAIN - 1.6m
HYDRO - 0.9m
CABLE - 0.9m
BELL - 0.9m
GAS - 0.6m

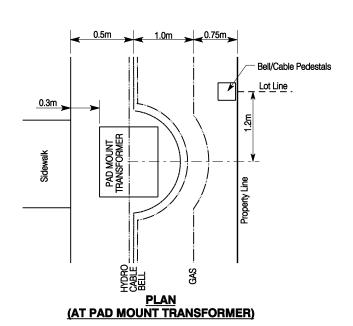
City of Hamilton Public Works Department


LOCAL URBAN RESIDENTIAL - 20.0m R.O.W.

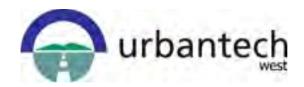
DIMENSIONS SHOWN ARE IN MILLIMETRES	DATE	REV No		HAMILTON STD No	BD_113 N1
UNLESS OTHERWISE NOTED (N.T.S.)	November 2005				10.01



APPENDIX L STANDARD ROW CROSS-SECTION


L-1 Local Roads – 20 m ROW

APPENDIX L-1 Local Roads - 20 m ROW


MINIMUM DEPTH OF COVER
SANITARY SEWER - 2.75m
STORM SEWER - 2.75m
WATERMAIN - 1.6m
HYDRO - 0.9m
CABLE - 0.9m
BELL - 0.9m
GAS - 0.6m

City of Hamilton Public Works Department

LOCAL URBAN RESIDENTIAL - 20.0m R.O.W.

DIMENSIONS SHOWN ARE IN MILLIMETRES	DATE	REV No	Į į	HAMILTON STD No	BD_112 01
UNLESS OTHERWISE NOTED (N.T.S.)	November 2005				וט.טוו-טוו

APPENDIX M AGENCY COMMENTS AND CONSULTANT RESPONSES

O:1-	£ : 4	O	C: I D 4 I	D DI I - 0	0: -:	Strategy - Urbantech
.IT\	or Hamilton	L.omments to	Final Draff	Report - Block :	Servicina	Strategy - Urnantech
-	OI I IUIIIII	Commonto to	I IIIai Diait	ROPOR DIOON C	OCI VIOLING	Chalogy Chamicon

January 16-Feb 14, 2020 Comment period).

Comment No.	Report Reference	Comment Details	Commen tor's Name	Staff's Area of work - Department, Division, Area	Consultant Responses March 2020
SMW - Engin	eering Comments				
1		The final Block Servicing Strategy Report (BSS) should be signed and stamped by a Qualified Professional Engineer.			The Final Report has been stamped by Rob Merwin, P.Eng.
2	MIKE 11 Hydrologic Analysis	The current BSS SWM strategy is based on continuous modelling using MIKE 11. However, the report included the flow results for design storm event simulation from the 2nd BSS submission in several sections, which are outdated. Please ensure that during final submission, the relevant report sections, appendices and engineering drawings are including the flow assessment results based on the latest DHI memo (Jan 15, 2020). Some examples of inconsistencies are: Table 5-9, SWM pond target scenario tables for ponds 2 and 3 in Appendix H, Drawings SWM-5 and SWM-6.			All tables and appendices have been updated to reflect the latest memo from DHI.
3	LIDs	Previous comment 18: table 5-15 should revise the topsoil depth to a minimum 200mm and include the option of rear yard swales with 150mm perforated pipe with granular materials.			Rob to address
4	Table 5.12- Section 5.7	Please verify the unitary volume calculations for Pond 3. The storage volumes should be "m3/imp-ha" to be consistent with that of Pond-2.			This ha been corrected in the report.
5		a) The Hydrogeological Investigation Report (Landtek, July, 2019) included sections for water taking evaluation and impact assessment, monitoring and mitigation plans during construction. Please clarify why these sections are removed from the Jan, 2020 report.			These sections were deleted inadvertently from the Hydrogeological investigation. These sections have been reinserted in this report. Pre and Post water balance in the report has been revised to be consistent with they Hydrogeological
	Sanitary Sewer	b) The water balance assessment results in Appendix I are not consistent with report section 3.2 and the July, 2019 report. Please verify. a) Please note that as per City standards sanitary sewers should be maximum 75% full. The proposed sewer from MH15A-W to MH12A-W should be upsized, which is shown to be 81% full. This sewer leg has an intermediate manhole, MH 24A-W, which should be added in the design sheet. b) In sanitary-west option 2 design sheet, please verify the population densities for West condo, EX5, EX6, EX7, EX8; and ensure consistency with sanitary drainage area plans.			Required sewers have been upsized to be less than 75% full Populations have been coordinated and revised between plans and design sheets.
6	Design Sheet (Appendix I)	c) In sanitary sewer design sheets for the west area, the flows from MH 24A-W to MH12A-W and MH 24A-W(1) to MH12A-W are not added downstream. Please revise. d) Please clarify the outlet of catchment 16 (1.42 ha) in the sanitary drainage area plans. Is it going to Street D or Street E?			The design sheet has been updated. Cathcment 16 drains to Street D. We have modified a mahole in plan view for clarity.
		e) For option 2, the existing McNeilly Road sanitary sewer north of Barton Street is shown to be 97% full. Please note that during detailed design stage (for higher population densities), sewer upgrade may trigger based on flow monitoring of the existing sewer along McNeilly Road.			It is understood that if at the detailed design stage proposed populations are in keeping with Option 2 and flow moniitoring determines it is required, then the McNeilly Road sanitary sewer will be required to be upsized.
7	DWG GR-1	Previous comment 4g : based on section A-A, it appears that partial drainage from existing lots fronting McNeilly Road currently goes through the Block 3 lands and the proposed fill will block this drainage. During detailed design, a temporary/interim ditch inlet should be considered to pick up the external drainage from the existing lots.		Project Manager,	It is understood that interim drainage provisions may be required to accommodate existing drainage patterns. This will be determined at the detailed design stage of the various applications.
		 a) During detailed design, please ensure that additional manholes are provided at locations, where currently two pipes are shown leaving from the same manhole at different directions, therefore the conveyance systems should be separated to avoid any interaction. b) DWGs SAN-1 and SAN-1A: the proposed sanitary sewer from MH 25A-W to MH 7A-W is going through private lands. Please note that a suitable block 		Infrastructure Planning, Growth	At the detailed design stage, all sanitary sewer design will be in accordance with City of Hamilton requirements including manhole spacing, etc.
8	DWGs SAN-1 to SAN-4, SAN- 1A	should be dedicated to the City for this proposed sewer. The land owner should acknowledge in writing, about the proposed sanitary sewer through his lands. c) DWGs SAN-1 and SAN 1-A: please verify the top and inverts at MH 33 A-W and MH 31A-W. During detailed design, please ensure that minimum 2.75m	Zakia Sultana	Management Division, Planning &	The developer will convey appropriate blocks for all required municipal infrasturucture. A note has been added to that effect on the drawings.
	to SAN-4A	cover is provided for all sanitary sewers as per City standards. d) A note should be added in the drainage plans for the external drainage from HWY-8 to EX.MH 10 (20.45 ha in sanitary sewer design sheet).		Economic Development,	The tops have been revised. These were incorrect. EX 10 is now indicated on the drawings.
		e) Please show the north limit of catchment 1, immediately south-east of Barton Street and Lewis Road. f) Previous comment 20g: catchment 3 should divided to separate areas north and south of Barton Street.		City of Hamilton	The North limit was drawin underneath the proposed sanitary sewer. It has been offset in the updated drawings for clarity. Cathcment 3 has been divided a requested.
9	DWG STM-1	Previous comment 11h : please clarify the park servicing strategy. We understand that the minor flows will be captured by the proposed park stub connection to Street D storm sewer. Please clarify whether major flows will be conveyed overland to public streets.			Drawing SWM 1 has been updated to indicate that the minor system for the majority of the park is to connect to the road netowrk. During detailed design of the park should the grades require it a minor system connection to the pond can be made to provide drainage for swales etc. Again at detailed design the majority of the major system can be accommodated in the road network. It is likely that there will be locallized swales and transition grading that requires minor system connections to the pond.

10	DWG-STM3 (External Bypass Pipe)	Please provide MIKE 11 flow results for catchment 300 and 200, the 2nd submission BSS included the 100-year hydrographs showing the 100-year peak flows for these catchments, which is removed from this submission. Based on the continuous simulation results (BSS, Jan 2020), 100-year peak flows for catchments 300 and 200 are 2.648 m³/s and 1.474 m³/s respectively. Based on single event modeling (BSS 2nd submission), 100-year peak flows for catchments 300 and 200 were 4.017 m³/s and 1.5 m³/s respectively. While for both modelling scenarios, catchment 200 flows are in good agreement, catchment 300 flows are significantly different. Based on the reduced flows for catchment 300, the sewer size from MH 7C to MH6C is reduced to 1350mm in the storm sewer design sheet; however the drainage area plans are still showing a 1500mm sewer. The external bypass sewer design should be kept same as the BSS 2nd submission scenario 2a, therefore sewer from MH7C to MH6C should be kept as 1500mm. Please revise the storm sewer design sheet accordingly.			The sewer in the design sheet has been revised to a 1500mm as requested.
11	DWG STM-4	Previous comments 6c,10b,11f: please verify the drainage area of catchments EXT 4.1 and EXT 4.2, there appears to be typo. The BSS should include discussions about the SWM/drainage strategy for the external areas north-east of Barton Street and McNeilly Road. Drainage to the venetian meat channel, Arvin Avenue storm sewer and existing watercourse should be documented. A note should be added that the option of extending the existing 1950mm storm sewer from McNeilly Road to Arvin Avenue may be considered during detailed design stage, which may allow EXT 4.1 lands to drain to Arvin Avenue storm sewer.			The drainage areas have been corrected. A note has been added to the design sheet along with a schematic sewer indicating the option to extned the 1950mm storm sewer from McNeilly Road to Arvin Avenue.
12	SWM-4	 a) During detailed design, major overland flow route for both ponds should be directed to the wet cell. If 100-year flows are captured in storm sewers, a split manhole may be required to divert the major flows to the wet cell, or the forebay may be upsized considering the additional flows. b) DWG SWM-1(<i>Previous comment 14.2b</i>): the drawings are still showing pond 2 access road from Barton Street. During detailed design stage access road should be provided from internal streets as noted in the response letter. c) DWG SWM-2 (<i>Previous comment 4i</i>): during detailed design stage, the proposed berm design at Barton Street should be confirmed. d) DWG SWM-3: the drawings are not showing any connection of internal streets to Pond 3 access Road. During detailed design, access should be provided from internal streets, not Lewis Road. 			Noted. To be addressed at detailed design stage. Maintenance access has now been indicated from internal road network. The other items are connections for pedestiran movements. Noted. To be addressed at detailed design stage. Maintenance access has been added.
13	DWG SWM-7	Please verify the drainage area of catchment 101A, which is 1.98 ha in other drawings.			Drainage areas have been corrected.
Natural Herit	Appendix C- Section 1.1.2 (page2)	Previous comment (Sept. 12, 2019) 2 a) i) has not been addressed. On page 2 it is stated "Schedule B of the UHOP shows the Hamilton Natural Heritage System which does not identify Core Areas on and adjacent to the site". As identified in previous comments, there are features within the Natural Heritage System that have not been mapped. These features incude habitat for Species at Risk (SAR) and Significant Wildlife Habitat (SWH). The statement needs to be revised to include this caveat.			A statement has been added to Section 1.12 of the EIS.
15	Appendix C- Section 1.1.4 (page 3)	Previous comment (Sept. 12, 2019) 2 a) ii) has not been addressed. On page 3, the discussion within Section 1.1.4 (Fruitland Winona Secondary Plan) focuses on the Stoney Creek Urban Boundary Expansion Subwatershed Study and not on policies of the Secondary Plan (policies 7.4.2.5-natural heritage principles; 7.4.11-Natural Heritage System general policies and 7.4.14-Block Servicing Strategy). This section is to be revised to include these policies.		Natural Heritage Planner: Development	This section has been updated to reflect the policies within the Secondary Plan.
16	Section 3.4 (page 15)	On page 15, Section 3.4 has been labelled as "Species at Risk Screening". While this label describes the first three paragraphs, section 3.4.1 describes Significant Wildlife Habitat. Significant Wildlife Habitat should be its own section.	Melissa Kiddie	Planning, Heritage and Design,	Significant Wildlife Habitat has been provided it's own section (3.5).
17	Appendix C- Section 5 (page 22)	Previous comment (Sept. 12, 2019) 2 e) iv) has not been addressed: On page 22 it has been stated that "Monarch depends on milkweed for its life cycle, however milkweed is common and plentiful in the Stoney Creek area". It is important to note that additional habitat within the vicinity does not recognize the potential habitat that will be lost as a result of development within this area.	Riddie	Planning and Economic	This section has been modified to reflect compensation recommednation for loss of habitat.
18	24)	Previous comment (Sept. 12, 2019) 2 d): As a measure to mitigate the impacts on the locally rare Carolina Wren, it has been identified that nest boxes could be provided within green spaces. It is important to note that this may be difficult to implement as part of development of this area.		Development, City of Hamilton	This section has been updated to relfect that development may make it difficult to implement this recommendation
19	Appendix C- Appendix D: Breeding Birds Appendix C-	Previous comment (Sept. 12, 2019) 2 e) ii): The locations of Eastern Meadowlark/Bobolink surveys have been provided on Figure D-1. The stations have been labelled in red and are very difficult to read. This figure needs to be revised to clearly identify the station numbers. Previous comment (Sept. 12, 2019) 2 e) iii) has not been addressed: Within the breeding bird table provided within Appendix D, Barn Swallow, a			The figure has been updated to clearly identify the station numbers
20	Appendix D: Breeding Birds	"threatened" species has been identified as possibly breeding within the study area. There is concern with this evaluation. Within the text of Appendix C, it has been noted that Barn Swallow was only found foraging within the area and that no breeding habitat was available for this species (page 22). This table needs to be revised to reflect this information.			The table has been updated as required.
Public Consu	ltation /Administr	ative			
	Appendix N - 1,				
21	Public Stakeholder List	Remove staff names' rows, down to Councillors. Remove last 2 columns for the entire list - not needed and some of these are internal - City directions. Replace staff names with my name - Margaret Fazio - Liaison to City staff/Project Team and internal communications.		Growth	The contact list has been updated as required.
22	Appendix N - 2	Change title from "Notice of Public Comment" to "Notice of 30 day Public Review"		Management	The title has been modified.
23	Appendix N-4	Leave the notice but need to add your PIC panels - preferably in colour here. Feb 23, 2016 Returned letters/Landowner Inquiries - this list shows peoples names and addresses, and if you wish to follow City's privacy protection best practices, we suggest removing this list. You may wish to just mention in numbers, in the main body of the report, how many people registered letters were sent to, include your mailing list map/refer to the study map, how many were returned and how many provided comments. This is the kind of information Coucil would be interested in. By the Way, Council Members are treated as the rest of the public.	M.Fazio	Division, Infrastructure Planning.	PIC panels are included in colour. We have removed the list including peoples names etc. and updated the report to include approximate number of people who attended.
24	Appendix N - 3	Out of order with N-3 in hard copy - please check the e copy as well. Title says PIC but there are no panels, but where the N-3 says there are letters, there are maps in that section?May just be out of order. If providing the sign in sheet, please either provide a blank (which we don't have, I know), or black out attendee names & contact information to protect their privacy.			The hard copy of the document was out of order. N-3 is the various communications sent to landowners etc. N-4 is information on the PIC. A blacked out verion of the PIC sign in sheet is provided.

	1		1	i	
25	Executive Summary	Provide long form of EIS. Also, discussions with transportation staff indicated - as per concept map, that further intersection control measures are to be determined at Application submission/Detailed Design stage. Therefore, we would like to suggest to reword to the following: " If changes are made to the road network the City has the right to ask for Traffic Impact Studies, if found to be required. As development proceeds, the determination of intersection controls (stop-control or mini-roundabout), within each development area will be required."	M. Fazio & Mohan Philip	Growth Management & Transportation Planning	The Executive Summary has been updated as suggested.
26	Introduction, fourth paragraph	Suggest changing last sentence to" This study pertains to the Block 3 area within the Secondary Plan.			The introduction has been updated as suggested.
27	Introduction - Overall				
28	Comment	Please use an accronym for Block 3 SS consistently. Currently there are BSS, Block 3, Block 3 SS in use. Suggest sticking to just one for clarity. NHS - introduce the long form before using the accronym			The study has been updated to use one acronym. The study has been updated.
20	Purpose Official Public	Please reword the first sentence - it is repetitive. Please reword the tense of this section into past tense, rather than future. Thiurd sentence please			The study has been updated.
29	Comment	change to: "The hard copy of the study report was made available at City Hall - Clerk's Dest, and 6th Floor - front counter"			The section has been reworded.
30	SCUBE Subwatershed Study	Second Paragraph - last sentence - suggest removing. Not sure it's needed? When you are describing Phases does Phase 3 mean this current study? Sorry - not clear. Perhaps it should be stated earlier in this Section 1.7, that SCUBE Subwatershed Studies followed a Municipal Class Environmental Assessment process, which fulfilled the requirements of Phases 1 & 2, - at teh bottom of the second paragraph? It would provide more process clarity. You refer to Phase 3 for this study (third paragraph - page 10), but we are not technically carrying out Phase 3 EA process, so would suggest refraining from using thatPhase 3 reference here. Just state that "this BSS provides an implementation strategy for the Block 3 area" Last paragraph - top line mentions "SWMF" - please provide long form I don't know what it is? Could you please use Pond 2 & 3 naming consistently, and always mention "East" and "West" when referring to POnds by number. Also, please add a statement which talks about SCUBE Subwatershed Study East establishing the numbering system for the Ponds. Just so nobody is wondering what happened to Pond 1.			The section of the report has been updated as requested.
31	Section 4.2 Roadworks; pg 29	Please place the first setence of the first paragraph below the first paragraph - under the bullers. Otherwise the sentence doesn't feel like it's pertaining to roadworks, but is speaking to general grading for the entire sitewe know it's dependent on roads, so moving it will make that relationship clearer. Second Paragraph - it is likely that cycling will also be included on the east-west collector, so the bottom sentence should also include a statement			The section of the report has been updated as requested.
32	Roadworks continued	Please reword the bottom paragraph to indicate that Barton and Fifty Road Phases 3 & 4 Municipal Class EA (EA), as well as Highway 8 Phases 3 & 4 EA are ongoing at the time of writing of this report. McNeilly and Lewis were not identified in SCUBE TMP (sub-set of the Secondary PLan), to trigger a need for further study. All roads which are rural will become urbanized within BLock 3 SS. Until Barton and Highway 8 EA are completed the ROW width is determined by the Secondary Plan policies. Barton Road is classified as a major arterial roadway, currently identified in the Secondary Plan to require 40.576m ROW, which is 36.576 m from centre line, with additional off set of 4m to the south. Highway 8 is an arterial roadway with the ROW of 36.576m, however. The ongoing EAs may amend these ROW widths. McNeilly and Lewis Roads will remain classified as collector roads, with ROW width 26.213m. Please note that local road ROW is not 20m exactly but 20.117m.		Growth Management	The section of the report has been updated as requested.
	4.3 STORM	- Today Today Today Today To Tr To Today 2011 251227 TH	M.Fazio	<i>'</i>	The section of the report has seen apasted as requested.
33	30	Second Paragraph - fourth sentence suggest rewording to "The ponds are not intended to accommodate additional drainagecontrols need to ensure that downstream exceedances don't occu". Currently the sentence feels disjointed and hard to follow. Bottom of second paragraph"Mike 11 model results are greater than those determined using the rational method"suggest putting "rational method"		Infrastructure Planning.	The section of the report has been updated as requested.
34		in quotation marks, because to a non-specialist this sounds like Mike 11 is irrational, therefore shouldn't be used?:) Also, suggest putting in brackets after "rational method" (standard calculation used to determine flows).			The section of the report has been updated as requested.
35	5.3 SWM Targets & Design Criteria, pg. 34	Replace MOE, with MECP, in this section and throughout the document.			This has been updatd in the report.
36	5.7.1 Extended Detention Storage, pg 56	Please remove the reference to Meander Belt calculations, and the associated Appendix, except for Erosion analyses - downstream. Meander belt is no longer applicable.			Meander Belt Appendix and text references have been removed.
37	5.7.3 Sediment	Please make references to SWM Ponds consistent with the rest of the ReportSWM West (Pond 2), SWM East (Pond 3).			Nomenclature has been updated.
38	for GROUNDWATER RECHARGE	Second Paragraph - second sentence. Please replace "will" with "were".			This has been correct to "will be".
39	8 TRAFFIC/ TRANSPORTATIO N				These references have been removed.
40	8.2 FUTURE BACKGROUND TRAFFIC CONDITIONS	First sentence - please add "at full build out scenario" in brackets after 2024 or add the number 2024 after the bottom sentenceso that whoever is reading it can connect the dots.			This has been clarified in the report.
41	8.3 FUTURE TOTAL TRAFFIC CONDITIONS pg. 82	Please remove the last sentence of the bottom paragraph. Barton street EA, at intersections with Lewis and McNeilly has identified a need for signalized intersections. If we can just leave it out we're covered. Also, please see above for wording on intersection control - comments on Executive Summary.			This section has been updated.

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
1	1	opportunity to expand the SWM Pond 3 or move the pond further north. Please verify. Please note	The SWM pond blocks have been develop with regard for ultimate development, recognizing that due to grading constraints portions of the land cannot be drained by gravity to the proposed SWM ponds. This has been accounted for in the design of the SWM facilities.	We understand that the BSS did not provide grading details along the existing properties within Block 3 lands. As a result, this study cannot confirm the required setback/buffer land on the proposed lot/block abutting the existing homes to maintain the existing grading and drainage system. However, during zoning & draft plan application stage for Block 3 lands, the Functional Servicing Report (FSR) must identify the required setback on the proposed lots/blocks to demonstrate how external grading and drainage will be handled in accordance with City's standards.	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	
2	2	Please justify and explain why a walkway has been proposed within Stormwater conveyance block from HWY8 to Street D.		Acknowledged.	No further response required.	
3	3	The park block, north of Street D, must be a square park land as identified in the secondary plan. SWM Pond should not encroach into the park lands.	In accordance with our meeting of June 18, 2019 we understand the park block layout is acceptable.	Acknowledged.	No further response required.	
4	4 a	Grading plans (and the other engineering drawings) should show the widening limit of future urbanized Barton Street, in accordance with Barton Street EA.	At this time the EA for Barton Street has not been finalized. The engineering plans are based on the current concept plan and are designed in a way to accommodate interim and ultimate conditions. Detailed engineering plans will be prepared and submitted as part of the detailed development applications.	Acknowledged.	No further response required.	
5	4b	verify and confirm that the proposed grades on future road can accommodate servicing and appropriate lot grading matching the existing grades along the rear lot line of existing proporties fronting on all boundary.	This request is premature. The BSS indicates how the overall area can be serviced in accordance with the requirements of the secondary plan. Individual development applications will be required to demonstrate how they match in to existing/interim conditions.	and drainage system. However, during zoning &	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	

#	Comment	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
6	4c	Existing grades should be provided along southwest property limit of the existing school at Barton Street and Lewis Road. Please confirm whether any school drainage will drain to Pond 2.	This request is premature. The BSS indicates how the overall area can be serviced in accordance with the requirements of the secondary plan. Individual development applications will be required to demonstrate how they match in to existing/interim conditions. No drainage from the school block will drain to Pond 2.	Noted.	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	
7	4d	Existing and proposed grades should be provided for the park lands north- west of Street D and Lewis Road. If the park is not developed concurrently with Block 3 and pond 2, please demonstrate how the park lands will drain to the pond 2.	This request is premature. The BSS indicates how the overall area can be serviced in accordance with the requirements of the secondary plan. Individual development applications will be required to demonstrate how they match in to existing/interim conditions. At the time of the detailed application for the SWM pond, if interim drainage collection is required it will be detailed at that time.	Acknowledged.	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	
8	4e	Please provide future potential grades of the west condo block. Will there be an overland flow route from this block to Pond 2? Please confirm.	Details of individual site plan blocks are premature at this time. Each individual application will be required to show adequate overland flow routes and/or control to the sewer capacity.	Noted.	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	
9	4f	Please show the existing grades for existing properties fronting HWY 8 (1117 to 1135 HWY8). Please also clarify why no servicing strategy is provided for these lands.	Servicing for these lots is included in the Highway 8 sewers. Again detailed grading plans for individual lots/blocks will be developed at the individual development application stage.	Noted.	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	
10	4g	Please provide existing grades at the east property limit of existing houses south-east of Barton street and McNeilly road (fronting McNeilly).	This request is premature. The BSS indicates how the overall area can be serviced in accordance with the requirements of the secondary plan. Individual development applications will be required to demonstrate how they match in to existing/interim conditions.	We understand that the BSS did not provide grading details along the existing properties within Block 3 lands. As a result, this study cannot confirm the required setback/buffer land on the proposed lot/block abutting the existing homes to maintain the existing grading and drainage system. However, during zoning & draft plan application stage for Block 3 lands, the Functional Servicing Report (FSR) must identify the required setback on the proposed lots/blocks to demonstrate how external grading & drainage will be handled in accordance with City's standards.	McNeilly.	

		arbanteen					
#	Со	omment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
1:	1	4h	Please provide existing grades at the south property limit of existing houses south-east of Barton street and Lewis road (fronting Barton).	This request is premature. The BSS indicates how the overall area can be serviced in accordance with the requirements of the secondary plan. Individual development applications will be required to demonstrate how they match in to existing/interim conditions	We understand that the BSS did not provide grading details along the existing properties within Block 3 lands. As a result, this study cannot confirm the required setback/buffer land on the proposed lot/block abutting the existing homes to maintain the existing grading and drainage system. However, during zoning & draft plan application stage for Block 3 lands, the Functional Servicing Report (FSR) must identify the required setback on the proposed lots/blocks to demonstrate how external grading & drainage will be handled in accordance with City's standards.	existing lots on Barton.	
12	2	4i	Grading plans should include the pond grades, permanent pool and 100-year water levels. Any berm requirements along Barton Street should be identified. Please show some cross sections across Barton Street. No grading encroachment will be allowed within future ROW limit.	Grading plans have been updated accordingly. It is understood that no grading encroachments into the future ROW will be allowed. Detailed design of the SWM facility will be carried out in conjunction with appropriate development applications.	The proposed Pond 2 grading encroaches the future ROW limit, which is not supportable. During detailed design, the pond design should not consider any berm along the ROW limit.	The portion of Pond 2 (West) fronting Barton St. has been graded to avoid encroachment into the future ROW limit. Refer to	
13	3	4j	Proposed grades should be included for Winona Hills subdivision (City file: 25T-201711, FSR by Urbantech, Nov 2018).	Detailed grading for Winona Hills is not included in this BSS but detailed in the appropriate development application. Centre line road grades are provided.	Acknowledged.	Acknowledged. No further response required at this stage.	
14	1	4k	The grading plans should include conceptual grades for future lots/blocks. Alternatively, please provide a statement in the report noting that future lots/blocks grading will be designed as per City standards and will be consistent with proposed road grades.	епест.	Acknowledged.	No further response required.	
1!	5	41	A continuous overland flow route to the proposed SWM facilities should be provided on the major overland flow routes/streets. Minimum 0.75% road grade should be provided, as per City standards. Currently the internal roads are proposed to be graded mostly at 0.50% which is contrary to City standards. Please review and rationale for non-standard road grades.	As per discussions with City staff it is understood that the 0.75% minimum standard is flexible when it can be demonstrated that a reduced grade of 0.50% is more practical from an earthworks and overland flow perspective. The grading plan has been developed to minimize the import of material to the site and ensure adequate overland flow routes are available. Detailed applications for individual development blocks will be required to justify grading, earthworks and overland flow routes. At the detailed design stage final grading will be established and where possible limiting grades less than 0.75%.	Acknowledged.	No further response required.	

		an barreeen					
#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility	
16	5	Detailed gradients for major and minor system should be provided along all streets to confirm adequate depth of cover for services and to identify any potential servicing conflict.	The BSS indicates how the overall area can be serviced in accordance with the requirements of the secondary plan. We have included inverts for services and approximate tope of manholes on the drainage plans. Sufficient cover is available. Individual development applications will be required to demonstrate how servicing will be accommodated. Road grades and service slopes are provided in the conceptual design drawings. Trunk services where they are crossing existing infrastructure have been analyzed (including profile drawings) to confirm conflicts do not exist.	Acknowledged.	No further response required.		
17	6a	Please provide potential future sanitary sewer inverts within the block (site) to justify the required depth of cover for sewers on Barton Street.	Sanitary inverts and manhole tops are indicated on the sanitary drainage plan.	Acknowledged.	No further response required.		
18	6b	The proposed sanitary sewer on Barton Street from Street E to McNeilly road should be connected into the existing 525 mm sanitary sewer at the McNeilly and Barton Street intersection in accordance with the original design of the system. Please revise the design.	reduce the available cover, thereby limiting the amount of drainage from the north that could be provided by gravity. It is our recommendation that	Based on the attached DWG: 10-H-64_1, there is more than 5m depth of cover on the existing sanitary sewer at the intersection of McNeilly Road and Barton street. Please explain why the proposed sanitary sewer in Block 3 including a portion of Barton Street cannot be designed and constructed in accordance with City's original Polygon.	A portion of the sanitary drainage from Block 3 has been rerouted to the Mcneilly sanitary sewer in keeping with the City's Polygon.		
19	6c	The proposed storm sewer on Barton Street from McNeilly road to Lewis road can get an outlet into the Venetian meat channel so that it can get adequate depth of cover to service the lands fronting Barton Street. Stormwater quality control can be handled by OGS units. Drainage allocation from properties north of Barton Street, into this sewer, should be discussed with the City.	As per the Metrolinx November 2013 design the existing flows from the lands north of Barton drain to the north and will be collected in swales constructed as part of the Metrolinx development. The majority of the Barton Street sewer is designed to outlet to the proposed SWM facility. Very little of the lands north of Barton could be serviced by gravity through a sewer within Barton Street. It is our recommendation that these lands continue to drain north with onsite controls when development occurs.	Idrainage areas between Barton Street and	Existing and preliminary future grades for lands north of Barton Street are shown on GR-1. Drawing SWM-5 has been updated to show the drainage conveyed to WC 7 and WC9.		
20	6d	Please show future storm sewer details on Barton Street from Tuscani Drive to Lewis road.	A storm sewer has been added on Barton Street.	Noted.	No further response required.		
21	7a	Please clarify whether the existing 300mm storm sewer along Lewis road will be decommissioned, while constructing the proposed bypass sewer. Please also demonstrate how the ditch drainage will be picked up, during interim conditions.	With the urbanization of Lewis Road the existing 300mm storm sewer will be decommissioned. Lewis Road drainage has been accounted for within the proposed storm sewer. Detailed design will demonstrate interim conditions if required.	Acknowledged.	No further response required.		

	_	an barreeri					
#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility	
22	7b	The existing sanitary sewer appears to be very close to the proposed bypass sewer. Please confirm if there will be any issues from construction perspective.	The current servicing concepts are schematic. Detailed design will confirm exact service location, proximity/conflict with other services and any specialty construction methods.	Acknowledged.	No further response required.		
23	7c	The proposed bypass pipe is below the existing sanitary sewer. It may have potential exfiltration from sanitary to storm sewer. Special construction material (such as lean concrete) should be used to seal the sanitary sewer system.	Noted. To be confirmed at detailed design.	Acknowledged.	No further response required.		
24	7d	The proposed storm sewer on Lewis road should be extended up to the existing culvert on Hwy #8 and east of Lewis Rd to convey the external drainage from south of Hwy #8.	The proposed storm sewer has been extended as requested.	Acknowledged.	No further response required.		
25	8a	The preferred Stormwater management facility design strategy is subject to hydrologic modelling approach and model results to demonstrate downstream impacts. We recommend a meeting with consultant and HCA staff to discuss HCA's comments so that a consensus can be reached on the modelling and downstream assessment.	A meeting with HCA and the City was held on June 18, 2019. This second submission of the BSS is based on the agreed to Post Development Drainage Assessment.	Two alternate storm servicing strategy is proposed for external drainage south of HWY8, with two alternate design options for SWM Pond 2. City cannot support scenario 2b which involves routing the external drainage through park land and Pond 2; including two box culverts on the Lewis Road from HWY8 to Street D. Scenario 2b was not discussed in the meeting. This is totally a new option.	A meeting with HCA and City of Hamilton was held on Oct 29, 2019. The 3rd submission is based on the agreed SWM stratergy. Scenario 2b proposed in the 2nd submission has been eliminated. External drainage is conveyed through the proposed sewers on Lewis Road.		
26	8b	During detailed design the following should be provided/confirmed for the proposed SWM ponds: - Stage-storage-discharge curve based on proposed outlet structure and pond configuration. Any potential tail-water condition should be considered while sizing the outlet; - Forebay sizing; - Equalization pipe calculations; - Drawdown time calculations; - Emergency Spillway sizing calculations; - Decanting Area sizing calculations;	Noted. To be provided at detailed design	Acknowledged.	No further response required.		
27	8c	During detailed design, pond rating curves in VO5 model should be consistent with the actual stage-storage-discharge curve, currently in model setup the storage is optimized based on target flows, instead of using the actual storage based on pond configuration.	Noted. To be provided at detailed design.	Acknowledged.	No further response required.		

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
28	8d	An additional emergency spillway structure should be considered in the pond to avoid emergency spillage on Barton St. The outlet sewers on Barton Street should be designed accordingly. The study should document this option.	The BSS has been revised to discuss the provision of a spillway structure. The details of this structure would be determined at the Draft Plan and Detailed Design stage as they are highly dependent on the final pond configuration and conflicts with existing services.	Acknowledged.	No further response required.	
29	9a	The preferred Stormwater management facility design strategy is subject to hydrologic modelling approach and model results to demonstrate downstream impacts. We recommend a meeting with consultant and HCA staff to discuss HCA's comments so that a consensus can be reached on the modelling and downstream assessment. - Rational Method; - Mike 11 and VO5 models; - Maximum Capacity of existing culverts on HWY8 under operating head up to road centreline elevation.	A meeting with HCA and the City was held on June 18, 2019. This second submission of the BSS is based on the agreed Post Development Drainage Assessment. Since the culverts will be removed based on proposed servicing of the external lands, the bypass pipe has been sized based on the Mike 11 Post Development flows which is greater than the rational method flows.	It is acknowledged that the bypass pipe is designed based on MIKE 11 flows. City does not support scenario 2b which involves routing the external drainage through park land & Pond 2; including two box pipes on Lewis Road from HWY8 to Street D	Noted. Scenario 2b proposed in the 2nd submission has been eliminated. External drainage is conveyed through the proposed sewers on Lewis Road.	
30	9b	The study should recommend that no development can proceed until the external drainage pipe has been installed to convey the external drainage bypassing the site.	We do not agree with this comment. The external drainage pipe may not be required during the first phases of development. Further discussion with the City and Landowners should be undertaken to discuss timing and funding of external infrastructure.	We note that timing for this external infrastructure will be discussed with the City during draft plan approval stage. Please note that as per local servicing policy (LSP) outlined in the DC document, watercourses enclosed by the development are not subsequently eligible for storm sewer oversizing under D.C. Local development is responsible for conveyance of upstream external flows through its development.	Acknowledged.	
31	9c	Please ensure that in VO5 post-development model, the external flows are routed through the bypass pipe, consistent with design. The flows are routed in VO5 using "ROUTE CHANNEL" command. Please use "ROUTE PIPE" command.	The model has been updated to use the "Route Pipe" command.	Acknowledged.	No further response required.	
32	9d	A minimum of 9 m storm servicing block from HWY8 to Street D should be provided for the proposed bypass sewer to convey drainage from south of HWY 8.	The bypass sewer has been rerouted and a servicing block is no longer required.	Acknowledged.	No further response required.	
33	9e	The proposed external conveyance pipe on Lewis road should be extended to pick the drainages from catchments 200 (28.8 ha) and 201A (4.14 ha). Under interim condition, interim ditch inlets should also be provided to pick up the external drainage from catchment 201A.	The external conveyance pipe has been extended as required. Detailed design will provide for any temporary collection requirements.	Acknowledged.	No further response required.	

;	Com	mment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
3	1	9f	proposed bypass sewer or into the internal sewer to	The proposed storm sewer has been designed including Drainage Area 300, which includes Highway 8 all the way to McNeilly Road. As the EA for Highway 8 proceeds the details of stormwater conveyance will be determined.	Acknowledged.	No further response required.	
3	5	10a	locations as mentioned in Table 3-1 of the report.	All culverts are indicated on the existing conditions plan (Figure 2). Under proposed conditions all culverts are being removed as such calculations are not required.	Acknowledged.	No further response required.	
3	5	10b	Lewis Road (identified as subarea 2 in the report) are partially developed by Metrolinx. Please update the drainage area plan showing the developed	12%) of the Metrolinx lands fall within sub-area 2. Current drainage outlet for the lands north of	Please include grades of the lands north of Barton Street to demonstrate that lands north of Barton Street cannot drain to Barton Street, due to grading constraints and the sewer invert proposed on Barton Street. The drainage area plan should show the drainage split line and total drainage areas between Barton Street and Metrolinx property that will be conveyed to WC # 7 & WC # 9.The BSS should also state that an appropriate storm sewer can be considered within the Future Arvin Avenue ROW or within an easement on private lands.	Existing and preliminary future grades for lands north of Barton Street are shown on GR-1 . Drawing SWM-5 has been updated to show the drainage conveyed to WC 7 and WC9.	
3	7	11a	should be provided in the report	The existing culverts are shown on Drawing SWM-5. Refer to STM-1, -2, -3 and -3A for proposed servicing. All existing culverts within the study area are proposed to be removed.	Acknowledged.	No further response required.	
3	3	11b	these lands, by Urbantech (FSR, dated Nov 2018).	As previously discussed, interim conditions are not included in the BSS as it represents ultimate servicing. Individual draft plans are required to demonstrate interim measures.	Acknowledged. Please note that the overland flow easement along east limit of Winona Hills lands is permanent.	Acknowledged.	

#	‡ Co	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
3	9	11c	We understand that due to grading constraints the drainages from the Barton street ROW east of Lewis road and the existing properties fronting on the same (catchment 202: 6.66 ha, DWG- STM2) cannot drain into Pond 3. Please demonstrate minor and major system conveyances for this catchment to Barton Street and Lewis Road intersection. We note that as part of interim storm servicing strategy of Winona Hills lands, a storm sewer is proposed along Barton Street, which will outlet to the existing storm sewer along Arvin Avenue. Can a portion of catchment 202 be drained into this sewer? Please explore the option of using this sewer.	We have reviewed available capacity within the proposed system and there is insufficient capacity to provide additional servicing.	Noted.	No further response required.	
4	0	11d	Storm sewer design and servicing plans (grading and plan & profile) should accommodate a storm outlet for McNeilly Road, from HWY8 to Barton Street, considering future urbanization of the road.	Drainage for McNeilly Road is accommodated within the proposed storm sewer and SWM facility. Improvements to McNeilly Road can include a storm sewer connection.	Noted.	No further response required.	
4	1	11e	Storm sewer design (internal sewer or bypass pipe) should accommodate a storm outlet for HWY8 drainage from McNeilly Road to Lewis Road.	Drainage from HWY 8 is included in the proposed storm sewer. Improvements to Highway 8 can include a storm sewer connection.	Acknowledged.	No further response required.	
4	2	11f	Please demonstrate a suitable storm outlet for the area between Metrolinx property and Barton St (catchment 100: 17.2 ha, DWG SWM-7) The following both options should be considered: - A deeper Storm sewer on Barton Street from McNeilly or from Street E to the Venetian Meat channel A new storm sewer on future Arvin Ave ROW to Venetian Meat channel.	Barton Road only. The nonds cannot	drainage area plan should show the drainage split line and total drainage area between Barton Street and Metrolinx property		

#	: Co	comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
43	3	11g	City has installed a 1950mm storm sewer immediately south of CNR tracks, immediately west of McNeilly Road. A 1650mm storm stub is provided for lands east of McNeilly Road. Please consider this sewer as a potential outlet for the lands west of catchment 100 (DWG SWM-7) up to McNeilly road. A new storm on future Arvin ROW can be considered. An easement will be required through Metrolinx land to accommodate the storm outlet into the existing 1650 mm stub. Please document this storm outlet option.	Noted. Storm servicing option has been included in the BSS.	No details are provided in the BSS.	Details of existing storm sewers have been added to the drawings. Provisions have been made for the possible drainage of lands north of Barton Street to either the 1650mm storm sewer or the future Arvin Avenue ROW.	
44	4	11h	The storm servicing strategy for the park blocks is not clear from the storm sewer design sheet. Please verify and confirm that the minor flows from the park blocks will be captured within the sewers and the major system flow will go overland via Public Street to the proposed SWM ponds.	Storm manholes have been provided to the park block and the major system flows are currently designed to go overland via Public Streets to the proposed SWM block. If during detailed design of the Park directly west of Lewis it is determined that it is more feasible to have the overland drain directly to the pond this will be accommodated in the detailed design of the pond.	Noted. The city does not support the overland flow directly to the pond.	The major system, 100-year minus 5-year event is conveyed to the overland. Just upstream of the ponds, the major system is captured in the sewers and conveyed directly into the wet cell. Refer to Drawing STM-1 and STM-2 .	
45	5	11 i	storm servicing strategy for the residential condo and commercial blocks. Please note that the residential/condo blocks should be accommodated within the ponds, with adequate minor and major	As part of the second submission, the minor system is adequately sized to convey the 10-year design storm. The ponds are sized to provide quality and quantity control. During the detailed design, major flow conveyance will be assessed to determine if flows can be conveyed to the pond via the right-of-way.		Noted. The minor system is designed to convey the 5-year flows. Any mention of the of the 10-year event as the minor system is rectified in the report text.	
46	6		The report should include an overland flow capacity assessment for the proposed roads.	The overland flow for the roads immediately upstream of the ponds were assessed for capacity as this portion of the roadway conveys the largest possible drainage area. Refer to Appendix G.	Acknowledged.	No further response required.	
47	7	11k	The upstream storm sewer inverts should be set higher than the 100-year pond operating level. An exception may be considered for few runs connecting into the pond, depending on the site constraints. Otherwise, 5-yr. HGL should not exceed the obvert of the pipes. 100-year HGL should be 0.3m below RLCB top and the road grade. Please demonstrate and confirm the followings: MH inverts /depth of cover, sewer sizes, HGL's.	HGL analysis will be completed at detailed design.	Acknowledged.	No further response required.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
48	12	Storm Sewer Design Sheet: Pond outlet pipes should be sized to allow additional flows into the storm sewer system to avoid emergency spillage on Barton Street and Lewis Road.	The outlet for the west pond (under Scenario 2a) is 825 mm and 1200 mm (under Scenario 2b) and the outlet for the east pond is 300mm. The pipes have been sized to convey the 100-year controlled flow. There is additional capacity in the storm sewers that can convey a portion of the emergency spillage with anything else spilling onto the right-ofway.	Acknowledged.	No further response required.	
49	13a	Please verify the permanent pool volume calculations of Pond 2.	The permanent pool volume is based on the Table 3.2 of the MOE Stormwater planning and design manual.	Acknowledged.	No further response required.	
50	13b	Decanting areas should be sized with a minimum cleanout frequency of 10 years.	Refer to calculation attached in Appendix H of the report.	Acknowledged.	No further response required.	
51	14.1 a	Pond design should be optimized to avoid the additional permanent pool volume. Please evaluate different options, such as raising the pond bottom close to permanent pool elevation, staging of pond bottom, etc.	The permanent pool has been sized to provide the minimum volume to provide Enhanced Level 1 quality control. Refinements to the provided volume will be addressed in detail design of the ponds.	Acknowledged.	No further response required.	
52	14.1 b	We note that pond outlet configuration will be provided during detailed design stage. However, pond outlet invert should be confirmed, which will affect the pond operating levels. Please clarify whether pond outlet will be under tail-water conditions (if any) in Venetian Meat channel (Pond 2) and HGL in bypass sewer on Lewis road (Pond 3).	The permanent pool elevation is set to 85.37 for Pond 2 and 86.35 for Pond 3. The pond operating levels and outflows will have to be finalized following discussion with HCA and the City of Hamilton. Based on the MIKE 11 modelling results, the 100-year water level in the VM channel is 85.47 which is 10cm above the Permanent Pool elevation of the west pond. It is unlikely that this will result in any tailwater impact. At detailed design, pond outlet will take tailwater conditions into consideration and the outlet will be modified if necessary.	Acknowledged.	No further response required.	
53	14.1 c	additional flows can get into the proposed storm sewer along Barton Street (Pond 2) and Lewis	The pipes have been sized to convey the 100-year controlled flow. However additional capacity is available in the pipes to convey a portion of the emergency spillage. An emergency grate within the pond outlet manhole, whose invert can be set just above the emergency operating level can be assessed during detailed design to convey additional flows to the storm sewers.	Acknowledged.	No further response required.	

	arbanteen							
#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility		
54	14.1 d	As per City standards, maximum 5:1 slope should be provided above planting shelf (within active storage). The proposed 4:1 slope in both ponds is contrary to City standards. Please revise.	4:1 slope above planting shelf have been provided. MOE design recommendations indicate a minimum of 3:1 and 4:1 as the preferred criteria.	The proposed 4:1 slope above the planting shelf is contrary to City standards and not acceptable. New Comment: please ensure that the proposed active storage depth in both ponds is in accordance with City standards (2.5m maximum). We noted that Pond 2 active storage depth for both scenarios exceed 2.5m (2.7m Scenario 2a and 3.13m in scenario 2b), which should be revised.	4:1 sloping above the planting shelf has been revised to 5:1 as per the city standards.			
55	14.1 e	Based on the storm sewer design calculations provided in the report, it appears that 100-year flows to the ponds, will mostly be overland with few 100-year capture locations. Instead of providing the expensive flow splitter structures, the forebay should be designed to accommodate the additional flows (i.e. 5-yr+100yr flows, as applicable).	Forebay has been sized for the 100-year flows. Refer to calculations included in Appendix H. Under pond design for Scenario 2b, the external drainage area will be conveyed directly to the Wet Cell. Flow splitters have been removed from all plans.	the BSS (section 4.3.1, pg. 28) also noted	The overland flow route and pond design has been updated to convey the major system flows into the wet cell. Refer to Drawing STM-1 and STM-2 and Section X of the report.			
56	14.1 f	All drawings should show only the HWY8 drainage bypass pipe as "green" line. The other sewers should be "blue".	Noted. Refer to DWG-STM 3 and -3A.	Please check DWG STM-3a, where green line is used for catchment 300 boundary.	DWG STM-3a is no longer relevant as part of the 3rd Submission			
57	14.1 g	Tables should be provided in the report listing allowable and proposed flows for both ponds. Stage storage-discharge charts should be provided to confirm that ponds meet the allowable flows and storage targets.	Noted. Refer to Section 5.6.2 of the BSS.	Acknowledged.	No further response required.			
58	14.2 a	DWG SWM-1 should include grades on Barton Street and the future widening limit of Barton street. In additions, grades should be added for the existing school lands, at south and east limits of the pond.	The Barton EA has not been finalized. Existing grades on are shown DWG SWM-1.	Acknowledged.	No further response required.			
59	14.2 b	Pond 2 cross-sections should show the Barton Street future ROW limit and a 5m buffer should be provided from the future ROW limit. Please note that pond perimeter grades should not exceed more than 0.6m of Barton street grade. The pond perimeter grade should be set 0.3 m above the maximum water elevation on emergency spillway on the pond berm.	0.30 m of free board has been provided above the high-water level. The plan and section view of the drawings consider the Barton Street Widening ROW limit. A buffer in the form of the access road has been provided and will be confirmed in detailed design.	along the ROW limit should be eliminated. New Comment: the proposed pond access from Barton Street should be eliminated. Pond	Pond 2 has been graded to avoid encroachment into the future ROW limit. The maintenance acces roads from Barton Street have been removed and replaced with a pedestrian trail to acces the proposed Park. The proposed maintenance acces has been revised to connect to the internal street L.			

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
60	14.2 c	As per current design, major flows are proposed to be mostly overland, Pond 2 footprints should clearly show a major flow route to the main pond bypassing the forebay.	Noted. Refer to DWG SWM-1, -1A.	No overland flow route is provided to wet cell, bypassing the forebay. During detailed design, an adequate major overland flow route should be provided to pond wet cell, bypassing the forebay.	The overland flow route and pond design has been updated to convey the major system flows into the wet cell, bypassing the forebay (where possible). One bypass is still proposed where unavoidable for the sewer entering Pond 2 from Barton St. Refer to Drawing STM-1 and STM-2 and Section 5.3.1 of the report.	
61	14.2 d	City does not support the major flow pipe within forebay berm. Please consider a single forebay option for this pond. The inlet/outlet locations should be optimized to avoid any potential short-circuiting.	Comment Response.	No response provided for this comment.	Comment is no longer relevant. Pond has been reconfigured to convey major flows to the wet cell and bypasses the forebay. Refer to Drawing STM-1 and STM-2	
62	14.2 e	Please consider a Walkway along the east limit of pond to the park.	Noted.	Acknowledged.	No further response required.	
63	14.2 f	Decanting area within park land (south-east corner) should be removed.	Decanting area provided in pond block.	Noted.	No further response required.	
64	14.2 g	Pond 2 layout should be revised addressing the above comments.	Noted.	Acknowledged.	No further response required.	
65	14.3 a	DWG SWM-3 should include grades at the south limit of existing lots fronting Barton Street; future grades at east and south pond limits.	Noted. Existing grades shown on SWM-3.	Noted.	No further response required.	
66	14.3 b	As per current design, major flows are proposed to be mostly overland; Pond 3 footprint should clearly show a major flow route to the pond.	Noted. Refer to Drawing SWM-3.	During detailed design, an adequate major overland flow route should be provided to pond wet cell, bypassing the forebay.	Acknowledged. No further response required at this stage. Further details to be provided during the draft plan approval stages for individual developments.	
67	14.3 c	Section A3-A3: please label the access road.	4.0m Maintenance Road shown on Section A3-A3.	New Comment: the proposed pond access from Lewis Road should be eliminated. Pond maintenance access should be from internal streets	Clarification. No access road from Lewis Road was proposed. This was the emergency spillway. It has been labelled accordingly.	
68	14.3 d	Section A4-A4: it should be extended to show the grades at existing properties fronting Barton street and future grades at Street E.	Noted. Section A4-A4 extends to Barton Street and future grades E.	Acknowledged.	No further response required.	
69	14.3 e	Section A5-A5: this section should be extended up to Street A	Noted. Section A5-A5 extends up to Street A.	Acknowledged.	No further response required.	

_	1	1	ar Sarreetr					
#	Com	nment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility	
70		15a	The erosion threshold assessment recommends the allowable flows based on the bed/bank materials, which is much higher than the flows recommended by the SCUBE sub-watershed EA study based on a continuous simulation. We recommend a meeting with consultant and HCA staff to discuss about the preferred erosion targets to be used for SWM pond sizing.	A conference call was conducted with the City, HCA and Geomorphix on July 2, 2019. The purpose of this call was to discuss the difference between the SCUBE Study and the site-specific assessment completed by Geo Morphix in determining the flows to prevent erosion in the downstream channel. It was confirmed during this call that approach used in the SCUBE study was not based on field verification and does not account for assimilation capacity of the receiving watercourse. The field-based methodology is better tailored to the receiving watercourses as it accounts for cumulative inputs from Stormwater Management Facilities. The conclusion was that the proposed SWM controls will result in a minor reduction in erosion of the receiving watercourse.	Acknowledged.	No further response required.		
71		15h I	The Erosion Threshold Assessment Memo (Geomorphix, Dec 2018) should be stamped.	The updated memo dated August 7, 2019 has been stamped.	Acknowledged.	No further response required.		
72			Please provide a figure showing the reaches assessed by Geomorphix, for erosion threshold.	Refer to Appendix A in the updated memo dated August 7, 2019.	Acknowledged.	No further response required.		
73		I h	Appendix B-4: it appears that the DHI memo (Jan 2019) has missing pages.	The memo has been updated and included in Appendix F of the BSS. An additional email from Patrick Delaney (dated July 31, 2019) has been appended with the memo as an update to the results.	Acknowledged.	No further response required.		
74		17	The hydrogeological assessment should provide sump pump details (pump rating curve, sump pit sizes etc.) if the basement of the houses is being proposed below the ground water table.	Analysis will be completed at detailed design after basement elevations have been determined.	Noted.	No further response required.		
75		18	Recommendations should be provided for feasible LIDs for the proposed development. Currently report discussed a variety of LIDs (such as soakaway pits, bio-retention cells, etc.) which may not be feasible in residential areas, due to maintenance issues. Please document other alternatives such as: a minimum of 200 mm topsoil for entire site; a 150mm perforated pipe with granular materials on the rear yard swale, etc.	Refer to Section 5.15 of the BSS report.		Refer to Section 5.15 of the BSS report. A note has been added to table Table 5-17. Details of feasible LIDs (such as increased topsoil) in residential lots have also been included		
76		Tua I	Please add area IDs in the design sheet, consistent with sanitary drainage area plans.	Area IDs have been added to the design sheet.	Acknowledged.	No further response required.		

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
77	19b	Please note that as per City standards sanitary sewers should be maximum 75% full. The proposed 84% full sewers along Street D (MH 6A-E to MH 4A-E) and Street E (MH 14A-W to MH12A-W), are contrary to City standards.	All sewers have been sized to be at 75% of full flow capacity or less.	Acknowledged.	No further response required.	
78	20a	h) Population densities for sanitary sewer sizing should be in accordance with the Fruitland Winona Secondary plan. Currently for low density residential areas a density of 60 persons/hectare is used. However, as per the secondary plan, Low Density Residential areas in Block 3 will mostly have a designation 2 and 3. As per the Secondary Plan policy document (Nov, 2018) these designations are defined as follows: - Low Density Residential 2: density shall be 20 to 40 units/hectare - Low Density Residential 3: density shall be 40 to 60 units/hectare Based on average 3 persons/unit, the average population densities for "Low Density Residential 2" and "Low Density Residential 3" will be 110 and 150 persons/hectare, respectively (average). We understand at draft plan stage, population densities may increase depending on type of development proposed. Therefore, the following two options should be considered (and documented) for sanitary sewer sizing: - Option 1: Considering 60 persons/hectare for low density residential areas (the current design); - Option 2: considering higher population densities, as discussed above.		The wastewater servicing section (section 6.2) should include a discussion about two population density options, to document whether any upgrade is required for the existing sanitary infrastructure for either of the scenarios. Please clarify why DWG SAN-1 is showing a population density of 110 persons/ha for catchments 1 and 2. The density should be 250 person/ha as per the concept plan. Please justify 121, 140 and 142 persons/ha density for catchments 13, 15 and 8 respectively, in DWG SAN-1A. Please justify 124 and 201 persons/ha density for catchments 17 and 18 respectively, in DWG SAN-2A.	Catchments 1 and 2 have been modelled both ways. One per the city standard and one per the concept plan densities. Catchment areas 13,15,8,17 and 18 populations per Ha are composite values based on the potential unit types stated on the concept plan provided by GSAI.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
79	20b	The proposed sanitary sewers should be designed in accordance with the City sewer polygon. A comprehensive sanitary drainage area plan should be provided showing the extent of external drainage areas contributing to Lewis Road and Barton street sanitary sewers. A copy of the City sewer polygon map will be provided.	The drainage plans and design sheets have been updated accordingly.	As noted in our previous comments, the proposed sanitary sewer along Barton Street from Street E to McNeilly Road, should be connected to the existing sewer along McNeilly Road, as per original design polygon of the system. New Comment: Please clarify the rationale for using a population density of 125 person/hectare for areas north of Barton Street and west of Lewis Road (DWGs. SAN-1, SAN-1A). Please verify the area of catchment EX 12 south of HWY8 and confirm consistency with City sewer polygon. Please confirm in DWG SAN-3, whether population noted for EX 1 and catchment 1.1 is total population or population/ha.	Sanitary sewer has been redirected to match the City's polygon. As mentioned in the previous comment response population densities have been modelled in two scenarios; the first being city standard and the second being based on the concept plan. Catchment EX 12 has been confirmed. A portion of the lands north of Highway 8 have been designed to flow to the north internally ultimately into Barton St. This is due to expected grading and lot frontages per the Concept Plan. Population noted for EX 1 and Ex 1.1 are population per hectare based on City standards.	
80	20c	Please show the sanitary sewer east of HWY 8.	Based on the mapping provided there is no sanitary sewer east of Lewis on Highway 8.	Acknowledged.	No further response required.	
81	20d	Proposed development blocks fronting HWY8 should be serviced from the existing sanitary sewer.	The development lands along Highway 8 have been designed to be serviced by the Highway 8 sanitary sewer with the exception of the development block at Lewis and McNeilly.	Except two commercial blocks (Comm-2 and Comm-3), all development lands are shown to be serviced by Block 3 internal sanitary sewers. Please explain and demonstrate why these lands cannot get an adequate sanitary outlet to HWY 8.	Due to the significant fall from south to north it was determined to provide capacity within the internal sanitary sewers within the development. At the detailed application stages if it is more advantageous (possible) to drain to the existing Highway 8 sewer this would not be precluded.	
82	20e	,	This has been revised to reflect an existing 450mm sanitary sewer south of Barton.	Acknowledged.	No further response required.	
83		Please verify and confirm the sanitary sewer outlet of EX 1 (3 ha). Based on City records, it appears to drain to the Arvin Avenue sanitary sewer.	This has been corrected to contribute to the Arvin Avenue sanitary sewer.	This catchment is still accounted to drain to Barton Street sanitary sewer as shown in the sanitary drainage area plan and sanitary sewer design sheet. Please verify.	Based on a site servicing plan prepared in 2007 (city file drawing# LSP_2537) the site drains to EX.MH3A along Barton street. Drawing enclosed in Appendix M .	
84		•	Sub catchments have been divided and appropriate population densities have been applied.	Subcatchments 1 and 3 are not divided to separate areas north and south of Barton Street; and still a density of 250 person/hectare is used for areas north of Barton Street. Please verify.	Catchment EX1 has no been seperated based on land use. The rationale for catchment 1,2 & 3 to be 250 Persons/hectare is based on the concept plan prepared by GSAI the lands will be deemed medium density Residential.	

	arbancen					
#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
85	20h	As Per Winona Hills FSR (Urbantech, Nov 2018) proposed population density for Winona Hills is 83 pp/ha; while the drainage plans are showing 60 pp/ha. Please clarify and confirm the density.	Proposed population density for Winona Hills has been updated.	Acknowledged.	No further response required.	
86	20i	Please fix the typo for existing sanitary sewer along HWY-8 in DWG SAN-1. It should be labelled as SAN.	The typo has been corrected.	Acknowledged.	No further response required.	
87	20j	Please clarify sanitary drainage outlet for the area north of Barton Street between Lewis Road and McNeilly Road (Sub area 2).	Sanitary drainage will be to Barton Street. The drawings and drainage area plans have been updated.	Acknowledged.	No further response required.	
88	21	Please clarify the population density scenario(s) used to size the watermains and to test the impact on the pressure district. Water system servicing scenarios should be developed for all population density scenarios.	The water modelling includes all density scenarios included in the 2006 Master Plan and the proposed concept plan which is in keeping with the secondary plan.	Acknowledged.	No further response required.	
89	22	As per City records, there is a 300mm watermain stub at Lewis Road and HWY8, which indicates future potential upsizing of the existing 150mm watermain on Lewis Road to 300mm. The watermain analysis for Block 3 should assess whether a future 300mm watermain will be required on Lewis Road	WSP has demonstrated that this future watermain is not required to service the subject lands.	Acknowledged.	No further response required.	
90		As per City standards, if more than 100 lots are serviced by one watermain feed, a second watermain feed shall be required. Please verify and confirm, whether additional looping is required for proposed watermain along Street P.	Each block has sufficient services as confirmed by Hamilton Water.	Acknowledged.	No further response required.	
91	24	All tables provided in the report for pond rating curves, pond outflow/volume results, etc. should include an additional column indicating the corresponding storm event (i.e. extended detention level, 2-year, 5-year, etc.).			Tables referencing pond design, stage storage curves have been updated to include storm event	
92	25	Please confirm the unit (m3/ha or m3/imp-ha) of volumes noted in tables 5-18 and 5-22. Pond 3 volumes should be same for both scenarios.			Unit rates for Pond 2 and 3 have been updated. Refer to Table 5- 14	
93	В			B. Land Use Planning – The last version of the Concept Plan (attached here for clarity) indicates a window road. This is not desirable from the Planning perspective. If however, you still wish to pursue this there are mitigation measures which are attached, which we would recommend for Application stage.	It is understood that should a detailed application propose window roads that additional urban design mitigation measures would be required.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Pasnonso	Responsibility
	Comment #	City of Hamilton Submission 1 Comments	Juninission 2 nesponse	City of Hamilton Submission 2 Comments	Submission 3 Response	veshousininth
95	С			Public Consultation - The comments in this section pertain to the Main body of the Report s. 1.5 AGENCY AND PUBLIC CONSULTATION undertaken during the study process, and the associated the corresponding Appendices M and N, in that order:		
96	D a.				The section on Public Engagement has been modfied to provide further details.	
97	D b.			You mention in this section that registered letters were sent out to the land owners. This section is where we would recommend that you voice any key location's lack of response, which you identify yourselves as non-responsive. The location staff questioned in the past was land under Pond No. 2 – did they ever acknowledge they're aware of the process? What was the outcome and what measures did you employ to reach all the non-responders – i.e. did you exhaust all options available to you – typically employed in such a process? Staff need to know that (and to show all the work you did in this) and need to have this in the Report to be able to defend our collective certainty of implementability of this Block.	Copies of letters provided to landowners are included in Appendix N of the report. Multiple mail outs were sent to the owner of the property where the east pond is proposed with no response. In addition we attended the site and left a copy of the letter in the mailbox with no response.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
98	D c.			The TOR for this process asked that all Blocks follow the Municipal Class Environmental Assessment process. Normally this entails sending a notice of project PIC to Agencies. Were agencies included in your mail outs? If yes, please include their list and any correspondence received in Appendix M. Block 2 sent their Notices to Agencies for the combined Notice, so you can use our list, if you wish, for that, if you did as well. The question remains — did Block 3 receive any comments, specific to your area, outside of the Hamilton Conservation Authority?	Agencies included in the City circulation list have been provided a copy of the notice of comment period. A copy of the list is included in Appendix N of the report.	
99	D d.			Appendix M – in Natural Heritage above, we have identified that proof of dialogue/correspondence with the appropriate Ministry is required to show that the process being followed is fulfilling their requirements.	Refer to Arcadis summary responses.	
100	D e. i.			The letters included in the appendix that contain blacked out information were blacked out unsuccessfully, i.e. we can still read the names and addresses of individuals being addressed. This should be remedied before the Report is finalized.	Black outs have been updated.	
101	D e. ii.			Please include ALL correspondence, i.e. also e-mails included, also redacted, for a complete record of this portion of the Report. The reason that we want this here is that it will form proof to council, that public engagement took place and when you summarize number of how many land owners/members of the public were engaged, the appendix will provide that proof, i.e. provide your entire study record of public consultation in this appendix. (Just a friendly warning is that from our experience we can advise that this may mean that your Report may gain a whole additional volume.)	Very little correspondence was received from landowners. Some phone calls were received and I asked that they document their concerns in writing.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
102	D e. iii.			Please provide blank sign-in sheets that you would have used at the PICs/any meetings. Please note that there is no need to include the actual sheets that were signed since they'll all have to be blacked out, except for members representing public bodies/agencies/businesses — it is deemed to be acceptable to show the blank sheet and just provided a counted number of those who signed in. If some attendees did not sign in, this can be noted in the Report portion as well.	Sign in sheets and blank comment sheets are included from the PIC.	
103	D e. iv.			Please provide photocopies of Newspaper Notices provided for each PIC (If this were an appealable MCEA process, the MECP would ask for physical copies cut out from the newspaper – in your company records as proof, in case of an appeal). We would suggest that a labelled sheet /tab be placed to separate discussions according to key points in the project process public engagement, i.e. include PIC Notice #1, corresponding sign in sheet, followed by any letters/emails, etc. until the next period of engagement, if you have a lot of materials. The next PIC/Meeting should also provide the same order of information in this appendix, for ease of finding/following the discussions.	The only newspaper ad we have prepared is the one for the notice of public comment. The city prepared the one for the joint PIC.	
104	D e . v.			Also, please provide copies of PIC panels/meeting materials for each public meeting held during the study process.	PIC meeting materials are included in Appendix N .	
105	E			Water/Wastewater – Please see a separate comment attached.	All water and wastewater comments have been addressed in this submission.	
106	F			Transportation – Consistent with Secondary Plan and Thank you for connecting the Collector "F" to Highway 8. On the Traffic Study - Appendix K of the Report	Refer to GHD Response Table Attached.	
107	F a.			Executive Summary Page i: LOS F at intersection of McNeilly, and Lewis Road on Barton St. The intersection analysis data and results should be passed on to the Barton St, & Hwy8 study consultant for their review and consideration. (NOTE: Margaret Fazio has already passed this on).	Refer to GHD Response Table Attached.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
108	F b.			Item 2.2.3, 3rd paragraph: Local Road ROW, unclear if the on-street parking is beyond the roadway pavement width of 8m. It should be additional. Make it clear. Include a proposed cross section, in Appendix L and cross reference it in the description.	Refer to GHD Response Table Attached.	
109	F c.			 TIS does not discuss road cross sections. It is recognized, however, that the main body of this Draft Report Section 4.2 Roadworks (pg. 27) discusses road ROWs and proposed cross section features to be designed according to City standards, as well as Appendix L which provides the Local Road Cross section. The Main Report also considers reports used in this study. The list is missing a couple of Reports, which guide the cross sections for collector roads. They are the Pedestrian Mobility Plan, https://d3fpllf1m7bbt3.cloudfront.net/sites/default/files/media/browser/2014-12-17/hamilton-pedestrian-mobility-plan.pdf and the Cycling Master Plan. https://d3fpllf1m7bbt3.cloudfront.net/sites/default/files/media/browser/2018-06-06/draft-tmp-backgroundreport-cyclingmp-11-1.pdf Please note that SCUBE TMP is used as a guiding document for further transportation related 	Refer to GHD Response Table Attached.	
110	F d.			Municipal Class Environmental Assessment (MCEA) requirements within the Fruitland-Winona Secondary Plan area, and it does not recommend that any further studies should be conducted for the above mentioned existing roadways. Thus, detailed design and construction are to be urbanized and are expected to be implemented through the Item 5.3: Block 3 Study Area is currently not a developed area and so, we are not sure if the TTS data can be utilized for site distribution traffic? This may need to be monitored during the phasing of implementation process.		

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
111	F e.			Item 8.4: Proposed Internal Intersection Control: Recommendation should be included to consider mini-roundabout/traffic circle during the draft plan stage, as a traffic control & calming measure to address safety, speeding issues etc. Recommendation to consider other forms of traffic control should also be included. Include these in Section 9.2, Summary Recommendations	Refer to GHD Response Table Attached.	
112	G			Urban Design - Comments are based on the Concept Plan for Area #3 submitted as part of the report. Generally the comments are focused on ensuring the proposed block and street network will integrate well into context and achieves good interfaces within the community.		
113	G a.			Window road condition – on Highway 8, east of Lewis Rd		
114	G b.			This condition is not ideal from the point of view of streetscaping along Highway 8: the lack of frontage will minimize pedestrian activity and impact views from the street. It is also not ideal for its environmental impacts either, seeing how it doubles up on asphalt surfacing. Potential design solutions (the list below is not exhaustive):	It is understood that should a detailed application propose window roads that additional urban design mitigation measures would be required.	
115	G c.			Enhanced window road design: Should no other block layout be feasible at this location, a good physical and visual interface between the two roads could be achieved by upgrading the landscape strip separating the paved roadways. Upgrades should consist of berms, dense tree plantings, and decorative fencing (or segments of decorative fencing). The consolidation of ROWs could result in only one walkway, maximizing space for landscaping.	It is understood that should a detailed application propose window roads that additional urban design mitigation measures would be required.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
116	G d.			Attached is an Landscape Plan (approved) for a Mattamy subdivision in Waterdown, where a similar window road, adjacent to a multi-purpose trail, was treated with a staggered row of street trees, portions of decorative (cross-buck) fencing, and where pedestrian connections were appropriate, masonry columns marking those connections to the public sidewalk	It is understood that should a detailed application propose window roads that additional urban design mitigation measures would be required.	
117	G e.			Different block and road layout: The other solution would be to plan for housing typologies capable to front both Highway 8 and Collector Rd D. As individual driveways may not be supported along Highway 8, dual frontage townhouses could work in this scenario - with vehicular access provided by means of a private laneway at the rear of the unit. It is important that the rear frontages are treated as street frontages, with high quality architectural detail and preferably a secondary building entrance.	It is understood that should a detailed application propose window roads that additional urban design mitigation measures would be required. Alternative designs for various blocks will be further explored at Draft Plan/Site Plan stage.	
118	G f.			There are a number of built precedents for this type of unit, either with detached garages and private rear yards, or with attached garages and elevated private amenity areas in the rear (such as a balcony or terrace above the garage). Attached are a few examples of lane townhouses.	It is understood that should a detailed application propose window roads that additional urban design mitigation measures would be required. Alternative designs for various blocks will be further explored at Draft Plan/Site Plan stage.	
119	G g.			Visibility of neighbourhood parks in larger community		
120	G h.			It is important that neighbourhood parks have generous street frontage. The objective is to maximize eyes on park (informal supervision) and to take advantage of this land-use as an organizing and character-generating element in community design as it provides a focal point and sense of place.	The concept plan is based on the established locations for collector road interesections. The concept plan has been developed based on these principles, meetings with staff and direction from staff that the configuration of the western park cannot differ from the Secondary plan configuration.	
121	G i.			Western Neighborhood Park: Please reconsider the block/street network to fully expose at least two of the parks edges to streets in the contextual neighbourhood.	The concept plan is based on the established locations for collector road interesections. The concept plan has been developed based on these principles, meetings with staff and direction from staff that the configuration of the western park cannot differ from the Secondary plan configuration.	

#	Comment #	City of Hamilton Submission 1 Comments	Submission 2 Response	City of Hamilton Submission 2 Comments	Submission 3 Response	Responsibility
122	G j.			An option may be to extend the local road adjacent to the eastern edge of the park north towards Collector Rd 'D', and west (along the southern edge of the park) to McNeilly Rd.	At a meeting with staff it was agreed to defer this design element to Draft Plan/Site Plan stages.	
123	G k.			New Collector Rds. – McNeilly and Lewis		
124	G I.			These roads should achieve an urban profile, in terms of including pedestrian facilities on both sides of the road along with tree planted boulevards, to establish a pedestrian-friendly environment.	The BSS has been updated to provide drawings indicating how the urbanization of these roads could happen both with participation of lands fronting these roads and in context of existing development. Refer to Drawing ROW-1 .	
125	G m.			Community design		
126	G n.			Unit types: All streetscapes, internal and external. should incorporate street trees. For this reason townhouse units incorporating front garages should be at least 6m wide, to allow for sufficient space in their front yards for street trees. Note the City's soil volume standards for street trees (min 21m³ soil/tree in single planting bed, 16m³ soil/tree in shared planting bed). This standard applies to street townhouses as well since the frequency of driveways impacts contiguous soil volumes in ROW boulevards.	To be addressed at the Draft Plan/Site Plan./Detailed Design stage.	
127	G o.			SWM pond: Ensure the SWM pond is designed to complement streetscapes and allow the integration of pedestrian walkways, where feasible.	To be addressed at the Draft Plan/Site Plan./Detailed Design stage.	
128	Н			Water/Wastewater – Please see a separate comment attached.	All water and wastewater comments have been addressed in this submission.	

Comment #	HCA Sub 2 Comment	Sub 3 Response	Responsibilit
	Natural Heritage Features and Watercourses		
	In Section 3, Existing Conditions, it is noted that discussions between the City of Hamilton • (City) and HCA resulted in the determination that regulated watercourse features 1, 2, 3 and 4 did not require protection and could be enclosed. With respect to feature 1 (Watercourse 9), it		
	is indicated enclosure was allowed given downstream infrastructure constraints. In Section 3.6, it is further noted enclosure was allowed given City concerns related to flooding and safety. In addition to this, the City's preference for an enclosed system was also related to concerns over consistency with the Secondary Plan, parkland requirements and useable recreational space, as well as anticipated long-term maintenance costs associated with an open watercourse feature. HCA suggests these additional considerations raised by the City should be identified in the report.		
	HCA staff continue to note there was insufficient fisheries sampling work completed to determine if fish may be present at certain times or to support the conclusions made in the report that the drainage features within the block do not provide or support fish habitat (Section 3.7 and App C, EIS, Section 3.1.2.3). Appendix E of the EIS (Arcadis, Updated July 2019) provides a DFO fish habitat self-assessment, which acknowledges there may be some surface water conveyance from the block to downstream sections that do comprise fish habitat.		
	HCA suggests this should be noted in the body of the EIS and main report, along with the limitations of the assessment work completed. In HCA staff's opinion, based on the work completed, the report should note the on-site intermittent		
	streams likely provide some form of contributory function as fish habitat, which will need to be considered at the time of development. While the report has completed a DFO self-assessment, HCA staff notes recent changes to the Fisheries Act will likely require further review to determine the potential for impacts and need for an authorization from DFO at the time of development. HCA suggest this should be noted in the final report.		
1	Table 9-1 states fish rescue permits and/or a LOA will not be required. In the absence of more detailed information or staging plan to identify when construction/enclosure will occur, HCA suggests this statement in Table 9-1 is potentially misleading.		
	Survey work completed as part of the EIS recorded Barn swallow foraging on site. Monarch was also recorded as part of survey work completed for the study. HCA staff suggest that indicating there is additional habitat for these species in the surrounding area does not recognize the considerable area of potential habitat that will be lost as a result of development of the block (as well as the surrounding blocks), nor is it clear which surrounding habitat areas are being referred to.		
	While the EIS has included some correspondence with the MECP regarding species at risk; there is nothing included to indicate all issues have been resolved to MECP's satisfaction. If additional information/correspondence is available HCA suggests it should be included in the final report.		
	The EIS includes a limited discussion regarding Significant Wildlife Habitat (SWH). This section could be expanded to address all potential categories/types of SWH. For example, while Monarch are discussed in terms of the site's function as a migratory stop over (seasonal concentration areas), the site is not reviewed as potential habitat for a species of conservation concern.		
	HCA staff support the limited recommendations made in Section 6 (Mitigation Measures) and 7 (Recommendations) of the EIS.•Further consideration could be given to retaining hedgerows in the development concept (e.g. in association with the SWM pond, school and neighbourhood parks).		

# Comment	# HCA Sub 2 Comment	Sub 3 Response	Responsibi
Comment	Lack of Model Calibration, Validation or Parameter Sensitivity Analysis	Sub S recipolise	
2 2	Given the significant revisions to the original MIKE 11 modeling (and the considerable changes in peak flow rates), HCA staff had previously suggested that some form of model calibration or validation is warranted. Due to the lack of available flow observations in Watercourse 9, this review was expected to focus on a fulsome comparison of peak flow rates under existing conditions and future uncontrolled conditions (at all key comparison locations) to peak flow rates determined by previous approved modeling studies (SCUBE SWS 2013, FDRP, etc.). Also, a sensitivity analysis of key model parameters was suggested, to further validate the revised modeling results. The intended sensitivity analysis was not provided in the revised submission. HCA staff had expected a review of changes in peak flow rates resulting from changes in the values selected for key parameters (within justified ranges). It was staffs expectation that this review would help address concerns regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study. Due to the errors found in the original SCUBE Subwatershed Study 2013 MIKE 11 model, a peak flow comparison to this study was not relied on. Table 5-12 and 5-13, compares the existing and future uncontrolled peak flows determined by the updated MIKE 11 design event model, SCUBE 2013, and FDRP 1989. However, there appears to be errors in the tables. The FDRP future uncontrolled drainage areas do not appear consistent with the FDRP report. Although not relied upon, it was also observed that the SCUBE 2013 peak flows are not consistent with the 151 submission report. HCA staff completed a comparison of the design event model peak flows to FDRP 1989 results. Given the magnitude of the increases, HCA staff have concerns regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study. The existing condition peak flows determined using the single event (design event) modelling are significantly greater than the peak flows previo	An email was received from HCA indicating that the model results are in keeping with their experience in other areas and as such further calibration is not required. The email is included in Appendix M	
	about the potential for an increase in actual peak flow rates downstream (compared to current in-field conditions). In addition to the above, the continuous model peak flows (from the 1st submission) were also compared to FDRP results. It was noted that the 100-year existing conditions peak flow rates determined using the continuous modelling were -45% and -5% smaller than the FDRP results (when normalizing for drainage area differences), at the downstream crossings of CNR and QEW. The 100-year future uncontrolled conditions peak flow rates determined using the continuous modelling (as presented in the 1st submission), were -25% and -15% smaller than the FDRP results (when normalizing for drainage area differences), at the downstream crossings of CNR and QEW. As detailed in Review Comment 4 below, the unexpectedly large increases in peak flow rates (for both existing and future uncontrolled conditions) between the design event and continuous versions of the Block Servicing Study model increases HCA staff's concern regarding the accuracy and confidence in the peak flow rates modelled.		
	Corrected Errors from the Original SCUBE SWS 2013 MIKE 11 Modeling		
	HCA had suggested that the report provide further detail regarding the errors that were found and corrected in the original SCUBE SWS 2013 MIKE 11 modeling, as this information forms another aspect of the validation of the revised peak flows.		
3	It is HCA staff's suggestion that the details provided in the DHI memo dated June 12, 2018 (Subject: Scube East Model Update- Corrected Slopes) be included in the report, as this memo describes the key error (considerably low values for urban catchment slope) found and corrected from the original SCUBE Subwatershed Study 2013 MIKE 11 model.	The memo documenting the errors in the orginal SCUBE MIKE 11 model and corrections and updates has been attached in Appendix F	
	The DHI memo dated June 12, 2018 also identifies significant differences in peak flows when the original SCUBE Subwatershed Study 2013 MIKE 11 model (using 2007 version of MIKE 11) was re-run using the 2017 version of MIKE 11. Although it is acknowledged that the 2017 re-run produced lower peak flows, the magnitude of differences and lack of understanding of reasons for the differences increases HCA staff's concern regarding the accuracy and confidence in the peak flow rates modelled by the Block Servicing Study.		

a necessary of the control of the co	Comment	HCA Sub 2 Comment	Sub 3 Response	Responsibil
sets and Flow Attenuation Within Feature 1 Finded Storage and Flow Attenuation Within Feature 1 Finded discussions are auggested regarding how (orl) the food storage and flow attenuation of Drainage Area 300 within the estating onsite Feature 1 should be accounted for, if the Blook Servicing Study continues to propose enclosure of the Attenuation and Seasons and Seasons are auggested regarding how (orl) the food storage and flow attenuation of Drainage Area 300 within the estating onsite Feature 1 should be accounted for, if the Blook Servicing Study continues to propose enclosure of the Attenuation and a seasons of the Attenuation and the Continues of the Attenuation and a continuent 3028 and 2028 (Refer to Table 9-4.1). Assessing the Potential Effects of Enlarging the Highway 8. Lowis Road and Barton Street Culvert Crossings The product unged does to what crossings are yellow of the continuent and advantage and a continuent of the Potential Effects of Enlarging the Highway 8. Lowis Road and Barton Street Culvert Crossings Figure 1. Existing land use, with existing SWM (if any), custing conditions at all inflicts by the proposed dumpted so to under the product of the 2014 submission were used of the Attenuation and advantage and existing for the flow attenuation at the crossings. Figure 2. Existing land use, with existing SWM (if any), custing conditions at all offsile hydraulic structures and downstream channel sections, and accounting for the flow attenuation at the crossings. First product Under the Attenuation and ALL hydraulic structures and downstream channel sections, and accounting for the fore attenuation at the crossings. This produce the Attenuation and ALL hydraulic structures and downstream channel sections, and accounting for the accounting of the fore attenuation at the crossing details, unstaining conditions at all offsile hydraulic structures and downstream channel sections, and accounting for the crossing details, unstaining conditions at all offsile hydraulic structures and downstream	4	Given the Frequency Flow Analysis concerns, HCA had suggested that further consideration be given to the use of a design storm I single event modeling approach for all required assessments (SWM pond design, impacts of Proposed Conditions with SWM Controls on downstream Existing Condition peak flow rates, revised Future Uncontrolled Conditions), and that appropriate validation I sensitivity analysis of the adopted design event modeling would be necessary. In reviewing the revised submission, HCA notes the peak flows determined using the single event (design event) modelling are significantly greater than the peak flows determined using the continuous modelling (as presented in the pt submission). HCA staff had suggested the design event approach given the expected inaccuracies in the frequency flow analysis. However, HCA staff had not expected such large increases in peak flow rates. For example, at Nodes 1, 10, 11, and 13, the 100-year existing conditions peak flows determined using the design event modelling were 65%, 32%, 55%, and 74% greater than the continuous modeling results. Also, the 100-year future uncontrolled conditions peak flows at Nodes 10, 11, and 13 increased by 101%, 105%,	determined from the MIKE 11 continuous modelling results. DHI has updated the model and completed a statistical regression of the results.	
The proposed upgrades to culvert crossings may reduce flow attenuation, and possibly increase flows, water levels and velocities downstream of the crossings. Depending on the proposed upgrades, a downstream impact assessment may be required, and would be based on a comparison of the following scenarios: - Existing land use, with existing SVM (if any), existing conditions at all hydraulic structures, and accounting for the flow attenuation at the crossings Proposed site land use, existing land use, existing and use existing induse existing induse existing offsite SVM and existing offsite SVM (if any), proposed crossing details, existing conditions at all offsite hydraulic structures and downstream channel sections, and accounting for the flow attenuation at ALL hydraulic structures The review is requested to include the range of storms evaluated in the overall study. This recommended assessment differs from the assessments undertaken to date to support this study, where flow attenuation at hydraulic structures appears to have been ignored. Comparison of Peak Flows under Proposed Conditions with SVM Controls to Existing Conditions for Four Storm Events This previous HCA review comment has been addressed. Peak Flow Comparison Locations Downstream of the Site for the Various Pond Rating Curve Scenarios This previous HCA review comment has been addressed. Channel Capacity in the Venetian Meats Channel This previous HCA review comment has been addressed. Comparison of Peak Flows under Proposed Conditions with SVM Controls to Existing Culvert & Channel Capacities Comparison of Peak Flows under Proposed Conditions with SVM Controls to Existing Culvert & Channel Capacities This previous HCA review comment has been addressed. Comparison of Peak Flows under Proposed Conditions with SVM Controls to Existing Culvert & Channel Capacities This previous HCA review comment has been addressed. Comparison of Peak Flows under Proposed Conditions with SVM Controls to Existing Culvert & Channel Capacities The cap	4a	Further discussions are suggested regarding how (or if) the flood storage and flow attenuation of Drainage Area 300 within the existing onsite Feature 1 should be accounted for, if the Block Servicing Study continues to propose enclosure	infrastructures (culverts and constructed channels) will be assessed to ensure sufficient capacity. Since the release rate established from the pond design in the 2nd BSS submission is significantly lower than the existing scenario flows from the catchment 302B and 202 (Refer to Table 5-4), the pond rating curves developed as part of the 2nd submission were used in Mike 11 model's post-development scenario to minimize downstream exceedances to the greatest possible extent. Capacity assessment of the VM's channel and culverts has been completed.	
This previous HCA review comment has been addressed. Peak Flow Comparison Locations Downstream of the Site for the Various Pond Rating Curve Scenarios This previous HCA review comment has been addressed. No further response required. This previous HCA review comment has been addressed. Channel Capacity in the Venetian Meats Channel This previous HCA review comment has been addressed. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities The capacity of the VM's channel and downstream culvert is compared to the	4b	The proposed upgrades to culvert crossings may reduce flow attenuation, and possibly increase flows, water levels and velocities downstream of the crossings. Depending on the proposed upgrades, a downstream impact assessment may be required, and would be based on a comparison of the following scenarios: • Existing land use, with existing SWM (if any), existing conditions at all hydraulic structures, and accounting for the flow attenuation at the crossings. • Proposed site land use, existing land use offsite, with proposed site SWM and existing offsite SWM (if any), proposed crossing details, existing conditions at all offsite hydraulic structures and downstream channel sections, and accounting for the flow attenuation at ALL hydraulic structures. • The review is requested to include the range of storms evaluated in the overall study.		
Curve Scenarios This previous HCA review comment has been addressed. Channel Capacity in the Venetian Meats Channel This previous HCA review comment has been addressed. Channel Capacity in the Venetian Meats Channel This previous HCA review comment has been addressed. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities The capacity of the VM's channel and downstream culvert is compared to the	5	This previous HCA review comment has been addressed.	No further response required.	
7 This previous HCA review comment has been addressed. Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities The capacity of the VM's channel and downstream culvert is compared to the	6	Curve Scenarios	No further response required.	
Comparison of Peak Flows under Proposed Conditions with SWM Controls to Existing Culvert & Channel Capacities The capacity of the VM's channel and downstream culvert is compared to the	7		No further response required.	
8 JHCA had recommended that a table be included comparing the peak flow rates under Proposed Conditions with SWM Controls to the existing flow capacities of culverts and channel sections downstream of the site.	8		The capacity of the VM's channel and downstream culvert is compared to the generated 100-year flow (with and without controls) in Table 5-6 and 5-7 of the	

Commen	# HCA Sub 2 Comment	Sub 3 Response	Responsibi
	Comparison of Peak Flows under Future Uncontrolled Conditions to Existing Culvert & Channel Capacities		
9	As an update to the same evaluation from the SCUBE 2013 study, HCA had recommended that there be a comparison of peak flow rates under Future Uncontrolled Conditions (Regional and 100 year event) to the existing flow capacities of culverts and chann sections at the QEW and CNR crossings downstream of the site.	The capacity of the VM's channel and downstream culvert is compared to the generated 100-year flow (with and without controls) in Table 5-6 and 5-7 of the report. Location of the culverts has also been shown in Table 5-7	
	It is expected that the previous HCA review comment will be addressed at the Detailed Design stage.		
	Reduced Peak Flow Rates between Node 1 and Node 5 under Existing Conditions		
10		No further response required.	
	The previous HCA review comment has been addressed.		
11	Lack of Change in 100 year Storm Event Peak Flow Rate between Node 5 and Node 8 under Existing Conditions	No further response required.	
	The previous HCA review comment has been addressed.	The failures respective required.	
	Reduced Peak Flow Rates between Node 13 and Node 14 under Existing Conditions		
12		No further response required.	
	The previous HCA review comment has been addressed.		
13	Drainage of Catchments 200 & 201A	No further response required.	
5 13	The previous HCA review comment has been addressed.	ino futities response required.	
	External Conveyance Sewer System:		
14		No further response required.	
	The previous HCA review comment has been addressed.		
15	Statistical Distribution Selection -Appendix F	No further response required.	
	The previous HCA review comment has been addressed.	No futuler response required.	
	Proposed Condition with SWM Control Peak Flows for Node 1		
16		No further response required.	
	The previous HCA review comment has been addressed.		
17	Final Hydrology and Hydraulics Modeling Files to be Provided	Noted	
, 17	Once finalized, HCA would request that a copy of all modelling files be provided.	Noted	
	SWM Pond Design		
18-23		Acknowledged	
	All previous HCA review comments related to SWM pond design (comments #18-23) have been addressed.		
	Proposed % Imperviousness Values		
	HCA had suggested it should be confirmed the proposed imperviousness values are consistent with the Fruitland Winona Secondary Plan and SCUBE SWS 2013.		
24	The third suggested it should be committed the proposed importious factorists it with the Trainant William and Society Than a	Noted.	
	In reviewing the revised report and responses, HCA notes the proposed % imperviousness		
	(approximately 70%) are considerably larger than that which was assumed in the SCUBE 2013		
1	Subwatershed Study (50%). Notwithstanding the on-going review of the modelling, it is noted the proposed increase in imperviousness could potentially increase the regulatory floodplain downstream.		1
25	Recommended Runoff Coefficients by Land Use	No further response required.	
	See comment #24 above.	The failures respective required.	
	Available Topography Data Used in the Study		
	HCA had requested additional details regarding the topographic data used for this study, including source, date created, contour interval, etc.	The 2017 Melaren tanagraphic is the primary source of the tanagraphic	
26	The previous HCA review comment has been addressed.	The 2017 Mclaren topographic is the primary source of the topographic data. The typo has been fixed in the report.	
		Ak a	1
	That said, it is expected that there is a typo, and that the contour interval of the GTA Mass Points and Breaklines 2002 data is 1.0m, not 10.0m. It is also expected that the 2017 Mclaren topographic survey was the primary source of topographic data for the study.		

December 4, 2019

Rob Merwin, P.Eng.
Urbantech
2030 Bristol Circle, Suite 201

Dear Mr. Merwin

Oakville Ontario L6H 0H2

Re: Block 3 Servicing Strategy (B3SS) Traffic Impact Study

Response to City Comments

GHD was retained to prepare a Traffic Impact Study (TIS) for the proposed Fruitland-Winona Secondary Plan-Tertiary Plan residential subdivision development located on the north side of Highway Way 8 and south side of Barton Street, between McNeilly road and Winona Road, in Stoney Creek, City of Hamilton.

88/11747/

GHD had previously received comments from City staff pertaining to the Block Servicing Strategy (BSS) Area #3, dated May 11, 2017 and February 16, 2019. Subsequently GHD provided an updated traffic study dated July 2019, which the City has now commented on in their response letter dated October 11, 2019.

The purpose of this letter is to provide GHD's response to those comments.

F. Transportation

a. Executive Summary Page i: LOS F at intersection of McNeilly, and Lewis Road on Barton St. The intersection analysis data and results should be passed on to the Barton St, & Hwy8 study consultant for their review and consideration.

GHD Response:

It is our understanding that the City has already passed this information along to the Barton Street and Hwy 8 Study consultant.

b. Item 2.2.3, 3rd paragraph: Local Road ROW, unclear if the on-street parking is beyond the roadway pavement width of 8m. It should be additional. Make it clear. Include a proposed cross section, in Appendix L and cross reference it in the description.

GHD Response:

The proposed 20 metre Local Road ROW is consistent with the City's Standard No. RD-113.01 and includes an 8 metre pavement width and provides sidewalks on both sides of the road and on-street parking. A cross section figure is provided in Appendix H of the report.

- c. Item 3.1: Existing McNeilly and Lewis Roads;
 - TIS does not discuss road cross sections. It is recognized, however, that the main body
 of this Draft Report Section 4.2 Roadworks (pg. 27) discusses road ROWs and proposed
 cross section features to be designed according to City standards, as well as Appendix L
 which provides the Local Road Cross section.

GHD Response:

The July 2019 TIS provides a discussion of road cross sections in Section 2.2.3 of the report. Appendix H of the report provides the Local Road Cross section.

- The Main Report also considers reports used in this study. The list is missing a couple of Reports, which guide the cross sections for collector roads. They are
 - i. the Pedestrian Mobility Plan, https://d3fpllf1m7bbt3.cloudfront.net/sites/default/files/media/browser/2014-12-17/hamilton-pedestrian-mobility-plan.pdf
 - ii. and the Cycling Master Plan. https://d3fpllf1m7bbt3.cloudfront.net/sites/default/files/media/browser/2018-06-06/draft-tmp-backgroundreport-cyclingmp-11-1.pdf

GHD Response:

Noted. No further response required.

Please note that SCUBE TMP is used as a guiding document for further transportation related Municipal Class Environmental Assessment (MCEA) requirements within the Fruitland-Winona Secondary Plan area, and it does not recommend that any further studies should be conducted for the above mentioned existing roadways. Thus, detailed design and construction are to be urbanized and are expected to be implemented through the development process.

GHD Response:

Noted. No further response required.

d. Item 5.3: Block 3 Study Area is currently not a developed area and so, we are not sure if the TTS data can be utilized for site distribution traffic? This may need to be monitored during the phasing of implementation process.

GHD Response:

TTS data specific to Block 3 is not available in TTS and therefore the distribution was based averaging the data provided within TTS for the areas of Hamilton, Stoney Creek and Grimsby to origin/destinations locally and the GTA.

e. Item 8.4: Proposed Internal Intersection Control: Recommendation should be included to consider mini-roundabout/traffic circle during the draft plan stage, as a traffic control & calming measure to address safety, speeding issues etc. Recommendation to consider other forms of traffic control should also be included. Include these in Section 9.2, Summary Recommendations

GHD Response:

Noted. The report has been revised to include these recommendations.

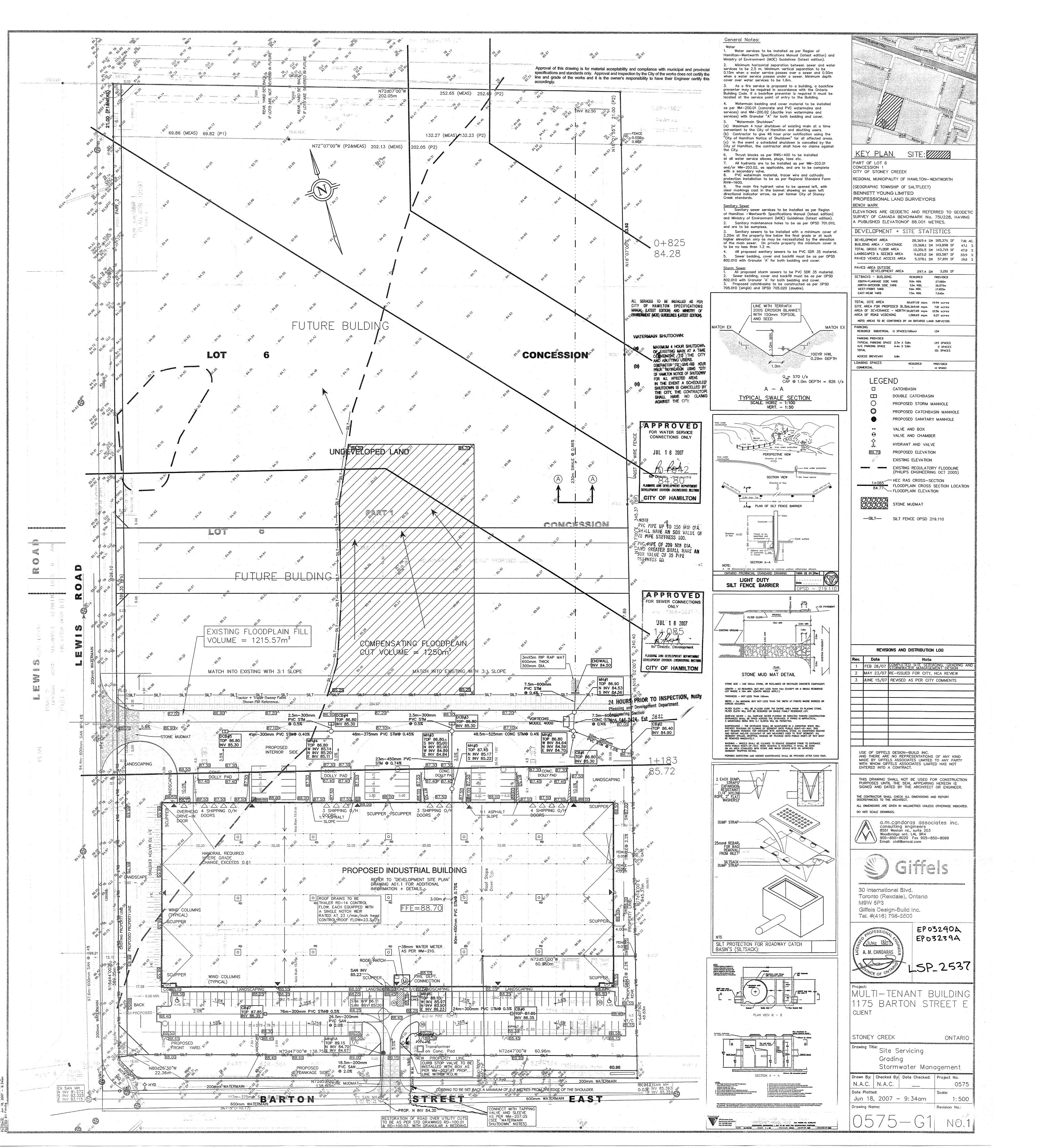
Should you have any questions on the above, feel free to contact us below for further clarification.

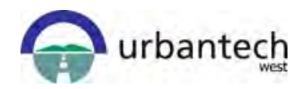
Sincerely,

GHD

William Maria, P.Eng. Senior Project Manager

Arcadis Response to City of Hamilton Comments, dated September 12, 2019


No.	City of Hamilton Comment	Arcadis Response
1	A Comment Response table has not been provided with the revised Block 3 Servicing Strategy. This would be helpful to ensure that all previous comments have been addressed.	Comment response table is now provided.
2a i	Policy Review: A policy review has been provided within Section 1.1 of the EIS. There is concern that a comprehensive discussion has not been provided. Natural Heritage System: Based on mapping within Volumes 1 and 2 of the Urban Hamilton Official Plan (UHOP), a Natural Heritage System has not been identified within Block 3. It was identified within previous comments (April 3, 2019) that there are features within the Natural Heritage System that are not mapped. These features include habitat for Species at Risk (SAR) and Significant Wildlife Habitat (SWH).	Section 1.1 has been updated.
2a ii	There is concern that this has not been discussed within the EIS. Fruitland Winona Secondary Plan: Block 3 is located within the Fruitland Winona Secondary Plan. There is concern with Section 1.1.4 (Fruitland Winona Secondary Plan) of the revised EIS. Discussions focus on the Stoney Creek Urban Boundary Expansion Subwatershed Study and not on policies of the Secondary Plan.	Section 1.1.4 has been updated.
2b i	Field Surveys: Generally, field surveys were undertaken according to approved protocols. Watercourses: Within Table 2-1 (Summary of Natural Environment Surveys Completed), it has been identified that aquatic habitat assessments were completed June 26, July 3, and July 10, 2019. Since these watercourses may exhibit ephemeral conditions, there is concern that the field surveys were not completed in spring or fall.	An additional fall survey of the watercourses was completed on November 22, 2019.
2c i	Watercourses: A Fish Habitat Assessment has been included within Appendix E; however, there is concern that discussions have not been provided within the main EIS. Further clarification is required.	The discussion on fish habitat has been revised.
2c ii	The Fish Habitat Assessment focuses on the field survey that was undertaken on July 10, 2019. Within Table 2-1 (Summary of Natural Environment Surveys Completed), it was identified that assessments were completed June 26, July 3 and	The Fish Habitat Assessment has been updated and includes the fall visit. Findings from all other assessments were the same at each Site visit.



No.	City of Hamilton Comment	Arcadis Response
	July 10, 2019. Further clarification is required on why the other assessments have not been discussed.	
2c iii	Discussions within the Fish Habitat Assessment are focused on direct fish habitat. There is concern that indirect habitat has not been thoroughly considered. Further clarification is required.	Additional discussion has been provided.
	Locally Rare Species: Carolina Wren, a locally rare species has been observed breeding within the study area. Within previous comments (April 3, 2019), there was concern that the impact of development on this species was not considered.	Additional discussion has been provided.
2d	Based on review of the revised EIS, there is concern that this comment has not been adequately addressed. Discussions with regards to this species are missing from Sections 3.3.1 (Breeding Bird Surveys) and 5 (Identification and Assessment of Impacts). In addition, there is concern with the limited discussion that has been provided within Sections 6 (Mitigation Measures) and 7 (Recommendations). Further discussion is required.	
2e i	SAR: SAR is under the jurisdiction of the Ministry of Environment, Conservation and Parks (MECP) (formerly Ministry of Natural Resources and Forestry (MNRF)). In previous comments (April 3, 2019), there was concern that correspondence from MECP/MNRF was not included in the report. While correspondence has been provided from MECP in Appendix F (Communications), there is concern that this does not adequately address the previous comment.	No additional communication with MECP is available.
2e ii	Eastern Meadowlark/Bobolink: Surveys were undertaken to determine if these species ("threatened") were found within the Block 3 study area. The locations of the survey sites have been provided on Figure D-1 (Appendix D: Breeding Bird Surveys); however, this figure is very difficult to read. Further clarification is required.	The format of Figure D-1 has been changed to make it clearer.
2e iii	Barn Swallow: Within Appendix D (Breeding Bird Surveys), Barn Swallow, a "threatened" species was identified as possibly breeding within the study area. There is concern that this species has not been considered in the development of this area.	Barn swallow would be breeding offsite as they attach their nest on or in buildings and no buildings (or any other suitable structures) are present on Site. Barn swallow prefer barns or sheds for nesting, they attach nests either inside on walls or beams or on the outside of those types of buildings where there is an overhang. They generally return to their old nests.
2e iv	Within Section 5 (Identification and Assessment of Impacts) it has been identified that there is extensive feeding areas available in the vicinity of the area for Barn Swallow and Monarch and impacts on these species are not expected. There is	Section 5 has been revised.

No.	City of Hamilton Comment	Arcadis Response
	concern with this statement. Additional habitat within the vicinity does not recognize the potential habitat that will be lost as a result of development of this area.	
2f	SWH: Monarch, a species of "Special Concern" has been observed within the study area. Based on the Ministry of Natural Resources and Forestry (MNRF) SWH Criteria Schedules for Ecoregion 7E (January 2015), habitat for Species of Conservation Concern (not including Endangered or Threatened Species) has been identified as SWH. Included in this category are all Special Concern and Provincially Rare (S1-S3; SH) plant and animal species. Within previous comments (April 3, 2019), there was concern that this had not been discussed within the report. Based on review of the revised EIS, there is concern that this comment has not been adequately addressed. The discussion in Section 3.4.1 (Significant Wildlife Habitat) focusses on Monarch stopover areas and does not discuss this species as a Species of Conservation Concern.	Additional discussion has been provided in Section 3.4.1.
2g	Opportunities for Enhancement: In previous comments (April 3, 2019) there was concern that opportunities to retain hedgerows should be included within the development concept. While it has been identified that a tree preservation plan should be completed, there is concern that the incorporation of hedgerows has not been considered within the development concepts.	In Section 6 Mitigation Measures- it is recommended to incorporate hedgerow like plantings in the landscape design wherever possible.

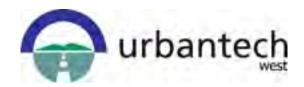
APPENDIX N PUBLIC CONSULTATION

N-1 Public Stakeholder List

N-2 Notice of 30 Day Public Review

N-3 Landowner Letters

N-4 PIC Materials


APPENDIX N-1
Public Stakeholder List

Last Name	First Name	Title	Job Title	Organization	Street Address	City and Province	Postal Code	Contact Information			
City of Hamilton Staff **TO BE SENT ELECTRONIC COPY OF MAILOUT***											
Fazio	Margaret		Liason to City Staff/Project Team		28 James Street North, 5th Floor	Hamilton, ON	L8R 2K1	905-546-2424 x2218			
Councillors	Councillors										
Johnson	Brenda	Ms.	Councillor, Ward 11	City of Hamilton	71 Main Street West, 2nd Floor	Hamilton, ON	L8P 4Y5	905-546-2424 x4513			
Pearson	Maria	Ms.	Councillor, Ward 10	City of Hamilton	74 Main Street West, 2nd Floor	Hamilton, ON	L8P 4Y5	905-546-2424 x2701			
Other Municipalities											
Ranjan	Kumar	Mr.	Associate Director Transportation Planning Public Works	Niagara Region	2201 St. David's Road	Thorold, ON	L2V 4T7	905-685-1571 x3226 Fax 905-687-4977 pam.gilroy@regional.niagara.on.ca			
Vout	Katherine	Ms.	Town Clerk	Town of Grimsby	160 Livingston Avenue P.O. Box 159	Grimsby, ON	L3M 4G3	905-945-9634 x2003 Fax 905-945-5010 kvout@town.grimsby.on.ca			
Conservation Authority								TRY GUILLETO WIT GITTINGS Y. GITT. GG			
Peck	Scott	Mr.	Director, Watershed Planning & Engineering	Hamilton Conservation Authority	838 Mineral Springs Road, Box 81067	Ancaster, ON	L9G 4X1	905-525-2181 x130 Fax: 905-648-4622 tspeck@conservationhamilton.ca			
Stone	Michael	Mr.	Manager, Watershed Planning Services	Hamilton Conservation Authority	838 Mineral Springs Road, Box 81067	Ancaster, ON	L9G 4X1	(905) 525-2181 ext 133 mstone@conservationhamilton.ca			
Provinicial Authorities		•	,	,			_				
Environmental Assessment & Approvals Branch			E/A Project Co-ordination Section	Ministry of the Environment and Climate Change	2 St. Clair Ave. W. 14th Floor	Toronto, ON	M4V 1L5	MEA.NOTICES.EAAB@ontario.ca			
Graham-Watson	Loraine	Ms.	Regional Director - Hamilton/Niagara Regional Office	Ministry of Community and Social Services	119 King St. W. 7th Floor	Hamilton, ON	L8P 4Y7	905-521-7844			
Head - Highway Engineering - Hamilton & Niagara			Office	Ministry of Transportation	1201 Wilson Ave., Bldg. D., 3rd Floor	Downsview, ON	M4V 1L5	416-235-4540 Fax 416-235-3576			
Hagara		Sir/Madam	Consultation Unit	Ministry of Indigenous Relations and Reconciliation	160 Bloor Street East, 9th Floor	Toronto, ON	M7A 2E6	Tel: (416) 326-4740 Fax: (416) 325-1066 MAA.EA.REVIEW@ontario.ca			
Hagman	lan	Mr.	District Manager, Guelph District Office	Ministry of Natural Resources	1 Stone Rd. W.	Guelph, ON	N1G 4Y2	519-826-4931 Fax 519-826-4929			
Slattery	Barbara	Ms.	Environmental Assessment & Planning Co-ordinator	Ministry of the Environment and Climate Change	119 King St. W., 12th Floor	Hamilton, ON	L8P 4Y7	905-521-7864 Fax 905-521-7806 barbara.slatterv@ontario.ca			
Troje	Corwin	Mr.	Manager, Ministry Partnerships Unit	Ministry of Aboriginal Affairs Consultation Unit	160 Bloor Street East, 9th Floor	Toronto, ON	M7A 2E6				
	Pauline	Ms.	Highway Engineering Hamilton	Ministry of Transportation	1201 Wilson Ave; Bldg. D. 4th Floor	Downsview, ON	M4V 1L5				
Weeks	J. R.	Staff Sargeant			1160 North Shore Blvd. E., P.O. Box 5021,Stn. "A"	Burlington, ON	L7R 3Y8				
Whitebread	Ken	Mr.	Manager	Niagara Escarpment Commission	232 A Guelph Street	Georgetown, ON	L7G 4B1				

Whittingham	Carlene	Ms.	Planner	Ministry of Municipal Affairs & Housing	777 Bay St., 13th Floor	Toronto, ON	M5G 2C8	P: 416-585-6062
Hatcher	Laura		Team Lead - Heritage Land Use Planning	Ministry of Tourism, Culture & Sport	401 Bay Street, 17th Floor	Toronto, ON	M7A 0A7	416-314-3108 Fax 416-314-7175 laura.e.hatcher@ontario.ca
Federal Authorities								
Consultation and		Т	Ι	Indigenous and Northern	300 Sparks Street, Room 205	Ottawa, ON	K1A 0H4	
Accommodation Unit				Affairs Canada				
								UCA-CAU@aadnc-aandc.gc.ca This email will distribute any notice to appropriate staff within AANDC
Environmental Assessment & Approvals Branch		Sir/Madam	E/A Project Co-ordination Section		2 St. Clair Ave. W. 14th Floor	Toronto, ON	M4V 1L5	MEA.NOTICES.EAAB@ontario.ca
Hall	John	Mr.	Remedial Action Plan (RAP)		867 Lakeshore Road P.O. Box 5050	Burlington, ON	L7R 4A6	
Knox	Louise	Ms.	Director, Ontario Region	Canadian Environmental Assessment Agency	55 St. Clair Ave E. Room 907	Toronto, ON	M4T 1M2	416-952-1575 Fax 416-952-1573 louise.knox@ceaa-acee-gc.ca
Ministry of Health & Long Term Care, Emergency Health Services Health		Sir/Madam	Integrated Policy & Planning Division		80 Grosvenor Street - 8th Floor, Hepburn Block	Toronto, ON	M7A 1R3	hamiltoncaccalerts@ontario.ca
Pachoil	Carol	Ms.	Retail Business Manager	Canada Post Commercial Service Centre	27 Legend Crt	Ancaster, ON	L9K 1J0	905-304-2225
Speller	Rachel	Ms.	Environment Officer- Environment Unit, Ontario Region	Lands and Trusts Services Env. Unit INAC		Toronto, ON	M4T 1M2	416-973-5899 Fax 416-954-4328
Waters	Susan	Ms.	Director, General Land and Environment Department	Indigenous and Northern Affairs Canada Land and Environment Department	10 Wellington St.	Gatineau, QC	K1A 0H4	Telephone: 819-997-8883 Fax: 819-953-3201 susan.waters@aandc.gc.ca
			Environmental Coordinator	Transport Canada	4900 Yonge Street, 4th Floor (PHE)	North York, ON	M2N 6A5	
First Nations								
Durand	ITino	Ms.	Coordon, Political Costan	Huron-Wendat Nation Council	255 Place Chof Michal	Wandaka OC	COA 41/0	1440 042 2767
Durand	Tina		Secretary Political Sector		Laveau	Wendake, QC	G0A 4V0	418-843-3767 1-877-712-3767 Fax: 418-842-1108
General	Paul	Mr.	Lands & Resources	Six Nations Eco-Centre		Oshweken, ON	N0A 1M0	519-445-0330 pgeneral@sixnations.ca
Bomberry	Lonny	Mr.	Director of Lands & Resources	Six Nations of the Grand River Territory	Chiefswood Road	Oshweken, ON	N0A 1M0	519-445-2201 Fax: 519-445-4208
Hill	Leroy	Hohahes	Secretary to Haudenosaunee Conferacy Chiefs Council	Haudenosaunee Chiefs	2634 6th Line RR2	Oshweken, ON	NOA 1M0	(519) 753-0665 Fax (519) 753-3449

LaForme	Mark	Mr.	Director, Department of Consultation and Accomodation	Mississaugas of New Credit First Nation	6 First Line, R.R. #6	Hagersville, ON	N0A 1H0	Tel: (905) 768-4260 Fax: (905) 768-9751 Cell: (289) 527-6577 Email: Mark.Laforme@Newcreditfirstnation.co m, doca@newcreditfirstnation.com
Sault	Fawn		Manager, Department of Consultaiton and Accomodation	Mississaugas of New Credit First Nation	6 First Line, R.R. #6	Hagersville, ON	N0A 1H0	Fawn.sault@newcreditfirstnation.com
Utilities								
Ardelli	Terri	Ms.	Land Analyst, Urban	TransCanada Pipelines	450-1st Street S.W.	Calgary, AB	T2P 5H1	403-920-7370
Blakely	John	Mr.		Enbridge Pipelines Inc.	1086 Modeland Road,	Sarnia, ON	N7S 6L2	john.blakely@enbridge.com
Carello	Jack	Mr.	Manager, Utilities East	Canadian Pacific Railway	1290 Central Parkway West,	Mississauga, ON	L5C 4R3	Phone: 905-803-3417
Greco	Enzo	Mr.	Construction Project Manager	Union Gas	918 South Service Road	Stoney Creek, ON	L8E 5M4	Phone: (289) 649-2061 Cell: (905) 741-8395 Email: egreco@uniongas.com
Harten	Ron	Mr.	General Manager, Hamilton Community Energy	Hamilton Utilities Corporation	The Textile Building 10 George Street Suite 300	Hamilton, ON	L8P 1C8	Ron.Harten@hamiltonucorp.com
Oriotis	Jim	Mr.		Hydro One	483 Bay Street, North Tower 15th Floor	Toronto, ON	M5G 2P5	jim.oriotis@hydroone.com
Lane	Paul	Mr.		Sun Canadian Pipeline	830 Highway 6 North P.O. Box 470	Waterdown, ON	L0R 2H0	905-689-6641 x136 Fax 514-395-5613 plane@sun-canadian-com
Leppert	Randy	Mr.	Planning Lead Hand Niagara/Hamilton	Cogeco Cable Inc	7170 McLeod Rd	Niagara Falls, ON	L2G 3H5	Phone: 289-296-6228 Cell: 905- 351-3771 randy.leppert@cogeco.com
Linder	Stefan	Mr.	Manager, Public Works Design & Construction	CN	4 Welding Way off Administration Road	Vaughan, ON	L4K 1B9	905-669-3264 email: Stefan.Linder@cn.ca
Milano	Bruno	Mr.	Planner/Designer	Source Cable	1090 Upper Wellington St	Hamilton, ON	L9A 3S6	Work # 905-318-4663 Cell # 905-971-2762
Mitchell	Colleen	Ms.	Land Agent - Eastern Pipeline Operations	Imperial Oil Products & Chemical Division	100 - 5th Concession Rd. E.	Waterdown, ON	L0R 2H1	1-888-242-6660 x242 colleen.m.mitchell@esso.com
Newman	Ann	Ms.	Crossings Co-ordinator, Eastern Region	Enbridge Pipelines Inc.	1086 Modeland Road, Building 1050	Sarnia, ON	N7S 6L2	(519)339-0503 ann.newman@enbridge.com
Ontario Power Generation	Sir/Madam				700 University Avenue	Toronto, ON	M5G 1X6	416-592-2555
Jakubowski	Mark	Mr.	Acting Manager of Capital Projects	Horizon Utilities Corporation	55 John St. N., 6th Floor	Hamilton, ON	L8R 3M8	
				Bell Canada	20 Hunter St. W.	Hamilton, ON	L8N 3H2	
Winkley	John	Mr.	Regional Director - Marketing	Southern Ontario Railway	241 Stuart St. W.	Hamilton, ON	L8N 3P9	
Hospitals								
Schools								
White	Todd	Mr.	Chair	Hamilton-Wentworth District School Board	20 Education Court	Hamilton, ON	L9A 0B9	289-237-1644
Daly	Pat		Hamilton District Catholic School Baord	90 Mulberry Street	P.O. Box 2012	Hamilton, ON	L8N 3R9	
Pace	P.		Hamilton District Catholic School Baord	90 Mulberry Street	P.O. Box 2012	Hamilton, ON	L8N 3R9	
McKerrall	Dan	Mr.	Accommodation & Planning	Hamilton-Wentworth District School Board	100 Main St. W. P.O. Box 2558	Hamilton, ON	L8N 3L1	

Mckerlie	Ron	Mr.	President	Mohawk College	135 Fennell Avenue West P.O. Box 2034	Hamilton, ON	L8N 3T2	
Labrecque	S.			French Public School Board	116 Cornelius Parkway	Toronto, ON	M6L 2K5	
Beaudin	A.				110 Drewry Avenue	North York, ON	M2M 1c8	
Transportation								
Best	John	Mr.	Executive Director	Southern Ontario Gateway Council	140 King Street East, Suite	Hamilton, ON	L8N 1B2	905-667-0317
Burke	Chris	Mr.	Acting Director of Service Planning	Metrolinx	97 Front Street West, 4th Floor	Toronto, ON	M5J 1E6	
Ceille	Kaye	Mrs.	President	Zipcar	129 Spadina Avenue	Toronto, ON	M5V 2L3	416-977-9008
Chahal	Jagtar Singh	Mr.	Chairman & CEO	Hamilton Cab	430 Cannon Street East	Hamilton, ON	L8L 2C8	905-522-0748
Leach	Dave	Mr.	President & Chief Executive Officer	Greyhound	36 Hunter Street East	Hamilton, ON	I8N 3W8	905-521-3088
Rizzuto	Anthony F.	Mr.	President	Blue Line Taxi	160 John Street South	Hamilton, ON	L8N 2C4	905-525-2788
Salsberg	Lisa	Mr.	Manager, Strategic Strategy and Policy	Metrolinx	97 Front St W, 4th Floor	Toronto, ON	M5J 1E6	416-202-5955 ext 25955 lisa.salsberg@metrolinx.com
Seymour	Mark.	Mr.	Chairman	Ontario Trucking Association	555 Dixon Road	Toronto, ON	M9W 1H8	416-249-7401
Sir/Madam				Canada Coach	791 Webber Avenue	Peterborough, ON	K9J 7B1	705-748-6411
Sir/Madam				Community CarShare	175 Longwood Road South, Suite 304A	Hamilton, ON	L8P 0A1	905-543-4411
Sir/Madam				Hamilton Cycling Committee				
Sir/Madam				Smart Commute Hamilton				smartcommute@hamilton.ca
Wasik	Gene	Mr.	Executive Director	Social Bicycle (SoBi)	126 Catherine Street North	Hamilton, ON	L8R 1J4	289-768-2453
Other								
Loomis	Keanin	Mr.	President & CEO	Hamilton Chamber of Commerce	120 King St. West Suite 507, Plaza Level	Hamilton, ON	L8P 4V2	(905) 522-1151
Platts	Megan	Ms.	Manager, Government & External Relations	REALTORS Association of Hamilton-Burlington	505 York Blvd.	Hamilton, ON	L8R 3K4	905-529-8101 ext. 295 fax: 905-529-4349 email: meganp@rahb.ca
Roshko	Allan J.	Mr.	President	Hamilton-Halton Home Builders Association	1112 Rymal Road East	Hamilton, ON	L8W 3N7	905-575-3344

APPENDIX N-2 Notice of 30 day Public Review

Notice of Draft Study Report Completion and 30 Day Public Review

The Study

Urbantech West consultant team has completed the Block Servicing Strategy for **Block 3** lands, as required in the Fruitland-Winona Secondary Plan (see map below). The Servicing Strategy describes how Block 3 lands can be serviced by considering: stormwater management facilities, stormwater drainage, wastewater and water infrastructure, local road network, air drainage, traffic and natural heritage.

The Process

The study generally fulfilled the requirements outlined in the Municipal Engineers Association Municipal Class Environmental Assessment document (EA) (2000, amended 2008, 2011 and 2015), for public consultation. Public appeal is not applicable for this project.

PUBLIC COMMENTS ARE WELCOME:

WHEN: January 16, 2020 - February 14, 2020, in order for the comments to be considered in the study process.

WHFRF.

Hard copies will be available for review at:

- Stoney Creek Municipal Service Centre Library 777 Highway 8, Stoney Creek
- City Hall City Clerk's Office 1st Floor 71 Main Street West
- City Hall 6th Floor Front Desk 71 Main Street West

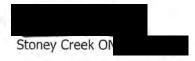
Electronic version of the report will be available at:

https://www.hamilton.ca/blockservicingstrategies

HOW: Direct All Comments To:

Rob Merwin, P. Eng.
Project Manager – Urbantech West (905) 829-8818
rmerwin@urbantech.com

NEXT STEPS: Study will be considered as finalized once it is approved by City of Hamilton Council.


Information will be collected and reviewed in accordance with City of Hamilton policies. With the exception of personal information, all comments will be included in the project record. Published in the Stoney Creek News January 16, 2020 and on the City of Hamilton Twitter account.

APPENDIX N-3 Landowner Letters

February 23, 2016

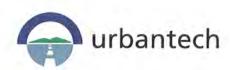
BLOCK 3 SERVICING STRATEGY STUDY Re:

FRUITLAND WINONA SECONDARY PLAN AREA

LOWER STONEY CREEK CITY OF HAMILTON

We are writing to you to inform you that a Block Servicing Study is commencing for an area that encompasses your landholding in Lower Stoney Creek, City of Hamilton.

As background, the City of Hamilton's Fruitland Winona Secondary Plan provides policies and requirements to implement the Secondary Plan. One of the requirements is the completion of a Block Servicing Strategy Study (BSS).


1312733 ONTARIO INC. has retained Urbantech West to complete the BSS for Area 3. This Area is bordered by Highway #8, Barton Street, McNeilly Road and Lewis Road which includes your Lands.

The BSS is a comprehensive study providing technical analysis and design concepts for the BSS area incorporating land use, stream systems, terrestrial and aquatic features, grading, drainage and servicing, stormwater management, hydrology, transportation and air drainage analysis.

The Study is being completed in an open and transparent process which will include Public Open Houses. Input will be welcomed by landowners and residents of the study area and input will be provided by the City of Hamilton and the Hamilton Conservation Authority.

At this time, on behalf of 1312733 Ontario Inc. we are inquiring if you would like to be an active participant in the BSS study.

If there is interest in participating please respond to this letter by means of a letter, e-mail or a phone call to the undersigned. You will then be added to the contact list for the Study.

Sincerely,

Paul Brown Senior Associate

Email: pbrown@urbantech.com

Cc: Jason Mosdell, 1312733 ONTARIO INC.

Urbantech West Page 2 of 2

PARINERS
GLEN SCHNARR, MCIP, RPP
GLEN BROLL, MCIP, RPP
COLIN CHUNG, MCIP, RPP

ASSOCIATES

JASON AFONSO, MCIP, RPP

KAREN BENNETT, MCIP, RPP

CARL BRAWLEY, MCIP, RPP

JIM LEVAC, BAA, MCIP, RPP

December 6, 2016

Our File: 656-001C

Name Address I Address 2

Re: Block 3 Servicing Strategy

Fruitland-Winona Secondary Plan Area

City of Hamilton

We are writing to inform you that a Block Servicing Strategy (the "Strategy") is being initiated for an area that includes your landholdings in lower Stoney Creek, in the City of Hamilton (the "City"). This area is known as the Block 3 Servicing Strategy Area ("Block 3") and is shown on the attached plan.

The preparation of the Strategy is a requirement of the City Fruitland-Winona Secondary Plan and must be completed prior to development of the lands within Block 3 proceeding. The purpose of the Strategy is to develop grading and detailed servicing plans so that development may proceed in a coordinated and comprehensive manner. The Strategy will be used by the City to guide the review of planning applications within the Study area. All development within Block 3 must conform to the Strategy.

The Strategy must identify the land use designations, densities, and natural features within Block 3. It must also include:

- The location and configuration of schools and parks;
- A detailed local road pattern and trail system;
- The distribution of housing types;
- Meander Belt Width Assessments for all watercourses;
- A preliminary grading, servicing, and stormwater management strategy and functional design plan;
- Plans for the phasing of development and the external road infrastructure;
- The identification and consideration of all areas regulated by the Conservation Authority;
- A scoped Air Drainage Analysis Brief to assess impacts on tender fruit and grape production;
- · A hydrogeological investigation; and,
- Implementation of the Fruitland-Winona Secondary Plan Urban Design Guidelines.

10 Kingsbridge Garden Circle Suite 700 Mississauga, Ontario L5R 3K6 Tel (905) 568-8888 Fax (905) 568-8894 www.gsoi.co

1312733 Ontario Inc. (Branthaven) has retained Glen Schnarr & Associates Inc. and Urbantech West to manage and complete the Strategy to have it approved by the City as expeditiously as possible. The lands within Block 3 that are owned by 1312733 Ontario Inc. are indicated on the attached plan.

As a landowner who will be affected by the completion of the Strategy, we are writing to invite you to participate in the landowners group who will be coordinating and funding the Strategy work program. We would appreciate your response expressing your interest in participating in the landowners group.

We intend to coordinate a landowners group meeting in January 2017 to inform and explain the next steps in the Strategy process. If we do not hear from you by <u>Friday December 23, 2016</u>, we will take your non-response as not being interested in participating in the landowners group.

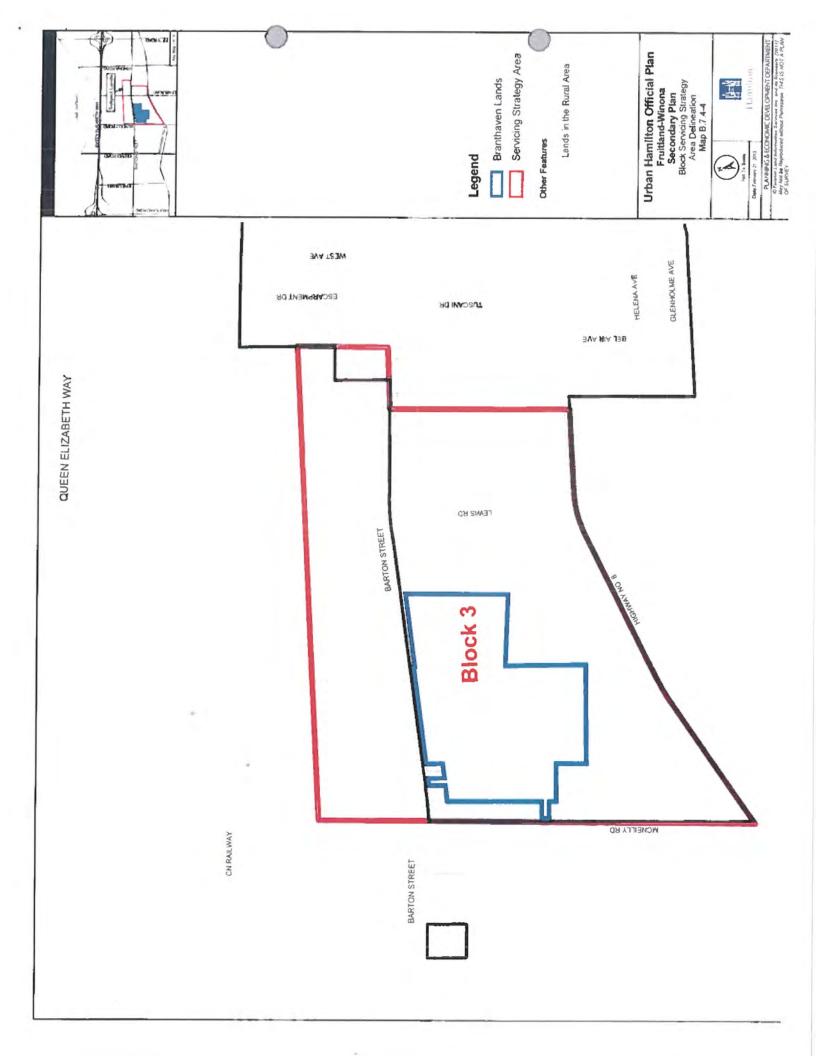
If you have any questions, please do not hesitate to contact me or Mark Bradley of our office at (905) 568-8888 or at markb@gsai.ca.

Yours very truly,

GLEN SCHNARR & ASSOCIATES INC.

Colin Chung, MCIP, RPP

Partner


C: C. Newbold, City of Hamilton

A. Mahood, City of Hamilton

M. Fazio, City of Hamilton

A. Semper, Branthaven Development Corp.

H. Sewell, Branthaven Development Corp

PARTHERS GLEN SCHMARR, MCIP, RPP GLEN BROLL, MCP, RPP COUN CHUNG, MCIP, RPP

ASSOCIATES: JASON AFONSO, MCIP, RPP KAREN BENNETT, MCIP, RPP.

CARL BRAWLEY, MCIP, RPP

JIM LEVAC, BAA, MCIP, RPP

February 17, 2017

Our File: 656-001E

Re:

Block 3 Servicing Strategy

Fruitland-Winona Secondary Plan Area

City of Hamilton

This letter is further to our letter dated December 6, 2016, informing you that a Block Servicing Strategy (the "Strategy") is being initiated for an area that includes your landholdings in lower Stoney Creek, in the City of Hamilton. This area is known as the Block 3 Servicing Strategy Area and is shown on the attached plan.

As a landowner who has expressed an interest in participating in the Strategy, we are writing to invite you to a meeting on March 7, 2017, where we will present the project and answer any questions that you have. The meeting will be held in the Council Chambers of the former Stoney Creek City Hall from 6:00 p.m. to 8:00 p.m. The address is 777 Highway 8, Stoney Creek.

The agenda for the evening is as follows:

- 1. Open House - 6:00 to 6:45 p.m.
 - Informal review of the Block Servicing Strategy Study Area, Fruitland-Winona Secondary Plan, the Tertiary Plan, and the Servicing Plans
- Block Servicing Strategy Presentation 6:45 to 7:30 p.m. 2.
 - Introduction and Purpose of the Meeting
 - Block Servicing Strategy Study Overview
 - Team Introductions
 - Tertiary Plan Overview
 - Servicing Plan Overview
 - Funding Agreement Discussion
 - Discussion of Next Steps

10 KINGSBRIDGE GARDEN CIRCLE SUITE 700

MISSISSAUGA, ONTARID

L5R 3K6

TEL (905) 568-8888

FAX (905) 568-8894

www.gsgi ca

Question and Answer Period – 7:30 to 8:00 p.m.

If you have any questions, please do not hesitate to contact me at (905) 568-8888 or markb@gsai.ca.

Yours very truly,

GLEN SCHNARR & ASSOCIATES INC.

m. Browlley

Mark Bradley, MCIP, RPP Senior Planner & Project Manager

C: C. Newbold, City of Hamilton

A. Mahood, City of Hamilton

M. Fazio, City of Hamilton

A. Semper, Branthaven Development Corp.

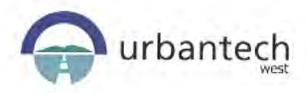
H. Sewell, Branthaven Development Corp.

May 10, 2017 Project: 12-062W

Re: Block 3 Servicing Strategy Fruitland-Winona Secondary Plan Area City of Hamilton

We are writing to inform you that a Block Servicing Strategy (the "Strategy") is being initiated for an area that includes your landholdings in lower Stoney Creek, in the City of Hamilton (the "City"). This area is known as the Block 3 Servicing Strategy Area ("Block 3") and is shown on the attached plan.

The preparation of the Strategy is a requirement of the City Fruitland-Winona Secondary Plan and must be completed prior to development of the lands within Block 3 proceeding. The purpose of the Strategy is to develop grading and detailed servicing plans so that development may proceed in a coordinated and comprehensive manner. The Strategy will be used by the City to guide the review of planning applications within the Study area. All development within Block 3 must conform to the Strategy.


The Strategy must identify the land use designations, densities, and natural features within Block 3. It must also include:

- The location and configuration of schools and parks;
- A detailed local road pattern and trail system;
- The distribution of housing types;
- Meander Belt Width Assessments for all watercourses;
- A preliminary grading, servicing, and stormwater management strategy and functional design plan;
- Plans for the phasing of development and the external road infrastructure;
- The identification and consideration of all areas regulated by the Conservation Authority;
- A scoped Air Drainage Analysis Brief to assess impacts on tender fruit and grape production;

F:\Projects\12-062W (Branthaven-Fruitland Winona)\Correspondence\Letters\12-62W-RM-17-05-10 (Registered letter).docx

Page 1 of 3

www.urbantech.com

Cont'd ...

- A hydrogeological investigation; and,
- Implementation of the Fruitland-Winona Secondary Plan Urban Design Guidelines.

1312733 Ontario Inc.(Branthaven) has retained Glen Schnarr & Associates Inc. and Urbantech West to manage and complete the Strategy to have it approved by the City as expeditiously as possible. The lands within Block 3 that are owned by 1312733 Ontario Inc. are indicated on the attached plan. In addition we are providing you with the latest draft concept plan for the lands.

As a landowner who will be affected by the completion of the Strategy, we are writing to invite you to participate in the landowners group who will be coordinating and funding the Strategy work program. We would appreciate your response expressing your interest in participating in the landowners group.

At this time there are currently a number of landowners who have decided to participate in the group. If you could please review and respond to this letter by May 26, 2017 it would be appreciated. We will take your non-response as not being interested in participating in the landowners group.

If you have any questions, please do not hesitate to contact me at 905 829-8818 or rmerwin@urbantech.com.

Regards,

Urbantech West

Rob Merwin, P. Eng.

Associate

cc: C. Newbold, City of Hamilton

A. Mahood, City of Hamilton

M. Fazio, City of Hamilton

A. Semper, Branthaven Development Corp.

H. Sewell, Branthaven Development Corp.

May 7, 2019

RE: Block Servicing Strategy for Stoney Creek

Block 3 Concept Plan

To Whom it May Concern:

As you may be aware the Block 3 Servicing Strategy (BSS) is currently being undertaken by some of the landowners within the Block 3 area. This study is a requirement of the Fruitland Winona Secondary Plan. The purpose of this study is to develop a servicing strategy for the Block 3 lands. As part of this study a concept plan for the lands has been prepared in consultation with City of Hamilton staff. A copy of the current concept plan is attached to this letter. This plan has been included in the first submission of the BSS to the City of Hamilton in January of 2019.

This plan shows a possible concept for development of the subject lands. Should you have any feedback or questions please email rmerwin@urbantech.com or by phone at 905-829-8818 ext 1010.

Sincerely,

Rob Merwin, P.Eng.

Sr. Associate, Land Development

From:	
Sent:	February 13, 2020 11:08 PM
То:	Rob Merwin; Margaret Fazio
Subject:	B3SS Final Draft Report Public Comments
Follow Up Flag:	Follow up
Due By:	February 19, 2020 4:00 PM
Flag Status:	Flagged
February 13th, 2020	
To: Mr. Rob Merwin, Urbantech, a Mrs. Margaret Fazio, City of H	
Re: Block 3 Servicing Strategy Not	tice of Completed Final Draft Report Public Comments
Dear Mr. Merwin,	
We have been the owners and grow located in the north-west corner of S	ers since 1974 of the agricultural specialty tender fruit property at Sub-area 1.
Thank you for sending us the pdf dr	rawings and figures.
	sis for this B3SS study and Final Draft Report differs in density allocations from the Urban d-Winona Secondary Plan Land Use Map B.7.4-1 which results in a changed density for our
It would appear more practical to pl	ace Street Q on the property line.
Sincerely,	

From: Mahood, Alissa <Alissa.Mahood@hamilton.ca>

Sent:February 20, 2020 9:03 AMTo:Fazio, Margaret; Belair, NadaCc:Yong-Lee, Sally; Rob Merwin

Subject: RE: REQUEST FOR INPUT: B3SS Final Draft Report Public Comments

Hi Margaret,

I have reviewed the land use and generally it follows the secondary plan.

Thanks! Alissa

Alissa Mahood, MCIP, RPP

She/her

Senior Project Manager, Community Planning & GIS Planning and Economic Development Department City of Hamilton, 71 Main St W, 5th Floor, L8P 4Y5 Ph: 905.546.2424 ext. 1250

From: Fazio, Margaret < Margaret. Fazio@hamilton.ca>

Sent: February 14, 2020 12:45 PM

To: Mahood, Alissa <Alissa.Mahood@hamilton.ca>; Belair, Nada <Nada.Belair@hamilton.ca>

Cc: Yong-Lee, Sally <Sally. Yong-Lee@hamilton.ca>; Rob Merwin (rmerwin@urbantech.com) <rmerwin@urbantech.com>

Subject: REQUEST FOR INPUT: B3SS Final Draft Report Public Comments

Hi Alissa and/or Nada,

Could you please check the accuracy of the comment/maps of Block 3 SS Concept Plan with the FWSP?

From what I can see online, there is <u>no discrepancy</u> between the Block 3 SS Concept Plan and the FWSP.

Secondary Plan:

https://www.hamilton.ca/sites/default/files/media/browser/2015-01-16/urbanhamiltonofficialplan-volume2-mapb-7-4-1tomapb-7-4-4-fruitlandwinonasecondaryplan-nov2018.pdf

Property location:

https://spatialsolutions.maps.arcgis.com/apps/webappviewer/index.html?id=9b58282e4cd8424b82f5a82551020540

Also, the comment on Street Q – there is no Street Q – I assume they mean Collector D? And the Secondary Plan has a slight gap between the property line of the property just south of 262 McNeilly and 262 McNeilly itself. Block 3 SS is showing the road as abutting 262 McNeilly. Could you please let me know if these comments make sense to you?

I'm off next week, and Rob (Urbantech) will be working on finalization of Bock 3 SS Report.

Please keep Sally and Rob both in the loop, if responding to this inquiry next week.

Thank you, Margaret

From:

Sent: February 13, 2020 11:08 PM

To: Rob Merwin (rmerwin@urbantech.com) <rmerwin@urbantech.com>; Fazio, Margaret

<Margaret.Fazio@hamilton.ca>

Subject: B3SS Final Draft Report Public Comments

February 13th, 2020

To: Mr. Rob Merwin, Urbantech, and Mrs. Margaret Fazio, City of Hamilton

Re: Block 3 Servicing Strategy Notice of Completed Final Draft Report Public Comments

Dear Mr. Merwin,

We have been the owners and growers since 1974 of the agricultural specialty tender fruit property at located in the north-west corner of Sub-area 1.

Thank you for sending us the pdf drawings and figures.

The gsai concept plan that is the basis for this B3SS study and Final Draft Report differs in density allocations from the Urban Hamilton Official Plan and Fruitland-Winona Secondary Plan Land Use Map B.7.4-1 which results in a changed density for our property at

It would appear more practical to place Street Q on the property line.

Sincerely,

From: Rob Merwin

Sent: February 25, 2020 1:24 PM

To:

Subject: RE: B3SS Final Draft Report Public Comments

Hello N

We have been advised by the City that the concept plan generally follows the secondary plan. Please advise if you have any further comments.

Rob

Rob Merwin, P.Eng.
Sr.Associate, Land development
Urbantech® Consulting
A Division of Leighton Zee West

A Division of Leighton-Zec West Ltd. 2030 Bristol Circle, Suite 105, Oakville, ON L6H 0H2 merwin@urbantech.com • www.urbantech.com

TEL 905-829-8818 Ext.1010 • DIR 905-829-6901 • MOB 416-997-0101

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From: Rob Merwin <rmerwin@urbantech.com>

Sent: February 18, 2020 9:57 AM

To: | Margaret Fazio < Margaret.Fazio@hamilton.ca>

Subject: RE: B3SS Final Draft Report Public Comments

Hi

Thank you very much for your comments.

We in conjunction with the City are reviewing the concept plan against the land use plan and will respond on this item. In terms of Street Q, all of the local roads in the Concept Plan are intended to show how development could proceed. They do not represent an actual development application. An application for your lands or the neighbouring lands for draft plan approval will indicate the exact proposed location of local roads. Thanks again,

J-....,

Rob

Rob Merwin, P.Eng.
Sr.Associate, Land development
Urbantech® Consulting
A Division of Leighton-Zec West Ltd.
2030 Bristol Circle, Suite 105, Oakville, ON L6H 0H2
rmerwin@urbantech.com • www.urbantech.com
TEL 905-829-8818 Ext.1010 • DIR 905-829-6901 • MOB 416-997-0101

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From:

Sent: February 13, 2020 11:08 PM

To: Rob Merwin rmerwin@urbantech.com; Margaret Fazio Margaret.Fazio@hamilton.ca

Subject: B3SS Final Draft Report Public Comments

February 13th, 2020

To: Mr. Rob Merwin, Urbantech, and Mrs. Margaret Fazio, City of Hamilton

Re: Block 3 Servicing Strategy Notice of Completed Final Draft Report Public Comments

Dear Mr. Merwin,

We have been the owners and growers since 1974 of the agricultural specialty tender fruit property at located in the north-west corner of Sub-area 1.

Thank you for sending us the pdf drawings and figures.

The gsai concept plan that is the basis for this B3SS study and Final Draft Report differs in density allocations from the Urban Hamilton Official Plan and Fruitland-Winona Secondary Plan Land Use Map B.7.4-1 which results in a changed density for our property at

It would appear more practical to place Street Q on the property line.

Sincerely,

From: Rob Merwin

Sent: February 18, 2020 9:57 AM

To:

Subject: RE: B3SS Final Draft Report Public Comments

Hi

Thank you very much for your comments.

We in conjunction with the City are reviewing the concept plan against the land use plan and will respond on this item. In terms of Street Q, all of the local roads in the Concept Plan are intended to show how development could proceed. They do not represent an actual development application. An application for your lands or the neighbouring lands for draft plan approval will indicate the exact proposed location of local roads. Thanks again,

Rob

Rob Merwin, P.Eng.
Sr.Associate, Land development
Urbantech® Consulting
A Division of Leighton-Zec West Ltd.
2030 Bristol Circle, Suite 105, Oakville, ON L6H 0H2
rmerwin@urbantech.com • www.urbantech.com
TEL 905-829-8818 Ext.1010 • DIR 905-829-6901 • MOB 416-997-0101

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From:

Sent: February 13, 2020 11:08 PM

Subject: B3SS Final Draft Report Public Comments

February 13th, 2020

To: Mr. Rob Merwin, Urbantech, and Mrs. Margaret Fazio, City of Hamilton

Re: Block 3 Servicing Strategy Notice of Completed Final Draft Report Public Comments

Dear Mr. Merwin,

We have been the owners and growers since 1974 of the agricultural specialty tender fruit property at located in the north-west corner of Sub-area 1.

Thank you for sending us the pdf drawings and figures.

The gsai concept plan that is the basis for this B3SS study and Final Draft Report differs in density allocations from the Urban Hamilton Official Plan and Fruitland-Winona Secondary Plan Land Use Map B.7.4-1 which results in a changed density for our property at

It would appear more practical to place Street Q on the property line.

Sincerely,

Ministry of Heritage, Sport, Tourism, and Culture Industries

Programs and Services Branch 401 Bay Street, Suite 1700 Toronto, ON M7A 0A7 Tel: 416.314.7147

Ministère des Industries du Patrimoine, du Sport, du Tourisme et de la Culture

Direction des programmes et des services 401, rue Bay, Bureau 1700 Toronto, ON M7A 0A7 Tél: 416.314.7147

February 25, 2020

EMAIL ONLY

Rob Merwin, P.Eng. Project Manager Urbantech West rmerwin@urbantech.com

MHSTCI File: 0006855

Proponent : City of Hamilton

Subject : Notice of Draft Study Report Completion

Project : Block Servicing Strategy for Block 3 Lands, Fruitland-Winona

Location : City of Hamilton, Ontario

Dear Mr. Merwin:

Thank you for providing the Ministry of Heritage, Sport, Tourism and Culture Industries (MHSTCI) with the Notice of Draft Study Report Completion for the above-referenced project. MHSTCI's interest in this Environmental Assessment (EA) project relates to its mandate of conserving Ontario's cultural heritage, which includes:

- Archaeological resources, including land and marine;
- Built heritage resources, including bridges and monuments; and,
- Cultural heritage landscapes.

We have reviewed the Draft Study Report and offer the following comments.

There is no mention in the draft report of cultural heritage resources in study area, potential effects of the proposed undertaking on them, or mitigation measures to address those effects. As noted in MHSTCI (then MTCS)'s letter of June 22, 2017, consideration of cultural heritage resources is part of the Municipal Class EA process, and the need for cultural heritage technical studies in support of an EA process is normally determined through MHSTCI's <u>Criteria for Evaluating Archaeological Potential</u> and <u>Criteria for Evaluating Potential</u> for <u>Built Heritage Resources and Cultural Heritage Landscapes</u> checklists. In this draft report there is no indication as to whether these checklists were completed, or whether some previous study ruled out the need for archaeological assessment and/or heritage impact assessment, or whether such technical studies have in fact been completed. Where completed, these technical studies should inform the decisions and commitments made in the EA report.

The final Study Report should explain how cultural heritage considerations were either addressed or found not to be applicable.

Thank you for consulting MHSTCI on this project and please continue to do so throughout the EA process. If you have any questions or require clarification, do not hesitate to contact me.

Sincerely,

Dan Minkin Heritage Planner Dan.Minkin@Ontario.ca

From:

Rob

Sent:	February 26, 2020 10:06 AM
То:	(MHSTCI)
Cc:	
Subject:	RE: Block 3 Lands Fruitland-WInona Draft ESR - MHSTCI Comments
	nments. I have copied of the City of Hamilton on this email so change. This question has also been raised by others and responded by ope it is okay but I am going to cut and paste your commentary below:
study – Fruitland-Winor It was finalized in 2009	on that Archaeology Stage 1 would have been included during the earlier na Secondary Plan (FWSP), but appeals were resolved in 2014. If the Stage 1 carried out at that time
recommended a Stage applicants at the draft p	2 Archaeological consideration, we would then require it from the developer- lan stage.
, ,	vers the Municipal Class Environmental Assessment process from the public tive only , i.e. Public Information Centres and 30 day review, Notification of
through an extensive a alternatives which inclu	f approval lies with Council, as the projects in question have already gone ppeal – available public engagement process and full consideration of ded natural environment, socio-economic considerations and Cultural naeology, among others.
	terial and Collector Roads are set by the FWSP, and are closely following that nain subject to change – at development process stage.
Stormwater Ponds local locations are fine tuned	itions were generally indicated by the SCUBE Subwatershed Studies, and now.
	e new to the City of Hamilton – in preparation of development process, to f servicing. They are only done as a result of the above steps first being
	t if the studies in the Secondary Plan identify the need for further work, this the developer at the time of Draft Plan Applications. This stage will follow the ervicing Study.

Rob Merwin

I hope this helps, and please let me know if you have any further questions.

Rob Merwin, P.Eng.

Sr.Associate, Land development

Urbantech® Consulting

A Division of Leighton-Zec West Ltd.

2030 Bristol Circle, Suite 105, Oakville, ON L6H 0H2

rmerwin@urbantech.com • www.urbantech.com

TEL 905-829-8818 Ext.1010 • DIR 905-829-6901 • MOB 416-997-0101

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From: (MHSTCI) <

Sent: February 25, 2020 5:45 PM

To: Rob Merwin <rmerwin@urbantech.com>

Subject: Block 3 Lands Fruitland-Winona Draft ESR - MHSTCI Comments

Good afternoon,

Please see our comments attached. I apologise for sending these comments after the stated review period but hope they can still be incorporated.

Heritage Planner

Ministry of Heritage, Sport, Tourism and Culture Industries
Heritage, Tourism and Culture Division | Programs and Services Branch | Heritage Planning Unit
401 Bay Street, Suite 1700
Toronto, Ontario M7A 0A7
Tel. 416.314.7147 | Fax. 416.314.7175

From:

Sent: February 26, 2020 2:52 PM

To:

Subject: RE: Block 3 Lands Fruitland-Winona Draft ESR - MHSTCI Comments

We are working on formulating a detailed response to your previous questions – hope to have something back to you tomorrow.

To address the new question you now posed based regarding the project website, please note that the website holds three different Block Servicing Strategies (SS) – i.e. Blocks 1, 2 & 3 and a Gordon Dean Ave. EA – Phases 3 &4 MCEA process project.

Of the four ONLY mentioned projects the latter is the only "true" MCEA project which legally requires the MCEA process to be followed.

Please note that Gordon Dean Ave. falls outside of the Block 3 study area – it is located within Block 1, and each strategy has been led as a separate process (different proponents). Gordon Dean is also led by different private land owners from those leading Block 3 SS. The City of Hamilton has placed all content for the Strategies on its website to facilitate public engagement, and to allow faster sharing of content and consistency with everyone involved.

Sorry for any confusion this may have caused.

Hope this helps?

Thank you,

From:

Sent: February 26, 2020 12:08 PIVI

To: Rob Merwin <rmerwin@urbantech.com>

Subject: RE: Block 3 Lands Fruitland-Winona Draft ESR - MHSTCI Comments

Thanks again Rob. On point 1, I would certainly appreciate clarification, perhaps from Margaret. I was a bit confused because the draft report doesn't seem to explicitly call itself an ESR under the MCEA or follow the typical format of one, but the Notice of Draft Study Report Completion does invoke the MCEA, as does the project website, which even specifies Schedule C.

On point 2, would these future development applications include the infrastructure projects that are subject to EA? I'm used to the typical dichotomy whereby public infrastructure is planned through the EA process under municipal (or other public-sector) proponency, and then development applications by private entities are made to the municipality for the development of private property. Are there in this case going to be smaller-scale EA processes for individual development applications that include infrastructure construction?

Heritage Planner

Ministry of Heritage, Sport, Tourism and Culture Industries

Heritage, Tourism and Culture Division | Programs and Services Branch | Heritage Planning Unit

401 Bay Street, Suite 1700 Toronto, Ontario M7A 0A7

Tel. 416.314.7147 | Fax. 416.314.7175

From: Rob Merwin <rmerwin@urbantech.com>

Sent: February 26, 2020 11:39 AM

To: | 1/2 |

Cc: F

Subject: RE: Block 3 Lands Fruitland-Winona Draft ESR - MHSTCI Comments



I will defer to Margaret on this, however my understanding is as follows:

- 1. This is not an EA but a servicing strategy study that dictates how the lands can be serviced in accordance with the secondary plan contemplated land uses.
- The future development applications will have to satisfy the conditions of the MCEA process. The level of EA is dependent on the various factors in the guidelines, however my understanding is that dependent on the level the planning process can cover off the requirements of the EA. Margaret, please chime in here.

I will defer to for further context.

Rob Merwin, P.Eng.
Sr.Associate, Land development
Urbantech® Consulting
A Division of Leighton-Zec West Ltd.
2030 Bristol Circle, Suite 105, Oakville, ON L6H 0H2
rmerwin@urbantech.com • www.urbantech.com
TEL 905-829-8818 Ext.1010 • DIR 905-829-6901 • MOB 416-997-0101

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From:

Sent: February 26, 2020 11:15 AM

To: Rob Merwin <rmerwin@urbantech.com>

Cc:

Subject: RE: Block 3 Lands Fruitland-WInona Draft ESR - MHSTCI Comments

Hi Rob, thank you for your quick reply.

The thing that makes this study format a little complicated of course is that we are talking about a combination of planned development subject to secondary plan under the Planning Act, and associated public infrastructure subject to the Environmental Assessment Act. MHSTCI does not comment on processes/approvals under the Planning Act unless they are circulated through MMAH's One Window service, so in this case our concerns are limited to the Environmental Assessment component of the process, which basically amounts to the planning of the municipal infrastructure.

The SCUBE Subwatershed Study also did not contain any cultural heritage investigation, and when I pointed this out in our comments I was sent a letter in reply from the City of Hamilton stating, similarly, that the Fruitland-Winona Secondary Plan sets policies for archaeological assessment and protection of cultural heritage resources at the development approval stage.

But again, planning approval and EA coverage are two different things for different kinds of undertaking. For the market development that will be carried out pursuant to the Secondary Plan, the City of Hamilton is the approval authority, as it is for the Secondary Plan itself, and the Province is not involved on a planning level; archaeological assessments and other heritage studies would typically be required of private applicants by the City. For infrastructure such as roads and stormwater ponds, however, the requirements of the Environmental Assessment Act – and more specifically in this case, the Municipal Class EA – apply, and need to be reflected in the Environmental Study Report. We have still not seen how the cultural heritage requirements of the MCEA process have been fulfilled, with respect to the components of this project that are subject to it.

If previous or pending stages of study make it unnecessary to address cultural heritage on a technical level during the Block 3 Class EA process, the ESR should spell this out explicitly. I would also recommend including any relevant cultural heritage technical studies as appendices.

Heritage Planner
Ministry of Heritage, Sport, Tourism and Culture Industries
Heritage, Tourism and Culture Division | Programs and Services Branch | Heritage Planning Unit
401 Bay Street, Suite 1700
Toronto, Ontario M7A 0A7
Tel. 416.314.7147 | Fax. 416.314.7175

From: Rob Merwin < rmerwin@urbantech.com>
Sent: February 26, 2020 10:06 AM

Sent: February 26, 2020 10:06 Alv

To:

Cc:

Subject: RE: Block 3 Lands Fruitland-Winona Draft ESR - MHSTCI Comments

Thank you for your comments. I have copied for the City of Hamilton on this email so she is aware of this exchange. This question has also been raised by others and responded by I hope it is okay but I am going to cut and paste your commentary below:

".... first I should mention that Archaeology Stage 1 would have been included during the earlier study – Fruitland-Winona Secondary Plan (FWSP)
It was finalized in 2009, but appeals were resolved in 2014. If the Stage 1 carried out at that time recommended a Stage 2 Archaeological consideration, we would then require it from the developerapplicants at the draft plan stage.

This study generally covers the Municipal Class Environmental Assessment process **from the public consultation perspective only**, i.e. Public Information Centres and 30 day review, Notification of various agencies etc.

The ultimate decision of approval lies with Council, as the projects in question have already gone through an extensive appeal – available public engagement process and full consideration of alternatives which included natural environment, socio-economic considerations and Cultural Heritage, including Archaeology, among others.

Please note that the Arterial and Collector Roads are set by the FWSP, and are closely following that layout. Local roads remain subject to change – at development process stage.

Stormwater Ponds locations were generally indicated by the SCUBE Subwatershed Studies, and locations are fine tuned now.

Servicing Strategies are new to the City of Hamilton – in preparation of development process, to facilitate coordination of servicing. They are only done as a result of the above steps first being taken/finalized."

As stated that if the studies in the Secondary Plan identify the need for further work, this work would be done by the developer at the time of Draft Plan Applications. This stage will follow the approval of the Block Servicing Study.

I hope this helps, and please let me know if you have any further questions.

Rob

Rob Merwin, P.Eng.

Sr.Associate, Land development

Urbantech® Consulting

A Division of Leighton-Zec West Ltd.

2030 Bristol Circle, Suite 105, Oakville, ON L6H 0H2

rmerwin@urbantech.com • www.urbantech.com

TEL 905-829-8818 Ext.1010 • DIR 905-829-6901 • MOB 416-997-0101

Please note that we are providing the attached file(s) as a courtesy for reference purposes only. The file(s) are not to be taken as appurtenant to, associated with or in placement of hard copies of the drawings. Urbantech is not responsible for edited or reproduced versions of this digital data. The unauthorized use, disclosure, distribution or copying of this e-mail, and any information that it contains, are prohibited. If you are not the intended recipient of this email, please return it to contact@urbantech.com and delete it from your computer system.

From:

Sent: February 25, 2020 5:45 PM

To: Rob Merwin <rmerwin@urbantech.com>

Subject: Block 3 Lands Fruitland-Winona Draft ESR - MHSTCI Comments

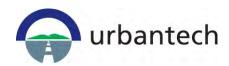
Good afternoon,

Please see our comments attached. I apologise for sending these comments after the stated review period but hope they can still be incorporated.

Heritage Planner

Ministry of Heritage, Sport, Tourism and Culture Industries
Heritage, Tourism and Culture Division | Programs and Services Branch | Heritage Planning Unit
401 Bay Street, Suite 1700
Toronto, Ontario M7A 0A7
Tel. 416.314.7147 | Fax. 416.314.7175

February 4, 2020


We are in receipt of your letter dated January 27, 2020 (attached). We want to thank you for your comments, and we offer the following clarifications (numbered in accordance with your letter of January 27, 2020):

- 1. Figure 1 is a site location plan indicating the location of the subject site and surrounding roads. The concept plan is also represented on this figure for context. This figure does not indicate any existing or proposed drainage patterns. Please refer to the STM drawings for the existing and proposed drainage patterns. In terms of future drainage of McNeilly Road the Servicing Study has indicated the construction of a storm sewer within the Barton Street Right of Way from McNeilly Road to the proposed stormwater management facility located directly west of the existing school. This sewer is sized for McNeilly Road drainage including the existing east side properties fronting on McNeilly, both in the existing condition and in the future if McNeilly Road is fully urbanized. In addition, no external drainage is proposed to be directed towards existing properties or structures.
- 2. The current sanitary drainage plan has been modified to direct a portion of the proposed sanitary drainage towards the intersection of McNeilly Road and Barton Street in accordance with the original design of the existing sewer on McNeill Road. This modification arose through comments received from City of Hamilton staff indicating that the existing infrastructure at McNeilly Road and Barton Street had been sized to accommodate a portion of the development lands. Included in the Servicing Study are Sanitary Design Sheets which detail the expected sanitary sewage generation from the development lands and demonstrate that proposed and existing infrastructure can accommodate those future flows. In addition, these design sheets account for the existing and future flows from west of McNeilly Road.
- 3. As described above the proposed sanitary drainage patterns are in accordance with the original design of the existing sewer on McNeill Road in accordance with the City of

F:\Projects\12-062W (Branthaven-Fruitland Winona)\Correspondence\Letters\20-02-04-RM-Response letter to Wayne Clayton.doc

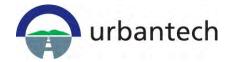
Page 1 of 3

Hamilton's direction and the existing infrastructure has been sized to accommodate the proposed flows.

4. Drawing SAN4 indicates a portion of the subject lands drain to the McNeilly Road and Barton St. intersection. The majority of the development lands drain to the east to infrastructure located at the intersection of Barton Street and Lewis Road. The existing infrastructure at both locations has been sized to accommodate the development lands and the supporting design sheets within the Servicing Study indicate that the capacity is sufficient once development occurs.

In regards to the items identified under the Comments section of your letter:

- 1. At the PIC meeting the display boards for Block 3 did not identify any servicing of lands south of Barton Street being accommodated within the future Arvin Avenue. At this time it is still not clear if Arvin Avenue will be extended. The plans within the servicing study demonstrate how development can be accommodated through existing infrastructure and the extension of new municipal infrastructure for both the future and existing conditions.
- 2. A Stormwater Management Pond is not required at the south east intersection of Barton Street and McNeilly Road as all drainage south of Barton Street and McNeilly Road is accommodated within the proposed Stormwater Management Pond directly west of the existing school property.
- 3. There is no proposal to increase flows to Watercourse. No drainages from Block 3 have been proposed to watercourse # 7 through McNally Road, north of Barton Street.


We hope that the above clarifies the proposed servicing concepts. If you have further questions or require further clarifications, we would be happy to meet with you and discuss further.

City of Hamilton and Urbantech staff would be happy to meet with you and/or your neighbours to discuss any further questions about the above mentioned matters at either City Hall or within the study area e.g. your residence. The project schedule dictates that any meeting would need to take by Friday, February 14, 2020 at the latest, between the hours 8:30 a.m. – 4: 30 p.m., if possible.

Please contact Margaret Fazio, the City's liaison staff member for this project, as well as the undersigned, as soon as possible if you still wish to meet, so that our collective schedules can be coordinated.

Margaret's Contact information is as follows:

Margaret Fazio, B.Sc., *EP, MCIP, RPP*Senior Project Manager, Infrastructure Planning
Growth Management, Planning and Economic Development Department
City of Hamilton, 71 Main Street West, 6th Floor, Hamilton, ON, Canada, L8R 4Y5
Tel: 905-546-2424 ext. 2218; Fax: 905-540-5611; e-mail: Margaret.Fazio@hamilton.ca

Cont'd...

Yours truly,

Rob Merwin, P.Eng.

Sr. Associate, Land Development.

Cc: Maria Pearson, Councillor New Ward 10 Stoney Creek, City of Hamilton

Cc: Margaret Fazio, Councillor City of Hamilton

January 27th 2020

Rob Merwin, P. Eng Project Manager - Urbantech West 2030 Bristo Cir., # 105 Oakville, On L8H 0H2

registered mail

Maria Pearson, Councilor New Ward 10 Stoney Creek City of Hamilton

inter office courier

RE; Draft Study Report Block Servicing Strategy Block 3

I recently compared the June 2017 public meeting presentation to the January 16th 2020 above Servicing Strategy and note that the differences are substantial in nature.

1. Storm Water Drainage
Map 12-062W Dated Aug 18 Drawing # 1
This map shows drainage on the property line of 280 & 282 McNeilly
Rd. which did not previously exist. This proposal will require the
removal of privacy fencing and over 12 trees. More over the increased
volumes of water within 1 meter of a cement block foundation is an
expensive disaster in the making if not for the present homeowners but in
the future. Now you have effectively devalued two McNeilly Rd.
properties and restricting future redevelopment of 282 McNeilly Rd.

Since there is no storm sewer south of Barton ST. the increase in water volume will increase the frequency of Barton St. flooding which currently already occurs on the west side of McNeilly Rd. This plan effectively increases flooding for all homes down Stream especially for those north of Barton St. as well as effecting insurance rates and resale values.

Sanitary Drainage West
 Map 12-062W Dated Aug. 2018 Drawing - SAN – 1A

This map shows the sewage flow has once again been altered from the June 2017 public presentation. Originally the flow was east to Lewis Rd. Now all flows West to McNeilly Rd. along Barton and down McNeilly North of Barton.

This change increases long-term maintenance costs to the taxpayer and restricts future development west of McNeilly Rd. and south of Barton. Since the City already owns three road access on the west side long term planning should dictate that the current development pay a portion of increasing the sanitary sewer from Barton to the Collector road off McNeilly as well as a portion of Urbanizing McNeilly road to the collector to help facilitate the increased traffic flow.

Sanitary drainage West
 Map 12-062 Dated Aug 2018 DWG – SAN – 4A

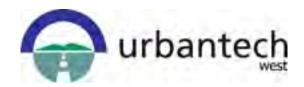
This map also shows drainage from the Barton St. collector road to McNeilly road is completely opposite to the representations at the public meeting and once again increases McNeilly road volumes.

Sanitary West North of Barton
 Map 12-062 Dated Aug 2018 DWG – SAN – 4

This map and all other maps for services in this area show all drainage has been redirected from the north perimeter south to Barton St. and WEST TO McNeilly road.

COMMENTS

At the public meeting we were assured that all services would drain to the New Arvin Ave. then west to McNeilly Road where the Arvin Ave extension built in 2019 would have a relief outlet at Water Course 7 to eliminate the current water over McNeilly road. We were also assured that this would pick up the drainage pipe that currently runs at the rear of the residences on the east side of McNeilly Rd from Barton to the train track. The amended proposal does not identify or plan to do this.


A storm water pond has been omitted in the south east corner of Barton and McNeilly to match the pond on the east side of the development. The lack of a pond clearly indicates that the intent is to devalue the homes on McNeilly Rd.

Watercourse 7 improvements were never designed to accept Block 3 development. To transfer block 3 will not only increase frequency and intensity of flooding of McNeilly Rd it will restrict Block 2 development it is essentially increasing costs for them. Further more it eventfully blocks and increases costs for the Barton. Hwy #8; Glover, McNeilly block when it is finally re zoned.

This entire redesign should go back to a PUBLIC MEETING with full and honest disclosure.

This whole process hiding the substantial changes from the McNeilly Rd residence condensing our comment period to 30 days when you have known for approximately 18 months is a sham. Had we know this in June 2017 or August 2018 these comments would be supported with numerous pictures.

We look forward to a meeting and Public meeting.

APPENDIX N-4 PIC Materials

Thursday, June 8, 2017

Block Servicing Strategies 1 and 2 PIC No. 2, and Block 3 Servicing Strategy PIC No. 1 Comment Sheet

Please take a moment to provide us with input regarding the three above mentioned projects. This questionnaire is your opportunity to provide your comments on all three. Given that your views are important to us, please kindly complete this questionnaire (please print) and deposit it in the "Comment Sheets" box provided or by mail, email/scan or fax to the address provided on the fourth page. Thank you.

1. My relation to this Project is: (Please check all that a	pply)
[] resident within the project limit	
[] land or business owner within the project limit	
[] user of roads or lands within the study areas but not with	n project limit
[] member of an interest group (Please specify)	
[] member of the general public not within the project limit	
[] other (Please specify)	_
2. My interest is: (Please check all that apply?	
[] property/land impacts	[] recreational
[] stormwater management	[] natural environment and creeks
[] pedestrian / bicycle safety	[] speed limits
[] traffic volume	[] general interest
[] traffic signals	
[] other:	
3. Please provide your comments as they relate to the linere today.	Block 1 Concept Plans presented

	#	#		
Ha	ım	il:	•	1

4.	Please provide your contoday.	nments as they re	elate to the Block 2 details provided here
5.	Please provide your contoday.	nments as they re	elate to the Block 3 details provided here
6.	How did you hear abou	ıt this Public Info	ormation Centre (PIC)? (Please checkmark)
[]	Newspaper [] Website	[] Friend []	Notice in the mail [] Other:
7.	Please indicate your sa	atisfaction with tl	ne following:
		Satisfied (Y/N)	If not satisfied, please specify your preference below
Lo	cation of Meeting		
Tiı	me of Meeting		
Da	ay of Week		

bility of the Loca	tion				
	•	_	is "no	t at all", please rat	e the
low informative	were the dis	play materials? (ple	ase circl	e)	
Very 1	2	Somewhat 3	4	Not at all 5	
low helpful were	the Municip	al staff and consult	ants in a	ttendance? (please	circle)
Very 1	2	Somewhat 3	4	Not at all 5	
•			-		
ease provide ar	y additiona	l comments.			
[] No	_	oonse to your com			
[] No lease provide us	s with your c	oonse to your com ontact information to (please print clearly	oelow sho	ould you wish to red	ceive a
	a scale of 1 to ng by circling the dow informative very 1 How helpful were Very 1 ere all your que	a a scale of 1 to 5, where "1 ng by circling the appropriate of the appropriate of the distribution of the	a a scale of 1 to 5, where "1" is "very" and "5 ing by circling the appropriate number: How informative were the display materials? (plead of the second of	a a scale of 1 to 5, where "1" is "very" and "5" is "noting by circling the appropriate number: How informative were the display materials? (please circle Very Somewhat 1 2 3 4 How helpful were the Municipal staff and consultants in a Very Somewhat 1 2 3 4 Pere all your questions answered satisfactorily? [] No [] If No, can someone contact you?	a a scale of 1 to 5, where "1" is "very" and "5" is "not at all", please rating by circling the appropriate number: How informative were the display materials? (please circle) Very Somewhat Not at all 1 2 3 4 5 How helpful were the Municipal staff and consultants in attendance? (please Very Somewhat Not at all 1 2 3 4 5 Pere all your questions answered satisfactorily? [] No [] If No, can someone contact you?

Address:	
City/Province/Postal Code:	Email:

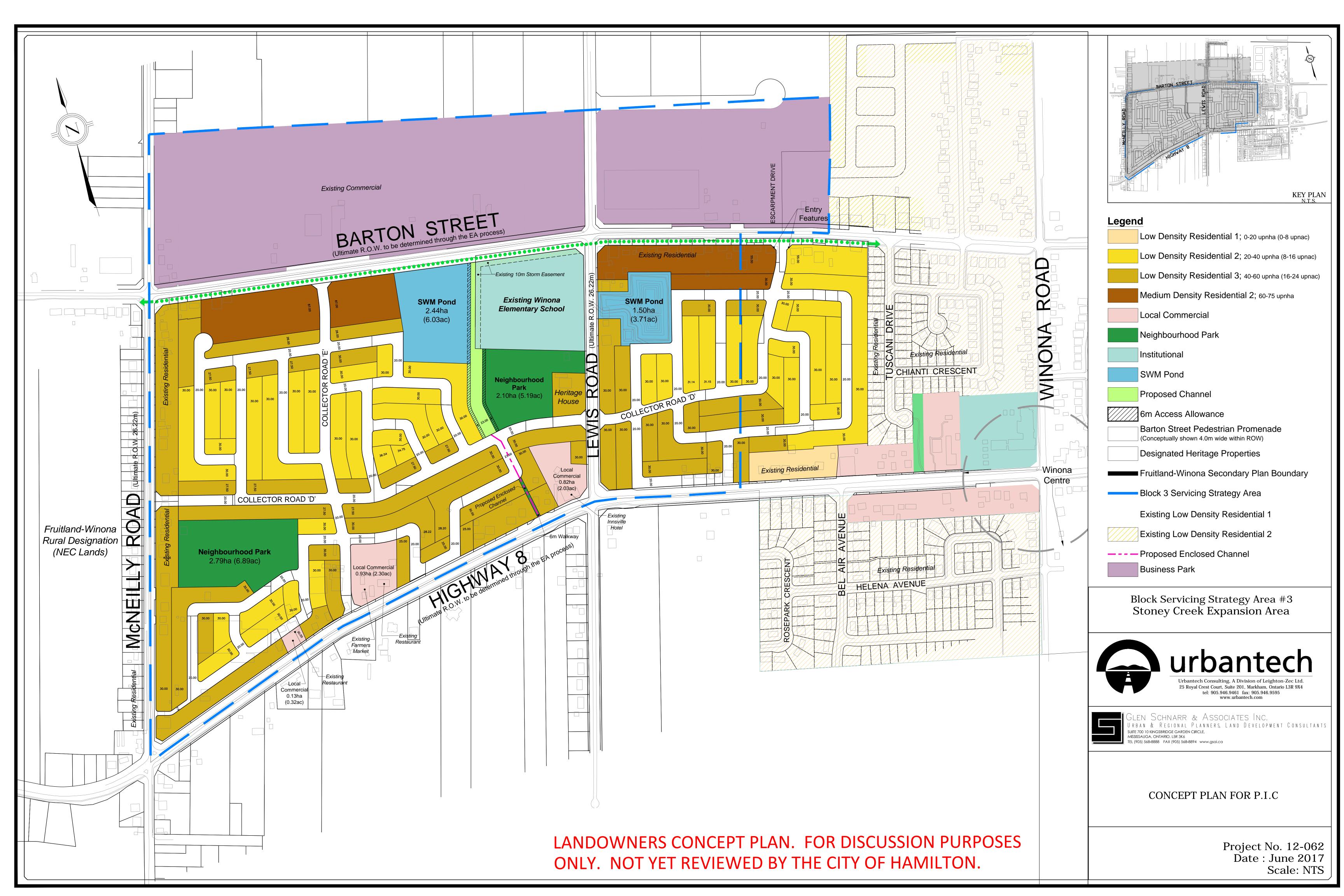
As noted, please mail, scan/email, or fax your completed questionnaire by <u>June 22, 2017</u> to:

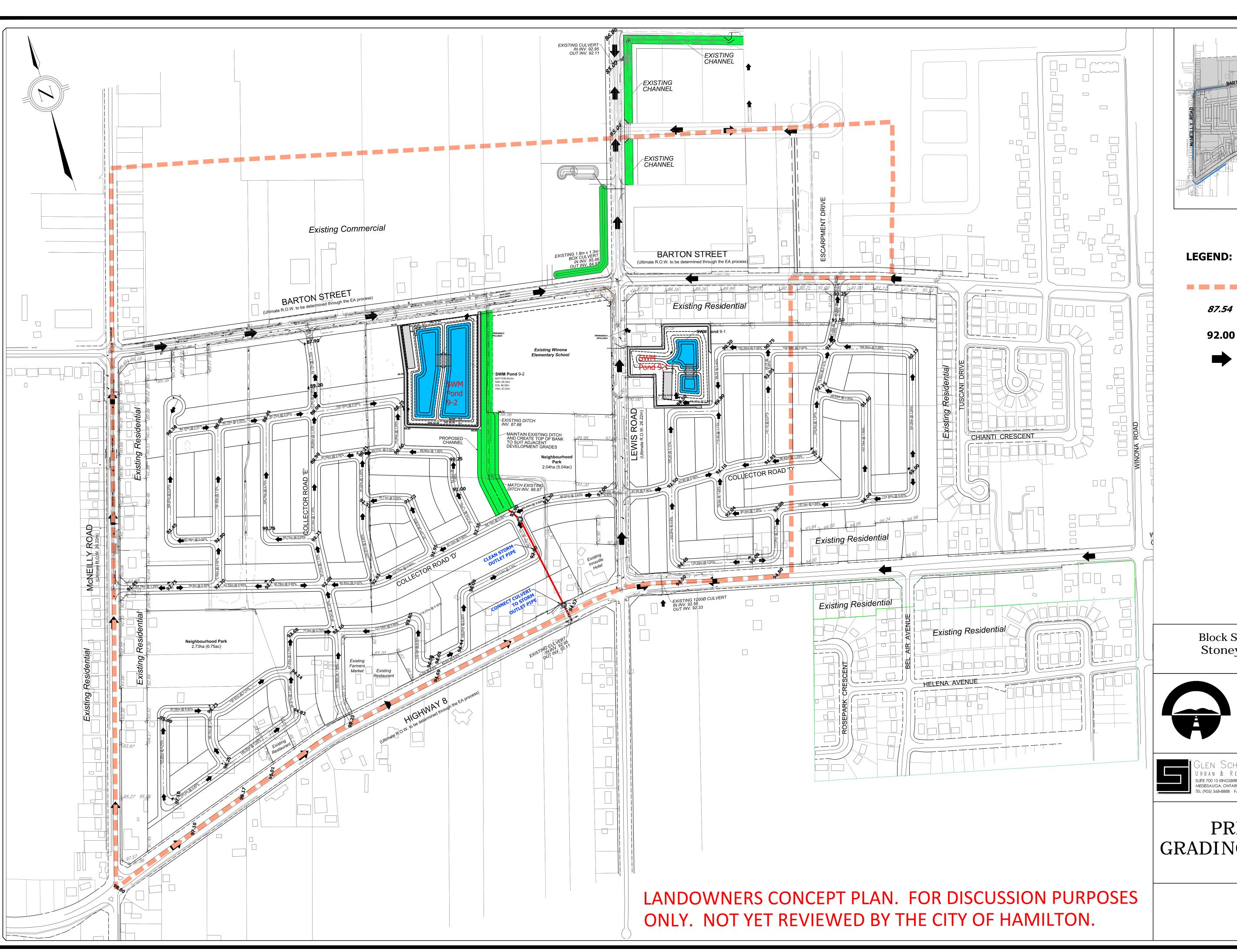
Amec Foster Wheeler (Block 1)
Angelo Cutaia, P.Eng.
Consultant Project Manager
3215 North Service Road,
Burlington, ON L7N 3G2
Tel: 905.335.2353

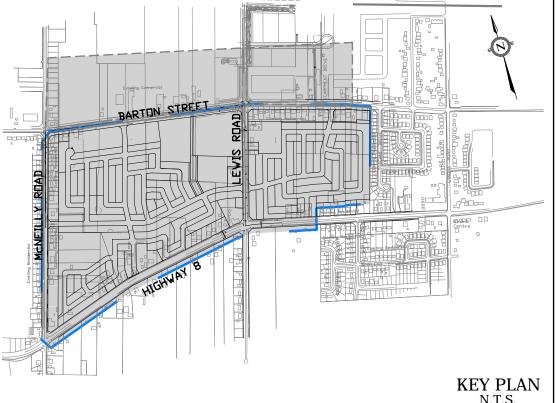
Fax: 905.335.1414

Email: <u>Angelo.Cutaia@amecfw.com</u>

City of Hamilton (Block 2)
Margaret Fazio, B.Sc., EP, MCIP, RPP
Senior Project Manager
City of Hamilton
71 Main Street West, 6th Floor,
Hamilton, ON L8P 4Y5


Tel: 905.546.2424 Ext.2218 Fax: 905.540.5611


Email: iplanning@hamilton.ca


Urbantech West (Block 3)
Rob Merwin, P.Eng.
Urbantech® West,
A Division of Leighton-Zec West Ltd.
2030 Bristol Circle, Suite 201
Oakville,. ON L6H 0H2
TEL: 905-829-8818 Ext.102

Mob:416.997.0101 FAX: 905.829.4804 Email:rmerwin@urbantech.com

Thank you for your time and participation!

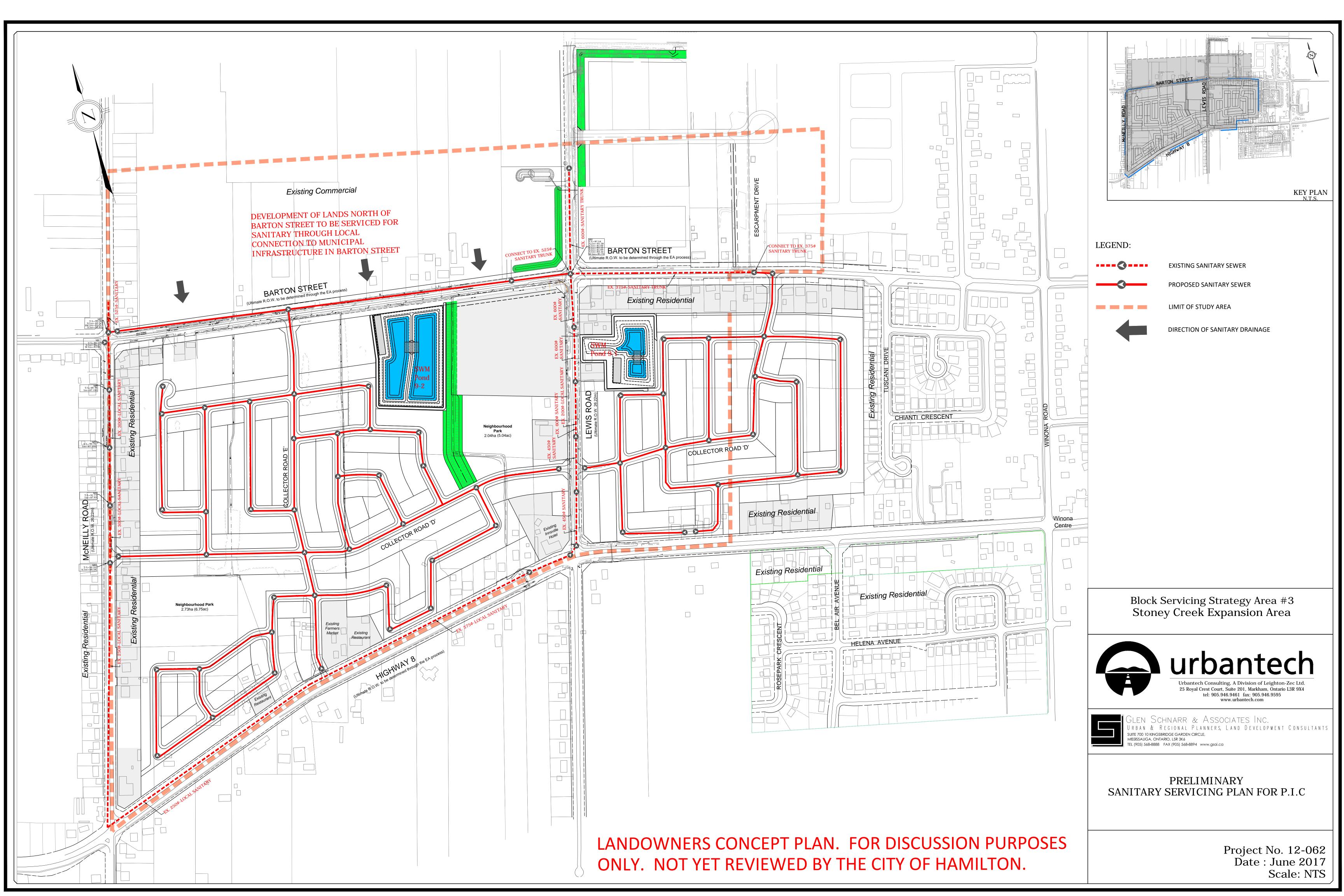
LIMIT OF STUDY AREA

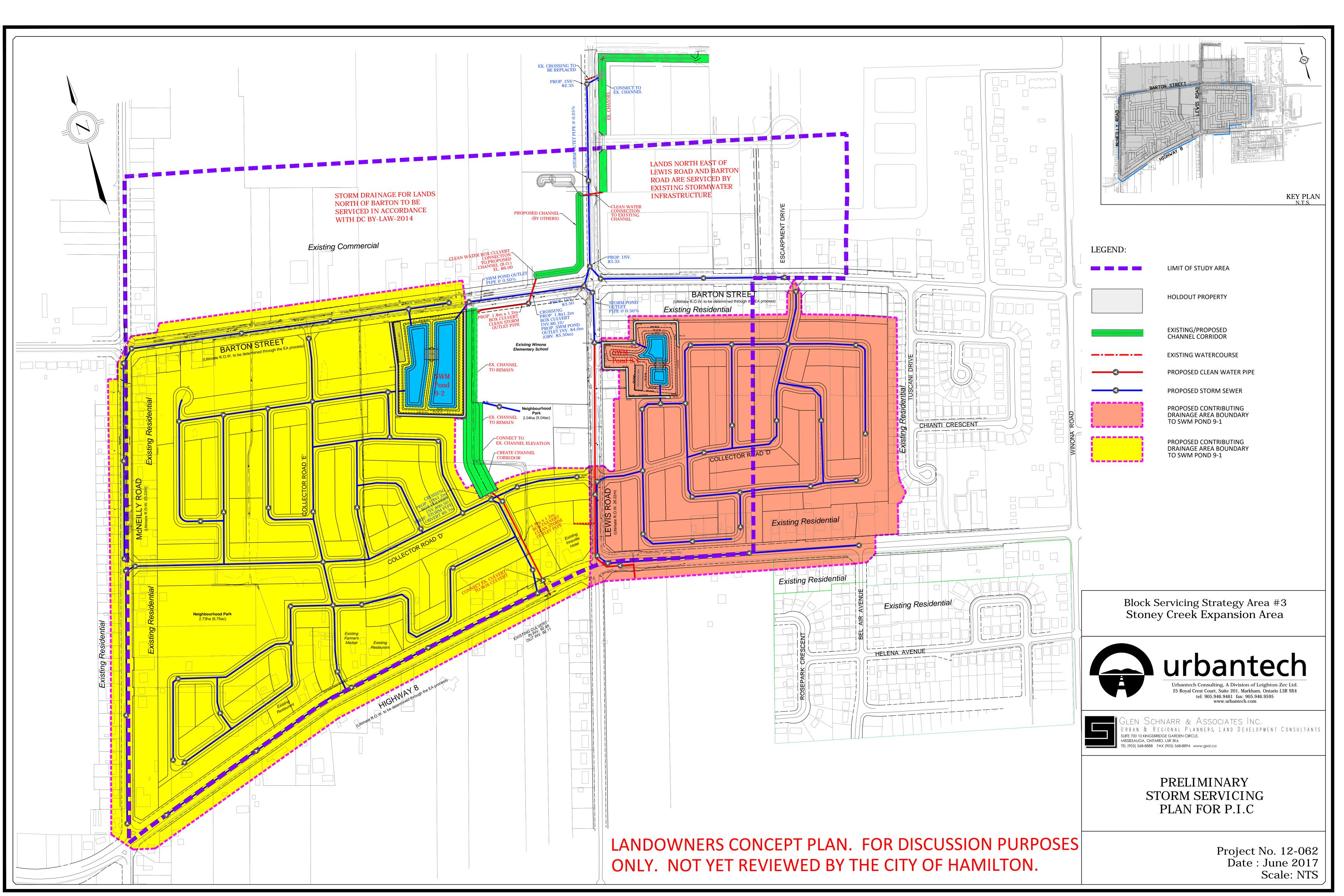
PROPOSED ELEVATION

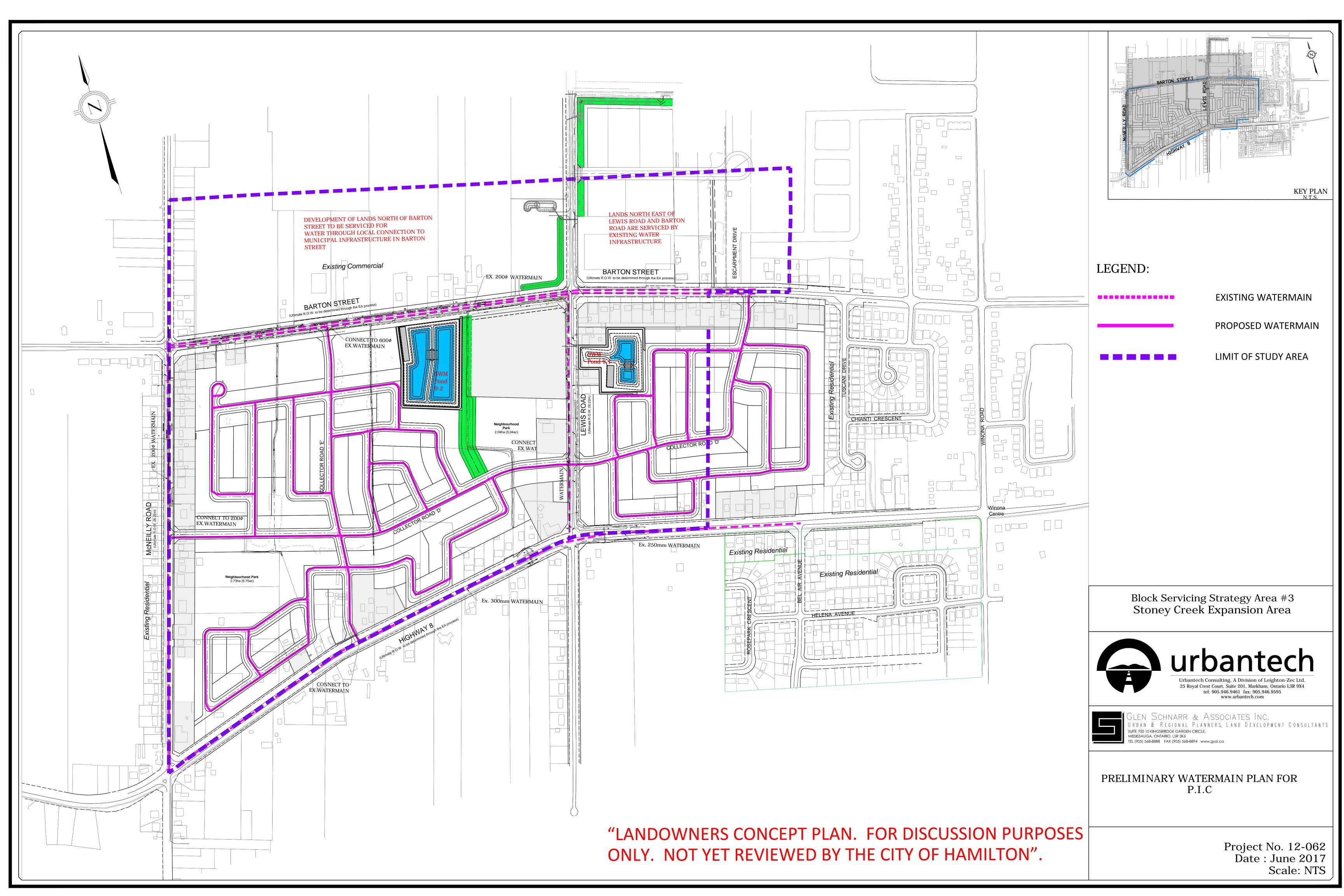
EXISTING ELEVATION

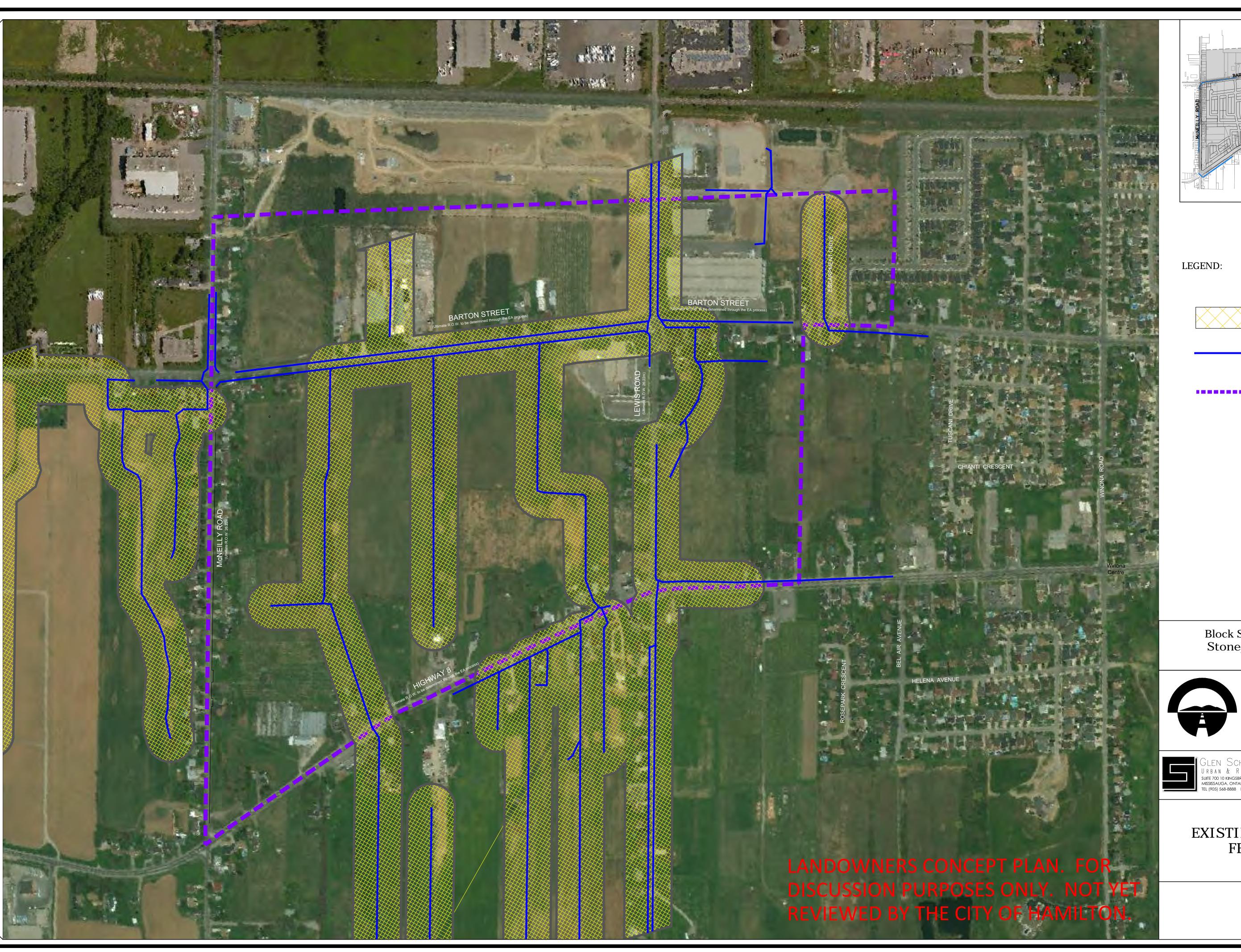
OVERLAND FLOW DIRECTION

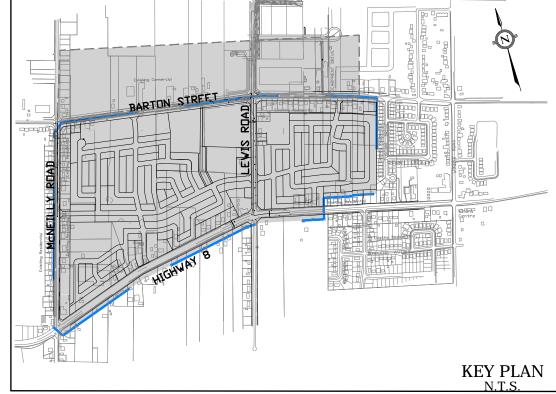
Block Servicing Strategy Area #3 Stoney Creek Expansion Area






GLEN SCHNARR & ASSOCIATES INC. Urban & Regional Planners, Land Development Consultants suite 700 10 kingsbridge garden circle,


PRELIMINARY GRADING PLAN FOR P.I.C

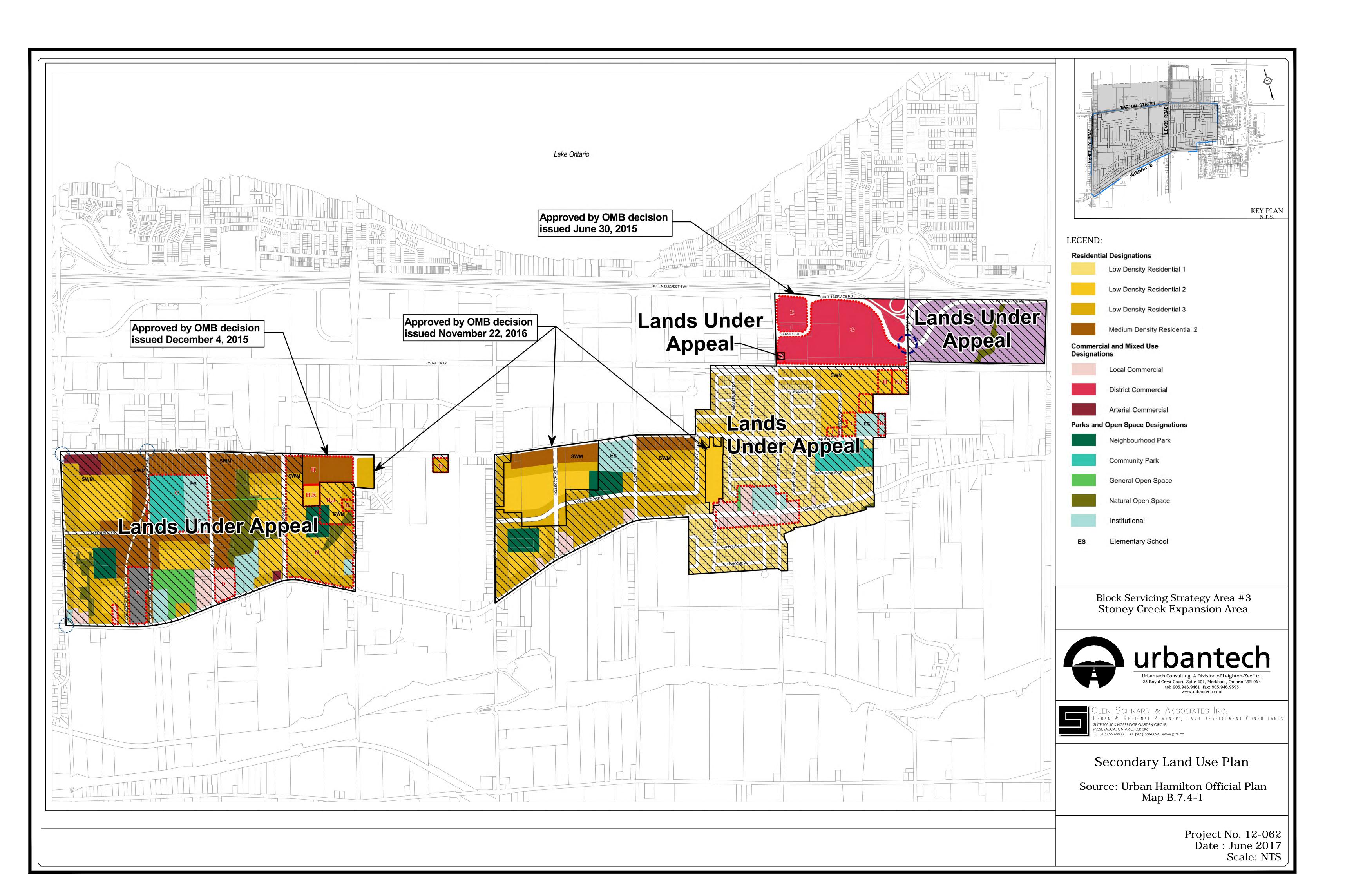

> Project No. 12-062 Date : June 2017 Scale: NTS

HAMILTON CONSERVATION AUTHORITY REGULATED AREA

REGULATED WATERCOURSE

BSS BOUNDARY LINE

Block Servicing Strategy Area #3 Stoney Creek Expansion Area



GLEN SCHNARR & ASSOCIATES INC.

Urban & Regional Planners, Land Development Consultants suite 700 10 kingsbridge garden circle, mississauga, ontario, 158 3k6 tel (905) 568-8888 fax (905) 568-8894 www.gsai.ca

EXISTING NATURAL HERITAGE FEATURES FOR P.I.C

Project No. 12-062 Date : June 2017 Scale: NTS

	gies
	9
3	O
-	-
A.	Suc.
중	F
	S
0	
B	9
-	=
Ш	Ü
B	-
5	5
ਹ	4
	100
S	ഗ

	Name	E-mail	Address (Please include Postal Code)
35. 36. 36. 37. 38. 40. 41. 42. 43. 44. 45. 46.	3.0		
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 44.	32		
35. 36. 37. 38. 39. 40. 41. 42. 43. 44.	33		
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	34		
36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	35.		
37. 38. 39. 40. 41. 42. 43. 44. 45. 46.	36.		
38. 39. 40. 41. 42. 43. 44. 46.	37.		
39. 40. 41. 42. 43. 44. 45. 46. 47.	38.		
40. 41. 42. 43. 44. 45.	39.		
41. 42. 43. 44. 45. 46.	40.		
42. 43. 44. 45. 46. 47.	41.		
43. 44. 45. 46. 47.	42.		
44. 45. 46. 47.	43.		
45. 46. 47.	44.		
46.	45.		
47.	46.		
	47.		