

Glancaster Road – Municipal Class Environmental Assessment

Geotechnical Investigation Report

The City of Hamilton

60637047

May 2022

Delivering a better world

AECOM Canada Ltd. 1000-5090 Explorer Drive Mississauga, ON L4W 4X6 Canada

T: 905 238 0007 www.aecom.com

Margaret Fazio Project Manager, Environmental Planning City of Hamilton 71 Main Street West Hamilton, Ontario L8P 4Y5 May 3, 2022

Project # 60637047

DRAFT

Subject: Glancaster Road – Municipal Class Environmental Assessment – Geotechnical Investigation Report

Dear Ms. Fazio:

AECOM Canada Ltd. (AECOM) is pleased to submit this Draft Geotechnical Investigation Report to City of Hamilton for the above captioned project for your review.

Should you have any questions, please do not hesitate to contact the undersigned.

Sincerely, **AECOM Canada Ltd.**

DRAFT

Sanket Shah, P. Eng. Manager Geotechnical Engineering Environmental

Encl.

cc:

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada Ltd. All Rights Reserved. The City of Hamilton *Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report*

Quality Information

Prepared by

DRAFT

Mustafa Alkiki, P Eng. Geotechnical Engineer

Reviewed by

DRAFT

Sanket Shah, P. Eng. Manager Geotechnical Engineering

Prepared by

DRAFT

Arif Chowdhury, P.Eng., QP_{ESA} Environmental Engineer

Reviewed by

DRAFT

Sergiy N. Tchernikov, M.Sc., P.Geo., QP-ESA Senior Contamination/Waste Management Specialist, Hydrogeologist

Revision History

Rev #	Revision Date	Revised By:	Revision Description
0	May 03, 2022	MA	Draft Geotechnical Investigation Report

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	\checkmark	The City of Hamilton
	1	AECOM Canada Ltd.

The City of Hamilton *Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report*

Prepared for:

The City of Hamilton Ms. Margaret Fazio Project Manager, Environmental Planning

71 Main Street West Hamilton, Ontario L8P 4Y5

Prepared by:

Mustafa Alkiki, P.Eng. Geotechnical Engineer

AECOM Canada Ltd. 1000-5090 Explorer Drive Mississauga, ON L4W 4X6 Canada

T: 905 238 0007 www.aecom.com

Executive Summary

This report provides the findings of the geotechnical investigation in support of municipal class environmental assessment phases 3 and 4 for Glancaster Road in City of Hamilton. The Hamilton Airport Employment Growth District Transportation Master Plan classifies Glancaster Road as a North-South roadway with a proposed widening from two to four lanes.

Field work was carried out between January 4, 2022 and January 21, 2022. The subsurface investigation consisted of drilling and sampling eleven (11) boreholes to a depth of 6.7m below ground surface (bgs). Further, seven (7) monitoring wells were installed to a depth of 6.2m to 6.7m provisioned with flush mount. In addition, four (4) asphaltic concrete cores (CH1 to CH4) were also extracted from the existing pavement of Glancaster Road using a diamond core barrel to measure the thicknesses of the various asphaltic concrete layers and to see the bonding condition between each layer. After drilling, sampling, and logging of the soil samples, the boreholes were reinstated using bentonite pellets or backfilling with selected auger cuttings. The boreholes located on the existing pavement were patched with cold-mixed asphaltic concrete.

The borehole locations were established by AECOM's geotechnical personnel prior to the field work. The geodetic elevations of the ground surface at the borehole locations were determined by AECOM surveying team. Due to the presence of existing utilities including watermain in the shoulders/ditches,all the boreholes were located on the roadway. Borehole locations are provided in the Borehole Location Plan, attached in **Appendix A**.

A truck mounted Diedrich D50 drill rig, owned and operated by ALTECH Drilling & Investigative Services Ltd., was used to drill all the boreholes. Boreholes were advanced using 125 mm outer diameter solid-stem augers, whereas, Monitoring wells were advanced using 190 mm outer diameter hollow-stem augers under the full-time supervision of AECOM geotechnical personnel. A summary of borehole locations is provided in the **Table ES-1** below.

Borehole ID	Proposed Development	Borehole Depth (m bgs)	Date of Completion	Elevation (m ASL)	Northing	Easting
BH-1/MW		6.7	January 21, 2022	232.5	4784660.5	587009.5
BH-2		6.7	January 21, 2022	233.3	4784486.4	587037.3
BH-3		6.7	January 14, 2022	234.8	4784385.4	587014.6
BH-4/MW		6.7	January 20, 2022	236.5	4784178.0	586949.4
BH-5		6.7	2022, January 12	235.9	4783987.8	586894.3
BH-6		6.7	2022, January 12	236.5	4783925.9	586869.5
BH-7/MW	Pavement Design	6.7	January 20, 2022	239.0	4783793.3	586828.0
BH-8	and Road Widening	6.7	January 20, 2022	239.2	4783650.6	586787.2
BH-9		6.7	2022, January 10	242.0	4783498.7	586739.6
BH-10/MW		6.7	January 14, 2022	242.8	4783359.5	586692.2
BH-11		6.7	January 10 ,2022	242.7	4783199.6	586647.2
BH-12/MW		6.7	January 14, 2022	242.0	4783045.9	586600.1
BH-13		6.7	2022, January 12	242.4	4782883.5	586546.6
BH-14		6.7	2022, January 10	241.8	4782750.6	586510.1

Table ES-1: Summary of Borehole Details

The City of Hamilton

Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report

Borehole ID	Proposed Development	Borehole Depth (m bgs)	Date of Completion	Elevation (m ASL)	Northing	Easting
BH-15/MW		6.2	January 7,2022	241.4	4782586.9	586459.8
BH-16		6.7	January 4,2022	241.2	4782456.7	586420.3
BH-17		6.7	January 12,2022	240.7	4782315.9	586373.5
BH-18/MW		6.2	January 11,2022	240.2	4782192.9	586335.7

Based on the subsurface conditions encountered at the borehole locations, the subsoils predominantly consisted of pavement structure (asphalt and granular fill) underlain by fill material (sandy silt/sand/clayey silt). Native soils (silt/clayey silt/sand/sandy silt) were encountered below the fill material in all the boreholes. Details of the subsurface conditions encountered at borehole locations are presented in **Appendix B**.

Groundwater conditions were observed in all the boreholes except BH-1/MW, BH-3, BH-4/MW, BH-5, BH-7/MW, BH-10/MW, BH-13 and BH-15/MW upon the completion of drilling.

The recovered soil samples were reviewed by qualified personnel in the laboratory for further identification and to select samples for testing. All soil samples collected were tested for natural water content tests. Eighteen (18) selected soil samples were tested for particle size analyses (sieve and hydrometer analyses) and two (2) samples were tested for Atterberg Limits. The geotechnical laboratory test results are presented in **Appendix C**.

Based on the subsurface conditions encountered and laboratory testing results, the geotechnical recommendations are provided in Section 6.0 of this report.

1.	Intro	oduction	1
	1.1 1.2	Project and Site Descriptions Scope of Work for Geotechnical Investigation	
2.	Phy	siographic and Geologic Setting	3
3.	Hist	orical Geotechnical Investigations	4
4.	AEC	COM Investigation Procedures	6
5.	Env	ironmental Soil Sampling/Testing	8
	5.1	Soil Sampling Program and Procedures	
6.	Sub	surface Conditions	10
•	6.1	Pavement Structure	10
	6.2	Fill Materials	
	6.3	Native Soils 6.3.1 Clayey Silt	
		6.3.2 Silt	
		6.3.3 Sand to Silty Sand	
	6.4	Groundwater Conditions	
7.	Disc	cussions and Recommendations	14
	7.1	Pavement	14
		7.1.1 Traffic Data and Road Classification	
		7.1.2 Equivalent Single Axle Loads (ESALs)	
		7.1.3 AASHTO Design Analysis7.1.4 Pavement Design Alternatives	
		7.1.5 PGAC Binder Selection	
		7.1.6 Tack Coat	
	7.2	Underground Utilities	
		7.2.1 Excavation and Groundwater Control	
	7.3	7.2.2 Backfill Subgrade Preparation	
	7.4	Sub-Drainage	
	7.5	Site Seismic Classification	
	7.6	Frost Depth	
	7.7	Geo-environmental Assessment Results	21
		7.7.1 Soil Analytical Results	
		7.7.2 Quality Assurance and Quality Control	
		7.7.3 Conclusion 7.7.3.1 Salt Impacted Soil	

Figures

Figure 1:	Proposed 4-Lane Arterial Cross Section	(as per AEGD)2

Tables

Table 1:	Summary of Available Geotechnical Information	4
Table 2:	Summary of Borehole Locations, Depths and Elevations	
Table 3:	Summary of Soil Samples Submitted for Laboratory Analysis	
Table 4:	Existing Pavement Structure	
Table 5:	Summary of Grain size Distribution for Granular Material	
Table 6:	Summary of Laboratory Testing Results – Fill Material	11
Table 7:	Summary of Laboratory Testing Results – Clayey Silt	11
Table 8:	Summary of Laboratory Testing Results – Silt	
Table 9:	Groundwater Level Measurements	
Table 10:	Summary of Traffic Count Data	
Table 11:	Summary of Traffic Data	
Table 12:	Pavement Design Parameters	
Table 13:	Input Parameters for ESAL Calculations	
Table 14:	Summary of Soil Exceedances	

Appendices

- Appendix A. Borehole Location Plan
- Appendix B. Borehole Records
- Appendix C. Geotechnical Laboratory Testing Results
- Appendix D. Pavement Design Outputs
- Appendix E. Geo-Environmental Laboratory Test Results

1. Introduction

AECOM Canada Limited (AECOM) was retained by the City of Hamilton (City) to complete a Municipal Class Environmental Assessment (MCEA) Phase 3 and 4 in support of road corridor improvements for Glancaster Road (from Garner Road to Dickenson Road). The Hamilton Airport Employment Growth District Transportation Master Plan classifies Glancaster Road as a North-South roadway with a proposed widening from two to four lanes.

The geotechnical investigation has been carried out in conjunction with a Municipal Class Environmental Assessment study. It is expected that the section of Glancaster Road from Garner Road/Rymal Rd W to Dickenson Road Drive will be improved to urban standards and may include pavement widening and improvements to the pavement structure and replacement or modification of existing structures as well as other geometric improvements as needed.

The purpose of the investigation was to obtain information about the existing pavement structure and subsurface conditions of existing road by means of advancing boreholes, to determine the geotechnical engineering characteristics of the subsurface soils by means of field and laboratory tests, and to provide geotechnical recommendations to the proposed road widening.

The data, conclusions and recommendations presented herein are limited to the information available at the time of preparation of this report, and they are only applicable to the specific areas mentioned, unless otherwise stated.

1.1 **Project and Site Descriptions**

The section of Glancaster Road under consideration is approximately 2.7 km long, extending from Garner Road / Rymal Road W at the north limit to Dickenson Road at the south limit and generally consists of an undivided 2-lane road with a rural cross-section with posted speeds of 50km/hr, asphalt surfaced, rural road with gravel shoulders and roadside ditches. Turning lanes presently exist at Garner Road/Rymal Rd W in the vicinity of the intersection.

The ground surface topography was relatively flat and there were no major structures in the study area. The east side of Glancaster Road mainly consist of rural residential lands and the west side characterized by a mixture of urban and rural residential lands.

The proposed improvements generally consist of road widening with increase in ROW from 20 m to 37 m and consider the following:

- transit, with transit stop at Dickenson,
- future multi-use recreational trail,
- reserved bike lanes /Multi-Use Path (MUP)'s
- sidewalks (i.e. complete street).
- inclusion of centre turn lanes and/or a median with turn lanes at intersections.
- review of the recommendations, to identify alternatives, and to select the preferred alternative, from existing centre line.

Based on Airport Employment Growth District (AEGD) Transportation Master Plan (TMP), it is recommended to widen Glancaster Road, from Garner Road East to Dickenson Road West, from 2 to 4 lanes and a 37m Right-of-Way. This work was identified as a Schedule C Municipal Class Environmental Assessment (EA). The Hamilton Airport Employment Growth District: Transportation Master Plan satisfies Phases 1 & 2 of the EA process for this Project. **Figure 1** presents a typical cross section for the proposed 4-lane arterial roadway.

The City of Hamilton Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report

Figure 1: Proposed 4-Lane Arterial Cross Section (as per AEGD)

1.2 Scope of Work for Geotechnical Investigation

Following scope of work was completed as part of the current geotechnical services for the proposed development:

- a) A thorough background information review including available study area reports and drawings.
- b) Field investigation and laboratory Testing, as follows:
 - Drilled eleven (11) boreholes and installed seven (7) monitoring wells to a depth of 6.2 m to 6.7 m bgs.
 - In all boreholes, Standard Penetration Tests (SPTs) were carried out at regular intervals, and soil samples were collected;
 - Boreholes were backfilled in accordance with O. Reg. 903.
 - Geotechnical laboratory testing was carried out on selected soil samples including moisture content, particle size analysis (sieve and hydrometer analyses) and Atterberg Limits tests, Standard Proctor Test and California Bearing Ratio Test;
 - Borehole locations were surveyed upon completion of drilling; and,
- c) Data Analysis and Reporting
- d) Prepared borehole logs; and,
- e) Provided the geotechnical recommendations for the proposed development based on the results obtained from the field and laboratory investigation.

This report presents the findings of the investigation including the following:

- f) Presentation of factual geotechnical data including borehole logs, test results, description of subsurface conditions, soil properties, and groundwater information; and,
- g) Recommendations on the geotechnical aspects to support the proposed road improvements and possible widening.

2. Physiographic and Geologic Setting

The project area is located south of the Niagara escarpment. The high elevation area; compared with the area to the north of the escarpment is underlain by the Middle and Lower Silurian, sandstone, shale, dolostone, and siltstone based on Ontario Geological Society (OGS) mapping. Specifically, the project area is underlain by the Lockport formation (OGS, 1991).

The Project area is within the Haldimand clay plain physiographic region, which occupies nearly all of the Niagara Peninsula. The region was submerged by Lake Warren and much of he underlaying till is buried by stratified clay, however in some areas till come to the surface. Based on physiographic mapping the project area is with a clay plain with till moraines to the northeast and south (Chapman and Putnam, 1984).

The Quaternary geology within the project area is glaciomarine deposits of silt and clay. Ontario Geological Survey 2000. Quaternary geology, seamless coverage of the Province of Ontario; Ontario Geological Survey, Data Set 14-Revised.

3. Historical Geotechnical Investigations

The City provided several historical reports related to the project area. These reports provide geotechnical investigations for utility construction and pavement recommendations near the project location. Most of these reports were completed before 2003, had limited pavement recommendations, and were not necessarily within the project limits. However, AECOM reviewed the historical reports better to understand existing subsurface conditions in general site location, and a summary of available information is provided in **Table 1**.

Report ID	Project	Location	Data of Issue	Available information	Comments
147-A	Pumping Station	North of Rymal Rd W	1978	- Geotech Investigation - Borehole to a max. depth of 18.5m - Gradation analysis	 the site is located outside of the project study area and does not provide information about the existing pavement thickness. the information is considered old and could not be reliable in pavement design, particularly in estimating the subgrade resilient modulus/soil consistency and moisture condition that most likely change over time.
324	Watermain	Glancaster Road (between Twenty Rd and Book Rd)	1983	- Geotechnical Investigation - Borehole to a max. depth of 3.0m	 the information is considered old and could not be reliable in pavement design, particularly in estimating the subgrade resilient modulus/soil consistency and moisture condition that most likely change over time and the site may have been graded/surface modification since 1983. the maximum depth for this exploration is 3 m which is insufficient for our proposed pavement and watermain design investigation (i.e., 6m). no laboratory testing is provided in this report.
754	Proposed watermain	Twenty Road West, east of Glancaster	1995	- Geotechnical Investigation - Boreholes to a depth of 3.5 m	 the site is located outside of the project study area and mainly drilled on the road shoulder so does not provide information about the existing pavement thickness for Glancaster Rd. the information is considered old and could not be reliable in pavement design, particularly in estimating the subgrade resilient modulus/soil consistency and moisture condition that most likely change over time. the maximum depth for this exploration is 3.5 m which is insufficient for our proposed pavement and watermain design investigation (i.e., 6 m).

Table 1: Summary of Available Geotechnical Information

The City of Hamilton

Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report

Report ID	Project	Location	Data of Issue	Available information	Comments
GTR_1016A	Proposed Sanitary Sewer Construction	Rymal Road East, Glancaster Road And Hydro One Corridor at Glancaster Road	2003	- Environmental Sampling and Testing Report - Boreholes to a depth of 4.7 to 8.1 m	 this project covers about 535 m on the north portion of the proposed study area. the information is considered old and could not be reliable in pavement design, particularly in estimating the subgrade resilient modulus/soil consistency and moisture condition that most likely change over time. The site may have been graded/surface modification since 2003 so the near surface soils may be different and not representative comparing to the existing condition. This investigation was mainly for environmental sampling purposes, and therefore there is no geotechnical laboratory testing available in this report.
GTR_1112B	Pavement Rehabilitation	Ancaster, Glanbrook, Stoney Creek and Flamborough	2003	- Geotechnical and Pavement Investigations for a multiple street - Shallow boreholes	 the site is located outside of the project study area and does not provide consistence related / subsurface information. the information is considered old and could not be reliable in pavement design, particularly in estimating the subgrade resilient modulus/soil consistency and moisture condition that most likely change over time. the maximum depth for this exploration is 1.7 m which is insufficient for our proposed pavement and watermain design investigation (i.e., 6 m).
GTR_1599	Archaeological Assessment for Class Environmental Assessment of Glancaster Rd	North of Rymal Rd W	1992	- Archaeological Assessment	This report does not provide subsurface or soil testing information.

4. **AECOM Investigation Procedures**

Borehole drilling work was carried out between January 4, 2022 to January 21, 2022. The subsurface investigation consisted of drilling and sampling eighteen (18) boreholes to a depth of 6.7m below ground surface (bgs). Further, seven (7) monitoring wells were installed to a depth of 6.7m provisioned with flush mount.

The borehole locations were marked by AECOM staff before commencing the drilling work. Subsurface utilities were located and cleared by public utility owners, and private locators that were retained by AECOM. Upon the completion of drilling, the borehole locations were surveyed by AECOM staff. A Borehole Location Plan, showing approximate locations of the boreholes, is provided in **Appendix A.** All boreholes were located within roadway limits due to major underground utilities (i.e., watermain) is present along the road shoulders and ditches.

A truck mounted Diedrich D50 drill rig, owned and operated by ALTECH Drilling & Investigative Services Ltd., was used to drill all the boreholes. Boreholes were advanced using 130 mm outer diameter solid-stem augers, whereas, Monitoring wells were advanced using 190 mm outer diameter hollow-stem augers under the full-time supervision of AECOM geotechnical personnel.

Standard Penetration Tests (SPT) were carried out in general accordance with ASTM D1586. The test consists of freely dropping a 63.6 kg hammer over a vertical distance of 760 mm to drive a 51 mm outside diameter (O.D) split spoon sampler into the ground. The number of blows of the hammer required to drive the sampler into the relatively undisturbed ground over a vertical distance of 300 mm was recorded as the Standard Penetration Resistance or the N-value of the soil, which is indicative of the compactness of cohesionless soils (gravels, sands, silts) or the consistency of cohesive soils (clays and clayey soils).

Monitoring wells were installed in the open boreholes in seven (7) locations (BH-01/MW, BH-04/MW, BH-07/MW, BH-10/MW, BH-12/MW, BH-15/MW and Bh-18/MW) upon completion of auguring/split spoon driving in accordance with the requirements prescribed in R.R.O. 1990, Ontario Regulation 903 "Wells" (as amended) (Ontario Water Resources Act, 1990), and they were constructed using 51 mm diameter PVC Schedule 40 well screens and solid riser pipes. Commercially manufactured well screen pipe with a standard slot size of 10 were used for these installations. Monitoring wells were completed using a well point cap that was threated to the screen bottom. A J-plug was used to cover the top of the well riser pipe. A filter pack consisting of clean, inert rounded to sub-rounded 1 to 3 mm diameter silica sand was installed around each well screen, and the bentonite in pellet (free of chemical additives) was used as a non-permeable seal within the borehole annulus above the silica sand. The wells were completed using a tall locations. The monitoring wells were tagged in accordance with O. Reg. 903 (as amended) and a water well record was submitted by the drilling contractor to the MECP.

All other boreholes without monitoring wells were backfilled in accordance with O. Reg. 903.

Table 2 below presents a summary of the borehole locations and the borehole termination depths in metres below the ground surface (mBGS) and elevations in metres above sea level (mASL).

The City of Hamilton Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report

Table 2:	Summary of Borehole Locations, Depths and Elevat	ions
	Summary of Dorenole Locations, Deptils and Lievat	10115

Borehole ID	Proposed Development	Borehole Depth (m bgs)	Date of Completion	Elevation (m ASL)	Northing	Easting
BH-1/MW		6.7	January 21, 2022	232.5	4784660.5	587009.5
BH-2		6.7	January 21, 2022	233.3	4784486.4	587037.3
BH-3		6.7	January 14, 2022	234.8	4784385.4	587014.6
BH-4/MW		6.7	January 20, 2022	236.5	4784178.0	586949.4
BH-5		6.7	January 12 ,2022	235.9	4783987.8	586894.3
BH-6		6.7	January 12 ,2022	236.5	4783925.9	586869.5
BH-7/MW		6.7	January 20, 2022	239.0	4783793.3	586828.0
BH-8		6.7	January 20, 2022	239.2	4783650.6	586787.2
BH-9	Pavement Design	6.7	January 10 ,2022	242.0	4783498.7	586739.6
BH-10/MW	and Road Widening	6.7	January 14, 2022	242.8	4783359.5	586692.2
BH-11		6.7	January 10 ,2022	242.7	4783199.6	586647.2
BH-12/MW		6.7	January 14, 2022	242.0	4783045.9	586600.1
BH-13		6.7	January 12 ,2022	242.4	4782883.5	586546.6
BH-14		6.7	January 10 ,2022	241.8	4782750.6	586510.1
BH-15/MW		6.2	January 7,2022	241.4	4782586.9	586459.8
BH-16		6.7	January 4,2022	241.2	4782456.7	586420.3
BH-17		6.7	January 12,2022	240.7	4782315.9	586373.5
BH-18/MW		6.2	January 11,2022	240.2	4782192.9	586335.7

The recovered soil samples were reviewed by qualified personnel in the laboratory for further identification and to select samples for testing. All soil samples collected were tested for natural water content tests. Eighteen (18) selected soil samples were tested for particle size analyses (sieve and hydrometer analyses) and two (2) samples were tested for Atterberg Limits and one (1) California Bering Raito (CBR) test.

The borehole logs are presented in **Appendix B**. Geotechnical laboratory testing results are presented in **Appendix C**.

5. Environmental Soil Sampling/Testing

A limited environmental soil sampling program was completed as a part of the AECOM geotechnical and hydrogeological investigations for evaluating the environmental quality of the fill material and the upper level of native subsurface soil. This sampling/testing program was conducted for the future on-site waste management of excess soil for the waste disposal and re-use options during the construction. This sampling program comprised of collecting and analyzing soil samples as followed.

5.1 Soil Sampling Program and Procedures

Fieldwork was performed between January 4 and 21, 2022. The subsurface investigation consisted of drilling and sampling a total of 14 select boreholes within the Site. The borehole locations are presented in **Appendix A**. As a part of the combined investigation, AECOM retrieved 31 selected soil samples and submitted them for laboratory analyses as shown below in **Table 3**. This soil sampling program was designed based on the area of potential environmental concern (APEC) in the study area.

Table 3: Summary of Soil Samples Submitted for Laboratory Analysis

Sample ID	Analytical Parameters
BH-14 SS3(3'-5'), BH11 SS2(1'-3'), BH9 SS2(1'-3'), BH9 SS7 (15'-17'), BH15 SS3 (3'-5'), BH16 SS3 (3'-5'), BH18 SS3 (3'-5'), BH01-SS4 (5-7), BH02-SS3 (3-5), BH03-SS3B (3-5), BH04-SS4 (5-7), BH05-SS3A (3-5), BH05-SS4 (5-7), BH07-SS3 (3-5), BH10-SS2B (1-3), BH07-SS4 (5-7), and BH17-SS3A (3-5)	Selected Inorganic Parameters and Metals (M&I)
BH14 SS3 (3'-5'), BH11 SS2 (1'-3'), BH9 SS2 (1'-3'), BH9 SS7 (15'-17'), BH15 SS3 (3'-5'), BH16 SS3 (3'-5'), BH18 SS3 (3'-5'), BH02-SS3 (3-5), BH03-SS3B (3-5), BH05-SS3A (3-5), BH07-SS3 (3-5), BH10-SS2B (1-3), and BH17-SS3A (3-5)	Polychlorinated Biphenyls (PCBs)
TCLP - 01 (representing BH01-SS4 (5-7))	O. Reg. 347 – Toxicity characteristic leaching procedure (TCLP Metals extraction)

Soil samples were collected at selected intervals and screened for potential impacts, with the intent of the most impacted samples from both fill and native material being submitted for analysis as worst-case conservative assessments. In addition, field observation of impacts of soil contamination including staining or soil odours were taken into consideration during the selection of samples, however, none were observed in the samples. Therefore, representative samples from each stratigraphic unit were submitted for laboratory analysis for selected inorganic parameters and metals, and polychlorinated biphenyls (PCBs).

AECOM staff wore new nitrile gloves during the collection of each soil sample to reduce the potential for crosscontamination. Samples were transferred from the sample collection bag to appropriate laboratory-supplied jars once drilling was completed and PID vapour readings had been collected. All samples were placed on ice for preservation until received by the AGAT laboratories, which is certified to ISO 9001:2015 and accredited to ISO 17025:2005 UKAS ref 4028.

Chain-of-custody (COC) procedures were followed during the submission of samples to the laboratory. Sample packaging and submission procedures were followed per the project sampling procedures, to ensure sample integrity from the point of sampling up until submission to the analytical laboratory. Samples were packaged and submitted to the laboratory as outlined below:

- Sample name, project number, and date were written on each sample container.
- Caps on the sample containers were checked to ensure they are properly sealed.
- Chain-of-custody forms were completed with the required information and signed and dated to document the sample custody transfer.
- Sample containers were protected in bubble wrap in coolers.
- Sample containers were placed in a cooler with ice.
- All samples were delivered by field staff directly to AGAT Laboratories (Mississauga, ON) to be analyzed within the recommended hold times.
- Original chain-of-custody forms accompanied each submission, and copies were retained.

A copy of the chain-of-custody for soil samples can be found in Appendix E.

All analytical testing of soil samples was performed by AGAT Laboratory and the Certificates of Analysis are provided in **Appendix E**. The results of the analyses on the soil samples were compared with the Ministry of the Environment, Conservation and Parks (MECP) Table 2 Full Depth Generic Condition Standards (SCS) in a Potable Groundwater Conditions for Industrial/Commercial/Community (ICC) property use, for medium fine-textured soil (Table 2 SCS). The SCS was selected based on the site location, the average thickness of the overburdened soil, groundwater conditions, the current property uses, and sieve and hydrometer test results carried out on soil samples.

6. Subsurface Conditions

Based on the subsurface conditions encountered at the borehole locations, the subsoils predominantly consisted of pavement structure (asphalt/granular fill) underlain by fill material (clayey silt/sand/sandy silt/). Native soils (clayey silt/silt/silt/silt/silt/silt/sand/sand) were encountered below the fill material.

Details of the subsurface conditions encountered at the borehole locations are presented in the Borehole Logs provided in **Appendix B**.

6.1 **Pavement Structure**

The pavement consists of an asphalt layer with a thickness ranging from 127 mm to 152 mm. The asphalt layer was underlain by granular materials ranged in thickness from 300 mm to 1040 mm. A summary of the existing pavement structure at the borehole locations is presented in **Table 4**.

Route	BH's/No. of Observation	Pavement Structure Layers	Thickness Range (mm)
Northbound	BH-02, BH-05, BH-07/MW, BH-08, BH-09, BH-11, BH- 12/MW, BH-14, BH- 15/MW, BH-16	Asphaltic Concrete Granular Base/Sub-base Materials	127-152 300-1040
Southbound	BH-01/MW, BH-03, BH- 04/MW, BH-06, BH- 10/MW, BH-13	Asphaltic Concrete Granular Base/Sub-base Materials	152 300-1040

Table 4: Existing Pavement Structure

A total of two samples of the granular materials from boreholes BH-7 and BH-12 were tested for grain size distribution analysis. The results indicated fine materials passing sieve 75 μ were 17% and 24% in boreholes BH-7 and BH-12, respectively. This indicates that the granular materials contain excessive fines than OPSS gradation requirements. It is noted that borehole size samples of aggregate are not sufficient for standardized laboratory tests according to ASTM and MTO/LS criteria, and if necessary, should be verified using appropriate bulk-size samples. The grain size distribution analyses for the two samples of the granular material are provided in **Appendix C** and summarized in **Table 5**.

Table 5: Summary of Grain size Distribution for Granular Material

Soil Unit	Percentage passing
Gravel (>4.75 mm size)	29 and 24
Sand (4.75 mm to 75 μ size)	54 and 52
Fines, Silt and Clay (< 75 μ size)	17 and 24

6.2 Fill Materials

Fill material (sand/sandy silt/clayey silt) was encountered below ground surface cover in all the boreholes except BH-11 and BH-12/MW and extended down to depths varying from 1.1m to 3.0m bgs. SPT N values within the fill material ranged from 5 to 26 blows per 0.3 m penetration indicating loose to compact degree of compactness for cohesionless fill. The natural water content of the fill samples was 4% to 29%.

Two (2) grain size distribution analyses (sieve and hydrometer analyses) tests were conducted on the fill material and the results are summarized in **Table 6**.

Borehole ID	Sample ID	Depth (m)	Moisture	Grair	Grain Size Distribution Analysis				
			Content (%)	Gravel (%) Sand (%) Silt (%) Clay		Clay (%)			
BH-1	SS4	1.5 to 2.1	20	0	5	80	15		
BH-5	SS4	1.5 to 2.1	25	0	4	76	20		

Table 6: Summary of Laboratory Testing Results – Fill Material

6.3 Native Soils

6.3.1 Clayey Silt

Clayey silt was encountered below the fill material in boreholes BH-3, BH-4/MW, BH-7/MW, BH-8, BH-9, BH-11, BH-12, BH-13, BH-14, BH-15 and BH-16 and extended to a depth of 3.05 m to 6.71 m bgs. SPT N values ranged from 11 to more than 50 blows per 0.3 m penetration indicating stiff to hard consistency. The natural water content of the samples ranged from 9% to 26%.

Eleven (11) grain size distribution analyses (sieve and hydrometer analyses) tests and two (2) Atterberg's Limit tests were conducted on the clayey silt material and the results are summarized in **Table 7**.

Table 7: Summary of Laboratory Testing Results – Clayey Silt

Borehole ID	Sample ID	Depth (m)	Moisture Content	Grain S	Grain Size Distribution Analysis			Atterberg's Limits		
			(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)
BH-3	SS4	1.5 to 2.1	21	1	3	71	25	-	-	-
BH-4/MW	SS5B	2.4 to 2.9	19	-	4	73	23	-	-	-
BH-5	SS4	1.5 to 2.1	24	-	4	76	20	-	-	-
BH-7MW	SS4	1.5 to 2.1	24	-	6	68	26	34	21	7
BH-9	SS4	1.5 to 2.1	18	-	7	67	26	-	-	-
BH-11	SS4	1.5 to 2.1	18	1	3	69	27	33	20	13
BH-12	SS5	2.3 to 2.9	17	-	3	65	32	-	-	-
BH-13	SS6	3.0 to 3.6	13	1	4	68	27	-	-	-
BH-14	SS4	1.5 to 2.1	17	1	6	67	26	-	-	-
BH-15	SS5	2.3 to 2.9	14	-	3	74	23	-	-	-
BH-16	SS5	2.3 to 2.9	18	-	5	73	22	-	-	-

6.3.2 Silt

Silt was encountered below the fill material in boreholes BH-1/MW, BH-2, BH-5, BH-6, BH-8, BH-10/MW, and BH-/MW18 and extended to a depth of 3.33 m to 6.71 m bgs. Silt layer also encountered below native clayey silt in BH-17/MW and BH-9 and extended to the termination depth of 6.7m bgs. SPT N values ranged from 5 to more than 50 blows per 0.3 m penetration indicating loose to very dense consistency. The natural water content of the samples ranged from 11% to 29%.

seven (7) grain size distribution analyses (sieve and hydrometer analyses) tests were conducted on the silt material and the results are summarized in **Table 8**.

Borehole ID	Sample ID						sis
		(11)	(,	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH-1	SS4	1.5 to 2.1	20	-	5	80	15
BH-2	SS7	4.6 to 5.2	17	2	9	71	18
BH-6	SS6	3.0 to 3.6	16	1	11	71	17
BH-8	SS4	1.5 to 2.1	18	-	3	85	12
BH-10/MW	SS5	2.3 to 2.9	16	-	4	77	19
BH-17	SS3B	3.75 to 5.0	18	-	8	74	18
BH-18/MW	SS4	1.5 to 2.1	24	-	4	85	11

Table 8: Summary of Laboratory Testing Results – Silt

6.3.3 Sand to Silty Sand

Sand was encountered in boreholes BH-6, BH-11, BH-17 and extended to a depth of 4.57 m to 6.71 m bgs. SPT N values ranged from 10 to more than 50 blows per 0.3 m penetration indicating compact to very dense consistency. The natural water content of the samples ranged from 19% to 22%.

Silty Sand was encountered only in BH-13 extended to a depth of 6.38 m bgs. SPT N values are more than 50 blows per 0.3 m penetration indicating very dense consistency. The natural water content of the samples ranged from 14% to 18%.

6.4 Groundwater Conditions

Monitoring well construction details and groundwater levels was observed upon the completion of the drilling in the boreholes BH-01/MW, BH-04/MW, BH-07/MW, BH-10/MW, BH-12/MW, BH-15/MW and BH-18/MW. Monitoring wells were installed with 51 mm PVC risers and screens in both boreholes. The groundwater levels were measured upon the completion of drilling and in the monitoring wells (before well development), and these are presented in **Table 9** below.

Borehole Number	Borehole Location	Ground Surface Elevation (mASL)	Top of Screen Depth (mbgs) / Elevation (mASL)	Well Depth (mbgs) / Screen Bottom (mASL)	Screen Length (m)	Date (YYYY-MM-DD)	Water Level Depth (mbgs) / Elevation (mASL)	
BH-01/MW	Southbound	232.5	3.1	6.1	3	2022-02-15	2.03 / 230.45	
						2022-03-15	1.96 / 230.52	
BH-04/MW	Southbound	236.5	3.1	6.1	3	2022-02-15	1.89 / 234.58	
DI-04/19199	Southbound		5.1	0.1	5	2022-03-15	1.74 / 234.73	
	Coutbbound	239.0	3.1		6.4	- 2	2022-02-15	0.62 / 238.43
BH-07/MW	Southbound			6.1	3	2022-03-15	0.53 / 238.52	
	Southbound	242.8	3.1	6.1	3	2022-02-15	2.14 / 240.65	
BH-10/IVIVV	Southbound		3.1	6.1	3	2022-03-15	1.76 / 241.03	
BH-12/MW	Northbound	242.0	3.1	6.1	3	2022-02-15	1.54 / 240.51	
BH-12/WW	Northbound		3.1	6.1	3	2022-03-15	1.26 / 240.79	
BH-15/MW	Northbound	241.4	3.1	6.1	3	2022-02-15	0.86 / 240.54	
DU-12/1/1/1/	Northbound		3.1 0.1	0.1	3	2022-03-15	0.73 / 240.67	
	Southbound	240.2 2.4	2.1	0.4	2	2022-02-15	1.06 / 239.14	
	Southbound		3.1	6.1	3	2022-03-15	0.91 / 239.29	

Table 9: Groundwater Level Measurements

For details on the monitoring well measurements, refer to AECOMs "Hydrogeological Investigation" technical memorandum dated May 03, 2022.

Groundwater conditions were also observed in all the boreholes except BH-1/MW, BH-3, BH-4/MW, BH-5, BH-7/MW, BH-10/MW, BH-13 and BH-15/MW upon the completion of drilling at depth ranged from 3 to 5.5 m bgs.

It should be noted that during spring months and times of heavy precipitation the groundwater table elevation is anticipated to fluctuate. Groundwater varies with seasonal conditions including precipitation, temperature, site drainage characteristics, etc. They may also be a potential for the development of perched groundwater tables following periods of intense rainfall

7. Discussions and Recommendations

This discussion is intended for use in planning and preliminary design of the proposed improvements to Glancaster Road from Garner Road to Dickenson Road. It is understood that a detailed design will be carried out by adding further geotechnical investigation to address the findings in the proposed widening area within proposed Right-of-Way (ROW).

7.1 Pavement

This section of the report provides engineering information for the geotechnical/pavement design aspects of the project, based on our interpretation of the information obtained during this investigation, and our understanding of the project requirements. The information in this portion of the report is provided for the guidance of the design engineers. Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project. Contractors bidding on or undertaking any work at the site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

7.1.1 Traffic Data and Road Classification

AECOM prepared an Existing Condition Traffic Operation Assessment Draft Report dated December 2021 which includes existing and future Turning Movement Volume/Count (TMC) at three intersections as follows:

- Glancaster Road and Garner Road / Rymal Road (Signalized October 31, 2019);
- Glancaster Road and Twenty Road (Unsignalized September 20, 2011); and,
- Glancaster Road and Book Road (Unsignalized May 17, 2018).

The report also provides existing heavy vehicle percentages and growth rates for existing and future conditions. It should be noted that the report does not provide Annual Average Daily Traffic (AADT), hence AECOM has further reviewed the available published traffic data from Hamilton traffic data management system "The Traffic Count Database System (TCDS) – MS2 Portal <u>http://hamilton.ms2soft.com</u>" to estimate Equivalent Single Axle Loads (ESALs) and carry out the pavement design analyses for preliminary purpose.

It is understood that current intersections with other roads within the corridor in accordance with the AEGD TMP. AEGD TMP is currently undergoing an update, and intended to confirm functional road classifications, and Municipal Class Environmental Assessment Classifications. Glancaster Road will likely retain its classification of a Minor Arterial.

Based on the available traffic date from TCDS, there are several count stations/locations along Glancaster Road within project limits as summarized in **Table 10**.

Location ID (as per TCDS)	Station Location	NB Count (Year)	SB Count (Year)	AADT (Year)
1406	Glancaster Rd, 315 m north of Grassyplain Dr	3,358 (2019)	3,021 (2019)	<mark>6,379 (2019)</mark>
7560	Intersection of Glancaster Rd and Grassyplain Dr	-	-	5,738 (2018)
31310	Glancaster Rd, 175 m north of Kopperfield Ln	2,232 (2019)	1,966 (2019)	<mark>4,200 (2019)</mark>
7700	Intersection of Glancaster Rd and Twenty Rd	-	-	5,719 (2011)
1414	Glancaster Rd, 310 m south of Twenty Rd W	4,016 (2019)	4,834 (2019)	<mark>8,850 (2019)</mark>
7701	Intersection of Glancaster Rd and Book Rd E		-	9,440 (2018)
8482	Intersection of Glancaster Rd and Dickenson Rd W	-	-	1,656 (2008)

Table 10: **Summary of Traffic Count Data**

To calculate the minimum pavement structural requirement, higher AADT of 8,850 for 2019 is considered.

Based on AECOM's Existing Condition Traffic Operation Assessment Draft Report, heavy vehicles percentage is ranged from 4 to 5% and an average annual growth rate of 0.57%. For the purpose of preliminary pavement design for future road widening, traffic volumes considered in the design are presented in Table 11. It should be noted that at the time of this report, construction year (base year) is not available, hence it is assumed that construction will not start before 2024.

Table 11: **Summary of Traffic Data**

2019 AADT	2024 AADT	% Truck Traffic	%Traffic Growth (2019-2024)	%Traffic Growth (2024-2034)	Directional Distribution	Lane Distribution ¹
8,850	9,293	7	1	2	0.5	0.9

Lane Distribution for 2-Lane for each direct

The resilient modulus of subgrade for the westerly portion of the study area site has been assumed to be 28 MPa, based on Table D-8 recommendations for "low plasticity clays and compressible silts" in "fair" to "good" condition in MTO MI-183 Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions The pavement design and material parameters considered are summarized in **Table 12** below.

Design Criteria	Parameters Rehabilitation / Widening
Design Life	20 Years
Initial Serviceability	4.4
Terminal Serviceability	2.2
Reliability Level (%)	85
Overall Standard Deviation	0.49
Roadbed Soil Resilient Modulus (MPa)	28
Structural Coefficients for New Hot Mix Asphalt, a1	0.42
Structural Coefficients for New Granular Base (Granular "A"), a2	0.14
Structural Coefficients for New Granular Base (Granular "B" Type II), a₃	0.11
Drainage Coefficient, m	1.0
Structural Coefficients for the Existing Hot Mix Asphalt	0.25
Average Thickness for the Existing Hot Mix Asphalt (mm)	149
Structural Coefficients for the Existing Granular Material	0.08
Average Thickness for the Existing Granular Material (mm)	660
Drainage Coefficient for the Existing Granular Material	0.9

Table 12: Pavement Design Parameters

7.1.2 Equivalent Single Axle Loads (ESALs)

The equivalent single axle loads (ESAL) for the design lanes within the study limits, were calculated using the traffic data presented in **Tables 10 to 12**. The input parameters for the design lane ESAL calculation were derived from MTO publication MI-183 'Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions and 'Procedures for Estimating Traffic Loads for Pavement Design, 1995'. **Table 13** presents the calculated ESALs.

Table 13. Input Parameters for LSAL Calculations								
Road Section	Base Year AADT ¹	Average Truck Factor	Design No. of days per Year	Design Period (Years)	Cumulative ESALs (million)			
Glancaster Rd from Garner Rd to Dickenson Road	9,293	1.184	365	20	2.66			

Table 13: Input Parameters for ESAL Calculations

1. Base (Construction) Year = 2024 (assumed)

7.1.3 AASHTO Design Analysis

As mentioned in **Table 13**, 20-years cumulative ESALs of 2.66 million is considered for the pavement design analyses using the "AASHTO Guide for Design of Pavement Structures 1993" and MTO's "Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions, MI-183", dated March 2008.

City of Hamilton, Engineering Guidelines for Servicing Land Under Development Applications was reviewed to confirm minimum pavement requirements as outlined in Section 2.4.5.4 of Engineering Guideline (December

2012). The City's minimum design requirements have been compared to the minimum design requirements required by AASHTO 1993, and the more conservative design option was selected.

The minimum pavement structural design using City of Hamilton Guideline for Rural Arterial Roads (Major and Minor is as follows:

- Surface Course: 40 mm HL-1
- Binder Course: 120 mm HL-8
- Granular "A": 150 mm
- Granular "B": 450 mm (Type II 100 % Crushed Aggregate)
- Total pavement thickness = 760 mm.

7.1.4 Pavement Design Alternatives

Based on the design analysis and the existing pavement condition, the following two alternative strategies were developed for the proposed road widening of Glancaster Road, from Garner Rd to Dickenson Road:

Option 1 – Full Depth Reconstruction/for Road Widening

The full depth reconstruction option/for road widening is presented below. Remove the existing HMA, granular materials and subgrade soils to 800 mm below proposed finished grade and place the following:

- 40 mm SP 12.5 FC2, Surface Course;
- 60 mm SP 19.0, Upper Binder Course;
- 60 mm SP 19.0, Lower Binder Course;
- 150 mm new Granular 'A' Base; and,
- 500 mm new Granular 'B Type II' Subbase (Thicker subbase recommended due to HSFH subgrade and high groundwater) and subdrain system.

Full depth reconstruction of the existing pavement and for road widening will involve the following:

- Full depth removal of existing asphalt and granular material to the depth of the proposed new pavement structure;
- Sub-excavation of subgrade to design elevation to accommodate the new pavement structure; the
 prepared subgrade should be carefully proof-rolled in the presence of the geotechnical engineer, and
 soft or wet areas or other obviously deleterious materials excavated and the grade restored with
 suitable, approved material;
- Restoration of sub-excavated areas and fine grading of the subgrade may be carried out using the stockpiled recycled granular materials from existing pavements, or OPSS 1010 Granular B Type II material. All backfill material should be placed in uniform lifts not exceeding 200 mm loose thickness and compacted to at least 98 percent Standard Proctor Maximum Dry Density (SPMDD). The finished subgrade should be provided with a continuous centre-to-edge cross fall of 3 percent;
- Place and compact Granular B, Type II, subbase (OPSS 1010) in loose lifts not exceeding 200 mm thickness, uniformly compacted to 100 per cent of SPMDD;
- Place and compact Granular A base (OPSS 1010) uniformly to 100 percent of SPMDD; and
- Pave with new 150 mm HMA (OPSS 1150, OPSS MUNI 1151 and OPSS 310) consist of 40 mm thick SP12.5 FC2 Surface Course, over 50 mm thick SP19.0 Upper Binder Course over 60 mm thick SP19.0 Lower Binder Course.

For any proposed widening or realignment of Glancaster Road or to reconstruct the Glancaster Road within project limits, it is recommended to strip the topsoil from the footprint area of proposed road. At the time of preparing this preliminary report, no information is available for the existing topsoil. Therefore, it is recommended to measure the topsoil thicknesses during the detailed design stage. After stripping the topsoil, excavation/filling should be carried out to sufficient depths to construct the pavement structure as noted below.

The subgrade should be proof-rolled with a heavy roller to identify any soft areas. The soft areas must be repaired by sub-excavating and replacing with granular material as advised by the Contract Administrator.

In areas of road widening or realignment, it is recommended increasing the sub-base thickness to match the existing bottom of the sub-base course to allow lateral sub-surface drainage.

Construction of continuous perforated subdrains in accordance with OPSD 216.021Subdrain Pipe Connection and Outlet Urban (or alternatively Hamilton STD No. RD-101). Subdrains should consist of perforated 100 mm diameter subdrain pipe surrounded in 19mm clear crushed stone wrapped in a suitable geotextile. The invert of the pipes should be at least 300mm below the subgrade elevation.

Option 2 – Full Depth Asphalt Removal

This option consists of rehabilitation of the existing pavement structure by removing the entire asphalt layers, adding new Granular A material as necessary, and paving with 3 lifts of new HMA as presented below.

- 40 mm SP 12.5 FC2, Surface Course
- 60 mm SP 19.0, Upper Binder Course
- 65 mm SP 19.0, Lower Binder Course

Rehabilitation option for the existing pavement structure will involve the following:

- Full depth removal of asphalt (mill full depth of existing asphalt, average 150mm), partial excavation of granular material (as necessary); and
- Pave with new 150 mm HMA (OPSS 1150, OPSS MUNI 1151 and OPSS 310) consist of 40 mm thick SP12.5 FC2 Surface Course, over 50 mm thick SP19.0 Upper Binder Course over 60 mm thick SP19.0 Lower Binder Course.

This option will result in average 15mm grade raise (i.e., 15mm higher than the existing road profile). The bottom of the new granular material (i.e., for the widening road) recommended to match or lower than the existing granular material and therefore, positive lateral sub-surface drainage cannot be impacted.

For better pavement performance throughout the design life, a provision of continuous perforated subdrains in accordance with OPSD 216.021 Subdrain Pipe Connection and Outlet Urban (or alternatively Hamilton STD No. RD-101) is recommended. Subdrains should consist of perforated 100 mm diameter subdrain pipe surrounded in 19mm clear crushed stone wrapped in a suitable geotextile. The invert of the pipes should be at least 300mm below the subgrade elevation.

7.1.5 **PGAC Binder Selection**

The performance grade of the asphalt cement shall be as noted below:

- Surface course mixes: PGAC 70-28
- Binder course mixes: PGAC 64-28

7.1.6 Tack Coat

A tack coat should be applied to the surface of all binder courses, including the joint paint as per OPSS.PROV.308. It should also be applied where any binder course has been left open to traffic. All the milled surfaces within the project limits shall also be coated with tack coat.

7.2 Underground Utilities

7.2.1 Excavation and Groundwater Control

It is understood that road improvements will involve utilities relocation and the information regards of utilities depth and location are not available at the time of this report. However, based on typical industry practice, it is anticipated that watermain installation will be in the order of about 3 m below finished grade and sanitary pipes will be the order 3 m below finished grade. It is anticipated that relatively shallow excavation (i.e. less than 4 m) can generally be carried out using conventional open-cut techniques. It is expected that shallow excavations will penetrate strata of fill, silt, clayey silt and sand/silty sand. Based on current investigation, it is not expected that bedrock will be encountered within 4m depth.

Generally, groundwater was recorded at shallow depth ranges from 0.5 to 2.1 m bgs in the seven (7) monitoring wells, it is likely that groundwater in open excavations will be encountered. In such instances, measures to control ground water seepage will be required to properly bed the pipes, and to compact the bedding materials. The results of the boreholes suggest that adequate control of the ground water can probably be achieved by pumping from a series of properly filtered sumps located as required in the excavations. The requirements for dewatering should be reviewed at the final design stage when the locations and invert elevations of the underground services are known and follow the hydrogeological recommendations.

All excavations must be carried out in accordance with the Occupational Health and Safety regulations under the Ontario Labour Act. Based on the soil conditions encountered in the current boreholes, the soils to be excavated can be classified as Type 3 soils above the groundwater level, provided that effective ground water control is achieved where required and surface water is directed away from open excavations and Type 4 if excavation extended below water level. Excavation into fill material can also classified as Type 4. Temporary support will be required for vertically cut trenches and where space restrictions preclude excavation of inclined slopes within the overburden. Supported excavation may be carried out using a trench box or temporary shoring. If the trench depth exceeded 3 m, the support system should be designed by professional engineer.

An inventory of existing underground plant should be undertaken in order to identify any constraints or special requirements that will be needed to maintain the integrity of the services during construction.

7.2.2 Backfill

Bedding for the services should consist of well graded free draining granular material such as Granular "A", which is compatible with the size and type of pipe and consistent with City of Hamilton standards. Care will be required to ensure that softened or disturbed soil is removed prior to placing pipe bedding. The excavated soil will generally consist of fill, silt, clayey silt and sand/silty sand. It is considered that for shallow services, the bedding and the pavement structure will comprise most of the backfill and that in such cases, the remainder of the backfill should also consist of granular material consisting of the existing road base material or imported Type 1 Granular "B" material or select excavated sandy soil where available. Selective re-use of the existing granular base material as well as the overburden, for backfill in deeper excavations may be feasible provided that excessively wet, frozen or otherwise unsuitable soil is excluded. Re-use of the excavated rock as backfill is not feasible unless the rock is crushed to an appropriate size and gradation.

Trench backfill should be placed in 300 mm thick lifts with each lift uniformly compacted to 95 percent of standard Proctor maximum dry density. The upper 1m of trench backfill, forming the pavement subgrade should be uniformly compacted to at least 98 percent of standard Proctor maximum dry density.

7.3 Subgrade Preparation

All topsoil, organics, soft/loose and otherwise disturbed soils should be stripped from the subgrade area. The exposed subgrade soils will be disturbed by construction traffic when wet; especially if site work is carried out during periods of wet weather. Under inclement weather conditions, an adequate granular working surface may be required to facilitate construction traffic as well as to minimize subgrade disturbance and to protect its integrity.

Immediately prior to placing the granular subbase, the exposed subgrade should be compacted and then proofrolled with a heavy rubber-tired vehicle (such as a loaded gravel truck) in conjunction with inspection by a geotechnical engineer. The subgrade should be inspected for signs of rutting or displacement. Areas displaying signs of rutting or displacement should be re-compacted and retested, or the material should be sub-excavated and replaced with well-compacted engineered fill materials.

The fill materials may consist of either granular material or local inorganic soils provided that its moisture content is within ±2 percent of OMC. The new fill should be placed in lift thicknesses not exceeding 200 mm before compaction and should be uniformly compacted to at least 95% of SPMDD, increasing to 98% within upper 1 m of the subgrade.

7.4 Sub-Drainage

Control of surface and sub-surface water is an important factor in achieving a good pavement service life particular in such subsurface conditions consist of high susceptibility to frost heave (i.e., subgrade/roadbed dominated by silt) and high ground water level. Therefore, it is recommended that provisions be made to drain the proposed pavement subgrade and its granular layers. To provide positive drainage across the pavement platform, the surface of pavement should be sloped at a grade of 2 percent and the pavement subgrade should be sloped at a grade of 3 percent towards the sub-drains.

7.5 Site Seismic Classification

In conformance to the criteria in Table 4.1.8.4A, Part 4, Division B of the National Building Code of Canada (NBCC 2010), the project Site may be classified as Site Class "D" and Soil Profile Name: "Stiff Soil". The four values of the 5% damped spectral response acceleration $S_a(T)$ for different periods and Peak Ground Acceleration (PGA) can be obtained from Table C-2 in Appendix C of Division B of the NBCC (2010). The design values of F_a and F_v for the Site should be calculated in accordance to Table 4.1.8.1 B and C.

7.6 Frost Depth

The frost penetration depth in the City of Hamilton is determined to be approximately 1.2 m based on Figure 3.6 in MTO Pavement Design and Rehabilitation Manual.

The grain size analyses results indicated that the percentage range of fine materials between 5 and 75 µm within frost penetration zone was from 50 to 81 percent, indicating moderate to high susceptibility to frost heave in accordance with frost susceptibility category in MTO Pavement Design and Rehabilitation Manual.

7.7 Geo-environmental Assessment Results

7.7.1 Soil Analytical Results

A total of 31 soil samples were submitted to AGAT Laboratories in Mississauga, Ontario laboratory analysis of one or more of COPCs including one or more of M&I, and PCBs. No contaminants analyzed exceeded the MECP Table 2 SCS in soil samples collected from the Site except the ones listed in **Table 14** below.

Borehole	Sample ID	Depth (m bgs)	Exceedance	MECP Table 2 SCS	Result
BH-1	BH01-SS4 (5-7)	1.5 – 2.1	Boron (Hot Water Soluble)	2.0	4.95
			Electrical Conductivity (EC)* (mS/cm) *	1.4	4.78
			Sodium Adsorption Ratio (SAR)*	12	43.7
BH-3	BH03-SS3B (3-5)	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.87
			Sodium Adsorption Ratio (SAR)*	12	16.2
BH-4	BH04-SS4 (5-7)	1.5 – 2.1	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.6
			Sodium Adsorption Ratio (SAR)*	12	17.2
BH-5	BH05-SS3A (3-5)	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	2.25
BH-9	BH9 SS2 (1'-3')	0.3 – 0.9	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.42
			Sodium Adsorption Ratio (SAR)*	12	18.5
BH-10	BH10-SS2B (1-3)	BH10-SS2B (1-3) 0.3 – 0.9	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.68
			Sodium Adsorption Ratio (SAR)*	12	17.7
BH-11	BH11-SS2 (1-3)	0.3 – 0.9	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.77
			Sodium Adsorption Ratio (SAR)*	12	21.1
BH-14	BH14-SS3 (3'-5')	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.78
BH-15	BH15-SS3 (3'-5')	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	2.54
			Sodium Adsorption Ratio (SAR)*	12	19.7

Table 14: Summary of Soil Exceedances

The City of Hamilton

Glancaster Road – Municipal Class Environmental Assessment Geotechnical Investigation Report

Borehole	Sample ID	Depth (m bgs)	Exceedance	MECP Table 2 SCS	Result
BH-16	BH16- SS3 (3'-5')	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.62
BH-17	BH17-SS3A (3 - 5)	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	1.64
			Sodium Adsorption Ratio (SAR)*	12	25.7
BH-18	BH18-SS3 (3' -5')	0.9 – 1.5	Electrical Conductivity (EC)* (mS/cm) *	1.4	2.91
			Sodium Adsorption Ratio (SAR)*	12	33.1

Notes: * Results with salt related exceedances Bold = concentration exceeded MECP Table 2 SCS All units are micrograms per gram (ug/g), unless otherwise specified.

- Of the 18 boreholes, from 14 select boreholes, 17 soil samples were submitted for chemical analysis of M&I parameters. The depth of the samples ranged from 0.3 to 5.2 m below the existing ground surface.
 - The concentration of Boron (Hot Water Soluble) exceeded the Table 2 SCS in samples collected from borehole BH01. The sample was retrieved between 1.5m and 2.1m below the existing ground surface.
 - Except for borehole locations BH02 and BH07, the concentrations of EC and /or SAR exceeded the applicable Table 2 SCS in the remaining 12 boreholes. Of the 17 soil samples, 12 samples exceeded the MECP Table 2 SCS.
 - The concentrations of all the remaining M&I parameters were non-detect and /or below applicable MECP Table 2 SCS in samples collected from all the boreholes at the Site.
- The concentrations of PCBs were non-detect and/or below applicable MECP Table 2 SCS in all 13 samples collected from select boreholes at the Site.
- In addition, analytical results of the TCLP soil sample were below the applicable MECP O. Reg. 558, Schedule 4: Leachate Quality Criteria.

The laboratory certificates of analysis are presented in Appendix E.

7.7.2 Quality Assurance and Quality Control

No QA/QC issues were identified by the laboratory that would materially affect the overall results of the soil sampling presented within this report.

Quality assurance and quality control measures were adhered to during the field investigation for the collection of soil samples. AECOM field personnel followed defined procedures for sample collection, handling, storage, and custody to ensure quality control. All samples were handled in accordance with analytical protocols related to sample collection, hold time, preservation, and storage.

7.7.3 Conclusion

Based on the soil investigation completed at the Site, the following summary is provided:

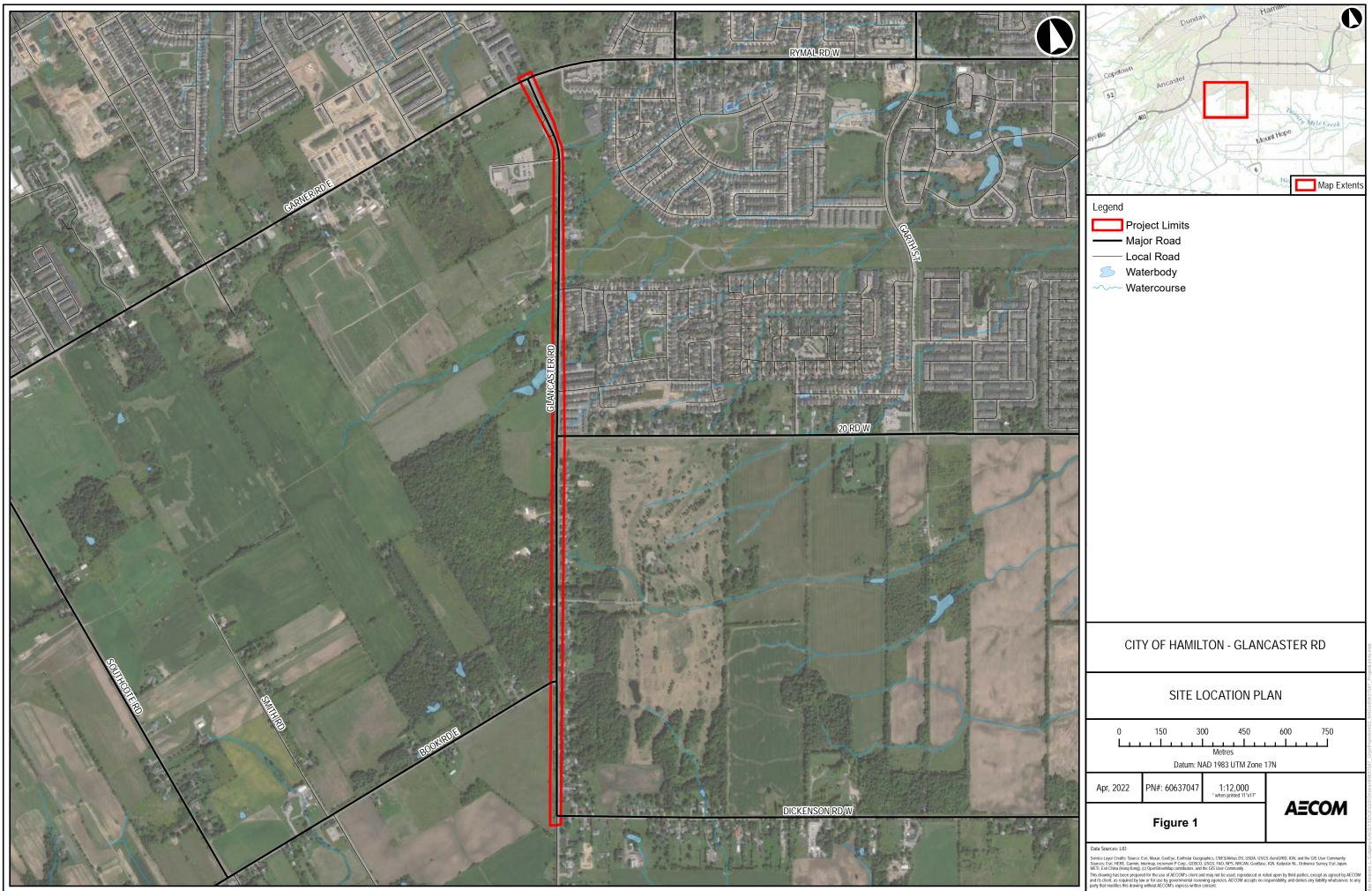
- 1. A total of 14 boreholes were advanced to evaluate the subsurface soil quality at the Site.
- 2. A total of 31 soil samples were submitted to AGAT Laboratories in Mississauga, Ontario laboratory analysis of one or more of COPCs including one or more of M&I, and PCBs.
- 3. No contaminants analyzed exceeded the MECP Table 2 SCS in soil samples collected from the Site except for the following:
 - In total 17 soil samples were submitted for chemical analysis of M&I parameters. The depth of the samples ranged from 0.3 m to 5.2 m below the ground surface.
 - The concentration of Boron (Hot Water Soluble) exceeded the Table 2 SCS in samples collected from borehole BH01. The sample was retrieved between 1.5m and 2.1m below the existing ground surface.
 - o Of the 17 soil samples, 12 samples exceeded the MECP Table 2 SCS fro EC and SAR.
- 4. For waste management considerations, one composite soil sample TCLP-1 (composite sample was comprised of the worst-case scenario sample; BH01-SS4) was prepared by the laboratory for TCLP analysis for Metals and Inorganics, SVOCs, VOCs, and PCBs. Analytical results of the TCLP soil sample were below the applicable MECP O. Reg. 558, Schedule 4: Leachate Quality Criteria and classified as non-hazardous solid waste in accordance with Ontario Regulations 347 (as amended), Schedule 4 Leachate Quality Criteria for Non-hazardous material.

7.7.3.1 Salt Impacted Soil

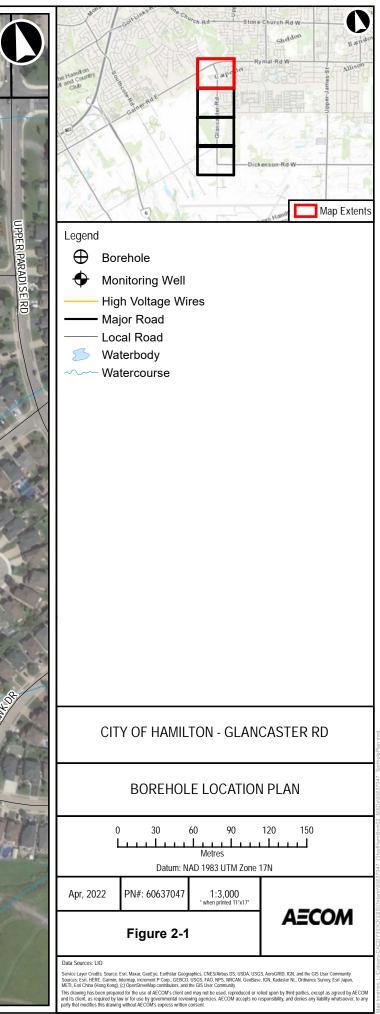
Excess Soil Quality Standards for sodium adsorption ratio and electrical conductivity in Soil, resulting from the use of a substance for the safety of the vehicle or pedestrian traffic applied under ice/snow conditions are deemed to be met if the Excess Soil is placed at a location;

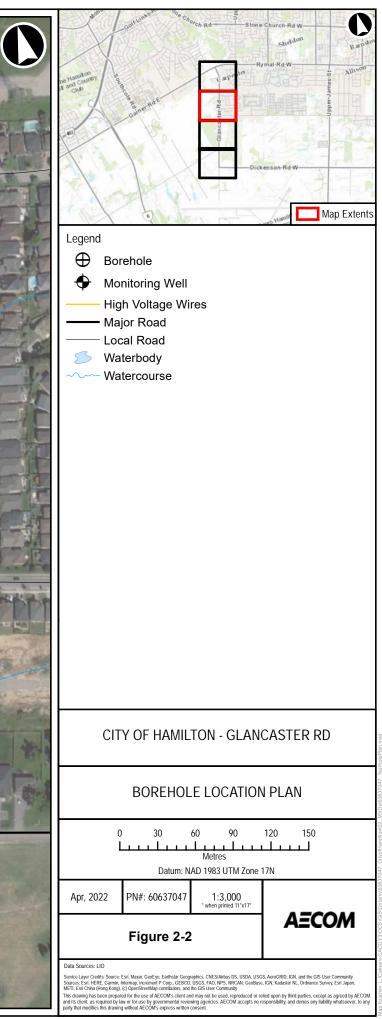
- Where it is reasonable to expect the soil will be affected for the same reason;
- At an industrial or commercial property where non-potable ESQS would apply; or
- At a minimum depth of 1.5 m below the soil surface.

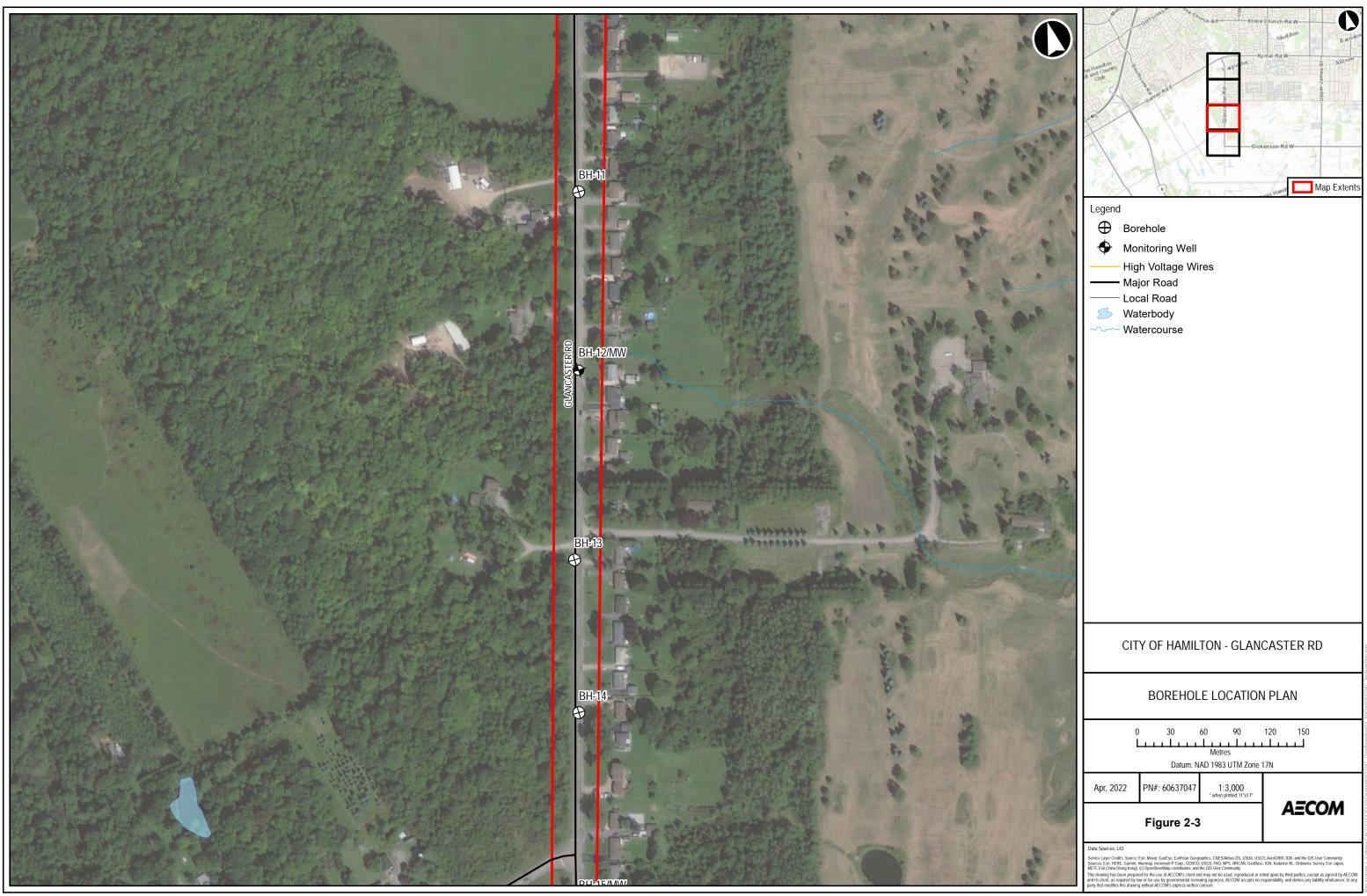
Salt impacted soil shall not be placed;

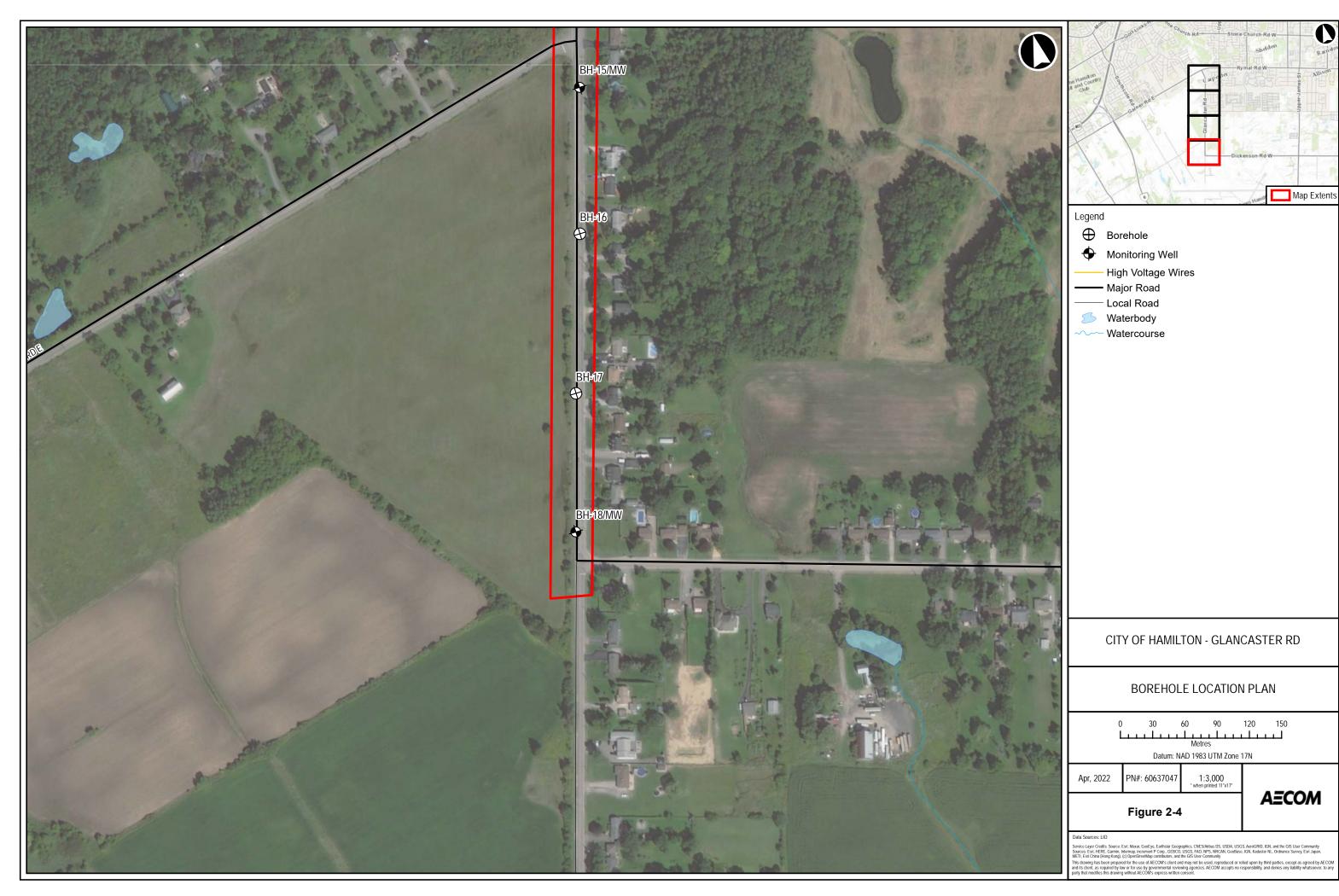

- Within 30 metres of a waterbody;
- Within 100 metres of a potable water well; or
- A location that will be used for agricultural purposes (crops or livestock) unless it is 1.5 m below the soil surface.

The City of Hamilton or the future construction contractor must inform the owner/operator of any Reuse Site if the Excess Soil to be transported and placed at the Reuse Site and provide the owner with sample results. It is also necessary to inform the owner/operator of the Reuse Site of potential risks to surface water and groundwater as a result of the placement of salt impacted Excess Soil.




Borehole Location Plans





ap location: L:\Calgary-CACGY3\DCS\GIS\Ontario\60637047_CityofHamiiton\02_MXDs\60637047_TestholePlan.mx

location: L: \Calgary-CACGY3\DCS\GIS\Ontario\60637047_CityofHamilton\02_MXDs\60637047_TestholePlan s outar: A19812020 3-33-14 DM Hoar Nortes reserved

Appendix **B**

Borehole Records

AECOM

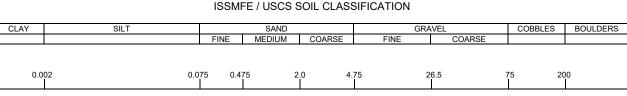
TERMINOLOGY USED IN BOREHOLE LOGS

- *Topsoil:* Mixture of soil and humus capable of supporting good vegetative growth.
- *Peat:* A mass of organic matter usually fibrous in texture in various stages of decomposition, generally dark brown to black in colour and of spongy consistency.
- *Fill:* The term fill has been used to describe materials which have been placed by non-natural processes. Fills can often be heterogeneous in nature and those relying on this report should expect them to contain deleterious materials. Such materials can include wood, bricks, slag, porcelain, organics, and obstructions such as scrap metal, storage tanks, and abandoned concrete/steel structures.

Due to the uncertainty of the placement method of the material, the boring samples obtained for this report are not expected to represent other materials at any horizontal or vertical distance from where the sample was obtained.

Fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill site. Unless specifically stated, the fill on this site has not been tested for contaminants that can be considered toxic or hazardous. Testing to determine the toxicity of fill materials can be conducted, if requested.

Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Till must be considered heterogeneous in composition and containing pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) and boulders Contractors may therefore (over 200 mm). encounter cobbles and boulders during excavation, even if they are not indicated by the logs. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Due to the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone. Caution is essential when dealing with sensitive excavations or dewatering programs in till materials.


Terminology describing soil structure

Desiccated:	having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Stratified:	alternating layers of varying material or color with the layers greater than 6 mm thick.
Laminated:	alternating layers of varying material or color with the layers less than 6 mm thick.
Fissured:	material breaks along plane of fracture.
Varved:	composed of regular alternating layers of silt and clay.
Slickensided:	fracture planes appear polished or glossy, sometimes striated.
Blocky:	cohesive soil that can be broken down into small angular lumps which resist further breakdown.
Lensed:	inclusion of small pockets of different soil, such as small lenses of sand scattered through a mass of clay; not thickness.
Seam:	a thin, confined layer of soil having different particle size, texture, or color from materials above and below.
Homogeneous:	same color and appearance throughout.
Well Graded:	having wide range in grain sized and substantial amounts of all predominantly on grain size.

Uniformly Graded: predominantly on grain size.

AECOM

All soil sample descriptions included in this report generally follow the Canadian Foundations Engineering Manual and the Unified Soil Classification System. These systems follow the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by AECOM follow the same system. Note that, with exception of those samples where a grain size distribution analysis has been completed, all samples have been classified by visual inspection. Visual inspection classification is not sufficient to provide exact gain sizing.

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis. Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils.

The standard terminology to describe cohesionless soils includes the compactness condition as determined by the Standard Penetration Test 'N' value.

Cohesio	nless Soils		Cohesive Soil	S		Composition
Compactness Condition	SPT N-Index (blows per 0.3 m)	Consistency	Undrained Shear Strength (kPa)	SPT N-Index (blows per 0.3 m)	Term	Criteria
Very loose	0 - 4	Very soft	< 12	< 2	Trace	1% - 10%
Loose	4 – 10	Soft	12 - 25	2 – 4	Some	10% - 20%
Compact	10 – 30	Firm	25 – 50	4 – 8	Adjective	20% - 35%
Dense	30 - 50	Stiff	50 – 100	8 – 15	And	> 35%
Very Dense			100 - 200	15 – 30	Noun	> 35% & largest fraction
		Hard	> 200	> 30		

Standard Penetration Test (SPT):

The number of blows required to drive a 50 mm (2 in.) open split spoon sampler from a depth of 150 mm (6 in.) to 450 mm (18 in.) in undisturbed soil. Each blow is driven by a 63.6 kg (140 lb.) hammer free falling a distance of 0.76 m (30 in.).

Sample &	Soil Abbreviations	Contaminant	Abbreviations	Stra	ta/Grap	hic I	Plot		
CORE	Rock core sample	BNAE	base/neutral/acid extractables					89	
AS	Auger sample	BTEX	benzene, toluene, ethylbenzene, xylenes		Fill		Asphalt	8g	Cobbles
FV	Field vane	OCP	organochlorine pesticides	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Topsoil		Concrete	0.00	Sandy Silt
PP	Pocket penetrometer	MI	metals & inorganics	रूक रू र 253	, opeon		Controloto	0.0	Till
SG	Specific gravity	PAH	polycyclic aromatic hydrocarbons		Clay		Silty Clay		Silty Clay Til
SH	Shelby tube sample	PCB	polychlorinated biphenyls					68	
SS	Split spoon sample	PHC	CCME petroleum hydrocarbons (fractions 1 – 4)		Silt		Clayey Silt		Clayey Silt Till
DCPT	Dynamic cone penetration test	VOC	volatile organic compounds (includes BTEX)				0.1		
GR	Gravel	Plasticity Description	Liquid Limit (w _i)		Sand		Silty Sand	.0	Silty Gravel
SA	Sand	Low	w _l < 30			0	Sand &	$\langle \rangle$	Clavay
SI	Silt	Medium	30 < w _l < 50		Gravel	0.00	Gravel		Clayey Gravel
CL	Clay	High	50 < w _l		Clayey	Ē			
				/	Sand		Shale		Limestone

LOC	CAT	IOI	: Glancaster Road MCEA N: Glancaster Rd, Southbound Driving Lan	e					DO				EHC	DLE	: E	BH-()1/N	١W			SH	IEET 1 OF 1
DA ⁻ AE(TUN Coi	И: И Р	IATES: N 4784660.5; E 587009.5 Geodetic PROJECT No.: 60637047 City of Hamilton			end Bor	DA	TE: ME	E: Jai Janu THOD OR: A	ary 21 : 190	, 2022) mm	2 O.D			n Aug	er		SAMP		MMER, 64kg; DRC)P 762mm	1
			SOIL PROFILE				MPL						,		SHE	AR ST			kPa Triaxial● fined - ∆	, <u>, , , , , , , , , , , , , , , ,</u>		
DEPTH SCALE (METRES)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	N VALUE		1	200	30 30 30			WA Wp		^{n.} ⊕ 40 :ONTEI 	60 NT PEF	80	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATIC AND WATEF LEVELS
. 0			PAVEMENT SURFACE		232.48														Î	GR SA SI CL		
			ASPHALT 152 mm thick	ġ.	0.00	1	AS								0							Grout
			GRANULAR MATERIAL sand and gravel, brown, moist	0	•	2A	7.0															
			FILL silt, some clay, trace sand, brown, moist, stiff to very stiff	•	231.87 0.61	2B	SS	30)					
• 1						3	SS	26								0						Bentonite
· 2					××××××××××××××××××××××××××××××××××××××	4	SS	10									: 0 			0 5 80 15		
			clayey			5	SS	5	-					···.				·				6740 2410
- 3	Drilling	v Stem Auger	SILT some clay, trace sand, brown, moist, stiff		229.43 3.05				-			:										Sand
	Power	mm O.D Hollow	Some day, trace sand, brown, molst, sun			6	SS	8	-				····.				0					
· 4 · 5		190	hard			7	\$.5.	•42 •				••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0					Sand
- 6			very stiff			· · · ·	· · · · ·		· · · · ·													
						:	ss	21								0						
· 7	-		END OF BOREHOLE Notes: 1. No groundwater was observed upon drilling completion. 2. Monitoring well was installed at 6.1 m below ground surface with flush mount protection.	···.																		
. 9																						
· 10																						
	PTF		READ IN CONJUNCTION WITH REPORT)	1	<u> </u>	<u> </u>			A	Ξ	C	0	M		I	1		<u> </u>			GED BY: KED BY:	

LO	CA		F: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Lane				D O				OLE	: B	H-0	2				SH	EET 1 OF 1
DA AE	TU CC	im: DM F	IATES: N 4784486.4; E 587037.3 Geodetic PROJECT No.: 60637047 City of Hamilton		end Bori	DATE NG M	TE: Jan : Janua ETHOD: TOR: Al	iry 21, 130	2022 mm O.I	D Solid		Auger		¢.		- В Н и и	/IMER, 64kg; DRO	P 762mm	
			SOIL PROFILE			IPLES	1	LIEG		iy Serv		SHE/	RSTR					r, 702mm	
DEPTH SCALE (METRES)		Boring me i hod	DESCRIPTION	ELEV. DEPTH (m)	~	N VALUE	10		1	I		2 WA Wp	FER CC	0 6 NTENT	0 8 PERC	30 ENT H WI	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
			PAVEMENT SURFACE				10	0 2	00 3	00 4	00	1	02	0 3	0 4	10 	GR SA SI CL		
— 0	-		ASPHALT	233.26 0.00							-								
			Crusher Run Limestone, light grey to	7.	1	AS SS ->50 75 π)/ m					00							
- 1			FILL clayey silt, black, moist, firm to stiff	0.91		SS 5								С	0				
- 2			SILT some clay, trace sand, trace gravel, brown, moist, stiff to very stiff	231.55 1.71	4A 4B	SS 11	-							D 	0				
- 3	Drilling	Solid Stem Auger			5	SS 20	_					··.,	0	··					
	Power Auger Drilling	130 mm O.D Solid	hard sand seams, wet		6	SS 30	-						0						
- 4										····. 									
- 5			grey		7	55 · 41	·	••••••					0				2 9 71 18		
- 6																			
			sand lenses, some gravel, wet	226.88	8	SS ₁₂₅ r)/ mm						0						
			END OF BOREHOLE	6.38															
7			Notes: 1. Groundwater was observed at 3.0 m below ground surface upon drilling completion.																
- 8																			
- 9																			
- 10																			
	PT	ΉS	READ IN CONJUNCTION WITH REPORT)				A	Ξ	0	M								GED BY:	

LOC	CATIO	T: Glancaster Road MCEA N: Glancaster Rd, Southbound Driving Lar	ne								OLE	: B	H-0	3				SH	IEET 1 OF 1
DA ⁻ AE(TUM: Com F	NATES: N 4784385.4; E 587014.6 Geodetic PROJECT No.: 60637047 City of Hamilton			END BOR	DATE	: Janu ETHOD	inuary 1 iary 14,): 130 ALTECI	2022 mm O.	D Solid	l Stem	Auger		S	AMPLE	R HAN	/IMER, 64kg; DRC	P. 762mm	1
		SOIL PROFILE	⊢	1	1	/PLES	_			-		SHE/ Field V Field V	AR STR /ane nat. /ane rem	RENGTH +					WELL
(METRES)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	N VALUE			1	1	00 □ 00	WA Wp	TER CO		r PERC	80 ENT 1 WI	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	INSTALLATIO AND WATER LEVELS
0	_	PAVEMENT SURFACE		234.75													GR SA SI CL		
		ASPHALT 152 mm thick GRANULAR MATERIAL Crusher Run Limestone, brown, moist		0.00	1	AC SS 35	5					0 0							
1		FILL clayey silt, brown, moist, dense		1.19 233.23	3B	SS 48	3					0	0						
2		CLAYEY SILT trace sand, trace gravel, brown, dry, stiff to very stiff		1.52		SS 12	2										1 3 71 25		
3	r Drilling d Stem Auger				5	SS 19	9					·	0	···.	••••				
	Power Auger Drilling 130 mm O.D Solid Stem A	hard			6	SS _{280 1}	D/ min						0						
4		grey								· · · · · . . · · · · .	••••								
5		5°-5			7	SS • 69). 						0						
6		some gravel, wet		228.53	.8	SS ₁₀₀						C							
7		END OF BOREHOLE Notes: 1. No groundwater was observed upon drilling completion.		6.22															
8																			
9																			
		E READ IN CONJUNCTION WITH REPORT)															LOG	GED BY:	 IA

LO	CAT	101	: Glancaster Road MCEA N: Glancaster Rd, Southbound Driving Lane ATES: N 4784178.0; E 586949.4)					D OF E: Janua				DLE	: B	H-0	4/M	W			SH	EET 1 OF 1
DA AE	TUN CON	1: ЛР	ROJECT No.: 60637047 City of Hamilton			END BOR	DAT ING I	E: ME	January THOD: ´ OR: ALT	20, 20 190 m	022 m O.I	D Hollo		n Auge	r	S			/IMER, 64kg; DRC	P 762mm	
			SOIL PROFILE				MPLE		JR. ALT	LOITI	Unini	goor		SHEA Field \ Field \	AR STR /ane nat. /ane rem						WELL
DEPTH SCALE (METRES)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	N VALUE	100			00 4		2	0 4 TER CC	0 6 NTEN	O F PERC	B0	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	INSTALLATION AND WATER LEVELS
— o			PAVEMENT SURFACE		236.47		_												GR SA SI CL		ผผ
			152 mm thick GRANULAR MATERIAL sand and gravel, brown, moist		0.15	1 2	AC SS ₁₉	• 50/ 0 mi	n					00							Grout
-			FILL		234.95	3	SS	56						0							Bentonite
2			clayey silt, brown, moist, stiff				SS	16							,o	••••••					
- - - - - -	ing	Stem Auger	CLAYEY SILT trace sand, brown, moist, stiff		234.04 2.44	5A 5B	SS	14							o [.] c	···	•		0 4 73 23		Sand
-	Power Auger D	mm O.D Hollow	hard			6	SS	49							0						
- 4 		190				77	ŞŞ •••	44.			•••••	•••••• 			0						Sand
- 5 			grey				·	······································	·												
			wet .		·····.		SS	42	··.··						С						
- - - - - -			END OF BOREHOLE Notes: 1. No groundwater was observed upon drilling completion. 2. Monitoring well was installed at 6.1 m below ground surface with flush mount protection.		229.77 . 6.71																
- 8																					
- - - - - -																					
- - - - - 10																					
	PTH		READ IN CONJUNCTION WITH REPORT)	I	I				A	EC	0	M		I						GED BY: KED BY:	

			: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Lane		R	EC	OF	RD	OF E	OR	EHO	DLE	: B	H-0	5				SH	EET 1 OF 1
CC DA	DOR TU	RDIN M:	IATES: N 4783987.8; E 586894.3 Geodetic			END	DATE	E: Ja	January 1 anuary 12	,2022		Store	Aume -							
			PROJECT No.: 60637047 City of Hamilton						OD: 130 : ALTEC				-					MMER, 64kg; DRC	P, 762mm	
ALE (S			SOIL PROFILE		1	SAI	/PLES	\$					SHEA Field V Field V	AR STR /ane nat. /ane rem	ENGTH + ∙⊕	Cu, kPa Quick Tria: Unconfine	xial● d - △		05	WELL
DEPTH SCALE (METRES)			DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE			1		00 	2 WA Wp	0 4 FER CC	NTENT	0 80 PERCE	NT WI	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	INSTALLATION AND WATER LEVELS
0			PAVEMENT SURFACE		235.87					.00 3	4					40		GR SA SI CL		
Ē			ASPHALT 152 mm thick		0.00	1	AC						0							
-		-	GRANULAR MATERIAL sand and gravel, brown, moist FILL clayey silt, trace sand, black, moist, stiff		235.35 0.52		SS 2	1					0							
- 1 - 1 -						3A 3B	SS 3	9					с	0						-
			brown				ss a	3							0			0 4 76 20		
2 			SILT		233.58 2.29															-
- - - - - - 3	бu	n Auger	some clay to clayey, brown, moist, dense to very dense				SS 3	0					·	(,,					-
	Power Auger Drilling	mm O.D Solid Stem Auger	grey			6	SS 6	0						0						
- - - 4	Pc	130 mn								· · · · · ·	····.		··							-
-											 									
- - 5 -						7	SS ₁₂₅	50/ min.			ŀ			0						-
						· · ·	•••		•••											
- - 6 -			sand seams		··· ···	8			·											-
Ē					229.21	l: I	SS 8	0						0						
- - - - - -			END OF BOREHOLE	·	6.65															-
- 8																				-
- - - 9																				-
<u> </u>																				
- 10																				-
			READ IN CONJUNCTION WITH REPORT)	L								I	I		1			1	GED BY:	і А
									AE	CC	M								KED BY:	

LO	CAT	101	: Glancaster Road MCEA N: Glancaster Rd, Southbound Driving Lar IATES: N 4783925.9; E 586869.5	ne					D OF				DLE	: B	H-0	6				S⊦	EET 1 OF 1
DA AE	TUN CON	/I: /I P	Geodetic PROJECT No.: 60637047			END BOF	DAT	TE: MET	January THOD: 1	12 ,20 30 mr)22 n O.[) Solid		Auger		-				D 700	
			City of Hamilton SOIL PROFILE				MPLE		DR: ALTE	ECH	Drilling	g Servi	ces	SHE/	R STR ane nat. ane rem.				MMER, 64kg; DRO	P, 762mm	
DEPTH SCALE (METRES)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	N VALUE	100 	200				2 WA Wp	0 4 FER CC	0 6 NTENT	io i r PERC	B0	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
- 0			PAVEMENT SURFACE		236.51				100	200		/0 40			0 2	0 3		+0	GR SA SI CL		
-			ASPHALT 152 mm thick GRANULAR MATERIAL Crusher Run Limestone, brown, moist	0,0.0.0		1	AC	>50/ 0 mm	1					0 0							
- 1 		-	FILL clayey silt, trace sand, black to brown, moist, very stiff, trace organics			3A 3B 4A		20							ہ ی : .	0					-
2		-	SILT some clay, some sand, trace gravel, brown, wet, firm to stiff		234.53 1.98	4B		6). 	·				-
- 3	Power Auger Drilling	Solid Stem Auger	hard			5		9			•				0	0	•		1 11 71 17		
- - - - - - 4	Power Aug	130 mm O.D Sc	grey, moist			0	55	62		••••	···	•••••••			0				1 11 71 17		
-						7	Ş.S. •	62.							0						
— 5 - - - - -					:	· · · · · · · · · · · · · · · · · · ·		···	· · · · · · · · · · · · · · · · · · ·												-
- 6			SAND grey, wet, loose		<u>230.42</u> 6.10 229.81	8	ss	10								0					
- 7 - 7 			END OF BOREHOLE Notes: 1. Groundwater was observed at 3.0 m below ground surface upon drilling completion.	[···.	. 6.71																
8																					
- - - - - - 9																					
- - - - - - - - - - -																					
(LOC	PTH		READ IN CONJUNCTION WITH REPORT)						AE	:C	0	M								GED BY: KED BY:	

LOC COC DA1	OR OR	fioi Din M:	T: Glancaster Road MCEA N: Glancaster Rd, Southbound Driving Lar IATES: N 4783793.3; E 586828.0 Geodetic PROJECT No.: 60637047	ne		STAF END	rt da Dati	ATE: E: Ja	OF Janua anuary IOD: 1	iry 20 20, 2	, 2022 022	2)7/N	W			SF	IEET 1 OF	1
			City of Hamilton						R: ALT										MER, 64kg; DRC	P, 762mm	1	
(METRES)	BORING METHOD		SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH	~			100	200	0 3	00 4	00 □	2	TER CO		60 8 F PERC	30	REMARKS & GRAIN SIZE DISTRIBUTION	SPECIFIC GRAVITY	WELL INSTALLA AND WAT LEVEL	TION FER
1	a a	ŝ		STF	(m)	2			100	200	0 3	00 4	00	I .				10	(%)			
0	-1	-	PAVEMENT SURFACE		239.05		_	_		-									GR SA SI CL			
		ł	152 mm thick GRANULAR MATERIAL		0.15	1	AC							0							Grout	
			sand and gravel, brown, moist	, 	238.49	2A								0								
1			FILL clayey silt, brown to black, moist, firm, trace organics		0.56	2B	SS 2	25								0						
						3	ss	7								0					Bentonite	
2		-	CLAYEY SILT trace sand, brown, moist, stiff		2 <u>37.52</u> 1.52	4	SS 8	в								⊦⊖	-1		0 6 68 26			
		r				5	SS 9	9					···.								Sand	2.2.5
3	bu	Stem Auger			236.00		+	_														1.1
Ū		Hollow Ste	SILT some clay, trace sand, brown, moist,	F	. 3.05	6	ss_>{ 280	50/ mm						· ,	þ						10.20	
4		190 mm O.D	grey			7	ss ₂₈₀	50/				·····. .····	· · · · ·		0						Sand Sand	
5					· · · · ·				· · · · · · · · · · · · · · · · · · ·												SAUNDAUNDAUN	
						ŀ ;	ss 6	51							o							
7			END OF BOREHOLE Notes: 1. No groundwater was observed upon drilling completion. 2. Monitoring well was installed at 6.1 m below ground surface with flush mount protection.	····	232.39																	
٩																						
9																						
					1																	
10																						
	₽Tŀ		READ IN CONJUNCTION WITH REPORT)	1	1	I I			AE	EC	CO	M		1	<u>I</u>	<u>I</u>	<u>I</u>	<u>I</u>		GED BY: KED BY:		

			T: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Lane		R	EC	OR	D OF	BC	R	EHC	DLE	: В	H-0	8				SH	EET 1 OF 1
	cod	ORDI	VATES: N 4783650.6; E 586787.2 Geodetic					E: Janu Januar												
			PROJECT No.: 60637047 City of Hamilton					ethod: "Or: Al"					Auger		S	AMPLE	ER HAN	/IMER, 64kg; DRO	P, 762mm	
			SOIL PROFILE				PLES						SHE/ Field	AR STR	ENGTH + ⊕					
DEPTH SCALE	KEO)	BORING METHOD		LOT		н.	. ш	100	200	30	00 40						^{ied -} ∆ 80	REMARKS	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER
EPTH	(ME I	RING	DESCRIPTION	D	ELEV.	NUMBER	N VALUE						WA Wp				ENT WI	GRAIN SIZE DISTRIBUTION	SPE	LEVELS
		BO		STR	(m)	z	z	100	200	30	0 40	00	· ·				0	(%)		
F	0		PAVEMENT SURFACE		239.19 0.00		+											GR SA SI CL		
-			152 mm thick GRANULAR MATERIAL	.0.	0.15	1 A	C	-					0							
F			sand and gravel, brown, moist		238.58 0.61	2A S	S 27						0							
	1		FILL clayey silt, some sand, brown, moist, stiff	***	238.28 0.91	2B									0					-
Ē			SILT some clay, trace sand, brown, moist, stiff			3 S	S 19							0						
-						4A s	S 48													
-	2					4B								.0	·			0 3 85 12		-
-			grey			5 5	S 11					•-		·. 0		·				
-	3	lg Auger											·							_
-		vuger Drilling Solid Stem Auger	wet, very stiff to hard			6 5	S 23			•		••••		0						
-		Power Auger nm O.D Solid					.5 25				••	••••								
Ē	4	130 mm O.D							···	••••										
Ē	4							.		••••	•••••	•••								_
Ē																				
-			moist			7 S	S-250	/	ŀ					0						
-	5																			-
Ē																				
Ē																				
F	6		wet .		· ··.		_													-
Ē					••••	8 S	S 64							0						
Ē	╞		 END OF BOREHOLE		<u>232.49</u> 6.71	: :	_													
F	7		Notes:		••••															-
Ē			 Groundwater was observed at 4.0 m below ground surface upon drilling completion. 		·															
00-	8																			-
	9																			-
	10																			-
ر			E READ IN CONJUNCTION WITH REPORT)										I	I						
5	DEF 1 : 5		CALE					A	EC	0	M								GED BY: KED BY:	
-																				

			: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Lane	•	R	EC	OF	RD C)F B	OR	EHO	DLE	: B	H-0	9				SH	EET 1 OF 1
DA	TU	M:	IATES: N 4783498.7; E 586739.6 Geodetic					TE: Ja : Janu			2									
			ROJECT No.: 60637047 City of Hamilton					ethoe Tor: /					Auger		S	AMPLE	ER HAN	MMER, 64kg; DRO	P, 762mm	
щ	G	3	SOIL PROFILE			SAI	MPLES						SHE/ Field	AR STR /ane nat. /ane rem	ENGTH	I Cu, kP Quick Tr	'a iaxial 🌑			
DEPTH SCALE (METRES)		ם מעוואפ אוב ו ש	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE N VALUE		1	1	00 4		WA Wp	TER CC		ρ PERC	80	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
— o			PAVEMENT SURFACE		242.04					00 3	4							GR SA SI CL		
			ASPHALT 152 mm thick	~~~~	0.00		AC	_						0						
- - - - - - -			FILL sandy silt, brown to black, moist, compact		241.43 0.61	2A 2B	SS 19	'					0	0						
- ' - -			wet silt layer		240.52		SS 8								0					
- - - 2 - 2			CLAYEY SILT trace sand, brown, moist, very stiff to hard		1.52		SS 17	-						0	•••••			0 7 67 26		-
- - - - - - 3	ing	m Auger				5	SS 36	-						0	·· ···.	· · · · · · · · · · · · · · · · · · ·				-
	Power Auger Drilling	130 mm O.D Solid Stem Auger				6	SS 47	,						0						
- 4 		130	SILT some clay, trace sand, grey, moist, very stiff		237.47 4.57	7	ŞS • 33	- - -			· · · · · . · · · .			0						-
			wet		······································	8	SS 27		·····						0					-
- - - - - -			END OF BOREHOLE Notes: 1. Groundwater was observed at 4.6 m below ground surface upon drilling completion.		235.34															-
- 8 - 9 - 10 DE																				-
- 9																				-
- - - - - - - - - - - 10																				-
(LO DE 1 :			READ IN CONJUNCTION WITH REPORT)	1	I	1		A		CO	M		I	I	I		I		GED BY: KED BY:	

LOC	CATI	ECT: Glancaster Road MCEA TION: Glancaster Rd, Southbound Driving La DINATES: N 4783359.5; E 586692.2	ne					OF E			OLE	: B	6H-1	0/M	W			S⊦	EET 1 OF 1
DA ⁻ AE(TUM CON	DINATES: N 4/83359.5; E 586692.2 <i>I</i> : Geodetic V PROJECT No.: 60637047 T: City of Hamilton			END BOR	date Ing N	E: Jai 1ETHC	nuary 14 DD: 190 ALTEC	, 2022) mm O	.D Hollo		n Auge	r	ç		-R UAR	/IMER, 64kg; DRC	P 762mm	
					1	MPLES		ALIEC		ig Serv		SHE	AR STR				NIVIER, 64Kg, DRC	P, 702mm	
DEPTH SCALE (METRES)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE				1	00 00 00	WA Wp	TER CO	IO 6 DNTENT	0 8 PERC	30	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
. 0		PAVEMENT SURFACE		242.79					200 .								GR SA SI CL		
U		ASPHALT 127 mm thick GRANULAR MATERIAL sand and gravel, brown, moist		0.00 0.13 242.34 0.46	1 2A	AC	_					0 0							Grout
• 1		FILL clayey silt, brown, moist, stiff			2B	SS 2	5						0						
		SILT some clay, trace sand, brown, moist,		241.27 1.52		SS 1	0						- را بن ^ی ن						Bentonite
- 2		firm			4	SS 8	5							с 					
		very stif	:		5	SS 2	6						0	···.	••••		0 4 77 19		Sand
. 3	3 Indext Ander And																		
- 4																			
· 5 · 6				÷			· · · · · · · · · · · · · · · · · · ·	······· ········											<u>نېمنېمنېمنېمنېمنېم</u> پېرېمزېمزېمزېمزېم مړيمزېمزېمزېمزېمزې
		wet, harc		236.09	8	SS 6	0						0						
- 7		END OF BOREHOLE Notes: 1. No groundwater was observed upon drilling completion. 2. Monitoring well was installed at 6.1 m below ground surface with flush mount protection.	Ţ	. 6.71															-
- 8																			
. 9																			
· 10																			
	ΡТН	BE READ IN CONJUNCTION WITH REPORT)	_1	1	<u>ı </u>			۹ <i>Ξ</i>	CC	M		1	I	1	I	1		GED BY: KED BY:	

LO	CA.	TIOI	Glancaster Road MCEA Mc Add MCEA Mc Add Add Add Add Add Add Add Add Add Ad	e					DO				OLE	: E	8H-1	1				SH	EET 1 OF 1
DA AE	TUI CO	M: M F	IATES: N 4783199.6; E 586647.2 Geodetic PROJECT No.: 60637047 City of Hamilton			END BOR	DAT ING	E: ME	E: Jan Janua THOD: OR: Al	ry 10 130	,2022 mm O.	D Solic		Auger		ġ		FR HAM	MMER, 64kg; DRC)P 762mm	
	<u> </u>		SOIL PROFILE			1	MPLE					ig oorv		SHE	AR STR Vane nat. Vane rem						
DEPTH SCALE (METRES)	BOPING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	N VALUE	10			I	00 0 0 00	WA Wp	20 4 TER CO	DNTEN ONTEN	ο Γ PERC	80	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
— 0			PAVEMENT SURFACE		242.73														GR SA SI CL		
			ASPHALT 152 mm thick		0.00	1	AC							0							
			GRANULAR MATERIAL sand, some gravel, brown, moist		241.82			20							0						
- 1 - - -			CLAYEY SILT trace sand, trace gravel, brown, moist, very stiff		0.91	3	ss	17							0						-
- - - 2 -						4	SS	23							 	·	-1		1 3 69 27		-
- - - - - - - - 3	Drilling	Stem Auger				5	SS	52							0	· · · · .					
- 3 - - - - -	Power Auger Drilling	130 mm O.D Solid Stem Auger	grey			6	ss	27							0						
- - 4 - 4	- 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															-					
	4 6 5 150 mm thick wet fine sand															-					
- 6 -			SAND	P	6.10	• .8	SS	-50/								5					-
Ē		-	grey, wet, very dense	1	6.22			5 m	n							1					
- - - - - - - - -			END OF BOREHOLE Notes: 1. Groundwater was observed at 4.4 m below ground surface upon drilling completion.																		-
- - - - - - 8																					-
- 8 - 9 - 10 - 10 - 11:																					
- 9																					
E																					
F																					
Ē																					
- - 10																					-
(LOC DE 1:	PTI		READ IN CONJUNCTION WITH REPORT)			<u> </u>			A	Ξ(CC	M		<u>.</u>		1				GED BY:	

LO CO DA AE	CA OF TU CO	tio Rdin M: M:	T: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Lane IATES: N 4783045.9; E 586600.1 Geodetic ROJECT No.: 60637047	•		stai End Bor	rt da Dati Ing N	ATE: E: J METH	Janu January HOD:	iary 14 y 14, ∷ 190 r	4, 202 2022 mm O.	2 D Hollo	DLE ow Ster								EET 1 OF 1
DEPTH SCALE (METRES)			City of Hamilton SOIL PROFILE	PLOT	ELEV.	SAI	MPLE	s	100			ig Serv 00 4	00	2		ENGT⊦ + ⊕ 0 €	l Cu, kl Quick T Unconfi 0	Pa riaxial● ned - ∆ 80	MMER, 64kg; DRC	SPECIFIC GRAVITY	WELL INSTALLATIO AND WATE
DEPTH (ME1		BURING	DESCRIPTION PAVEMENT SURFACE	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	N VALUE	100) 20	00 <u>3</u>	00 4	00 00	Wp		-O ^w		CENT - WI 40 	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL	SPE GRA	LEVELS
- 0			ASPHALT		242.05 0.00			_											GR SA SI CL		
			152 mm thick		0.15	1	AC							0							Grout
			GRANULAR MATERIAL sand and gravel, brown, moist		241.13	2	SS 3	34						0							
- 1			CLAYEY SILT trace sand, brown, moist, stiff to very stiff		0.91	3	SS 1	12													Bentonite
- 2						4	SS 1	11							· · · · ·	·					
	6	Auger				5	SS 2	28						·	0	•••••			0 3 65 32		Sand
- 3	3 billing billing <t< td=""><td></td></t<>																				
- 4																Sand					
- 6								· <u>·</u>	······	•••••											
					···	8	ss e	53							0						
- 7		<u> </u>	END OF BOREHOLE Notes: 1. Groundwater was observed at 5.2 m below ground surface upon drilling completion. 2. Monitoring well was installed at 6.1 m below ground surface with flush mount protection.		235.34																
– 9 – 10 (LOO	GTO) BF	READ IN CONJUNCTION WITH REPORT)																		
	PT		CALE						A	=(CC	M								GED BY: KED BY:	

LO	CATIC	T: Glancaster Road MCEA N: Glancaster Rd, Southbound Driving Lan NATES: N 4782883.5; E 586546.6	e					OF January			НС	DLE	: В	H-1	3				SH	IEET 1 OF 1
DA AE	TUM: COM	Geodetic PROJECT No.: 60637047 City of Hamilton			END BOR	date Ing N	E: Ja 1ETH	anuary 1 OD: 13	2 ,2022 80 mm	2 O.D :			Auger		9			/IMER, 64kg; DRC	P 762mm	
		SOIL PROFILE				MPLES		. /		in ig			SHEA Field \	R STR	ENGTH					WELL
DEPTH SCALE (METRES)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE		100	200	300	40		2 WA Wp	0 4 FER CC	NTENT	0 a	30	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
- 0		PAVEMENT SURFACE		242.45														GR SA SI CL		
-		ASPHALT 152 mm thick GRANULAR MATERIAL sand and gravel, brown, moist		0.00		AC SS ₁₂₅	i0/ .min						0	0						
- 1 - 1 		FILL clayey silt, trace sand, brown, moist, stiff CLAYEY SILT		241.53 0.91 240.92 1.52		SS 1	0							C						
- - - - 2 -		trace sand, trace gravel, brown, wet, very stiff to hard		1.52		SS 2	0								o 					
- - - - - - - - - - - - - - - - - - -	Drilling Stem Auger				5	SS 3	2					··	·	0	[`···.					
-	4 BORY LANGE CONTRACT																			
- 4 - 4 	4 SILTY SAND grey, wet, very dense 7 7 SS ₂ S0/ mm O																			
- - - - - - - - - - - - - - - - -					7	SS ₂₈₀	i0/ mm	: 	•••					0						
- 6 -		moist		·····	-8	ss ₁₂₅	50/							0						
- 7		END OF BOREHOLE		236.07 6.38																
- - - - - - 8 - -																				
- - - - - - - 9																				
- - - - - - - - - - - - - 10																				
(LOC	PTH S	E READ IN CONJUNCTION WITH REPORT)						AE		0	M								GED BY: KED BY:	

			: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Lane	•	R	EC	OR	RD C)F B	OR	EHC	DLE	: В	H-1	4				SH	EET 1 OF 1
CC DA)OF	rdin JM:	ATES: N 4782750.6; E 586510.1 Geodetic ROJECT No.: 60637047			END	DATE	TE: Ja : Janu ETHOD	ary 10	,2022		Stem /	Auger							
			City of Hamilton					TOR: A	ALTECH	H Drillin	g Servi	ces						/MER, 64kg; DRC	P, 762mm	
DEPTH SCALE (METRES)		BORING METHOD	SOIL PROFILE	A PLOT	ELEV.		MPLES	-	00 2	00 3	00 40	00	2	R STRI ane nat. ane rem. 0 4 FER CO	0 6	0 8	30		SPECIFIC GRAVITY	WELL INSTALLATION AND WATER
DEP1		BORIN	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE N VALUE		00 2	00 3	00 40	00	Wp		-O ^w		-1 WI	GRAIN SIZE DISTRIBUTION (%)	5.9	LEVELS
— O	_		PAVEMENT SURFACE ASPHALT		241.79 0.00													GR SA SI CL		
E			152 mm thick GRANULAR MATERIAL		0.15	1	AC						0							
- - - -			sand and gravel, brown, moist		240.88	2	SS 19)						0						
- 1 - 1 			FILL clayey silt, black to brown, trace organics, moist, loose		0.91	3	SS 9							C)					-
- - - - 2 -			CLAYEY SILT trace sand, trace gravel, brown, moist, stiff		1.52	4	SS 14	L						.0.	·			1 6 67 26		-
			hard			5	SS 34	ŀ						·· 0	••••					
- - 3 -	3 John Hammannan grey grey sand seams 4 6																			
- - - - - - 4	4 block bloc																			
- - - - - - - - - - - 5																				
- - - - - - - - - 6					·····	· · · · ·	· · · · · · · ·		·····	:										-
-					235.09	8	SS 33	3						0						
- - - - - - - -			END OF BOREHOLE Notes: 1. Groundwater was observed at 5.2 m below ground surface upon drilling completion.	···.	· . 6.71	÷														-
																				-
9																				-
																				-
(LOC DE 1:	PT	TH S	READ IN CONJUNCTION WITH REPORT)	1	<u>I</u>		I	A		CO	M		L			<u> </u>	1		GED BY: KED BY:	

LO CO	CAT	CT: Glancaster Road MCEA ION: Glancaster Rd, Northbound Driving Lane DINATES: N 4782586.9; E 586459.8		STA	ART D	ATE:) OF	y 7,202		OLE	: E	3H- 1	5/N	W			SF	IEET 1 OF 1
AE	CON	/: Geodetic // PROJECT No.: 60637047		BO	RING I	METI	January 7 HOD: 19	90 mm (n Auge	ər	~				D 700	
		City of Hamilton SOIL PROFILE					R: ALTE	CH Dril	ling Ser	vices	SHE	AR STF Vane nat Vane ren				MMER, 64kg; DRO	P, 762mm	
DEPTH SCALE (METRES)	BORING METHOD	DESCRIPTION	STRATA PLOT () () () () () ()	TH N	ТҮРЕ	N VALUE	100	200	300	400 □	WA Wp	20 ATER CO	40 0 ONTEN	60 T PERC	80	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
0		PAVEMENT SURFACE	241									Ĩ		1	1	GR SA SI CL		
Ē		ASPHALT 152 mm thick		.00 .15 1	AC							ρ						Grout
		GRANULAR MATERIAL sand and gravel, brown, moist		2	SS :	23						0						
- 1 - - - -		FILL clayey silt, brown, moist, stiff	239	91 3 88	ss	9							0					Bentonite
- - - - 2 -		CLAYEY SILT trace sand, brown, moist, stiff	1	4	ss	11							 					-
	rilling	hard Begy Ye Weiger		5	SS	33						0	``···.			0 3 74 23		Sand
	3 Bry Laword House and the second sec																	
- 4 - 4 	A 3 Bound of the set o															Sand		
5 6						•••	· · · · · · · · · · · · · · · · · · · ·	,										<u>من من م</u>
Ē			235	03 8.	ss ₁₂	•50/ 5mm												
- - - - - - - - - - - - - - - - - - -		END OF BOREHOLE	·····6	38														-
																		-
																		-
- 10	Э ТО	BE READ IN CONJUNCTION WITH REPORT)																-
DE	PTH	ISCALE				,	AE	C)/								GED BY: KED BY:	

LO	CA	TIO	Г: Glancaster Road MCEA N: Glancaster Rd, Northbound Driving Land	e						BOR	EHO	DLE	: B	H-1	6				SH	EET 1 OF 1
DA AE	CC	im: Dm f	IATES: N 4782456.7; E 586420.3 Geodetic ROJECT No.: 60637047			END BOR	DATE	: Janı ETHOL		022 mm O.			Auger							
			City of Hamilton SOIL PROFILE				MPLES		ALTEC	H Drillir	ig Serv	ces	SHEA	R STR				/MER, 64kg; DRC	P, 762mm	
DEPTH SCALE (METRES)		BORING ME I HOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	~	N VALUE			-1	I		2 WA Wp	0 ² FER CO		i0 8 F PERC	0 ENT WI	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLATION AND WATER LEVELS
			PAVEMENT SURFACE	1	241.17				100 2	200 3	00 4	00	1	0 2	20 3	0 4	0	GR SA SI CL		
0			ASPHALT \152 mm thick		0.00	1.4	UGER	-					0							
			GRANULAR MATERIAL sand and gravel, brown to black, moist	0.0.00	240.26		SS 38	3					U		o					
- 1 - - -			FILL clayey silt, black to brown, moist, stiff		0.91	3	SS 11								0					-
- - - - - -			CLAYEY SILT trace sand, brown, moist, very stiff to hard		239.34 1.83	4A 4B	SS 10)							0 . 0 					
	БL	n Auger				5	SS 24	+				···.		0	···.	•••• ••		0 5 73 22		
3 	3 billing here and the second																			
- - - - - -	4 grey grey are set as a set a																			
- - - - - - - - - - -			wet			7	³⁵ 280 i	nin 	······		•			0						-
- 6 			/		234.64		ss ₂₈₀	-						0						-
- - - - - - - -			END OF BOREHOLE	••••• •••••	6.53															
- 8 - 8 - 9 - 9 - 10 (LOCC DE																				
- - - - - 9																				
- - - - - - - - - - - - - - - - - - -																				
(LOC DE 1 :	PT	ΉS	READ IN CONJUNCTION WITH REPORT)		<u> </u>			A	\ <i>=</i> (CC	M								GED BY: KED BY:	

COORDINATES: N 4782315.9; E 586373.5 START DATE: January 12,2022 DATUM: Geodetic END DATE: January 12,2022 AECOM PROJECT No.: 60637047 BORING METHOD: 130 mm O.D Solid Stem Auger CLIENT: City of Hamilton CONTRACTOR: ALTECH Drilling Services SOIL PROFILE SAMPLES SOIL PROFILE SAMPLES M 2 G H H H H H H H H H H H H H H H H H H				T: Glancaster Road MCEA N: Glancaster Rd, Southboud Driving Lane		R	EC	OF	RD C)F E	OR	EHO	DLE	: B	H-1	7				SH	EET 1 OF 1
Understand Sold PROFILE SAMPLES TO TO SOL PROFILE SAMPLES 100 200 300 400 300 400 300 400 TO 200 400 TO 100 200 300 400 TO 100 200 300 100 <td>CC D/ AE</td> <td>DOC ATL ECC</td> <td>rdin JM: DM F</td> <td>JATES: N 4782315.9; E 586373.5 Geodetic PROJECT No.: 60637047</td> <td></td> <td></td> <td>END BORI</td> <td>DATE</td> <td>: Janu ETHOD</td> <td>ary 12, : 130</td> <td>2022 mm O.</td> <td>D Solid</td> <td></td> <td>Auger</td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>D 700</td> <td></td>	CC D/ AE	DOC ATL ECC	rdin JM: DM F	JATES: N 4782315.9; E 586373.5 Geodetic PROJECT No.: 60637047			END BORI	DATE	: Janu ETHOD	ary 12, : 130	2022 mm O.	D Solid		Auger		6				D 700	
Sign En Sign Sec (N) Sign Sec (N)										ALTECI	H Drillir	g Serv	ices	SHE	AR STR				/IMER, 64Kg; DRO	P, 762mm	
Image: Product subscription of the second state of the second s	DEPTH SCALE (METRES)		BORING METHOI		STRATA PLOT	DEPTH					1	I	00	WA Wp	TER CO	NTENT	0 8 PERC	80 ENT H WI	& GRAIN SIZE DISTRIBUTION	SPECIFIC GRAVITY	INSTALLATION AND WATER
0 ASPHALT 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 </td <td></td> <td></td> <td></td> <td>PAVEMENT SURFACE</td> <td></td> <td>240.68</td> <td></td> <td></td> <td>- ·</td> <td></td> <td>1</td> <td></td> <td></td> <td>- '</td> <td></td> <td></td> <td>- 0</td> <td>Ī</td> <td>GR SA SI CL</td> <td></td> <td></td>				PAVEMENT SURFACE		240.68			- ·		1			- '			- 0	Ī	GR SA SI CL		
1 1 1 0	- 0 - - -			152 mm thick GRANULAR MATERIAL	K	0.00		AC													
Image: Superior Constraints Superior Constra				FILL		240.07	_	SS 40)						0						
1 1 <td>- 1 - -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SS 10</td> <td>)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 8 74 18</td> <td></td> <td>-</td>	- 1 - -							SS 10)										0 8 74 18		-
3 a b 5 SS 23 4 a b 5 SS 23 5 SS 23 0 0 5 SS 23 0 0 6 SILT 200 till 0 0 5 SILT 200 till 0 0 5 SILT 200 till 0 0 5 SILT 200 till 0 0 6 SULT 200 till 0 0 7 Notes: 1 200 till 0 7 Notes: 1. Grundwater was observed at 2.7 m blow grund sufficie upon drilling completion. 0	- - -			very stiff to hard			4	SS 16	5												
1 1 <td> 2 </td> <td></td> <td>•••</td> <td></td> <td></td> <td></td> <td>-</td>	2 																•••				-
SILT some clay, tree sand, grey, moist, hard			Auger				5	SS 23	5						0	···.					
SILT some clay, tree sand, grey, moist, hard	- 3 - 3 -															-					
SILT Some clay, tree sand, grey, moist, hard SILT some clay, tree sand, grey, moist, hard SILT Some clay, tree sand, grey, moist, hard	-	4 SILT 457																			
5 SILT some clay, tree sand, grey, moist, hard 4.57 7 ss. 250/ 2.50 mm, 0 6 6 6 6 6 6 6 7 ss. 250/ 2.50 mm, 0 0 8 ss. 250/ 2.54 16 0 0 8 ss. 250/ 2.54 16 0 0	- 4 - 4 -	4 SILT some clay, tree sand, grey, moist, hard 4.57 some clay, tree sand, grey, moist, hard 4.57																			
F 5 1 Stable min. F 6 1 Stable min. F 6 1 Stable min. F 7 Stable mi		SILT some clay, trce sand, grey, moist, hard																			
r 6 1 <td>- - 5 - -</td> <td colspan="14">SILT some clay, trce sand, grey, moist, hard 4.57 7 ss.2⁵⁰⁰/₂₀₀ mm. 0</td>	- - 5 - -	SILT some clay, trce sand, grey, moist, hard 4.57 7 ss.2 ⁵⁰⁰ / ₂₀₀ mm. 0																			
F 6 1 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·····*</td> <td></td>	-									·····*											
Image: Second	- - 6 -					· · · · · · · · · · · · · · · · · · ·									0						
Notes: 1. Groundwater was observed at 2.7 m below ground surface upon drilling completion.	_				ļЩ	234.15	1. 1.	2001													
8 I	- - - 7 - -			Notes: 1. Groundwater was observed at 2.7 m below ground surface upon drilling		·	ŀł														
(LOG TO BE READ IN CONJUNCTION WITH REPORT) DEPTH SCALE 1:50 LOGGED BY: IA CHECKED BY: MA	- 8 - -																				
LOGGED BY: IA 1.50 LOGGED BY: IA CHECKED BY: MA	-																				
(LOG TO BE READ IN CONJUNCTION WITH REPORT) DEPTH SCALE 1:50 LOGGED BY: IA CHECKED BY: MA	- - 9 -																				
(LOG TO BE READ IN CONJUNCTION WITH REPORT) DEPTH SCALE LOGGED BY: IA CHECKED BY: MA																					
(LOG TO BE READ IN CONJUNCTION WITH REPORT) DEPTH SCALE LOGGED BY: IA LOGGED BY: IA CHECKED BY: MA	- 10																				
	(LC DE	EPT	THS						A		CO	M									

LOC COC DAT AEC	at Dri Un	'ion Din /I: /I P	Glancaster Road MCEA Glancaster Rd, Southboud Driving Lane ATES: N 4782192.9; E 586335.7 Geodetic ROJECT No.: 60637047 Control Unrulives		R	STA END BOR	rt e Da Ing	DATI TE: ME	DO E: Jan Janua THOD:	iuary iry 11, 190	11,202 ,2022 mm C	2 .D Hol	low S	terr								EET 1 OF
	_		City of Hamilton SOIL PROFILE			1			OR: A	LIEC	H Drilli	ng Sei			SHE/				ER HAN Pa ^{riaxial} ● ^{ned -} ∆	/MER, 64kg; DRC	P, 762mm	
(METRES)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	~		N VALUE			-1	300	400		2 WA Wp	0 4 FER CC	DNTEN	δ0 Γ PER(80	REMARKS & GRAIN SIZE DISTRIBUTION (%)	SPECIFIC GRAVITY	WELL INSTALLAT AND WATI LEVELS
0			PAVEMENT SURFACE		240.20															GR SA SI CL		
			ASPHALT 152 mm thick GRANULAR MATERIAL sand and gravel, brown, moist	0.0	0.00 0.15	1	AC SS	46							0 0							Grout
1			FILL clayey silt, brown, moist, compact		239.28 0.91		SS	11									0					Bentonite
2			SILT some clay, trace sand, brown, moist, firm to stiff		1.52	4	SS	7									0			0 4 85 11		
	Bui	Stem Auger				5	SS	14							•••••	··. c						Sand
3		mm O.D Hollow	very stiff			6	SS	19				 				0						Nickicki
4	hard grey															Sand						
6			END OF BOREHOLE		233.82 6.38		 SS ₁	>50/ 25 mi	••••• •••• •						1	o						<u>্যমণ্ডমণ্ডম</u>
7			Notes: 1. Groundwater was observed at 5.5 m below ground surface upon drilling completion. 2. Monitoring well was installed at 6.1 m below ground surface with flush mount protection.	· · · · ·																		
8																						
9																						
10																						
LOG	TH		READ IN CONJUNCTION WITH REPORT)						A	Ξ	CC)/	1								GED BY:	

Appendix C

Geotechnical Laboratory Test Results

- Moisture Content Test Results
- Sieve and Hydrometer Test Results
- Atterberg Limits
- Standard Proctor Test
- California Bearing Ratio Test
- Grain Size Test Results

Moisture Content Test Results

MOISTURE CONTENT DETERMINATION

			CLIENT		TERMINA			DATE	January 25, 2022
		PROJEC	T NUMBER	60637047				TESTED BY	SAM
		PROJ	ECT NAME					REVIEWED BY	Ramana M
			LOCATION	Glancaster Road				<u> </u>	
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Observations Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Formula Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100
	AS1	0-1	139	13.58	73.90	71.01	2.89	57.43	5.03
	SS2A	1-3	87	13.65	70.18	66.18	4.00	52.53	7.61
	SS2B	1-3	93	13.41	63.86	56.55	7.31	43.14	16.94
	SS3	3-5	80	13.64	73.13	64.81	8.32	51.17	16.26
BH-1	SS4	5-7	134	13.70	65.67	57.12	8.55	43.42	19.69
	SS5	7.5-9.5	88	13.52	72.17	59.97	12.20	46.45	26.26
	SS6	10-12	178	13.52	90.71	75.21	15.50	61.69	25.13
	SS7	15-17	78	13.74	73.54	64.17	9.37	50.43	18.58
	SS8	20-22	89	13.58	81.27	72.75	8.52	59.17	14.40
	AS1	0-1	85	13.42	67.01	63.86	3.15	50.44	6.25
	SS2	1-3	114	13.40	66.00	63.13	2.87	49.73	5.77
	SS3	3-5	81	13.59	64.71	53.10	11.61	39.51	29.38
	SS4A	5-7	184	13.54	68.54	54.04	14.50	40.50	35.80
BH-2	SS4B	5-7	65	13.60	70.07	60.27	9.80	46.67	21.00
	SS5	7.5-9.5	161	13.38	79.41	69.34	10.07	55.96	17.99
	SS6	10-12	102	13.48	81.71	71.20	10.51	57.72	18.21
	SS7	15-17	167	13.52	76.48	67.52	8.96	54.00	16.59
	SS8	20-22	141	13.62	100.76	91.19	9.57	77.57	12.34
	AS1	0-1	92	13.41	72.52	69.95	2.57	56.54	4.55
	SS2	1-3	156	13.41	69.10	66.44	2.66	53.03	5.02
	SS3A	3-5	55	13.31	74.11	71.59	2.52	58.28	4.32
	SS3B	3-5	169	13.41	61.69	56.17	5.52	42.76	12.91
BH-3	SS4	5-7	68	13.47	65.67	56.58	9.09	43.11	21.09
	SS5	7.5-9.5	185	13.47	80.81	71.71	9.10	58.24	15.63
	SS6	10-12	86	13.44	73.50	65.87	7.63	52.43	14.55
	SS7	15-17	128	13.71	81.29	74.06	7.23	60.35	11.98
	SS8	20-22	67	13.59	82.48	76.70	5.78	63.11	9.16

	AS1	0-1	70	13.61	69.31	66.20	3.11	52.59	5.91
	SS2	1-3	170	13.60	69.11	66.47	2.64	52.87	4.99
	SS3	3-5	100	13.64	69.73	66.75	2.98	53.11	5.61
	SS4	5-7	75	13.57	55.09	49.68	5.41	36.11	14.98
BH-4	SS5A	7.5-9.5	192	13.68	74.22	65.59	8.63	51.91	16.62
	SS5B	7.5-9.5	118	13.65	73.77	64.10	9.67	50.45	19.17
	SS6	10-12	66	13.43	30.58	28.78	1.80	15.35	11.73
	SS7	15-17	143	13.54	86.59	78.33	8.26	64.79	12.75
	SS8	20-22	164	13.56	79.20	68.89	10.31	55.33	18.63
	AS1	0-1	139	13.58	73.80	72.81	0.99	59.23	1.67
	SS2	1-3	87	13.68	83.89	81.06	2.83	67.38	4.20
	SS3A	3-5	156	13.45	51.05	47.82	3.23	34.37	9.40
	SS3B	3-5	80	13.67	68.51	62.48	6.03	48.81	12.35
BH-5	SS4	5-7	134	13.71	61.17	51.82	9.35	38.11	24.53
	SS5	7.5-9.5	88	13.54	81.26	69.79	11.47	56.25	20.39
	SS6	10-12	178	13.57	73.00	66.93	6.07	53.36	11.38
	SS7	15-17	78	13.72	69.01	62.22	6.79	48.50	14.00
	SS8	20-22	89	13.57	83.40	75.09	8.31	61.52	13.51
								Total Samples	45

MOISTURE CONTENT DETERMINATION

			CLIENT		TERMINA			DATE	January 26, 2022
		PROJEC	T NUMBER	60637047				TESTED BY	SAM/IAN
		PROJ	IECT NAME					REVIEWED BY	Ramana M
			LOCATION	Glancaster Road					
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Observations Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Formula Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100
	AS1	0-1	85	13.45	56.78	54.64	2.14	41.19	5.20
	SS2	1-3	92	13.44	65.73	62.36	3.37	48.92	6.89
	SS3A	3-5	65	13.64	67.91	60.21	7.70	46.57	16.53
	SS3B	3-5	184	13.55	59.81	52.05	7.76	38.50	20.16
BH-6	SS4A	5-7	170	13.64	67.93	57.21	10.72	43.57	24.60
billo	SS4B	5-7	161	13.38	56.68	49.52	7.16	36.14	19.81
	SS5	7.5-9.5	102	13.51	84.36	69.47	14.89	55.96	26.61
	SS6	10-12	192	13.68	70.41	62.45	7.96	48.77	16.32
	SS7	15-17	141	13.83	102.71	90.40	12.31	76.57	16.08
	SS8	20-22	167	13.53	98.43	83.36	15.07	69.83	21.58
	AS1	0-1	55	13.35	75.92	72.74	3.18	59.39	5.35
	SS2A	1-3	100	13.61	65.65	62.71	2.94	49.10	5.99
	SS2B	1-3	68	13.46	35.22	31.18	4.04	17.72	22.80
	SS3	3-5	86	13.46	59.93	51.53	8.40	38.07	22.06
BH-7	SS4	5-7	185	13.52	60.24	51.07	9.17	37.55	24.42
	SS5	7.5-9.5	118	13.65	71.88	60.31	11.57	46.66	24.80
	SS6	10-12	128	13.76	70.31	65.20	5.11	51.44	9.93
	SS7	15-17	70	13.57	78.29	70.48	7.81	56.91	13.72
	SS8	20-22	143	13.54	78.20	71.65	6.55	58.11	11.27
	AS1	0-1	54	13.47	63.19	61.18	2.01	47.71	4.21
	SS2A	1-3	111	13.57	74.53	71.37	3.16	57.80	5.47
	SS2B	1-3	147	13.55	67.90	57.83	10.07	44.28	22.74
	SS3	3-5	76	13.67	66.27	58.19	8.08	44.52	18.15
BH-8	SS4A	5-7	150	13.66	68.92	61.02	7.90	47.36	16.68
	SS4B	5-7	61	13.47	83.01	74.26	8.75	60.79	14.39
	SS5	7.5-9.5	129	13.57	70.15	61.33	8.82	47.76	18.47
	SS6	10-12	171	13.59	74.51	65.60	8.91	52.01	17.13

	SS7	15-17	190	13.57	75.19	67.95	7.24	54.38	13.31
	SS8	20-22	109	13.65	98.36	88.73	9.63	75.08	12.83
	AS1	0-1	126	13.75	76.23	69.36	6.87	55.61	12.35
	SS2A	1-3	146	13.82	75.72	71.59	4.13	57.77	7.15
	SS2B	1-3	153	13.59	64.04	56.87	7.17	43.28	16.57
	SS3	3-5	180	13.52	119.67	99.12	20.55	85.60	24.01
BH-9	SS4	5-7	123	13.68	69.07	60.55	8.52	46.87	18.18
	SS5	7.5-9.5	90	13.58	71.63	63.33	8.30	49.75	16.68
	SS6	10-12	182	13.53	112.54	97.82	14.72	84.29	17.46
	SS7	15-17	189	13.45	118.04	103.19	14.85	89.74	16.55
	SS8	20-22	149	13.56	94.83	80.09	14.74	66.53	22.16
	AS1	0-1	64	13.52	78.72	76.05	2.67	62.53	4.27
	SS2A	1-3	193	13.49	65.77	63.81	1.96	50.32	3.90
	SSS2B	1-3	59	13.52	43.07	39.66	3.41	26.14	13.05
	SS3	3-5	74	13.70	50.87	45.00	5.87	31.30	18.75
BH-10	SS4	5-7	77	13.48	93.22	75.40	17.82	61.92	28.78
	SS5	7.5-9.5	172	13.50	103.05	90.62	12.43	77.12	16.12
	SS6	10-12	103	13.62	61.52	53.05	8.47	39.43	21.48
	SS7	15-17	106	13.58	76.32	68.67	7.65	55.09	13.89
	SS8	20-22	165	13.72	76.38	67.68	8.70	53.96	16.12
								Total Samplos	47

Total Samples 47

MOISTURE CONTENT DETERMINATION

					TERIVIINA			DATE	January 27, 2022	
		PROJEC	T NUMBER	60637047		TESTED BY	IAN			
		PROJ	JECT NAME			REVIEWED BY	Ramana M			
			LOCATION	Glancaster Road						
					Observations			Formula		
Borehole Name	Sample Id	Depth (feet)	Can Id			Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Weight of Dry soil (g) W _s = (W ₃ -W ₁)	Moisture Content (%) w = (W _w /W _s)*100	
	AS1	0-1	122	13.70	76.69	74.19	2.50	60.49	4.13	
	SS2 1-3		96	13.48	61.39	56.19	5.20	42.71	12.18	
	BH-11 SS3 3-5	3-5	94	13.57	55.53	49.61	5.92	36.04	16.43	
BH 11		5-7	112	13.58	75.42	66.05	9.37	52.47	17.86	
DIFT	SS5	7.5-9.5	71	13.73	96.23	85.61	10.62	71.88	14.77	
	SS6	10-12	140	13.76	68.43	61.06	7.37	47.30	15.58	
	SS7	15-17	174	13.65	114.98	100.56	14.42	86.91	16.59	
	SS8	20-22	157	13.66	67.83	58.70	9.13	45.04	20.27	
	AS1	0-1	162	13.57	41.21	39.85	1.36	26.28	5.18	
	SS2	1-3	173	13.67	57.69	55.92	1.77	42.25	4.19	
	SS3	3-5	72	13.61	65.83	57.25	8.58	43.64	19.66	
	SS4	5-7	52	13.70	73.92	64.68	9.24	50.98	18.12	
BH-12	SS5	7.5-9.5	124	13.73	84.54	74.38	10.16	60.65	16.75	
	SS6	10-12	194	13.77	74.09	65.50	8.59	51.73	16.61	
	SS7A	15-17	97	13.54	70.56	61.16	9.40	47.62	19.74	
	SS7B	15-17	99	13.66	57.97	51.00	6.97	37.34	18.67	
	SS8	20-22	168	13.67	63.29	56.33	6.96	42.66	16.32	
								Total Samples	17	

Total Samples 17

MOISTURE CONTENT DETERMINATION

					TERMINA			DATE	January 27, 2022
		PROJEC	T NUMBER	60637047				TESTED BY	IAN
		PROJ	ECT NAME					REVIEWED BY	Ramana M
			LOCATION	Glancaster Road					
Borehole Name	Sample Id	Depth (feet)	Can Id	Weight of Empty Can (g) W ₁	Observations Weight of Wet Soil + Can (g) W ₂	Weight of Dry Soil + Can (g) W ₃	Weight of Water (g) W _w = (W ₂ -W ₃)	Formula Weight of Dry soil (g) $W_s =$ (W_3 - W_1)	Moisture Content (%) w = (W _w /W _s)*100
	AS1	0-1	13	13.63	49.28	45.28	4.00	31.65	12.64
	SS2	1-3	63	13.47	48.20	46.57	1.63	33.10	4.92
	SS3	3-5	177	13.85	84.90	73.65	11.25	59.80	18.81
DU 40	SS4	5-7	79	13.41	51.92	44.65	7.27	31.24	23.27
BH-13	SS5	7.5-9.5	155	13.31	58.49	52.88	5.61	39.57	14.18
	SS6	10-12	125	13.56	69.46	63.06	6.40	49.50	12.93
	SS7	15-17	110	13.86	51.51	45.72	5.79	31.86	18.17
	SS8	20-22	53	13.56	54.78	49.61	5.17	36.05	14.34
	AS1	0-1	120	13.75	84.38	81.64	2.74	67.89	4.04
	SS2	1-3	101	13.49	44.15	39.87	4.28	26.38	16.22
	SS3	3-5	181	13.60	40.79	36.30	4.49	22.70	19.78
511.44	SS4	5-7	58	13.48	91.95	80.56	11.39	67.08	16.98
BH-14	SS5	7.5-9.5	16	13.54	46.20	41.72	4.48	28.18	15.90
	SS6	10-12	152	13.29	67.83	60.23	7.60	46.94	16.19
	SS7	15-17	191	13.70	61.95	54.62	7.33	40.92	17.91
	SS8	20-22	136	13.63	83.03	74.83	8.20	61.20	13.40
	AS1	0-1	138	13.57	67.23	62.13	5.10	48.56	10.50
	SS2	1-3	133	13.55	55.00	49.15	5.85	35.60	16.43
	SS3	3-5	186	13.56	63.40	55.03	8.37	41.47	20.18
BH-15	SS4	5-7	83	13.75	71.19	61.98	9.21	48.23	19.10
	SS5	7.5-9.5	188	13.52	74.64	67.31	7.33	53.79	13.63
	SS6	10-12	164	13.72	70.66	61.63	9.03	47.91	18.85
	SS7	15-17	144	13.71	62.53	56.60	5.93	42.89	13.83
	AS1	0-1	95	13.62	46.37	45.14	1.23	31.52	3.90
	SS2	1-3	82	13.62	56.79	49.42	7.37	35.80	20.59
	SS3	3-5	130	13.48	63.98	54.80	9.18	41.32	22.22
	SS4A	5-7	163	13.72	61.30	52.45	8.85	38.73	22.85

BH-16	SS4B	5-7	107	13.67	86.35	71.14	15.21	57.47	26.47
	SS5	7.5-9.5	175	13.71	73.76	64.45	9.31	50.74	18.35
	SS6	10-12	60	13.33	55.11	48.81	6.30	35.48	17.76
	SS7	15-17	145	13.93	74.98	67.75	7.23	53.82	13.43
	SS8	20-22	142	13.70	88.11	78.43	9.68	64.73	14.95
	AS1	0-1	91	13.56	40.38	38.90	1.48	25.34	5.84
	SS2A	1-3	121	13.79	59.54	57.58	1.96	43.79	4.48
	SS2B	1-3	131	13.65	42.38	38.95	3.43	25.30	13.56
	SS3A	3-5	158	13.56	37.50	34.66	2.84	21.10	13.46
	SS3B	3-5	132	13.68	44.07	39.38	4.69	25.70	18.25
BH-17	SS4	5-7	160	13.33	64.92	56.34	8.58	43.01	19.95
	SS5	7.5-9.5	135	13.64	59.87	53.02	6.85	39.38	17.39
	SS6A	10-12	116	13.74	68.12	60.88	7.24	47.14	15.36
	SS6B	10-12	127	13.67	71.99	62.61	9.38	48.94	19.17
	SS7	15-17	115	13.62	82.83	74.36	8.47	60.74	13.94
	SS8	20-22	69	13.57	94.15	83.39	10.76	69.82	15.41
	AS1	0-1	62	13.51	75.91	74.48	1.43	60.97	2.35
	SS2	1-3	187	13.45	69.65	65.93	3.72	52.48	7.09
	SS3	3-5	108	13.69	27.39	24.83	2.56	11.14	22.98
BH-18	SS4	5-7	166	13.54	68.08	57.59	10.49	44.05	23.81
Birto	SS5	7.5-9.5	84	13.48	63.46	55.54	7.92	42.06	18.83
	SS6	10-12	176	13.49	69.80	61.30	8.50	47.81	17.78
	SS7	15-17	113	13.65	74.27	66.62	7.65	52.97	14.44
	SS8	20-22	285	13.59	79.47	72.85	6.62	59.26	11.17
								Total Samples	51

Sieve and Hydrometer Test Results

AECOM

Hydrometer Analysis

						· · , · · · · · · · · · · · · · · · · · · ·							
Lab No	2022	202088S	1088S Borehole No			BH-1		Tested by	Dharmik	/IAN	V	Soil Hydr	ometer Used
Project Name	Glancaster Ro	id improvements Sample id			SS4			Reviewed by	Ramana M		151 H SN	993585	•
Project Number	606	637047		Depth (feet)			2	Date	28-Jan-22		151 11 514	115105	0
Location	Hamilte	on, Ontario		Soil Classification Silt, some c				ome clay, trace sand (ML)					
So	Soil Information Hydrometer							Calcu	Calculation of Dry Soil Mass				
Liquid Limit	(LL)		Volume of Bu	ılb	(V _B)	63.1	cm ³	Oven Dried Mass	(Wo)	38.82	g		
Plasticity Index	(PI)		Length of Bu	lb	(L ₂)	14.15	cm	Air Dried Mass	(Wa)	38.936	g		
Specific Gravity of Soil	(Gs)	2.70	Length from	1.0' reading to top of Bulb	(Ls)	10.5	cm	Hygroscopic Corr Facto	or (F)	0.997			
Specific Gravity of Water	(Gw)	1	Scale Dimen	sion	(hs)	0.27	cm/Div	Air Dried Mass in Analy	sis (Ma)	50	g		
Sg Correction Factor	(α)	0.989	Cross-section	nal Area of Cylinder	(A)	28.1351	cm ²	Oven Dried Mass in An	alysis (Mo)	49.9	g		
Total Mass of sample		297.8	g Meniscus Co	rrection	(Hm)	0.0005	Divisions	% Passing 2.0 mm Siev	/e (P10)	99.6			
Soil Particles Greater Than This Are E	cluded From Graph	9.50	mm					Sample Represented	(W)	50.0	a		

s	Sieve Analysis of Re	tained on 2.0 mm Sieve (M2)	
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	1.0	296.8	99.7
2.0	1.1	296.8	99.6

	Sieve Analysis of Hydro	ometer Material	(M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.9	99.6
0.850	0.2	49.6	99.2
0.425	0.4	49.4	98.8
0.25	0.6	49.2	98.4
0.106	1.4	48.5	96.9
0.075	2.2	47.7	95.2
Pass 0.075	1.7		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

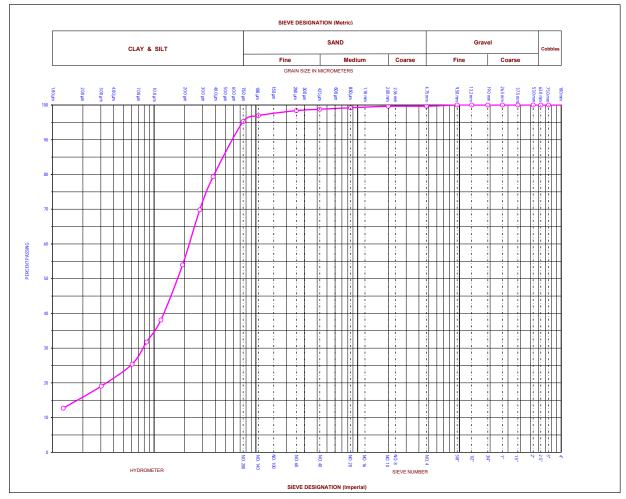
D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5^{*}[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
29-Jan-22	10:05:00 AM	1.0	1.0280	0.0030	23.5	1.0250	79.4	8.65	9.28431	0.01293037	0.0380
	10:06:00 AM	2.0	1.0250	0.0030	23.5	1.0220	69.8	9.46	9.28431	0.01293037	0.0281
	10:09:00 AM	5.0	1.0200	0.0030	23.4	1.0170	54.0	10.81	9.30578	0.01294531	0.0190
	10:19:00 AM	15.0	1.0150	0.0030	23.3	1.0120	38.1	12.16		0.01296029	
	10:34:00 AM	30.0	1.0130	0.0030	23.3	1.0100	31.7	12.70		0.01296029	
	11:04:00 AM	60.0	1.0110	0.0030	23.4	1.0080	25.4	13.24		0.01294531	0.0061
	2:14:00 PM	250.0	1.0090	0.0030	23.7	1.0060	19.0	13.78		0.01290063	
30-Jan-22	10:04:00 AM	1440.0	1.0070	0.0030	24.0	1.0040	12.7	14.32		0.01285634	

	Viscosiity	к
L1 cm	с	(ŋ/(Gs-1)
2.70	-0.464269	5.4613609
3.51	-0.464269	5.4613609
4.86	-0.461960	5.4739861
6.21	-0.459647	5.4866631
6.75	-0.459647	5.4866631
7.29	-0.461960	5.4739861
7.83	-0.468875	5.4362642
8.37	-0.475753	5.3989998

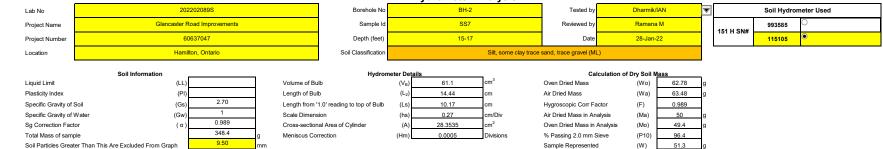

Mass Retained on Seive # 10	38.73
Mass Passed Seive # 10	259.1
Jar Number	

Data	Can Id	115
pic D	Empty Can Weight (g)	13.66
Hygroscopic	Can+ Air Dried Soil (g)	52.60
Hyi	Can + Oven Dried Soil (g)	52.48

AECOM Canada Ltd.

ΑΞϹΟΜ

UNIFIED SOIL CLASSIFICATION SYSTEM



	Client	AECOM		Date Januar	y 28, 2622	Pro	oject Nur	mber	60637047				Gravel (%)	0
	Sample ID	BH-1	SS4	Depth (feet)	10-1:	Pro	Project Name		Glar	ncaster Roa	ad Improven	nents	Sand (%)	5
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	02202088S		Project Location			Hamilton, Ontario				Silt (%)	80
Toronto, Ontano	Soil Classification		Silt, some clay,					(ML)					Clay (%)	15
	Figure No.			D10	N/A	D3	30	0.008	D60	0.022	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis

% Passing

96.4

94.5

93.1

92.1

90.4

80.4

						0			
2	Sieve Analysis of Retained on 2.0 mm Sieve (M2)					Sieve Analysis of Hydrometer Material			
n)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing		Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)		
					2.00	0.0	49.4		
					0.850	1.0	48.5		
					0.425	1.7	47.8		
					0.25	2.2	47.2		
					0.106	3.1	46.4		
					0.075	3.6	45.9		
					Pass 0.075	0.3			
							-		
-	1		1						

Percent In Suspension (P) as per Section 14.3 of	f ASTM D 422
--	--------------

P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B/A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
29-Jan-22	10:11:00 AM	1.0	1.0310	0.0030	23.0	1.0280	86.7	8.03	9.39251	0.0130055	0.0369
	10:12:00 AM	2.0	1.0290	0.0030	23.0	1.0260	80.5	8.57	9.39251	0.0130055	0.0269
	10:15:00 AM	5.0	1.0250	0.0030	23.1	1.0220	68.1	9.65	9.37069	0.01299039	0.0180
	10:25:00 AM	15.0	1.0200	0.0030	23.1	1.0170	52.6	11.00	9.37069	0.01299039	0.0111
	10:40:00 AM	30.0	1.0170	0.0030	23.1	1.0140	43.3	11.81	9.37069	0.01299039	0.0082
	11:10:00 AM	60.0	1.0140	0.0030	23.0	1.0110	34.0	12.62	9.39251	0.0130055	0.0060
	2:20:00 PM	250.0	1.0100	0.0030	23.7	1.0070	21.7	13.70	9.24165	0.01290063	0.0030
30-Jan-22	10:10:00 AM	1440.0	1.0080	0.0030	23.1	1.0050	15.5	14.24	9.37069	0.01299039	0.0013

	Viscosiity	к		
L1 cm	с	(η/(Gs-1)		
1.89	-0.452682	5.5250065		
2.43	-0.452682	5.5250065		
3.51	-0.455008	5.512173		
4.86	-0.455008	5.512173		
5.67	-0.455008	5.512173		
6.48	-0.452682	5.5250065		
7.56	-0.468875	5.4362642		
8.10	-0.455008	5.512173		

Mass Retained on Seive # 10	62.01
Mass Passed Seive # 10	286.34
Jar Number	

6.2

12.6

342.2

335.7

98.2

96.4

Sieve Size (mm

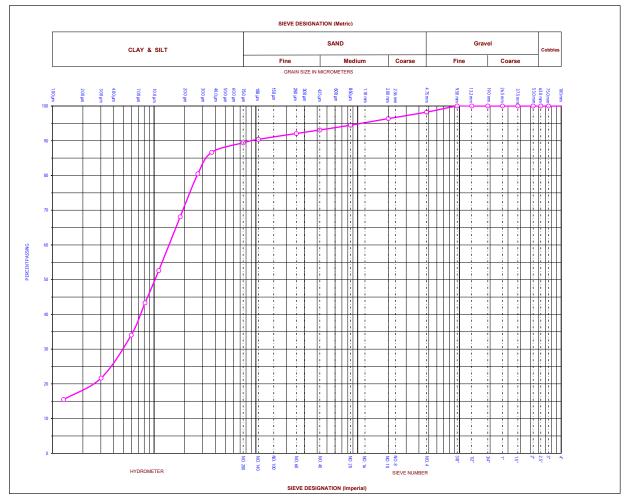
75.0

63.0

53.0

37.5

26.5


19.0

13.2 9.5 4.75

2.0

ata	Can Id	166
pic D	Empty Can Weight (g)	13.48
Hygroscopic Data	Can+ Air Dried Soil (g)	76.96
Hyi	Can + Oven Dried Soil (g)	76.26

ΑΞϹΟΜ

		and GIEE DIG H												
	Client	AECOM	Date January 28, 2622			Project Nu	mber		6063	37047	Gravel (%)	2		
	Sample ID	BH-2	8H-2 SS7 Depth (feet) 15-17 Project Name Glancaster Road Improvements					ients	Sand (%)	9				
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto. Ontario	83 Galaxy Blvd, Unit 6 Lab Sample No:				202202089\$					Hamilton, Ontario				71
rolonio, ontano	Soil Classification	Silt, some clay trace sand, trace gravel (ML)						Clay (%)	18					
	Figure No.		D10 N/A D30 0.005 D60 0.014 Cu N/A		N/A	Cc	N/A							

AECOM

Hydrometer Analysis

						-	-							
Lab No	202202090S			Borehole No		BH-3		Tested by	Dha	mik/IAN	Soil Hyd		Soil Hydro	ometer Used
Project Name	Glancaster Road Improvements			Sample Id	SS4			Reviewed by	Ramana M			151 H SN#	993585	•
Project Number	60	637047		Depth (feet)	5-7		Date	28-Jan-22			13111314#	115105	0	
Location	n Hamilton, Ontario			Soil Classification	n Lean Clay, trace sand, trace gravel (CL)									
:	Hydrom	neter Det <u>a</u>	ils		Ca	Iculation of Dry S	oil M <u>ass</u>	_						
Liquid Limit	(LL)		Volume of Bu	lb	(V _B)	63.1	cm ³	Oven Dried Mass	(W	o) 55.37	g			
Plasticity Index	(PI)		Length of Bul	b	(L ₂)	14.15	cm	Air Dried Mass	(W	a) 55.56	g			
Specific Gravity of Soil	(Gs)	2.70	Length from '	1.0' reading to top of Bulb	(Ls)	10.5	cm	Hygroscopic Corr Fa	actor (F)	0.997				
Specific Gravity of Water	(Gw)	1	Scale Dimens	ion	(hs)	0.27	cm/Div	Air Dried Mass in An	alysis (Ma	i) 50	g			
Sg Correction Factor	(α)	0.989	Cross-section	al Area of Cylinder	(A)	28.1351	cm ²	Oven Dried Mass in	Analysis (Me) 49.8	g			
Total Mass of sample		431.2	g Meniscus Co	rection	(Hm)	0.0005	Divisions	% Passing 2.0 mm \$	Sieve (P1	0) 99.0				
Soil Particles Greater Than This Are	Excluded From Graph	9.50	mm					Sample Represente	d (W	50.3	g			

Sieve Analysis of Retained on 2.0 mm Sieve (M2)										
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing							
75.0										
63.0										
53.0										
37.5										
26.5										
19.0										
13.2										
9.5										
4.75	3.8	427.4	99.1							
2.0	4.4	426.8	99.0							

	Sieve Analysis of Hydro	ometer Material	(M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.8	99.0
0.850	0.3	49.6	98.5
0.425	0.5	49.3	98.0
0.25	0.8	49.1	97.5
0.106	1.3	48.5	96.4
0.075	1.7	48.1	95.6
Pass 0.075	0.1		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5^{*}[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
29-Jan-22	10:24:00 AM	1.0	1.0310	0.0030	23.3	1.0280	88.3	7.84	9.32733	0.01296029	0.0363
	10:25:00 AM	2.0	1.0285	0.0030	23.3	1.0255	80.5	8.52	9.32733	0.01296029	0.0267
	10:28:00 AM	5.0	1.0250	0.0030	23.3	1.0220	69.4	9.46	9.32733	0.01296029	0.0178
	10:38:00 AM	15.0	1.0210	0.0030	23.3	1.0180	56.8	10.54	9.32733	0.01296029	0.0109
	10:53:00 AM	30.0	1.0180	0.0030	23.3	1.0150	47.3	11.35	9.32733	0.01296029	0.0080
	11:23:00 AM	60.0	1.0160	0.0030	23.4	1.0130	41.0	11.89	9.30578	0.01294531	0.0058
	2:33:00 PM	250.0	1.0125	0.0030	23.8	1.0095	30.0	12.84	9.22045	0.01288582	0.0029
30-Jan-22	10:23:00 AM	1440.0	1.0095	0.0030	24.2	1.0065	20.5	13.65	9.13649	0.01282703	0.0012

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
1.89	-0.459647	5.4866631
2.57	-0.459647	5.4866631
3.51	-0.459647	5.4866631
4.59	-0.459647	5.4866631
5.40	-0.459647	5.4866631
5.94	-0.461960	5.4739861
6.89	-0.471171	5.4237923
7.69	-0.480318	5.3744072

Mass Retained on Seive # 10	104.72
Mass Passed Seive # 10	326.443
Jar Number	

ata	Can Id	69
pic D	Empty Can Weight (g)	13.57
Hygroscopic Data	Can+ Air Dried Soil (g)	69.13
Hyi	Can + Oven Dried Soil (g)	68.94

ΑΞϹΟΜ

	Client	AECOM		Date	January 28	8, 2622 Project Number				6063		Gravel (%)	1	
	Sample ID	BH-3	SS4	Depth	ı (feet)	5-7	5-7 Project Name			Glancaster Road Improvements				3
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		202202090S Project Location Hamilton, Ontario S									Silt (%)	71	
roono, ontano	Soil Classification		Lean Clay, trace sand, trace gravel (CL)						Clay (%)	25				
	Figure No.	D10				N/A	D30	0.003	D60	0.013	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

Lab No	202202091S			Borehole No		BH-4			Tested by	Dharmik	IAN	▼		Soil Hydro	meter Used	
Project Name	Glancast	r Road In	nprovements		Sample Id	Sample Id SS5B			Re	eviewed by	Ramana M			151 H SN#	993585	0
Project Number		6063704	47		Depth (feet)	et) N/A				Date 28-Jan-22				151 11 514#	115105	•
Location	H	amilton, O	Intario		Soil Classification	Soil Classification Lean Clay, trav			Clay, trace sand	(CL)			_			
Soil Information					Hydrom	eter Det	ills			Calculat	tion of Dry Soil M	lass	_			
Liquid Limit	(1	.L)			Volume of Bulb	(V _B)	61.1	cm ³	Oven Dri	ed Mass	(Wo)	51.71	g			
Plasticity Index	(PI)			Length of Bulb	(L ₂)	14.44	cm	Air Dried	Mass	(Wa)	51.903	g			
Specific Gravity of Soil	(0	is)	2.70		Length from '1.0' reading to top of Bulb	(Ls)	10.17	cm	Hygrosco	pic Corr Factor	(F)	0.996				
Specific Gravity of Water	(6	w)	1		Scale Dimension	(hs)	0.27	cm/Div	Air Dried	Mass in Analysis	(Ma)	50	g			
Sg Correction Factor	(α)	0.989		Cross-sectional Area of Cylinder	(A)	28.3535	cm ²	Oven Dri	ed Mass in Analy	sis (Mo)	49.8	g			
Total Mass of sample			231.7	g	Meniscus Correction	(Hm)	0.0005	Divisions	% Passin	ig 2.0 mm Sieve	(P10)	99.8				
Soil Particles Greater Than	n This Are Excluded From Graph		9.50	mm					Sample F	Represented	(W)	49.9	g			
									Pr	rcont in Sue	nension (P) a	e por Section	14 3		122	

	Sieve Analysis of Re	tained on 2.0 mm Sieve (M2)	
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	0.5	231.2	99.8
2.0	0.5	231.2	99.8

	Sieve Analysis of Hydrometer Material (M7)											
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing									
2.00	0.0	49.8	99.8									
0.850	0.2	49.6	99.3									
0.425	0.4	49.4	98.9									
0.25	0.6	49.2	98.6									
0.106	1.1	48.7	97.6									
0.075	1.8	48.0	96.3									
Pass 0.075	0.3											

rcent In Suspension (P) as per Section 14.3 of ASTM D 422

= [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

here R = Corrected Hydrometer Reading = Hs - Hc

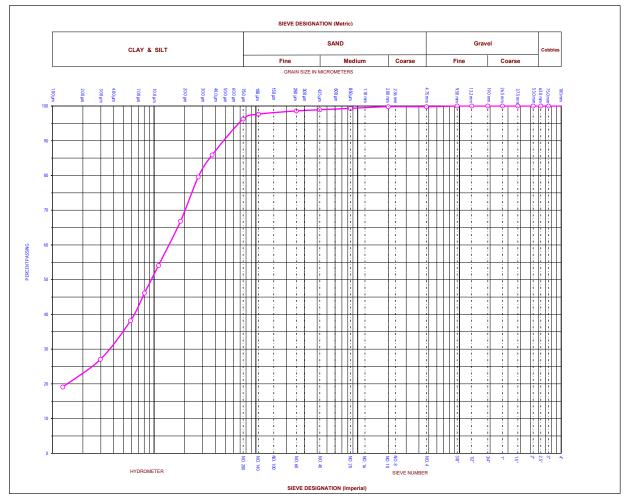
= Actual Hydrometer Reading = Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ V_B/A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm T = Time in minutes

Elaspsed Time Date Time Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise D in mm (minutes) ĸ 29-Jan-22 10:42:00 AM 1.0 1.0300 0.0030 23.6 1.0270 85.9 8.30 9.26294 0.01291548 0.0372 1.0280 2.0 0.0030 23.6 1.0250 79.6 8.84 9.26294 0.01291548 0.0272 10:43:00 AM 5.0 1.0240 0.0030 9.26294 0.01291548 0.0182 10:46:00 AM 23.6 1.0210 66.8 9.92 10:56:00 AM 15.0 1.0200 0.0030 23.7 1.0170 54.1 11.00 9.24165 0.01290063 0.0110 11:11:00 AM 30.0 1.0175 0.0030 23.6 1.0145 46.1 11.68 9.26294 0.01291548 0.0081 11:41:00 AM 60.0 1.0150 0.0030 23.5 1.0120 38.2 12.35 9.28431 0.01293037 0.0059 2:51:00 PM 250.0 1.0115 0.0030 23.9 1.0085 27.0 13.30 9.19933 0.01287106 0.0030 10:41:00 AM 19.1 13.97 1440.0 1.0090 0.0030 24.0 1.0060 9.17830 0.01285634 0.0013 30-Jan-22


	Viscosiity	к				
L1 cm	с	(η/(Gs-1)				
2.16	-0.466574	5.448787				
2.70	-0.466574	5.448787				
3.78	-0.466574	5.448787				
4.86	-0.468875	5.4362642				
5.53	-0.466574	5.448787				
6.21	-0.464269	5.4613609				
7.15	-0.473464	5.4113709				
7.83	-0.475753	5.3989998				

Mass Retained on Seive # 10	23.283
Mass Passed Seive # 10	208.406
Jar Number	

ata	Can Id	84
pic D	Empty Can Weight (g)	13.49
Hygroscopic Data	Can+ Air Dried Soil (g)	65.39
Hyi	Can + Oven Dried Soil (g)	65.20

			Perc
of Hydro	ometer Material	(M7)	
/ass	Mass Passing		P =
g)	(g)	% Passing	Whe
			Lle -
	49.8	99.8	Hs = Hc=
	10.0	00.0	Hc=
	49.6	99.3	
			Diar

ΑΞϹΟΜ

	Client	AECON	AECOM		Date January 28, 26		3, 2622 Project Number		60637047				Gravel (%)	0
	Sample ID	BH-4	SS5B Depth (feet) N/A Project Name Glancaster Road Improvements		ients	Sand (%)	4							
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	202202091S					Project Loo	cation	Hamilton, Ontario				Silt (%)	73
Torono, Ontano	Soil Classification					Lean Clay, ti	race sand (C	:L)					Clay (%)	23
	Figure No.			D1	10	N/A	D30	0.004	D60	0.014	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

					-	.,								
Lab No	202202092S			Borehole No		BH-5		Tested by	Dharm	ik/IAN	▼		Soil Hydro	meter Used
Project Name	Glancaster R	toad Improvements		Sample Id	Sample Id SS4 Reviewed by		Rama	ina M	45	1 H SN#	993585	•		
Project Number	60	0637047		Depth (feet)		5-7		Date	Date 28-Jan-22			1 1 314	115105	0
Location	Hamilton, Ontario Soil Classification					Silt, some	e clay, trace sand (ML)							
Soil Information			Hydrom	neter Det <u>ai</u>	ls		Са	Iculation of Dry So	l M <u>ass</u>					
Liquid Limit	(LL)		Volume of Bu	ılb	(V _B)	63.1	cm ³	Oven Dried Mass	(Wo	47.046	g			
Plasticity Index	(PI)		Length of Bu	lb	(L ₂)	14.15	cm	Air Dried Mass	(Wa)	47.337	g			
Specific Gravity of Soil	(Gs)	2.70	Length from	1.0' reading to top of Bulb	(Ls)	10.5	cm	Hygroscopic Corr Fa	actor (F)	0.994				
Specific Gravity of Water	(Gw)	1	Scale Dimen	sion	(hs)	0.27	cm/Div	Air Dried Mass in Ar	nalysis (Ma)	50	g			
Sg Correction Factor	(α)	0.989	Cross-section	nal Area of Cylinder	(A)	28.1351	cm ²	Oven Dried Mass in	Analysis (Mo)	49.7	g			
Total Mass of sample		198.3	g Meniscus Co	rrection	(Hm)	0.0005	Divisions	% Passing 2.0 mm	Sieve (P10	99.8				
Soil Particles Greater Than Th	his Are Excluded From Graph	9.50	mm					Sample Represente	d (W)	49.8	g			
								Percent In	Suspension (P)	as per Section	14.3 of	ASTM D	422	

Sieve Analysis of Retained on 2.0 mm Sieve (M2)									
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing						
75.0									
63.0									
53.0									
37.5									
26.5									
19.0									
13.2									
9.5									
4.75	0.1	198.1	99.9						
2.0	0.4	197.9	99.8						

Sieve Analysis of Hydrometer Material (M7)										
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing							
2.00	0.0	49.7	99.8							
0.850	0.3	49.4	99.2							
0.425	0.5	49.2	98.8							
0.25	0.8	48.9	98.2							
0.106	1.5	48.2	96.8							
0.075 2.1		47.6	95.6							
Pass 0.075	0.2									

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

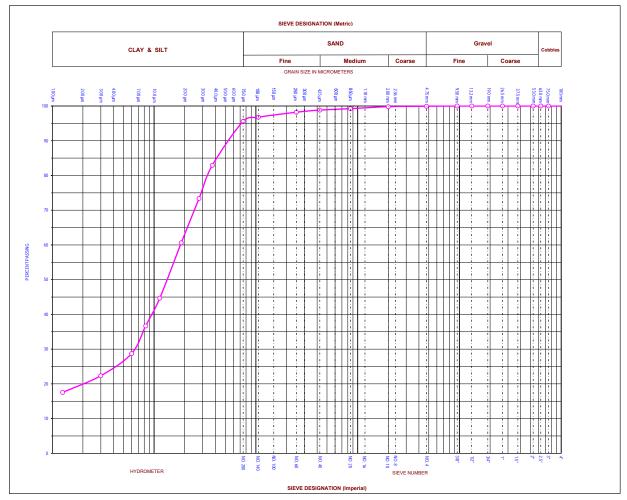
Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5 '[L₂ V_g.(A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm T = Time in minutes

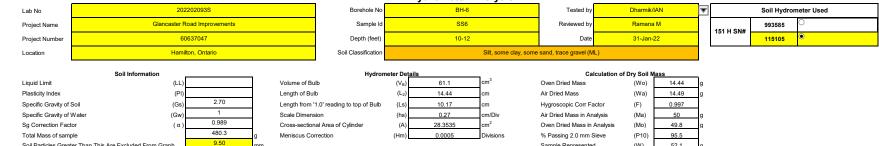

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
29-Jan-22	10:57:00 AM	1.0	1.0290	0.0030	23.7	1.0260	82.9	8.38	9.24165	0.01290063	0.0374
	10:58:00 AM	2.0	1.0260	0.0030	23.7	1.0230	73.4	9.19	9.24165	0.01290063	0.0277
	11:01:00 AM	5.0	1.0220	0.0030	23.7	1.0190	60.6	10.27	9.24165	0.01290063	0.0185
	11:11:00 AM	15.0	1.0170	0.0030	23.6	1.0140	44.7	11.62	9.26294	0.01291548	0.0114
	11:26:00 AM	30.0	1.0145	0.0030	23.6	1.0115	36.7	12.30	9.26294	0.01291548	0.0083
	11:56:00 AM	60.0	1.0120	0.0030	23.5	1.0090	28.7	12.97	9.28431	0.01293037	0.0060
	3:06:00 PM	250.0	1.0100	0.0030	23.8	1.0070	22.3	13.51	9.22045	0.01288582	0.0030
30-Jan-22	10:56:00 AM	1440.0	1.0085	0.0030	24.0	1.0055	17.5	13.92	9.17830	0.01285634	0.0013

	Viscosiity	к
L1 cm	с	(ŋ/(Gs-1)
2.43	-0.468875	5.4362642
3.24	-0.468875	5.4362642
4.32	-0.468875	5.4362642
5.67	-0.466574	5.448787
6.35	-0.466574	5.448787
7.02	-0.464269	5.4613609
7.56	-0.471171	5.4237923
7.97	-0.475753	5.3989998

Mass Retained on Seive # 10	22.18
Mass Passed Seive # 10	176.085
Jar Number	

ata	Can Id	127
pic D	Empty Can Weight (g)	13.69
Hygroscopic Data	Can+ Air Dried Soil (g)	61.03
Hyi	Can + Oven Dried Soil (g)	60.74

ΑΞϹΟΜ



GIGAN SIZE DISTRIBUTION OUTVE (SIZVE AND ITTERCOMETER ANALISIS)														
	Client	AECOM Date Janu			nuary 28	, 2622	Project Number		60637047				Gravel (%)	0
Sample ID BH-5 SS4 Depth (feet) 5-7 Project Name Glancaster Road Improvements							ients	Sand (%)	4					
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		Project Location			Hamilton, Ontario			Silt (%)	76				
roono, ontano	Soil Classification Silt, some clay, trace sand (ML)									Clay (%)	20			
	Figure No.		D10				D30	0.006	D60	0.018	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis

Sieve Analysis of Retained on 2.0 mm Sieve (M2)							
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing				
75.0							
63.0							
53.0							
37.5							
26.5							
19.0							
13.2							
9.5							
4.75	7.0	473.4	98.6				
2.0	21.4	458.9	95.5				

Soil Particles Greater Than This Are Excluded From Graph

Sieve Analysis of Hydrometer Material (M7)									
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing						
2.00	0.0	49.8	95.5						
0.850	1.1	48.7	93.5						
0.425	1.8	48.0	92.1						
0.25	2.3	47.5	91.1						
0.106	3.3	46.5	89.2						
0.075	4.1	45.7	87.7						
Pass 0.075	0.4								

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

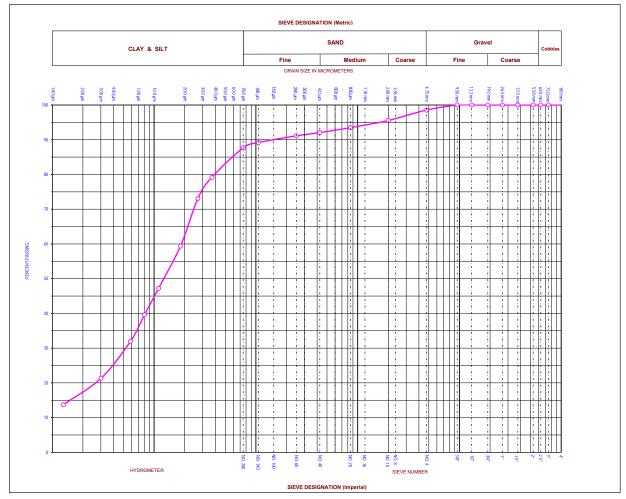
ometer Reading Correction to be determined as per Section 7 of ASTM D 422

Particles (D) as per Section 15 of ASTM D 422

0*n)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm T = Time in minutes
- Elaspsed Time Date Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise D in mm Time (minutes) 1-Feb-22 9:20:00 AM 1.0 1.0290 0.0030 25.6 1.0260 79.2 8.57 8.85306 0.0126265 0.0370 2.0 1.0270 0.0030 25.6 1.0240 73.1 9.11 8.85306 0.0126265 0.0270 9:21:00 AM 5.0 0.01265465 9:24:00 AM 1.0225 0.0030 25.4 1.0195 59.4 10.33 8.89259 0.0182 9:34:00 AM 15.0 1.0185 0.0030 25.2 1.0155 47.2 11.41 8.93243 0.01268297 0.0111 9:49:00 AM 30.0 1.0160 0.0030 25.1 1.0130 39.6 12.08 8.95247 0.01269719 0.0081 10:19:00 AM 60.0 1.0135 0.0030 24.9 1.0105 32.0 12.76 8.99279 0.01272575 0.0059 250.0 1.0100 0.0030 23.9 1.0070 13.70 9.19933 0.01287106 0.0030 1:29:00 PM 21.3 9:19:00 AM 24.0 1.0045 137 1/ 38 2-Eeb-22 1440.0 1 0075 0.0030 0 17830 01285634 0.001

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.43	-0.511832	5.2076811
2.97	-0.511832	5.2076811
4.19	-0.507377	5.2309329
5.27	-0.502906	5.25437
5.94	-0.500665	5.2661586
6.61	-0.496171	5,2898775
7.56	-0.473464	5.4113709
8.23	-0.475753	5.3989998


Mass Retained on Seive # 10	150.21
Mass Passed Seive # 10	330.09
Jar Number	

ata	Can Id	69
pic D	Empty Can Weight (g)	13.62
Hygroscopic Data	Can+ Air Dried Soil (g)	28.11
Hyi	Can + Oven Dried Soil (g)	28.06

Hygroscopic Corr Factor	(F)	0.997
Air Dried Mass in Analysis	(Ma)	50
Oven Dried Mass in Analysis	(Mo)	49.8
% Passing 2.0 mm Sieve	(P10)	95.5
Sample Represented	(W)	52.1
	()	

(g)		Where R = Correct
49.8	95.5	Hs = Actual Hydror
48.7	93.5	Hc= Composite Co
48.0	92.1	Diameter of Soil F
47.5	91.1	D = SQRT of {[(30

ΑΞϹΟΜ

	Client	AECOM	Date January 31, 2622			Project Number 60637047				Gravel (%)	1			
	Sample ID	BH-6	SS6	Depth	(feet)	10-12	Project Name		Glancaster Road Improvements			Sand (%)	11	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto. Ontario	Lab Sample No:	202202093S Project Location Hamilton, Ontario S							Silt (%)	71				
roonio, ontario	Soil Classification		Silt, some clay, some sand, trace gravel (ML)							Clay (%)	17			
	Figure No.			E	D10	N/A	D30	0.005	D60	0.019	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

					-	· , ··· · · · · · · · · · · · · · · · · ·	,, ,							
Lab No	202	202095S		Borehole No BH-7		Tested by	Tested by Dharmik/IAN		▼		Soil Hydro	neter Used		
Project Name	Glancaster R	oad Improvements		Sample Id	nple ld SS4			Reviewed by	/ Ramana M			151 H SN#	993585	•
Project Number	60	637047		Depth (feet)	eet) 5-7			Date 31-Jan-22				151 11 514#	115105	0
Location	Hamil	on, Ontario		Soil Classification	Classification Lean Clay, tr			Clay, trace sand (CL)						-
s	Soil Information		_	Hydrometer Details Calculati					Iculation of Dry So	I Mass	_			
Liquid Limit	(LL)		Volume of Bu	ılb	(V _B)	63.1	cm ³	Oven Dried Mass	(Wo	5.48	g			
Plasticity Index	(PI)		Length of Bu	lb	(L ₂)	14.15	cm	Air Dried Mass	(Wa	5.51	g			
Specific Gravity of Soil	(Gs)	2.70	Length from	1.0' reading to top of Bulb	(Ls)	10.5	cm	Hygroscopic Corr Fa	actor (F)	0.995				
Specific Gravity of Water	(Gw)	1	Scale Dimen	sion	(hs)	0.27	cm/Div	Air Dried Mass in An	alysis (Ma)	50	g			
Sg Correction Factor	(α)	0.989	Cross-section	nal Area of Cylinder	(A)	28.1351	cm ²	Oven Dried Mass in	Analysis (Mo	49.7	g			
Total Mass of sample		282.1	g Meniscus Co	rrection	(Hm)	0.0005	Divisions	% Passing 2.0 mm S	Sieve (P10) 98.1				
Soil Particles Greater Than This Are	Excluded From Graph	9.50	mm					Sample Represented	d (W)	50.7	g			
								Percent In	Suspension (P)	as per Section	14.3	of ASTM D	422	

Sieve Analysis of Retained on 2.0 mm Sieve (M2)							
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing				
75.0							
63.0							
53.0							
37.5							
26.5							
19.0							
13.2							
9.5							
4.75	1.0	281.1	99.7				
2.0	5.2	276.9	98.1				

Sieve Analysis of Hydrometer Material (M7)									
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing						
2.00	0.0	49.7	98.1						
0.850	0.2	49.5	97.7						
0.425	0.5	49.2	97.2						
0.25	0.7	49.0	96.7						
0.106	1.4	48.3	95.3						
0.075	1.9	47.8	94.3						
Pass 0.075	0.1								

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

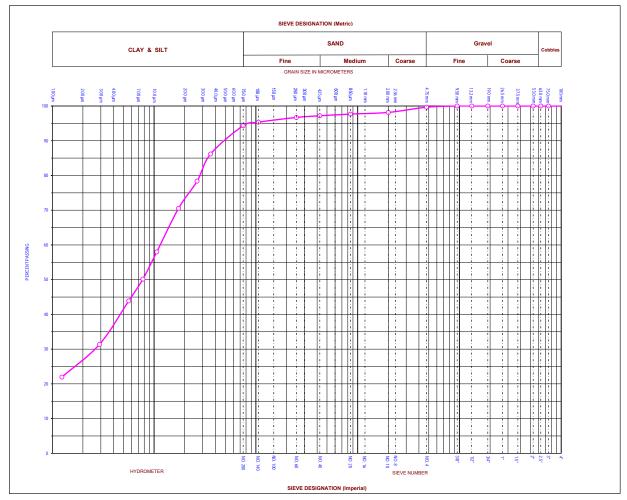
Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5 '[L₂ V_g.(A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm T = Time in minutes


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	9:29:00 AM	1.0	1.0305	0.0030	24.9	1.0275	86.2	7.98	8.99279	0.01272575	0.0359
	9:30:00 AM	2.0	1.0280	0.0030	24.9	1.0250	78.4	8.65	8.99279	0.01272575	0.0265
	9:33:00 AM	5.0	1.0255	0.0030	24.9	1.0225	70.5	9.33	8.99279	0.01272575	0.0174
	9:43:00 AM	15.0	1.0215	0.0030	24.7	1.0185	58.0	10.41		0.01275448	
	9:58:00 AM	30.0	1.0190	0.0030	24.6	1.0160	50.2	11.08	9.05388	0.0127689	
	10:28:00 AM	60.0	1.0170	0.0030	24.4	1.0140	43.9	11.62	9.09502	0.01279788	0.0056
	1:38:00 PM	250.0	1.0130	0.0030	23.8	1.0100	31.3	12.70		0.01288582	
2-Feb-22	9:28:00 AM	1440.0	1.0100	0.0030	24.2	1.0070	21.9	13.51		0.01282703	

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.03	-0.496171	5.2898775
2.70	-0.496171	5.2898775
3.37	-0.496171	5.2898775
4.45	-0.491662	5.3137869
5.13	-0.489401	5.3258136
5.67	-0.484868	5.3500126
6.75	-0.471171	5.4237923
7.56	-0.480318	5.3744072

Mass Retained on Seive # 10	65.56
Mass Passed Seive # 10	216.55
Jar Number	

ata	Can Id	113
pic D	Empty Can Weight (g)	13.62
Hygroscopic Data	Can+ Air Dried Soil (g)	19.13
Hyi	Can + Oven Dried Soil (g)	19.10

ΑΞϹΟΜ

	Client	AECOM	Date January 31, 2622			Project Number 60637047				Gravel (%)	0			
	Sample ID	BH-7	SS4	Depth (fe	eet)	5-7 Project Name Glancaster Road Improvements		ients	Sand (%)	6				
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		202202095S Project Location Hamilton, Ontar						n, Ontario		Silt (%)	68		
roomo, omano	Soil Classification					Lean Clay, ti	ace sand (C	:L)					Clay (%)	26
	Figure No.			D1	0	N/A	D30	0.003	D60	0.012	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis

Lab No	202202096S			Borehole No		BH-8	3	Tested by	Dharmik	/IAN	•	Soil Hydro	meter Used
Project Name	Glancaster R	oad Improvements		Sample Id		SS4		Reviewed by	Raman	a M		993585	0
Project Number	60	637047		Depth (feet)		5-7		Date	31-Jan	-22	151 H SN#	115105	•
Location	Hamilton, Ontario			Soil Classification		Silt, some clay, trace sand (ML)							
Soil Information			Hydrometer Details				Cal	ulation of Dry Soil	Mass				
Liquid Limit	(LL)		Volume of Bu	ılb	(V _B)	61.1	cm ³	Oven Dried Mass	(Wo)	30.16	g		
Plasticity Index	(PI)		Length of Bu	lb	(L ₂)	14.44	cm	Air Dried Mass	(Wa)	30.22	g		
Specific Gravity of Soil	(Gs)	2.70	Length from	1.0' reading to top of Bulb	(Ls)	10.17	cm	Hygroscopic Corr Fa	tor (F)	0.998			
Specific Gravity of Water	(Gw)	1	Scale Dimen	sion	(hs)	0.27	cm/Div	Air Dried Mass in Ana	lysis (Ma)	50	g		
Sg Correction Factor	(α)	0.989	Cross-section	nal Area of Cylinder	(A)	28.3535	cm ²	Oven Dried Mass in A	nalysis (Mo)	49.9	g		
Total Mass of sample		341.3	g Meniscus Co	rrection	(Hm)	0.0005	Divisions	% Passing 2.0 mm S	eve (P10)	99.8			
Soil Particles Greater Than	an This Are Excluded From Graph	9.50	mm					Sample Represented	(W)	50.0	a		

s	Sieve Analysis of Retained on 2.0 mm Sieve (M2)							
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing					
75.0								
63.0								
53.0								
37.5								
26.5								
19.0								
13.2								
9.5								
4.75	0.0	341.3	100.0					
2.0	0.6	340.7	99.8					

	Sieve Analysis of Hydrometer Material (M7)								
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing						
2.00	0.0	49.9	99.8						
0.850	0.1	49.8	99.6						
0.425	0.2	49.7	99.4						
0.25	0.3	49.6	99.2						
0.106	0.7	49.3	98.5						
0.075	1.2	48.7	97.4						
Pass 0.075	0.3								

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

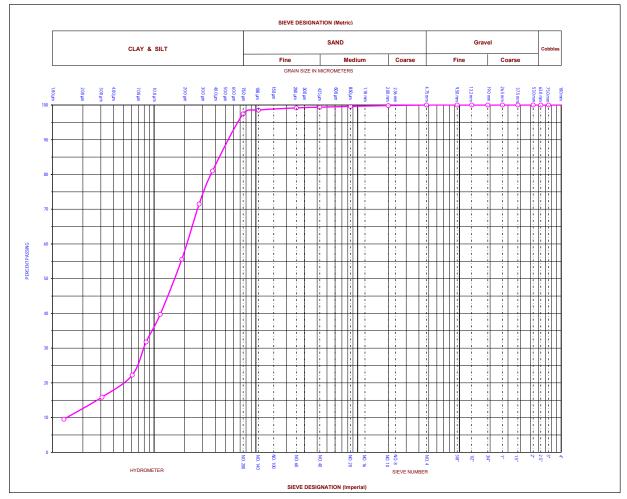
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5^{*}[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	9:37:00 AM	1.0	1.0285	0.0030	25.0	1.0255	81.0	8.71	8.97259	0.01271145	0.0375
	9:38:00 AM	2.0	1.0255	0.0030	25.0	1.0225	71.5	9.52	8.97259	0.01271145	0.0277
	9:41:00 AM	5.0	1.0205	0.0030	25.0	1.0175	55.6	10.87	8.97259	0.01271145	0.0187
	9:51:00 AM	15.0	1.0155	0.0030	24,9	1.0125	39.7	12.22	8.99279	0.01272575	0.0115
	10:06:00 AM	30.0	1.0130	0.0030	24.8	1.0100	31.8	12.89	9.01307	0.0127401	0.0084
	10:36:00 AM	60.0	1.0100	0.0030	24.6	1.0070	22.2	13.70	9.05388	0.0127689	
	1:46:00 PM	250.0	1.0080	0.0030	23.6	1.0050	15.9	14.24	9.26294	0.01291548	
2-Feb-22	9:36:00 AM	1440.0	1.0060	0.0030	24.2	1.0030	9.5	14.78	9.13649	0.01282703	0.0013

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.57	-0.498420	5.2779944
3.37	-0.498420	5.2779944
4.73	-0.498420	5.2779944
6.07	-0.496171	5.2898775
6.75	-0.493919	5.3018083
7.56	-0.489401	5.3258136
8.10	-0.466574	5.448787
8.64	-0.480318	5.3744072

Mass Retained on Seive # 10	18.75
Mass Passed Seive # 10	322.51
Jar Number	

Data	Can Id	62
pic D	Empty Can Weight (g)	13.59
Hygroscopic	Can+ Air Dried Soil (g)	43.81
Hyi	Can + Oven Dried Soil (g)	43.75

ΑΞϹΟΜ

	Client	AECOM	AECOM Date January			, 2622	2622 Project Number			6063	37047		Gravel (%)	0
	Sample ID	BH-8	BH-8 SS4 Depth (feet)					ne	Glancaster Road Improvements			Sand (%)	3	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		2202096S			Project Location Hamilton, Ontario				Silt (%)	85			
rolono, ontano	Soil Classification		Silt, some clay, trace sand (ML)							Clay (%)	12			
	Figure No.					0.001	D30	0.008	D60	0.021	Cu	14.8	Cc	2.1

AECOM

Hydrometer Analysis

Lab No	2023	202097S		Borehole No		BH-9		Tested by	Dharm	ik/IAN	•		Soil Hydro	meter Used
Project Name	Glancaster Ro	oad Improvements		Sample Id	Sample Id SS4		SS4		Ramana M		454 4	SN#	993585	•
Project Number	60	637047		Depth (feet)		5-7		Date	31-Ja	n-22	151 F	1 311#	115105	0
Location	Hamilt	on, Ontario		Soil Classification			Lean C	Clay, trace gravel (CL)						
Soi	il Information		_	Hydron	neter Det <u>a</u>	ils		Ca	Iculation of Dry Soi	Mass				
Liquid Limit	(LL)		Volume of B	ulb	(V _B)	63.1	cm ³	Oven Dried Mass	(Wo)	20.44	g			
Plasticity Index	(PI)		Length of Bu	lb	(L ₂)	14.15	cm	Air Dried Mass	(Wa)	20.54	g			
Specific Gravity of Soil	(Gs)	2.70	Length from	'1.0' reading to top of Bulb	(Ls)	10.5	cm	Hygroscopic Corr Fa	actor (F)	0.995				
Specific Gravity of Water	(Gw)	1	Scale Dimen	sion	(hs)	0.27	cm/Div	Air Dried Mass in An	alysis (Ma)	50	g			
Sg Correction Factor	(α)	0.989	Cross-sectio	nal Area of Cylinder	(A)	28.1351	cm ²	Oven Dried Mass in	Analysis (Mo)	49.8	g			
Total Mass of sample		261.3	g Meniscus Co	prrection	(Hm)	0.0005	Divisions	% Passing 2.0 mm \$	Sieve (P10	98.4				
Soil Particles Greater Than This Are Ex	cluded From Graph	9.50	mm					Sample Represente	d (W)	50.6	g			
								Percent In	Suspension (P)	as nor Section	14 3 of AS	STM D	122	

9	Sieve Analysis of Ret	ained on 2.0 mm Sieve (M2)	
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	0.4	260.9	99.9
2.0	4.2	257.1	98.4

	Sieve Analysis of Hydro	ometer Material	(M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.8	98.4
0.850	0.6	49.2	97.2
0.425	1.1	48.7	96.3
0.25	1.4	48.4	95.7
0.106	2.0	47.7	94.4
0.075	2.8	46.9	92.8
Pass 0.075	0.2		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[($30^*\eta$)/($980^*(Gs-Gw$)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5^{*}[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	9:53:00 AM	1.0	1.0290	0.0030	25.3	1.0260	81.7	8.38	8.91247	0.01266879	0.0367
	9:54:00 AM	2.0	1.0270	0.0030	25.3	1.0240	75.4	8.92	8.91247	0.01266879	0.0268
	9:57:00 AM	5.0	1.0250	0.0030	25.2	1.0220	69.1	9.46	8.93243	0.01268297	0.0174
	10:07:00 AM	15.0	1.0210	0.0030	25.1	1.0180	56.5	10.54		0.01269719	
	10:22:00 AM	30.0	1.0185	0.0030	25.1	1.0155	48.7	11.22		0.01269719	
	10:52:00 AM	60.0	1.0165	0.0030	24.9	1.0135	42.4	11.76		0.01272575	
	2:02:00 PM	250.0	1.0130	0.0030	23.7	1.0100	31.4	12.70		0.01290063	
2-Feb-22	9:52:00 AM	1440.0	1.0100	0.0030	24.6	1.0070	22.0	13.51	9.05388	0.0127689	

	Viscosiity	к
L1 cm	с	(ŋ/(Gs-1)
2.43	-0.505144	5.2426281
2.97	-0.505144	5.2426281
3.51	-0.502906	5.25437
4.59	-0.500665	5.2661586
5.27	-0.500665	5.2661586
5.81	-0.496171	5.2898775
6.75	-0.468875	5.4362642
7.56	-0.489401	5.3258136

Mass Retained on Seive # 10	37.53
Mass Passed Seive # 10	223.79
Jar Number	

ata	Can Id	134
pic D	Empty Can Weight (g)	13.70
Hygroscopic Data	Can+ Air Dried Soil (g)	34.24
Hyi	Can + Oven Dried Soil (g)	34.14

ΑΞϹΟΜ

	Client	AECOM	AECOM Da			Date January 31, 2622 P			ject Number 60637047					0
	Sample ID	BH-9	BH-9 SS4 Depth (feet) 5-7					me	Glar	ncaster Roa	Sand (%)	7		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		202202097S				Project Loo	cation		Hamiltor	Silt (%)	67		
Toronto, Ontano	Soil Classification		Lean Clay, trace gravel (CL)							Clay (%)	26			
	Figure No.					N/A D30 0.003		D60	0.013	Cu	N/A	Cc	N/A	

AECOM

Hydrometer Analysis BH-10 2022020985 Borehole No Tested b Dharmik/IAN Soil Hydrometer Used Lah No Glancaster Road Improvements Sample lo SS5 Reviewed b Ramana M 993585 Project Name 151 H SN# 7.5-9.5 60637047 Dat 31-Jan-22 Project Number Depth (feet) 115105 Hamilton, Ontario Soil Classification Silt, some clay, tracesand (ML) Location Soil Information Hvdrometer Detail Calculation of Dry Soil Mass Liquid Limit (LL Volume of Bulb (V_B) 61.1 Oven Dried Mass (Wo) 15.06 Plasticity Index (PI) Length of Bulb (L₂) 14.44 Air Dried Mass (Wa) 15.11 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.17 Hygroscopic Corr Factor (F) 0.997 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor (A) 28.3535 cm² Oven Dried Mass in Analysis (Mo) 49.8 (α Cross-sectional Area of Cylinder 295.3 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 99.6 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 50.1 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Cummulative Mass Sieve Size Comulative Mass Mass Passin Mass Passing (g) Sieve Size (mm % Passing % Passing Retained (g) Retained (g) Where R = Corrected Hydrometer Reading = Hs - Hc (mm) (q) Hs = Actual Hydrometer Reading 75.0 99.6 2.00 0.0 49.8 Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 63.0 0.850 0.1 49.7 99.3 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 53.0 0.425 0.2 49.7 99.2 D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm 37.5 0.25 0.2 49.6 99.2 Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm 26.5 0.106 0.6 49.2 98.4 19.0 0.075 2.0 17 0 95.6

- T = Time in minutes

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	10:10:00 AM	1.0	1.0265	0.0030	26.2	1.0235	74.6	9.25	8.73633	0.01254298	0.0381
	10:11:00 AM	2.0	1.0230	0.0030	26.2	1.0200	63.5	10.19	8.73633	0.01254298	0.0283
	10:14:00 AM	5.0	1.0185	0.0030	26.0	1.0155	49.2	11.41	8.77493	0.01257066	0.0190
	10:24:00 AM	15.0	1.0150	0.0030	25.9	1.0120	38.1	12.35	8.79435	0.01258456	0.0114
	10:39:00 AM	30.0	1.0135	0.0030	25.7	1.0105	33.3	12.76	8.83341	0.01261248	0.0082
	11:09:00 AM	60.0	1.0120	0.0030	25.4	1.0090	28.6	13.16	8.89259	0.01265465	0.0059
	2:19:00 PM	250.0	1.0105	0.0030	25.3	1.0075	23.8	13.57		0.01266879	
2-Feb-22	10:09:00 AM	1440.0	1.0080	0.0030	24.6	1.0050	15.9	14.24	9.05388	0.0127689	

ass 0.075

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
3.11	-0.525104	5.1390178
4.05	-0.525104	5.1390178
5.27	-0.520695	5.1617255
6.21	-0.518485	5.1731466
6.61	-0.514053	5.1961241
7.02	-0.507377	5.2309329
7.43	-0.505144	5.2426281
8.10	-0.489401	5.3258136

Mass Retained on Seive # 10	47.79
Mass Passed Seive # 10	247.51
Jar Number	

0.0

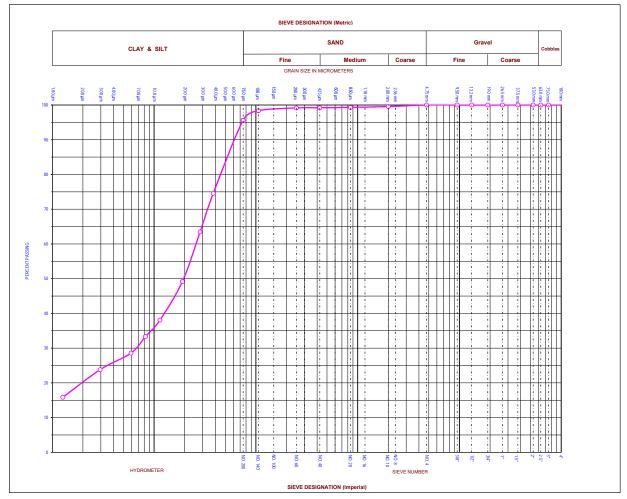
1.3

295.3

294.0

100.0

99.6


13.2

9.5 4.75

2.0

ata	Can Id	166
pic D	Empty Can Weight (g)	16.52
Hygroscopic Data	Can+ Air Dried Soil (g)	31.63
Hyi	Can + Oven Dried Soil (g)	31.58

ΑΞϹΟΜ

	Client	AECOM		Date	Date January 31, 26		Project Number		60637047				Gravel (%)	0
	Sample ID	BH-10	SS5	Depth	(feet)	7.5-9.5	Project Name Glancaster Road I		d Improvements		Sand (%)	4		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:	2022020985					Project Loc	cation	Hamilton, Ontario				Silt (%)	77
Torono, ontano	Soil Classification		Silt, some clay, tracesand (ML)									Clay (%)	19	
	ſ	D10	N/A	D30	0.007	D60	0.026	Cu	N/A	Cc	N/A			

AECOM

Hydrometer Analysis BH-11 2022020998 Borehole No Tested b Dharmik/IAN Soil Hydrometer Used Lah No Glancaster Road Improvements Sample lo SS4 Reviewed b Ramana M 993585 Project Name 151 H SN# 5-7 60637047 Date 31-Jan-22 115105 Project Number Depth (feet) Hamilton, Ontario Soil Classification Lean Clay, trace sand (CL) Location Soil Information Hvdrometer Detail Calculation of Dry Soil Mass Liquid Limit (LL Volume of Bulb (V_B) 63.1 Oven Dried Mass (Wo) 6.77 Plasticity Index (PI) Length of Bulb (L₂) 14.15 Air Dried Mass (Wa) 6.8 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.5 Hygroscopic Corr Factor (F) 0.996 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor (A) 28.1351 cm² Oven Dried Mass in Analysis (Mo) 49.8 (α Cross-sectional Area of Cylinder 274.3 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 98.7 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 50.4 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Cummulative Mass Sieve Size Comulative Mass Mass Passin Mass Passing (g) Sieve Size (mm % Passing % Passing Retained (g) Retained (g) Where R = Corrected Hydrometer Reading = Hs - Hc (mm) (q) Hs = Actual Hydrometer Reading 75.0 98.7 2.00 0.0 49.8 Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 63.0 0.850 0.1 49.6 98.5 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 53.0 0.425 0.3 49.5 98.1 D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm 37.5 0.25 0.4 49.4 97.9

97.0

96.2

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	10:29:00 AM	1.0	1.0310	0.0030	25.7	1.0280	88.2	7.84	8.83341	0.01261248	0.0353
	10:30:00 AM	2.0	1.0290	0.0030	25.7	1.0260	81.9	8.38	8.83341	0.01261248	0.0258
	10:33:00 AM	5.0	1.0260	0.0030	25.7	1.0230	72.5	9.19	8.83341	0.01261248	0.0171
	10:43:00 AM	15.0	1.0220	0.0030	25.7	1.0190	59.9	10.27	8.83341	0.01261248	0.0104
	10:58:00 AM	30.0	1.0200	0.0030	25.5	1.0170	53.6	10.81	8.87278	0.01264055	0.0076
	11:28:00 AM	60.0	1.0170	0.0030	25.3	1.0140	44.1	11.62	8.91247	0.01266879	0.0056
	2:38:00 PM	250.0	1.0135	0.0030	23.9	1.0105	33.1	12.57		0.01287106	
2-Feb-22	10:28:00 AM	1440.0	1.0100	0.0030	25.4	1.0070	22.1	13.51		0.01265465	

0.9

13

48.9

18 5

0.106

0.075

ass 0.075

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
1.89	-0.514053	5.1961241
2.43	-0.514053	5.1961241
3.24	-0.514053	5.1961241
4.32	-0.514053	5.1961241
4.86	-0.509606	5.2192839
5.67	-0.505144	5.2426281
6.61	-0.473464	5.4113709
7.56	-0.507377	5.2309329

Mass Retained on Seive # 10	24.36
Mass Passed Seive # 10	249.92
Jar Number	

2.1

3.5

272.2

270.8

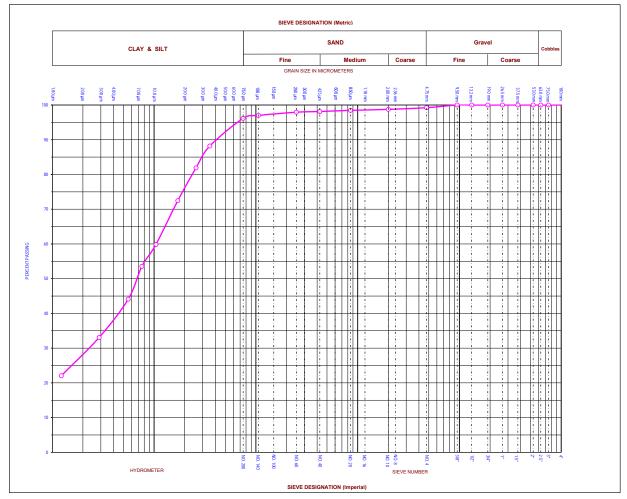
99.2

98.7

26.5

19.0

13.2


9.5 4.75

2.0

ata	Can Id	127
pic D	Empty Can Weight (g)	13.72
Hygroscopic Data	Can+ Air Dried Soil (g)	20.52
Hyi	Can + Oven Dried Soil (g)	20.49

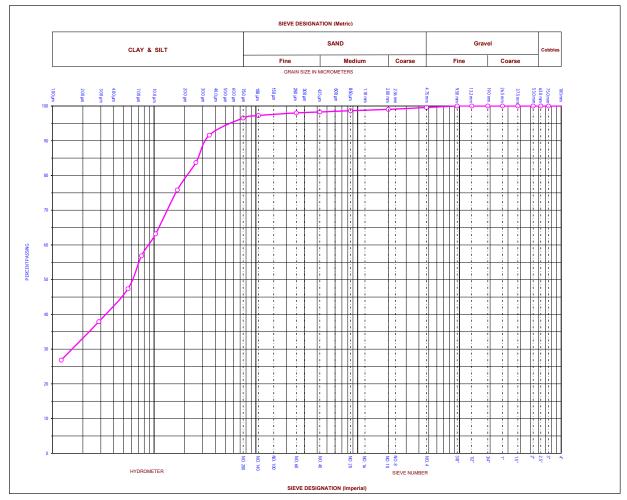
- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm
- T = Time in minutes

ΑΞϹΟΜ

	Client	AECOM Date January 31, 2			1, 2622	Project Number			60637047				1
	Sample ID	BH-11	SS4	Depth (feet)	5-7	Project Name		Glancaster Road Improvements				Sand (%)	3
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	02202099S		Project Location Hamilton, Ontario				n, Ontario		Silt (%)	69
roono, ontano	Soil Classification	Lean Clay, trace sand (CL)								Clay (%)	27		
Figure No. D10						D30	0.002	D60	0.011	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis BH-12 202202101S Borehole No Tested b Dharmik/IAN Soil Hydrometer Used Lah No Glancaster Road Improvements Sample lo SS5 Reviewed b Ramana M 993585 Project Name 151 H SN# 7.5-9.5 60637047 Date 31-Jan-22 Project Number Depth (feet) 115105 Hamilton, Ontario Soil Classification Lean Clay, trace sand (CL) Location Soil Information Hvdrometer Detail Calculation of Dry Soil Mass Liquid Limit (LL Volume of Bulb (V_B) 61.1 Oven Dried Mass (Wo) 25.34 Plasticity Index (PI) Length of Bulb (L₂) 14.44 Air Dried Mass (Wa) 25.45 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.17 Hygroscopic Corr Factor (F) 0.996 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor (A) 28.3535 cm² Oven Dried Mass in Analysis (Mo) 49.8 (α Cross-sectional Area of Cylinder 444.0 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 99.0 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 50.3 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Cummulative Mass Sieve Size Comulative Mass Mass Passin Mass Passing (g) Sieve Size (mm % Passing % Passing Retained (g) Retained (g) Where R = Corrected Hydrometer Reading = Hs - Hc (mm) (q) Hs = Actual Hydrometer Reading 75.0 99.0 2.00 0.0 49.8 Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 63.0 0.850 0.2 49.6 98.7 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 53.0 0.425 0.4 49.4 98.3 D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm 37.5 0.25 0.5 49.3 98.0 Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm 26.5 0.106 0.9 48.9 97.3 19.0 0.075 13 18 5 96.5 T = Time in minutes 13.2 ass 0.075 9.5 4.75 1.9 442.1 99.6 2.0 4.3 439.7 99.0


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	10:40:00 AM	1.0	1.0320	0.0030	26.3	1.0290	91.6	7.76	8.71714	0.0125292	0.0349
	10:41:00 AM	2.0	1.0295	0.0030	26.3	1.0265	83.7	8.44	8.71714	0.0125292	0.0257
	10:44:00 AM	5.0	1.0270	0.0030	26.3	1.0240	75.8	9.11	8.71714	0.0125292	0.0169
	10:54:00 AM	15.0	1.0230	0.0030	26.0	1.0200	63.2	10.19	8.77493	0.01257066	0.0104
	11:09:00 AM	30.0	1.0210	0.0030	25.9	1.0180	56.9	10.73	8.79435	0.01258456	0.0075
	11:39:00 AM	60.0	1.0180	0.0030	25.5	1.0150	47.4	11.54	8.87278	0.01264055	0.0055
	2:49:00 PM	250.0	1.0150	0.0030	23.8	1.0120	37.9	12.35	9.22045	0.01288582	0.0029
2-Feb-22	10:39:00 AM	1440.0	1.0115	0.0030	24.8	1.0085	26.9	13.30	9.01307	0.0127401	0.0012

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
1.62	-0.527303	5.1277306
2.29	-0.527303	5.1277306
2.97	-0.527303	5.1277306
4.05	-0.520695	5.1617255
4.59	-0.518485	5.1731466
5.40	-0.509606	5.2192839
6.21	-0.471171	5.4237923
7.15	-0.493919	5.3018083

Mass Retained on Seive # 10	108.7
Mass Passed Seive # 10	335.33
Jar Number	

Data	Can Id	192
pic D	Empty Can Weight (g)	13.67
Hygroscopic	Can+ Air Dried Soil (g)	39.12
Hyi	Can + Oven Dried Soil (g)	39.01

ΑΞϹΟΜ

	Client	AECOM	Date January 31, 2622			Project Number 60637047					Gravel (%)	0		
	Sample ID	BH-12	SS5	Depth (fee	eet)	7.5-9.5	Project Na	me	Glancaster Road Improvements		nents	Sand (%)	3	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		Project Loo	cation	tion Hamilton, Ontario					65				
Toronto, Ontano	Soil Classification		Lean Clay, trace sand (CL)						Clay (%)	32				
	Figure No.			D10	0	N/A	D30	0.002	D60	0.009	Cu	N/A	Cc	N/A

AECOM

Soil Hydrometer Used

993585

115105

Hydrometer Analysis BH-13 Borehole No Tested b SS6 Reviewed by Sample lo Dat

Project Name	Glancaster Road Improvements
Project Number	60637047
Location	Hamilton, Ontario
	0.711.01.00.01

Lah No

Sieve Size (mm)

75.0

63.0

53.0

37.5

26.5

19.0

13.2

9.5 4.75

2.0

202202102S

So	il Information			
Liquid Limit	(LL)			Volume of Bulb
Plasticity Index	(PI)			Length of Bulb
Specific Gravity of Soil	(Gs)	2.70		Length from '1.0' readi
Specific Gravity of Water	(Gw)	1		Scale Dimension
Sg Correction Factor	(α)	0.989		Cross-sectional Area o
Total Mass of sample		403.8	g	Meniscus Correction
Soil Particles Greater Than This Are Ex	cluded From Graph	9.50	mm	

Mass Passing (g)

399.9

397.3

% Passing

99.0

98.4

0.106

0.075

Pass 0.075

Sieve Analysis of Retained on 2.0 mm Sieve (M2)

Cummulative Mass

Retained (g)

3.9

6.5

Depti	n (feet)	10-1	2			
Soil Classi	fication		Lean Clay, tra			
	Hydrometer Det	ails				
of Bulb	(V _B)	63.1	cm ³			
f Bulb	(L ₂)	14.15	cm			
om '1.0' reading to top	of Bulb (Ls)	10.5	cm			
nension	(hs)	0.27	cm/Div			
ctional Area of Cylinder	(A)	28.1351	cm ²			

0.0005

Divisions

ace sand, trace gravel (CL)		
Calculation	of Dry Soil Ma	ass
Oven Dried Mass	(Wo)	11.72
Air Dried Mass	(Wa)	11.75
Hygroscopic Corr Factor	(F)	0.997
Air Dried Mass in Analysis	(Ma)	50
Oven Dried Mass in Analysis	(Mo)	49.9
% Passing 2.0 mm Sieve	(P10)	98.4
Sample Represented	(W)	50.7

Dharmik/IAN

Ramana M

31-Jan-22

lation of	Dry Soil N	lass	
	(Wo)	11.72	g
	(Wa)	11.75	g
-	(5)	0.007	٦

151 H SN#

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ V_B/A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm T = Time in minutes

Elaspsed Time Date Time Hs in Divisions Hc in Divisions Temp Tc in C R=Hs-Hc P in % L in cm η in Poise D in mm (minutes) 0.0363 1-Feb-22 10:56:00 AM 1.0 1.0295 0.0030 25.5 1.0265 83.0 8.25 8.87278 0.01264055 1.0275 2.0 0.0030 25.5 1.0245 76.8 8.79 8.87278 0.01264055 0.0265 10:57:00 AM 5.0 0.01264055 11:00:00 AM 1.0250 0.0030 25.5 1.0220 68.9 9.46 8.87278 0.0174 11:10:00 AM 15.0 1.0210 0.0030 25.3 1.0180 56.4 10.54 8.91247 0.01266879 0.0106 11:25:00 AM 30.0 1.0190 0.0030 25.2 1.0160 50.1 11.08 8.93243 0.01268297 0.0077 11:55:00 AM 60.0 1.0170 0.0030 25.1 1.0140 43.9 11.62 8.95247 0.01269719 0.0056 250.0 1.0135 0.0030 23.8 1.0105 12.57 9.22045 0.0029 3:05:00 PM 32.9 0.01288582 10:55:00 AM 24.7 1 0 1 0 0 0.0030 1.0070 13.51 2-Eeb-22 1440.0 21.9 9.03344 01275448 0.001

1.1

1.6

03

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.29	-0.509606	5.2192839
2.83	-0.509606	5.2192839
3.51	-0.509606	5.2192839
4.59	-0.505144	5.2426281
5.13	-0.502906	5.25437
5.67	-0.500665	5.2661586
6.61	-0.471171	5.4237923
7.56	-0.491662	5.3137869

Mass Retained on Seive # 10	100.91
Mass Passed Seive # 10	302.9
Jar Number	

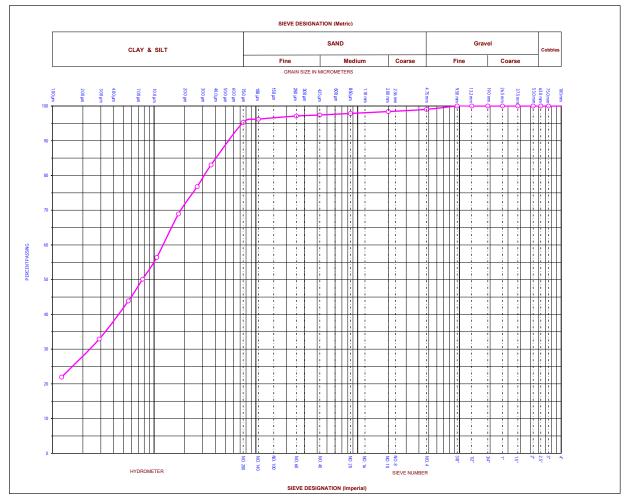
ata	Can Id	167
pic D	Empty Can Weight (g)	13.57
Hygroscopic Data	Can+ Air Dried Soil (g)	25.32
Hyi	Can + Oven Dried Soil (g)	25.29

Sieve Analysis of Hydrometer Material (M7)

48.8

18.3

etained (g)	(g)	5	
0.0	49.9	98.4	
0.3	49.6	97.9	
0.5	49.4	97.4	


96.2

05.3

Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.9	98.4
0.850	0.3	49.6	97.9
0.425	0.5	49.4	97.4
0.25	0.7	49.2	97.1

(Hm)

ΑΞϹΟΜ

	Client	AECOM	AECOM Date January 31,			, 2622 Project Number			60637047				Gravel (%)	1
	Sample ID	BH-13	SS6	Depth	(feet)	10-12	Project Name		Glancaster Road Improvements			Sand (%)	4	
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	022021025			Project Loc	cation	Hamilton, Ontario				Silt (%)	68
rolono, ontano	Soil Classification		Lean Clay, trace sand, trace gravel (CL)							Clay (%)	27			
	Figure No.				D10 N/A D30			0.002	D60	0.013	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

							, ,						
Lab No	202202103S			Borehole No		BH-14		Tested by	Dharmik	/IAN	•	Soil Hydro	meter Used
Project Name	Glancaster	Glancaster Road Improvements				SS4		Reviewed by	Raman	a M	151 H SN#	993585	0
Project Number	6	0637047		Depth (feet)		5-7		Date	31-Jan-22		151 H SN#	115105	•
Location	Ham	Soil Classification		Lean Clay, trace sand, tracegravel (CL)									
	Hydrome	Hydrometer Details				ulation of Dry Soil I	Mass						
Liquid Limit	(LL))	Volu	ume of Bulb	(V _B)	61.1	cm ³	Oven Dried Mass	(Wo)	22.89	g		
Plasticity Index	(PI)		Leng	gth of Bulb	(L ₂)	14.44	cm	Air Dried Mass	(Wa)	22.97	g		
Specific Gravity of S	Soil (Gs)	2.70	Leng	gth from '1.0' reading to top of Bulb	(Ls)	10.17	cm	Hygroscopic Corr Fac	tor (F)	0.997			
Specific Gravity of \	Water (Gw)	1	Scal	le Dimension	(hs)	0.27	cm/Div	Air Dried Mass in Ana	lysis (Ma)	50	g		
Sg Correction Fact	or (α)	0.989	Cros	ss-sectional Area of Cylinder	(A)	28.3535	cm ²	Oven Dried Mass in A	nalysis (Mo)	49.8	g		
Total Mass of samp	ble	345.8	g Men	niscus Correction	(Hm)	0.0005	Divisions	% Passing 2.0 mm Si	eve (P10)	98.0			
Soil Particles Great	er Than This Are Excluded From Graph	9.50	mm					Sample Represented	(W)	50.8	g		

s	Sieve Analysis of Re	tained on 2.0 mm Sieve (M2)	
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing
75.0			
63.0			
53.0			
37.5			
26.5			
19.0			
13.2			
9.5			
4.75	3.7	342.1	98.9
2.0	6.9	338.9	98.0

	Sieve Analysis of Hydro	ometer Material	(M7)
Sieve Size (mm)	Comulative Mass Retained (g)	Mass Passing (g)	% Passing
2.00	0.0	49.8	98.0
0.850	0.3	49.5	97.4
0.425	0.6	49.2	96.8
0.25	0.9	49.0	96.3
0.106	1.7	48.1	94.6
0.075	2.6	47.3	93.0
Pass 0.075	0.2		

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

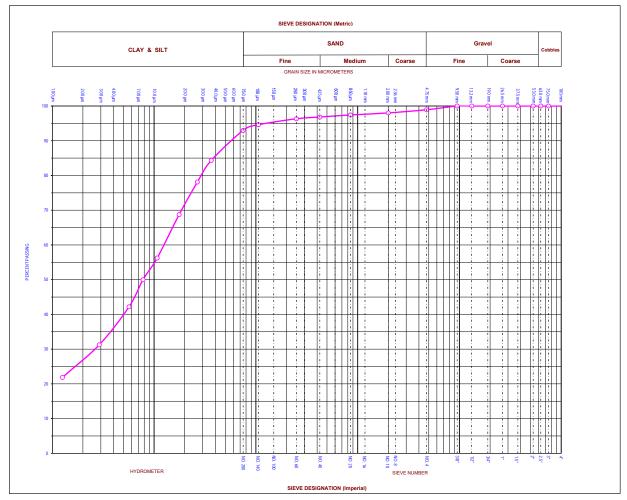
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5^{*}[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	9:29:00 AM	1.0	1.0300	0.0030	25.3	1.0270	84.4	8.30	8.91247	0.01266879	0.0365
	9:30:00 AM	2.0	1.0280	0.0030	25.3	1.0250	78.1	8.84	8.91247	0.01266879	0.0266
	9:33:00 AM	5.0	1.0250	0.0030	25.2	1.0220	68.7	9.65	8.93243	0.01268297	0.0176
	9:43:00 AM	15.0	1.0210	0.0030	25.2	1.0180	56.2	10.73	8.93243	0.01268297	0.0107
	9:58:00 AM	30.0	1.0190	0.0030	25.1	1.0160	50.0	11.27		0.01269719	
	10:28:00 AM	60.0	1.0165	0.0030	25.0	1.0135	42.2	11.95		0.01271145	
	1:38:00 PM	250.0	1.0130	0.0030	24.8	1.0100	31.2	12.89	9.01307	0.0127401	
2-Feb-22	9:28:00 AM	1440.0	1.0100	0.0030	23.7	1.0070	21.9	13.70	9.24165	0.01290063	

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.16	-0.505144	5.2426281
2.70	-0.505144	5.2426281
3.51	-0.502906	5.25437
4.59	-0.502906	5.25437
5.13	-0.500665	5.2661586
5.81	-0.498420	5.2779944
6.75	-0.493919	5.3018083
7.56	-0.468875	5.4362642

Mass Retained on Seive # 10	56.24
Mass Passed Seive # 10	289.52
Jar Number	

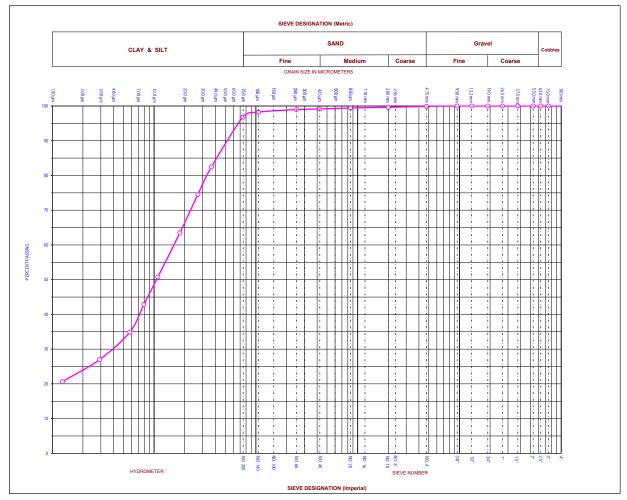
ata	Can Id	108
pic D	Empty Can Weight (g)	13.60
Hygroscopic Data	Can+ Air Dried Soil (g)	36.57
Hyi	Can + Oven Dried Soil (g)	36.49

ΑΞϹΟΜ

	Client	AECOM		Date	January 31	, 2622	Project Nur	mber		60637047			Gravel (%)	1
	Sample ID	BH-14	SS4	Depth	n (feet)	5-7	Project Nar	Name Glancaster Road Improvements		ients	Sand (%)	6		
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6	Lab Sample No:		20	02202103S			Project Loc	cation		Hamiltor	n, Ontario		Silt (%)	67
roono, ontano	Toronto, Ontario Soil Classification Lean Clay, trace sand, tracegravel (CL)										Clay (%)	26		
	Figure No.				D10	N/A	D30	0.003	D60	0.013	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis BH-15 202202104S Borehole No Tested b Dharmik/IAN Soil Hydrometer Used Lah No Glancaster Road Improvements Sample lo SS5 Reviewed by Ramana M 993585 Project Name 151 H SN# 7.5-9.5 60637047 Date 31-Jan-22 115105 Project Number Depth (feet) Hamilton, Ontario Soil Classification Lean Clay, trace sand (CL) Location Soil Information Hvdrometer Detail Calculation of Dry Soil Mass Liquid Limit (LL Volume of Bulb (V_B) 63.1 Oven Dried Mass (Wo) 19.07 Plasticity Index (PI) Length of Bulb (L₂) 14.15 Air Dried Mass (Wa) 19.12 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.5 Hygroscopic Corr Factor (F) 0.997 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor (A) 28.1351 cm² Oven Dried Mass in Analysis (Mo) 49.9 (α Cross-sectional Area of Cylinder 350.1 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 99.6 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 50.1 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Cummulative Mass Sieve Size Comulative Mass Mass Passin Mass Passing (g) Sieve Size (mm % Passing % Passing Retained (g) Retained (g) Where R = Corrected Hydrometer Reading = Hs - Hc (mm) (q) Hs = Actual Hydrometer Reading 75.0 99.6 2.00 0.0 49.9 Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 63.0 0.850 0.1 49.8 99.4 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 53.0 0.425 0.2 49.6 99.2 D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm 37.5 0.25 0.3 49.5 99.0 Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm 26.5 0.106 0.7 49.2 98.2 19.0 0.075 1.4 18 5 96.9 T = Time in minutes 13.2 ass 0.075 0.5 9.5 4.75 0.3 349.8 99.9 2.0 1.3 348.8 99.6


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	9:37:00 AM	1.0	1.0290	0.0030	25.3	1.0260	82.5	8.38	8.91247	0.01266879	0.0367
	9:38:00 AM	2.0	1.0265	0.0030	25.3	1.0235	74.6	9.06	8.91247	0.01266879	0.0270
	9:41:00 AM	5.0	1.0230	0.0030	25.3	1.0200	63.5	10.00	8.91247	0.01266879	0.0179
	9:51:00 AM	15.0	1.0190	0.0030	25.3	1.0160	50.8	11.08	8.91247	0.01266879	0.0109
	10:06:00 AM	30.0	1.0165	0.0030	25.2	1.0135	42.8	11.76	8.93243	0.01268297	0.0079
	10:36:00 AM	60.0	1.0140	0.0030	25.1	1.0110	34.9	12.43	8.95247	0.01269719	0.0058
	1:46:00 PM	250.0	1.0115	0.0030	24.9	1.0085	27.0	13.11	8.99279	0.01272575	0.0029
2-Feb-22	9:36:00 AM	1440.0	1.0095	0.0030	23.6	1.0065	20.6	13.65	9.26294	0.01291548	0.0013

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.43	-0.505144	5.2426281
3.11	-0.505144	5.2426281
4.05	-0.505144	5.2426281
5.13	-0.505144	5.2426281
5.81	-0.502906	5.25437
6.48	-0.500665	5.2661586
7.15	-0.496171	5.2898775
7.69	-0.466574	5.448787

Mass Retained on Seive # 10	76.07
Mass Passed Seive # 10	274.03
Jar Number	

ata	Can Id	84
pic D	Empty Can Weight (g)	13.53
Hygroscopic Data	Can+ Air Dried Soil (g)	32.65
Hyi	Can + Oven Dried Soil (g)	32.60

ΑΞϹΟΜ

	Client	AECOM		Date	January 31	, 2622	Project Nur	mber		60637047			Gravel (%)	0
	Sample ID	BH-15	SS5	Depth	(feet)	7.5-9.5	Project Name Glancaster Road Improvements		ients	Sand (%)	3			
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	02202104S			Project Loc	cation		Hamiltor	n, Ontario		Silt (%)	74
roono, ontario	Soil Classification					Lean Clay, tr	ace sand (C	:L)					Clay (%)	23
	Figure No.				D10	N/A	D30	0.004	D60	0.016	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis BH-16 2022021058 Borehole No Tested b Dharmik/IAN Soil Hydrometer Used Lah No Glancaster Road Improvements Sample lo SS5 Reviewed b Ramana M 993585 Project Name 151 H SN# 7.5-9.5 60637047 Date 31-Jan-22 Project Number Depth (feet) 115105 Hamilton, Ontario Soil Classification Lean Clay, trace sand (CL) Location Calculation of Dry Soil Mass Soil Information Hvdrometer Detail Liquid Limit (LL Volume of Bulb (V_B) 61.1 Oven Dried Mass (Wo) 12.1 Plasticity Index (PI) Length of Bulb (L₂) 14.44 Air Dried Mass (Wa) 12.16 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.17 Hygroscopic Corr Factor (F) 0.995 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor (A) 28.3535 cm² Oven Dried Mass in Analysis (Mo) 49.8 (α Cross-sectional Area of Cylinder 410.2 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 99.4 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 50.1 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Cummulative Mass Sieve Size Comulative Mass Mass Passin Mass Passing (g) Sieve Size (mm % Passing % Passing Retained (g) Retained (g) Where R = Corrected Hydrometer Reading = Hs - Hc (mm) (g) Hs = Actual Hydrometer Reading 75.0 99.4 2.00 0.0 49.8 Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 63.0 0.850 0.1 49.7 99.2 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 53.0 0.425 0.2 49.6 99.0 D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm 37.5 0.25 0.3 49.5 98.8 Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm 26.5 0.106 1.1 48.7 97.2 19.0 47.7 0.075 2.0 05.3 T = Time in minutes 13.2 Pass 0.075 0.4 9.5

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	9:46:00 AM	1.0	1.0290	0.0030	25.8	1.0260	82.5	8.57	8.81384	0.0125985	0.0369
	9:47:00 AM	2.0	1.0260	0.0030	25.8	1.0230	73.0	9.38	8.81384	0.0125985	0.0273
	9:50:00 AM	5.0	1.0220	0.0030	25.7	1.0190	60.3	10.46	8.83341	0.01261248	0.0182
	10:00:00 AM	15.0	1.0185	0.0030	25.6	1.0155	49.2	11.41	8.85306	0.0126265	0.0110
	10:15:00 AM	30.0	1.0160	0.0030	25.5	1.0130	41.3	12.08	8.87278	0.01264055	0.0080
	10:45:00 AM	60.0	1.0135	0.0030	25.3	1.0105	33.3	12.76	8.91247	0.01266879	0.0058
	1:55:00 PM	250.0	1.0110	0.0030	24.9	1.0080	25.4	13.43	8.99279	0.01272575	0.0029
2-Feb-22	9:45:00 AM	1440.0	1.0090	0.0030	23.6	1.0060	19.0	13.97	9.26294	0.01291548	0.0013

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.43	-0.516271	5.1846127
3.24	-0.516271	5.1846127
4.32	-0.514053	5.1961241
5.27	-0.511832	5.2076811
5.94	-0.509606	5.2192839
6.61	-0.505144	5.2426281
7.29	-0.496171	5.2898775
7.83	-0.466574	5.448787

Mass Retained on Seive # 10	30.87
Mass Passed Seive # 10	379.29
Jar Number	

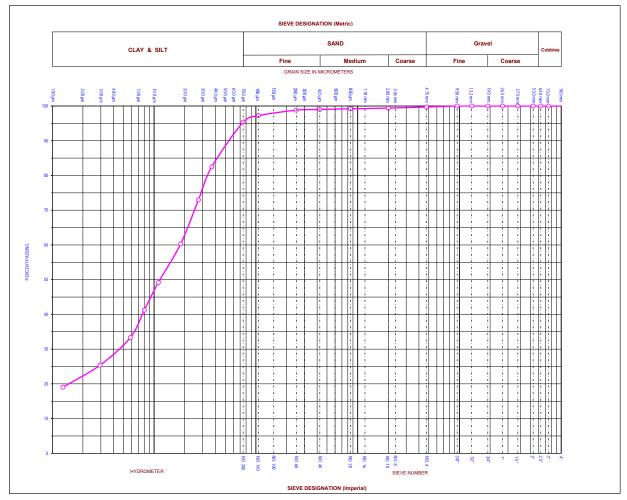
1.2

2.5

409.0

407.7

99.7


99.4

4.75

2.0

Data	Can Id	187
pic D	Empty Can Weight (g)	13.48
Hygroscopic	Can+ Air Dried Soil (g)	25.64
Hyi	Can + Oven Dried Soil (g)	25.58

ΑΞϹΟΜ

	Client	AECOM		Date	January 31	, 2622	22 Project Number		60637047		60637047		Gravel (%)	0
	Sample ID	BH-16	SS5	Depth	(feet)	7.5-9.5	Project Nar	ne	Glancaster Road Improvements			ents	Sand (%)	5
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	22021055			Project Loc	cation	Hamilton, Ontario				Silt (%)	73
rolono, ontano	Soil Classification		Lean Clay, trace sand (CL)				Clay (%)	22						
	Figure No.			1	D10	N/A	D30	0.005	D60	0.018	Cu	N/A	Cc	N/A

AECOM

Hvdrometer Analysis

						otor / araryon						
Lab No	20)2202106S	Во	orehole No		BH-17	Tested by	Dharmik	IAN	V	Soil Hydro	neter Used
Project Name	Glancaster	Road Improvements		Sample Id		SS3	Reviewed by	Ramana	a M	151 H SN#	993585	0
Project Number	6	60637047	De	epth (feet)		3-5	Date	31-Jan-	22	151 H SN#	115105	•
Location	cation Hamilton, Ontario Soil C			assification		Silt,	some clay, trace sand (ML)					
Soil Information		_	Hydrometer Details			Calcul	Calculation of Dry Soil Mass					
Liquid Limit	(LL))	Volume of Bulb		(V _B) 61.	1 cm ³	Oven Dried Mass	(Wo)	12.29	g		
Plasticity Index	(PI)	Length of Bulb		(L ₂) 14.4	4 cm	Air Dried Mass	(Wa)	12.32	g		
Specific Gravity of So	oil (Gs) 2.70	Length from '1.0' reading to to	op of Bulb	(Ls) 10.	7 cm	Hygroscopic Corr Factor	r (F)	0.998			
Specific Gravity of Wa	ater (Gw		Scale Dimension		(hs) 0.2	7 cm/Div	Air Dried Mass in Analys	is (Ma)	50	g		
Sg Correction Factor	- (α		Cross-sectional Area of Cylind	der	(A) 28.3	i35 cm ²	Oven Dried Mass in Ana	lysis (Mo)	49.9	g		
Total Mass of sample	3	246.9	g Meniscus Correction	()	Hm) 0.00	05 Divisions	% Passing 2.0 mm Sieve	e (P10)	99.2			
	Than This Are Excluded From Graph	9.50	mm				Sample Represented	(W)	50.3	a		

	Sieve Analysis of Retained on 2.0 mm Sieve (M2)							
Sieve Size (mm)	Cummulative Mass Retained (g)	Mass Passing (g)	% Passing					
75.0								
63.0								
53.0								
37.5								
26.5								
19.0								
13.2								
9.5								
4.75	0.9	245.9	99.6					
2.0	2.0	244.9	99.2					

	Sieve Analysis of Hydrometer Material (M7)								
Sieve Size (mm) Comulative Mass Retained (g)		Mass Passing (g)	% Passing						
2.00	0.0	49.9	99.2						
0.850	0.1	49.7	98.9						
0.425	0.3	49.6	98.7						
0.25	0.4	49.5	98.4						
0.106	1.8	48.1	95.7						
0.075	3.5	46.4	92.2						
Pass 0.075	3.2								

Percent In Suspension (P) as per Section 14.3 of ASTM D 422

P = [(100000/W) * (Gs/(Gs - Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H)

Where R = Corrected Hydrometer Reading = Hs - Hc

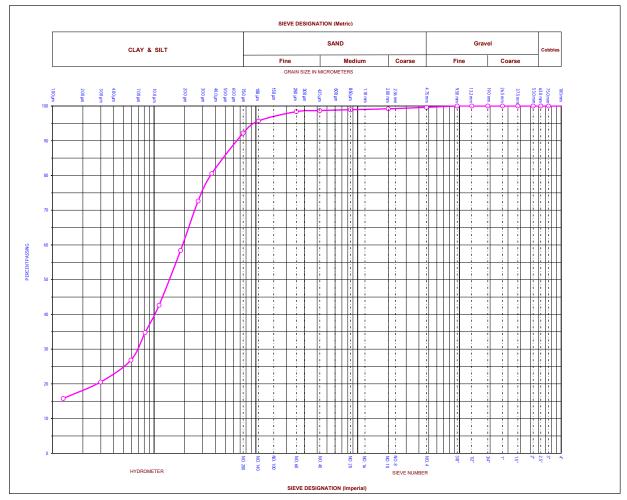
Hs = Actual Hydrometer Reading Hc= Composite Correction to be determined as per Section 7 of ASTM D 422

Diameter of Soil Particles (D) as per Section 15 of ASTM D 422

D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

- Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1 + 0.5^{*}[L₂ V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes


Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	10:19:00 AM	1.0	1.0285	0.0030	26.5	1.0255	80.5	8.71	8.67899	0.01250175	0.0369
	10:20:00 AM	2.0	1.0260	0.0030	26.5	1.0230	72.6	9.38	8.67899	0.01250175	0.0271
	10:23:00 AM	5.0	1.0215	0.0030	26.4	1.0185	58.4	10.60	8.69803	0.01251545	0.0182
	10:33:00 AM	15.0	1.0165	0.0030	26,2	1.0135	42.6	11.95	8.73633	0.01254298	0.0112
	10:48:00 AM	30.0	1.0140	0.0030	26.0	1.0110	34.7	12.62		0.01257066	
	11:18:00 AM	60.0	1.0115	0.0030	25.9	1.0085	26.8	13.30		0.01258456	
	2:28:00 PM	250.0	1.0095	0.0030	25.2	1.0065	20.5	13.84		0.01268297	
2-Feb-22	10:18:00 AM	1440.0	1.0080	0.0030	24.0	1.0050	15.8	14.24		0.01285634	

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
2.57	-0.531689	5.1052883
3.24	-0.531689	5.1052883
4.45	-0.529498	5.1164875
5.81	-0.525104	5.1390178
6.48	-0.520695	5.1617255
7.15	-0.518485	5.1731466
7.69	-0.502906	5.25437
8.10	-0.475753	5.3989998

Mass Retained on Seive # 10	31.87
Mass Passed Seive # 10	214.98
Jar Number	

ata	Can Id	176
pic D	Empty Can Weight (g)	13.46
Hygroscopic Data	Can+ Air Dried Soil (g)	25.78
Hys	Can + Oven Dried Soil (g)	25.75

ΑΞϹΟΜ

	÷.,													
	Client	AECOM		Date Janua	ate January 31, 2622 Project Number 60637047				Gravel (%)	0				
	Sample ID	BH-17	SS3	Depth (feet)		3-5 Project Name Glancaster Road Improvements			ients	Sand (%)	8			
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	02202106S		Project Location Hamilton, Ontario					Silt (%)	74		
roomo, ontano	Soil Classification			Silt, some clay, trace sand (ML)						Clay (%)	18			
	Figure No.			D10		N/A	D30	0.007	D60	0.019	Cu	N/A	Cc	N/A

AECOM

Hydrometer Analysis BH-18 202202107S Borehole No Tested b Dharmik/IAN Soil Hydrometer Used Lah No Glancaster Road Improvements Sample lo SS4 Reviewed by Ramana M 993585 Project Name 151 H SN# 5-7 60637047 Dat 31-Jan-22 115105 Project Number Depth (feet) Hamilton, Ontario Soil Classification Silt, some clay, trace sand (ML) Location Calculation of Dry Soil Mass Soil Information Hvdrometer Detail Liquid Limit (LL Volume of Bulb (V_B) 63.1 Oven Dried Mass (Wo) 13.76 Plasticity Index (PI) Length of Bulb (L₂) 14.15 Air Dried Mass (Wa) 13.83 2.70 Specific Gravity of Soil (Gs) Length from '1.0' reading to top of Bulb (Ls) 10.5 Hygroscopic Corr Factor (F) 0.995 Specific Gravity of Water (Gw) Air Dried Mass in Analysis Scale Dimension (hs) 0.27 cm/Div (Ma) 50 0.989 So Correction Factor (A) 28.1351 cm² Oven Dried Mass in Analysis (Mo) 49.7 (α Cross-sectional Area of Cylinder 466.9 Total Mass of sample Meniscus Correction (Hm) 0.0005 % Passing 2.0 mm Sieve (P10) 99.6 Divisions 9.50 Soil Particles Greater Than This Are Excluded From Graph Sample Represented (W) 49.9 Percent In Suspension (P) as per Section 14.3 of ASTM D 422 Sieve Analysis of Retained on 2.0 mm Sieve (M2) Sieve Analysis of Hydrometer Material (M7) P = [(100000/W) * (Gs/(Gs -Gw))] * (R - Gw) in percent (for Soil Hydrometer 151 H) Cummulative Mass Sieve Size Comulative Mass Mass Passin Mass Passing (g) Sieve Size (mm % Passing % Passing Retained (g) Retained (g) Where R = Corrected Hydrometer Reading = Hs - Hc (mm) (g) Hs = Actual Hydrometer Reading 75.0 99.6 2.00 0.0 49.7 Hc= Composite Correction to be determined as per Section 7 of ASTM D 422 63.0 0.850 0.1 49.6 99.4 Diameter of Soil Particles (D) as per Section 15 of ASTM D 422 53.0 0.425 0.2 49.5 99.2

98.9

97.7

96.3

Date	Time	Elaspsed Time (minutes)	Hs in Divisions	Hc in Divisions	Temp Tc in C	R=Hs-Hc	P in %	L in cm	η in Poise	к	D in mm
1-Feb-22	10:02:00 AM	1.0	1.0255	0.0030	25.9	1.0225	71.6	9.33	8.79435	0.01258456	0.0384
	10:03:00 AM	2.0	1.0220	0.0030	25.9	1.0190	60.4	10.27	8.79435	0.01258456	0.0285
	10:06:00 AM	5.0	1.0170	0.0030	25.8	1.0140	44.5	11.62	8.81384	0.0125985	0.0192
	10:16:00 AM	15.0	1.0125	0.0030	25.6	1.0095	30.2	12.84	8.85306	0.0126265	0.0117
	10:31:00 AM	30.0	1.0100	0.0030	25.6	1.0070	22.3	13.51	8.85306	0.0126265	0.0085
	11:01:00 AM	60.0	1.0080	0.0030	25.4	1.0050	15.9	14.05	8.89259	0.01265465	0.0061
	2:11:00 PM	250.0	1.0070	0.0030	25.2	1.0040	12.7	14.32	8.93243	0.01268297	0.0030
2-Feb-22	10:01:00 AM	1440.0	1.0060	0.0030	24.0	1.0030	9.5	14.59	9.17830	0.01285634	0.0013

0.4

1.0

1.7

0.4

49.4

48.8

18 1

0.25

0.106

0.075

ass 0.075

	Viscosiity	к
L1 cm	с	(η/(Gs-1)
3.37	-0.518485	5.1731466
4.32	-0.518485	5.1731466
5.67	-0.516271	5.1846127
6.89	-0.511832	5.2076811
7.56	-0.511832	5.2076811
8.10	-0.507377	5.2309329
8.37	-0.502906	5.25437
8.64	-0.475753	5.3989998

Mass Retained on Seive # 10	25.22
Mass Passed Seive # 10	441.72
Jar Number	

1.2

1.7

465.7

465.3

99.7

99.6

37.5

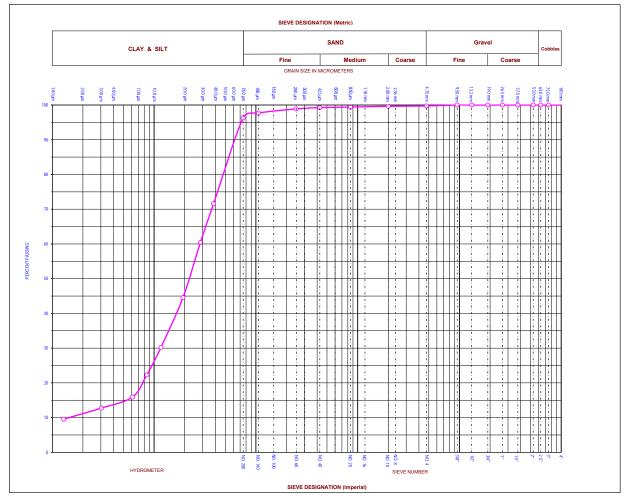
26.5

19.0

13.2

9.5 4.75

2.0


ata	Can Id	115
pic D	Empty Can Weight (g)	13.66
Hygroscopic Data	Can+ Air Dried Soil (g)	27.49
Hyi	Can + Oven Dried Soil (g)	27.42

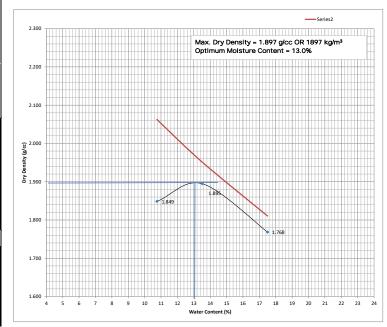
D = SQRT of {[(30*η)/(980*(Gs-Gw)] * (L/T)} in mm

Where η = Viscosity of suspending Medium (Water) in poises L = Effective Depth = L1+ 0.5*[L₂ - V_B /A)] in cm L1 = distance from the top of the bulb to Recorded Hydrometer Reading in cm

T = Time in minutes

ΑΞϹΟΜ

	Client	AECOM		Date Jan	January 31, 2622 Project Number 60637047				Gravel (%)	0				
	Sample ID	BH-18	SS4	Depth (fee	et)	5-7 Project Name Glancaster Road Improvements			ients	Sand (%)	4			
AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario	Lab Sample No:		20	02202107S		Project Location Hamilton, Ontario					Silt (%)	85		
roono, ontano	Soil Classification			Silt, some clay, trace sand (ML)						Clay (%)	11			
	Figure No.			D10		0.002	D30	0.012	D60	0.028	Cu	18.3	Cc	3.1



Standard Proctor Test

	ALCOM	HOD A	CTOR TEST - METH	PRO		
February 3, 2022	Date	47	606370	Project Number	AECOM	Client
lan P	Tested by		Improvements	Glancaster Ro		Project name
Ramana M	Reviewed by		n, Ontario	Hamilto		Location
	202202108S	Lab#	Combined BH 1,3,4,6,7,8,12,14, 18	Sample Id		Sample Location
1	Unit Weight of Water (g/cc)	0	% Air Voids (n _a)	2.65	vity (Assumed)	Grain Specific Gra
942.77	lume of the Mould (cc) V	Vo	10.15	Dia of Mould (cm)	11.65	Height of Mould (cm)
	Soil taken (g) W _s	Weight of Dry	4149.2	se Plate (g) W ₁	mpty Mould with ba	Weight of E
Trial 5	Trial 4	Trial 3	Trial 2	Trial 1	tion	Descrip
		6108	6177	6079.3		Weight of Mould w compacted s
		325.7	263	200	added (g) Ww	Weight of Water a
		1958.8	2027.8	1930.1	soil in mould (g) W	Weight of Compacted
		2.078	2.151	2.047	ght (g/cc)	Bulk Unit Wei
		1.768	1.895	1.849	ght (g/cc)	Dry Unit Wei
		1.81	1.95	2.06	at ZAV (g/cc)	Dry Unit Weight
		ation	bisture Content Determina	Мс		
		238	222	231	lumber	Container 1
		32	31.9	32.1	ontainer (g) W ₃	Weight of Empty C
		113.9	101.6	101	+ Wet Soil (g) W ₄	Weight of Container
		101.7	93.3	94.31	+ Dry Soil (g) W ₅	Weight of Container
		17.5	13.52	10.75	nt (%) w	Water Conte

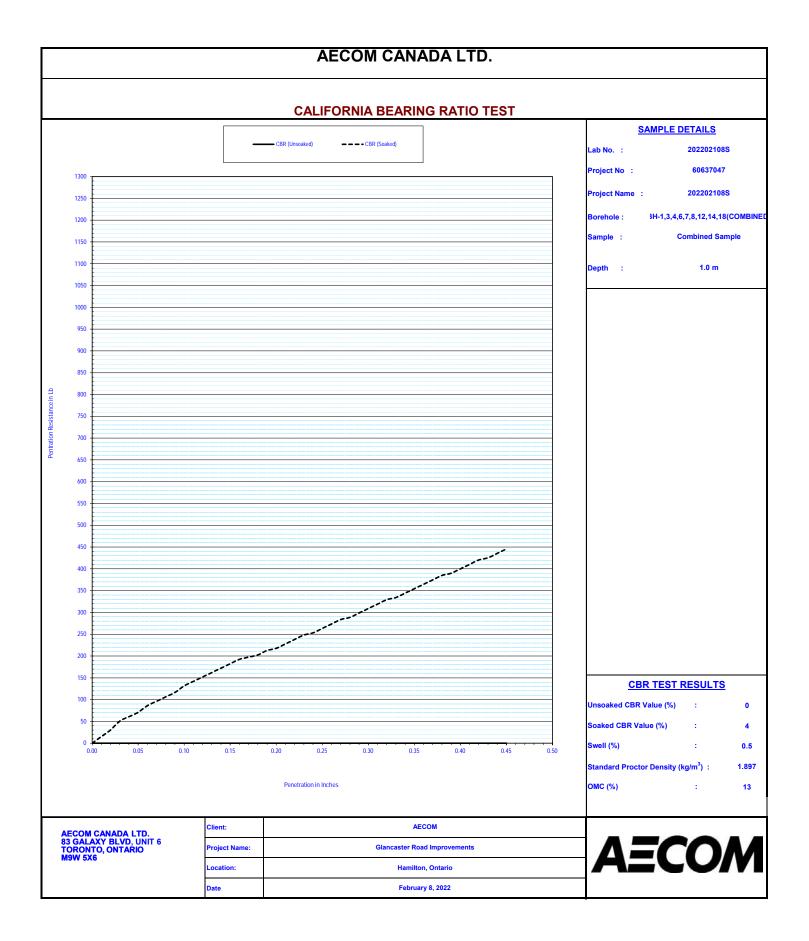
Weight of Compacted Soil W = W2 - W1 g Bulk Unit Weight = W/V

Water Content = ((W4-W5) / (W5-W3)) * 100

= ((w4-Dry Unit Weight

= Bulk Unit Weight / (1+ water content)

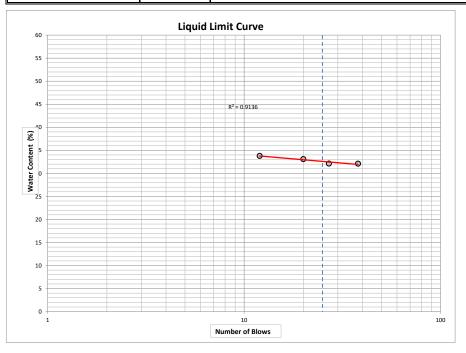
Dry Unit Weight at Zero Air Voids (ZAV)


= ((1-na) * Unit weight of Water * Sp.Gravity of Soils) / (1 - Water content * sp. Gravity of soils)

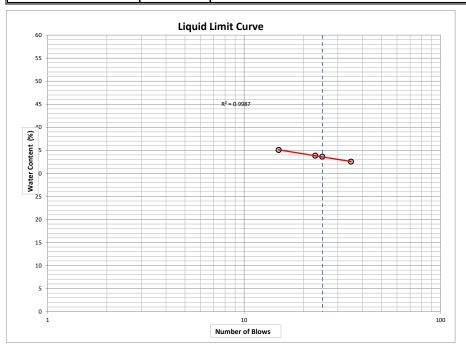
California Bearing Ratio Test

		CBR COM	IPUTATION S		ЕСОМ
Project No	:	60637	047	Lab No:	202202108S
Project Nam	e:	Glancaster Road		Borehole:	1,3,4,6,7,8,12,14,18(COMBINED)
Client:		AECO		Sample:	Combined Sample
Location:		Hamilton,	Ontario	Depth:	1.0 m
MDD kg/m ³	3.	1.89	7	OMC %	13
Penetartion Dial Constant (inch)		0.001	Proving Ring C	Constant (Ibf/0.0001")	10.13
			Feb 4,2022	Date	February 8, 2022
		UNSOA	KED		SOAKED
Penetrometer Reading	Penetration (inch)	Proving Ring Reading (X0.0001")	Penetration Resistance	Proving Ring Reading (X0.0001")	Penetration Resistance
0	0		0	0	0
10	0.01		0	1.5	15.195
20	0.02		0	3	30.39
30	0.03		0	5	50.65
40	0.04		0	6	60.78
50	0.05		0	7	70.91
60	0.06		0	8.5	86.105
70	0.07		0	9.5	96.235
80	0.08		0	10.5	106.365
90	0.09		0	11.5	116.495
100	0.1		0	13	131.69
110	0.11		0	14	141.82
120	0.12		0	15	151.95
130	0.13		0	16	162.08
140	0.14		0	17	172.21
150	0.15		0	18	182.34
160	0.16		0	19	192.47
170	0.17		0	19.5	197.535
180	0.18		0	20	202.6
190	0.19		0	21	212.73
200	0.2		0	21.5	217.795
210	0.21		0	22.5	227.925
220	0.22		0	23.5	238.055
230	0.23		0	24.5	248.185
240	0.24		0	25	253.25
250	0.25		0	26	263.38
260	0.26		0	27	273.51
270	0.27		0	28	283.64
280	0.28		0	28.5	288.705
290	0.29		0	29.5	298.835
300	0.3		0	30.5	308.965
310	0.31		0	31.5	319.095
320	0.32		0	32.5	329.225
330	0.33		0	33	334.29

340	0.34		0	34	344.42
350	0.35		0	35	354.55
360	0.36		0	36	364.68
370	0.37		0	37	374.81
380	0.38		0	38	384.94
390	0.39		0	38.5	390.005
400	0.4		0	39.5	400.135
410	0.41		0	40.5	410.265
420	0.42		0	41.5	420.395
430	0.43		0	42	425.46
440	0.44		0	43	435.59
450	0.45		0	44	445.72
Sample Height (Inches)	4.6	Swell (Inches)	0.022	Swell (%)	0.48



Atterberg Limits


						A =/	COM	
		AECON		ADA L	TD.	AEL		
		DETERMIN	ATION OF	LIQUID	LIMIT			
Client	AECOM	Project Number	60637047		Date	December 1,	2022	
Project Name					Tested By			
Location	Glancaster Rd				Reviewed By	Ramana M		
Borehole Number	вн 11	Sample Id	SS4	Depth (feet)	5-7	Lab Number	2022020998	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		184	161	94	68		
Weight of	Empty Container (g) W ₁		13.53	13.37	13.51	13.45		
Weight of Co	ntainer + Wet Soil (g) W ₂		30.15	27.81	29.86	27.52		
Weight of Co	ntainer + Dry Soil(g) W ₃		26.11	24.30	25.73	24.02		
	Weight of Water (g) W_w	$W_w = W_2 - W_3$	4.04	3.51	4.13	3.50		
v	Veight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	12.58	10.93	12.23	10.57		
	Water Content (%)	w = (W _w / W _s) * 100	32.13	32.12	33.80	33.09		
Number of Blows			27	38	12	20		
Liqu	id Limit (%) From Graph		32.6					

						AEC				
		AECO	M CAN	ADA L	TD.	AEC				
		DETERMIN	ATION OF	PLASTIC	LIMIT					
Client	AECOM	Project Number	60637047		Date	December 1, 2	022			
Project Name	0				Tested By	0				
Location	Glancaster Rd				Reviewed By	Ramana M				
Borehole Number	BH 11	Sample Id	SS4	Depth (feet)	5-7	Lab Number	202202099S			
Desc	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6		
	Container Number		131	80	61					
Weight of	Empty Container (g) W ₁		13.621	13.64	13.45					
Weight of Con	tainer + Wet Soil (g) W ₂		20.363	20.18	22.63					
Weight of Cor	ntainer + Dry Soil(g) W ₃		19.22	19.06	21.11					
	Weight of Water (g) W_w	$W_w = W_2 - W_3$	1.14	1.12	1.52					
v	/eight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	5.60	5.42	7.66					
	Plastic Limit (%)	w = (W _w / W _s) * 100	20.41	20.72	19.88					
Aver	age Plastic Limit (%) w _P			20.34						

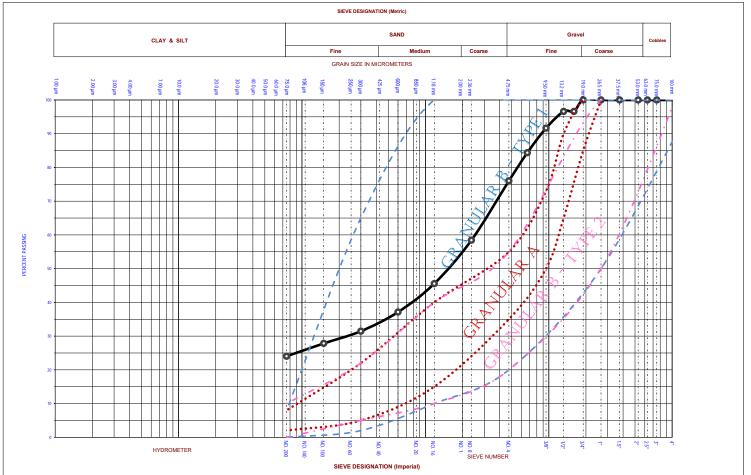
Result Summary						
Liquid Limit (%)	33					
Plastic Limit (%)	20					
Plasticity Index (%)	13					
Sample status	Plastic					

						A =/	COM	
		AECON		ADA L	TD.	AE		
	1	DETERMIN	ATION OF	LIQUID	LIMIT			
Client	AECOM	Project Number	60637047		Date	December 1,	2022	
Project Name	Glancaster Road Impro	vements			Tested By			
Location	Hamilton, Ontario				Reviewed By	Ramana M		
Borehole Number	вн 7	Sample Id	SS4	Depth (feet)	5-7	Lab Number	2022020958	
Des	scription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		66	92	156	156		
Weight of	Empty Container (g) W ₁		13.40	13.47	13.49	13.59		
Weight of Co	ntainer + Wet Soil (g) W ₂		21.41	23.99	19.65	20.64		
Weight of Co	ntainer + Dry Soil(g) W ₃		19.33	21.33	18.10	18.91		
	Weight of Water (g) W_w	$W_w = W_2 - W_3$	2.08	2.66	1.55	1.73		
v	Veight of Dry Soil (g) W_s	W _s = W ₃ -W ₁	5.93	7.86	4.61	5.32		
	Water Content (%)	w = (W _w / W _s) * 100	35.08	33.84	33.62	32.54		
Number of Blows			15	23	25	35		
Liqu	id Limit (%) From Graph		33.6					

						AEC		
	-	AECO	<u>M CAN</u>	ADA L	TD.	AEC		
		DETERMIN	ATION OF	PLASTIC	LIMIT			
Client	AECOM	Project Number	60637047		Date	December 1, 2	022	
Project Name	Glancaster Road Impr	ovements			Tested By	0		
Location	Hamilton, Ontario				Reviewed By	Ramana M		
Borehole Number	ВН 7	Sample Id	SS4	Depth (feet)	5-7	Lab Number	202202095S	
Desc	cription	Formula	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6
	Container Number		96	74	93			
Weight of	Empty Container (g) W ₁		13.49	13.66	13.43			
Weight of Con	tainer + Wet Soil (g) W ₂		15.45	15.64	15.84			
Weight of Cor	ntainer + Dry Soil(g) W ₃		15.1	15.30	15.42			
	Weight of Water (g) W _w	$W_w = W_2 - W_3$	0.35	0.34	0.42			
w	Weight of Dry Soil (g) W _s W _s			1.64	1.99			
	Plastic Limit (%)	w = (W _w / W _s) * 100	21.74	20.73	21.11			
Avera	21.19							

Result Summary						
Liquid Limit (%)	34					
Plastic Limit (%)	21					
Plasticity Index (%)	13					
Sample status	Plastic					

Grain Size Test Results


AECOM CANADA LTD.

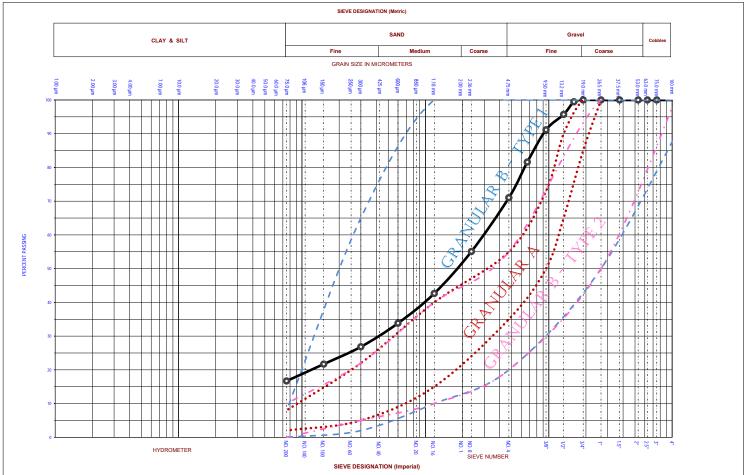
Client	AECOM	Borehole No	BH-12	Lab No	202202100S
Project Number	60663072	Sample ID	AS1 + SS2	Date	January 28-2022
Project Name				Depth (Feet)	0-3
Location		GLANCASTER ROAD		Tested by	lan/Sam
Soil Classification		Silty Sand with Gravel (SM)	Reviewed by	Ramana M	
Total Sample Mass (A) g	689.7	% Coarse Aggregate (D)	24.0	% Fine Aggregate (E)	76.0
		COARSE AG	GGREGATE		
			Coarse Aggega	te Portion Only	
Sieve (mm)	Individual Mass Retained (g)	Cumultive Mass Retained (g) [X]	% Retained	% Passing	% Passing (Total Sample
106				100.0	100.0
75.0				100.0	100.0
63.0				100.0	100.0
53.0				100.0	100.0
37.5				100.0	100.0
26.5				100.0	100.0
22.4				100.0	100.0
19.0				100.0	100.0
16.0	23.4	23.4	14.1	85.9	96.6
13.2		23.4	14.1	85.9	96.6
9.5	34.2	57.6	34.8	65.2	91.6
6.7	50.2	107.8	65.2	34.8	84.4
4.75	57.5	165.4	100.0		76.0
Pan	16.0	Pan + [B]	Mass Passing 4.7	5 mm (g) [C = A-B]	524.3
		FINE AGGREGATE			Calculations:
Sample Mass before washing (g) [F]	224.79	Mass passing 75 µm sieve by washing (g)	69.56]	D = (B/A) * 100 E= (C/A) * 100
Sample Mass after washing (g)	155.23	(g) Mass passing 75 μm sieve by sieving (g)	1.48		Coarse Aggregate Portion: % Retained =(X/B) * 100 % Passing = ((B-X) /B) * 100
Ciaux (anax)		Fine Aggregate	e Portion Only		Fine Aggregate Portion: % Retained =(Y/F) * 100
Sieve (mm)	Cumultive Mass Retained (g) [Y]	% Retained	% Passing	% Passing (Total Sample	% Passing = ((F-Y) /F) * 100
4.75	2.93	1.3	98.7	75.03	Total Mass Calculations
2.36	52.03	23.1	76.9	58.43	% Retained on Coarse Aggregate Sieves = (X/A) * 100
1.18	90.08	40.1	59.9	45.56	% Retained on Fine Aggregate Sieves = (Y/F) * E + % Ret. 4.75
0.600	114.99	51.2	48.8	37.13	% Passing Coarse Aggregate Sieves = ((A -X)/A)) * 100
0.425	124.51	55.4	44.6	33.91	% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E
0.300	131.76	58.6	41.4	31.46	Sieves = ((F - Y)/F) * E
0.150	142.49	63.4	36.6	27.83	
0.075	153.75	68.4 Total Mass passing 75 μm sieve	31.6	24.03	
Pan	1.48	(a)	71.04		

AECOM Canada Ltd.

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)	
---	--

AECOM CANADA LTD. 83 Galaxy Blvd, Unit 6 Toronto, Ontario		Client		AECOM		Date	January 28-2022		Project Number		60663072					
		Borehole No /	Sample Id	BH-12	AS1 + SS2		Depth (feet)	0	-3	Lab No		202202100S				
	Project Name											Project Location	on	GLA	NCASTER ROA	AD
				Soil Classificat	tion		Silty Sand with Gravel (SM)				Figure No:					
Gravel(9	%)	24	Sand(%)	52	Fines(%)	24	D ₆₀ (mm)	2.574	D ₃₀ (mm)	0.240	D ₁₀ (mm)	N/A	Cu	N/A	C _c	N/A


AECOM CANADA LTD.

Client	AECOM	Borehole No	BH-7	Lab No	202202094S					
Project Number	60663072	Sample ID	AS1 + SS2A	Date	January 28-2022					
Project Name				Depth (Feet)	0-3					
Location		GLANCASTER ROAD		Tested by	lan/Sam					
Soil Classification		Silty Sand with Gravel (SM)		Reviewed by	Ramana M					
Total Sample Mass (A) g	647.2	% Coarse Aggregate (D)	29.0	% Fine Aggregate (E)	71.0					
	COARSE AGGREGATE									
			Coarse Aggega	te Portion Only						
Sieve (mm)	Individual Mass Retained (g)	Cumultive Mass Retained (g) [X]	% Retained	% Passing	% Passing (Total Sample					
106				100.0	100.0					
75.0				100.0	100.0					
63.0				100.0	100.0					
53.0				100.0	100.0					
37.5				100.0	100.0					
26.5				100.0	100.0					
22.4				100.0	100.0					
19.0				100.0	100.0					
16.0	3.5	3.5	1.9	98.1	99.5					
13.2	24.3	27.8	14.8	85.2	95.7					
9.5	29.5	57.3	30.6	69.4	91.1					
6.7	61.8	119.1	63.6	36.4	81.6					
4.75	68.3	187.5	100.0		71.0					
Pan	13.3	Pan + [B]	Mass Passing 4.7	5 mm (g) [C = A-B]	459.7					
		FINE AGGREGATE			Calculations:					
Sample Mass before washing (g) [F]	231.38	Mass passing 75 µm sieve by washing (g)	52.78		D = (B/A) * 100 E= (C/A) * 100					
Sample Mass after washing (g)	178.6	Mass passing 75 μm sieve by sieving (g)	1.58		Coarse Aggregate Portion: % Retained =(X/B) * 100 % Passing = ((B-X) /B) * 100					
Siove (mm)	Currenting Manage Datained (a) D/I	Fine Aggregat	e Portion Only	% Dessing (Tatel Comple	Fine Aggregate Portion:					
Sieve (mm)	Cumultive Mass Retained (g) [Y]	% Retained	% Passing	% Passing (Total Sample	% Retained =(Y/F) * 100 % Passing = ((F-Y) /F) * 100					
4.75		or -	100.0	71.03	Total Mass Calculations					
2.36	51.98	22.5	77.5	55.08	% Retained on Coarse Aggregate Sieves = (X/A) * 100					
1.18	92.46	40.0	60.0	42.65	% Retained on Fine Aggregate Sieves = (Y/F) * E + % Ret. 4.75					
0.600	121.18	52.4	47.6	33.83	% Passing Coarse Aggregate Sieves = ((A -X)/A)) * 100					
0.425	133.93	57.9	42.1	29.92	% Passing on Fine Aggregate Sieves = ((F - Y)/F) * E					
0.300	143.99	62.2	37.8	26.83	Sieves = ((F - Y)/F) * E					
0.150	160.69	69.4	30.6	21.70						
0.075	177.02	76.5 Total Mass passing 75 μm sieve	23.5	16.69						
Pan	1.58	(a)	54.36							

AECOM Canada Ltd.

UNIFIED SOIL CLASSIFICATION SYSTEM

GRAIN SIZE DISTRIBUTION CURVE (SIEVE AND HYDROMETER ANALYSIS)

	AECON		A LTD.	Client			AECOM		Date	January	28-2022	Project Numbe	er	60663072			
	83 Galaxy Blvd, Unit 6 Toronto, Ontario		Borehole No /	Sample Id	BH-7	AS1 + SS2A		Depth (feet)	0	-3	Lab No	Lab No		202202094S			
				Project Name								Project Location	on	GLANCASTER ROAD			
				Soil Classificat	tion	Silty Sand with Gravel (SM) Figure No:											
I	Gravel(%)	29	Sand(%)	54	Fines(%)	17	D ₆₀ (mm)	3.098	D ₃₀ (mm)	0.436	D ₁₀ (mm)	N/A	Cu	N/A	C _c	N/A	

Appendix D

Pavement Design Outputs

- Traffic Analysis
- Pavement Design for New Construction / Widening (Option 1)
- Pavement Design for Rehabilitation of Existing Pavement (Option2)

TRAFFIC ANALYSIS FOR GLANCASTER ROAD-20yrs

									Minor Arteria	al Road									
Year Count	Year		% Linear (Growth Ra	ate												0.0	% Growth	
	2019	8,850	1						Year			% HV	TF	DD	Lane D	Days	ESAL	Cum. ESAL	
	2020	8,939							2024		9,293	7	1.184	0.5	0.9	365	126499	126,499	# of Years
	2021	9,027		14,000 -					2025								126499		1.0
	2022	9,116		14,000					2026	3.0							126499		2.0
	2023	9,204		13,000					2027								126499		3.0
Base Year	2024	9,293	2	15,000					2028	2.5 -	_						126499	632,496	4.0
1	2025	9,470		12,000					2029								126499		5.0
2	2026	9,647							2030								126499	885,494	6.0
3	2027	9,824		11,000					2031	<u> </u>							126499	1,011,993	7.0
4	2028	10,001		¥ ́					2032	SAI							126499	1,138,493	8.0
5	2029	10,178		10,000					2033	🔄 1.5 -			+ $+$ $+$ $+$				126499	1,264,992	9.0
6	2030	10,355							2034	ion							126499	1,391,491	10.0
7	2031	10,532		9,000					2035								126499	1,517,990	11.0
8	2032	10,709							2036								126499	1,644,489	12.0
9	2033	10,886		8,000		5-	5 -	2	2037								126499		13.0
10	2034	11,063		201		2025	2035	2045	2038								126499	1,897,488	14.0
11	2035	11,240				Year			2039								126499	2,023,987	15.0
12	2036	11,417							2040	0.0							126499		16.0
13	2037	11,594							2041	3	2024 -	2026 - 2028 -	2030 - 2032 - 2034 -	2036 - 2038 -	2040 - 2042 -	2044 - 2046 -	126499		17.0
14	2038	11,771							2042		50	20 20		20 20	20	2020	126499		18.0
15	2039	11,948							2043				Year				126499	2,529,983	19.0
16	2040	12,125							2044								126499	2,656,483	20.0
17	2041	12,302							_										
18	2042	12,479																	
19	2043	12,656										Calculations	6						
20	2044	12,833								Ti (Tf							
									2 - 3 Axle		50	-	0.2			Traffic Cat	egory :	С	
									4 Axle		2	-	0.04						
									5 Axle		38								
									6 Axle		10	4.5							
									_				1.184						
												1							

Minor Arterial Road

WinPAS

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Project Name: Glancaster Road – MCEA Route: Glancaster Road from Garner Road to Dickenson Road Location: Owner/Agency: City of Hamilton Design Engineer:

Option 1 – Full Depth Reconstruction/Road Widening

Flexible Pavement Design/Evaluation

Total Flexible ESALs 2,650	37.70 5,483 35.00 percent 0.49	Subgrade Resilient Modulus Initial Serviceability Terminal Serviceability	28.00 MPa 4.40 2.20
----------------------------	--	---	----------------------------------

Layer Pavement Design/Evaluation

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.42	1.00	160.00	67.20
Crushed Stone Base	0.14	1.00	150.00	21.00
Granular Subbase	0.11	1.00	450.00	49.50
			ΣSN	137.70

WinPAS

Pavement Thickness Design According to

1993 AASHTO Guide for Design of Pavements Structures

American Concrete Pavement Association

Flexible Design Inputs

Project Name: Glancaster Road – MCEA Route: Glancaster Road from Garner Road to Dickenson Road Location: City of Hamilton Owner/Agency: Design Engineer:

Option 2 - Full Depth Asphalt Removal

Flexible Pavement Design/Evaluation

Structural Number116.Total Flexible ESALs2,656,4.Reliability85.Overall Standard Deviation0.	33 00 percent	Subgrade Resilient Modulus Initial Serviceability Terminal Serviceability	28.00 MPa 4.40 2.20
---	------------------	---	----------------------------------

Layer Pavement Design/Evaluation

Layer Material	Layer Coefficient	Drainage Coefficient	Layer Thickness	Layer SN
Asphalt Cement Concrete	0.42	1.00	165.00	69.30
Crushed Stone Base	0.08	0.90	660.00	47.52
			ΣSN	116.82

Appendix

Geo-Environmental Laboratory Test Results

Laboratory Certificate of Soil Analysis

CLIENT NAME: AECOM CANADA LTD 105 COMMERCE VALLEY DR.W 7TH FLOOR MARKHAM, ON L3T7W3 (905) 886-7022 ATTENTION TO: Arif Chowdhury PROJECT: 60637047 AGAT WORK ORDER: 22T854911 SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Jan 31, 2022 PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T854911 PROJECT: 60637047

O. Reg. 153(511) - Metals & Inorganics (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

DATE RECEIVED: 2022-01-18 **DATE REPORTED: 2022-01-31** BH9 SS7 SAMPLE DESCRIPTION: BH14 SS3 (3'-5') BH11 SS2 (1'-3') BH9 SS2 (1'-3') (15'-17') BH15 SS3 (3'-5') BH16 SS3 (3'-5') BH18 SS3 (3'-5') SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2022-01-10 2022-01-10 2022-01-10 2022-01-10 2022-01-07 2022-01-04 2022-01-11 10:00 10:00 10:00 10:00 10:00 10:00 10:00 3438732 3438733 3438734 3438738 Unit G/S RDL 3438735 3438736 3438737 Parameter 40 0.8 <0.8 <0.8 <0.8 <0.8 <0.8 Antimony <0.8 <0.8 µg/g Arsenic 18 6 6 4 5 8 6 6 µg/g 1 Barium 670 2.0 118 97.1 49.2 59.2 77.9 65.0 133 µg/g Beryllium µg/g 8 0.4 0.6 0.7 < 0.4 <0.4 0.6 0.6 0.6 120 8 Boron µg/g 5 5 <5 6 7 <5 5 Boron (Hot Water Soluble) µg/g 2 0.10 0.43 0.24 0.45 0.13 0.14 0.22 0.23 Cadmium µg/g 1.9 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 Chromium µg/g 160 5 22 23 14 15 22 18 23 Cobalt 80 0.5 9.3 10.1 6.1 8.3 12.9 11.1 µg/g 8.5 29.9 20.0 42.0 Copper µg/g 230 1.0 28.1 38.5 56.7 16.4 120 29 32 28 Lead 15 9 18 29 µg/g 1 Molybdenum µg/g 40 0.5 1.0 <0.5 0.7 <0.5 0.6 0.6 0.9 270 18 20 12 17 26 19 19 Nickel µg/g 1 Selenium <0.8 <0.8 µg/g 5.5 0.8 <0.8 <0.8 <0.8 <0.8 <0.8 Silver µg/g 40 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.5 Thallium 3.3 0.5 < 0.5 < 0.5 <0.5 < 0.5 <0.5 < 0.5 <0.5 µg/g Uranium 33 0.50 1.17 0.66 0.69 0.56 0.61 0.61 1.46 µg/g Vanadium µg/g 86 0.4 33.6 35.1 21.0 23.0 32.9 29.6 37.5 Zinc 340 5 142 74 167 56 87 141 125 µg/g 0.2 <0.2 < 0.2 <0.2 <0.2 <0.2 Chromium, Hexavalent 8 < 0.2 <0.2 µg/g Cyanide, Free µg/g 0.051 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 <0.040 < 0.040 <0.10 <0.10 Mercury µg/g 3.9 0.10 0.10 <0.10 < 0.10 < 0.10 < 0.10 Electrical Conductivity (2:1) mS/cm 1.4 0.005 1.78 1.77 1.42 0.433 2.54 1.62 2.91 Sodium Adsorption Ratio (2:1) N/A 12 N/A 8.55 21.1 18.5 0.701 19.7 7.82 33.1 (Calc.) pH, 2:1 CaCl2 Extraction pH Units 5.0-9.0 NA 6.97 7.14 7.36 7.07 7.16 6.89 7.11

AGAT WORK ORDER: 22T854911 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-01-18

DATE REPORTED: 2022-01-31

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3438732-3438738 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22T854911 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

DATE RECEIVED: 2022-01-18

				BH14 663 (3'-5')	BH11 SS2 (1'-3') BH9 SS2 (1'-3')	BH9 SS7 (15'-17')	BH15 SS3 (3'-5')	BH16 SS3 (3'-5')	BH18 553 (3'-5')
		SAM	PLE TYPE: SAMPLED:	Soil 2022-01-10 10:00	Soil 2022-01-10 10:00	Soil 2022-01-10 10:00	Soil 2022-01-10 10:00	Soil 2022-01-07 10:00	Soil 2022-01-04 10:00	Soil 2022-01-11 10:00
Parameter	Unit	G/S	RDL	3438732	3438733	3438734	3438735	3438736	3438737	3438738
Polychlorinated Biphenyls	µg/g	1.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Noisture Content	%		0.1	15.9	10.5	10.3	15.3	16.2	17.8	19.8
Surrogate	Unit	Acceptat	ole Limits							
Decachlorobiphenyl	%	60-	130	76	80	80	112	92	96	80

Total PCBs (soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 3438732-3438738 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2022-01-31

CLIENT NAME: AECOM CANADA LTD

Exceedance Summary

AGAT WORK ORDER: 22T854911 PROJECT: 60637047

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Arif Chowdhury

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
3438732	BH14 SS3 (3'-5')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.78
3438733	BH11 SS2 (1'-3')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.77
3438733	BH11 SS2 (1'-3')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	21.1
3438734	BH9 SS2 (1'-3')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.42
3438734	BH9 SS2 (1'-3')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	18.5
3438736	BH15 SS3 (3'-5')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	2.54
3438736	BH15 SS3 (3'-5')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	19.7
3438737	BH16 SS3 (3'-5')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.62
3438738	BH18 SS3 (3'-5')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	2.91
3438738	BH18 SS3 (3'-5')	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	12	33.1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE:Hamilton

AGAT WORK ORDER: 22T854911 ATTENTION TO: Arif Chowdhury SAMPLED BY:Indra

Soil Analysis

RPT Date: Jan 31, 2022 DUPLICATE PARAMETER Batch Sample Id Dup #1 Dup #2 RPD O. Reg. 153(511) - Metals & Inorganics (Soil) Antimony 3456599 <0.8 <0.8 NA Ansenic 3456599 2 2 NA Barium 3456599 24.1 23.1 4.3% Beryllium 3456599 <0.4 <0.4 NA Boron 3456599 <0.5 <5 NA Boron (Hot Water Soluble) 3438732 3438732 0.43 0.48 NA Cadmium 3456599 <0.5 <0.5 NA Cobalt 3456599 3.3 3.1 4.5% Copper 3456599 4 3 NA Molybdenum 3456599 4 3 NA Nickel 3456599 <0.5 <0.5 NA	Method Blank	REFEREN Measured Value	Acce		METHOD	BLANK		МАТ		
PARAMETER Batch Sample Id Dup #1 Dup #2 RPD O. Reg. 153(511) - Metals & Inorganics (Soil) RPD RPD				ntable				E MATRIX SPI		KE
O. Reg. 153(511) - Metals & Inorganics (Soil) Antimony 3456599 <0.8 <0.8 NA Arsenic 3456599 2 2 NA Barium 3456599 24.1 23.1 4.3% Beryllium 3456599 <0.4 <0.4 NA Boron 3456599 <5 <5 NA Boron (Hot Water Soluble) 3438732 3438732 0.43 0.48 NA Cadmium 3456599 <0.5 <0.5 NA Chromium 3456599 8 7 NA Cobalt 3456599 3.3 3.1 4.5% Copper 3456599 5.6 5.6 0.5% Lead 3456599 4 3 NA Molybdenum 3456599 5 5 6.9%		value		nits	Recovery	1.10	eptable nits	Recovery		eptable nits
Antimony 3456599 <0.8 <0.8 NA Arsenic 3456599 2 2 NA Barium 3456599 24.1 23.1 4.3% Beryllium 3456599 <0.4 <0.4 NA Boron 3456599 <0.4 <0.4 NA Boron (Hot Water Soluble) 3438732 3438732 0.43 0.48 NA Cadmium 3456599 <0.5 <0.5 NA Chromium 3456599 8 7 NA Cobalt 3456599 3.3 3.1 4.5% Copper 3456599 5.6 5.6 0.5% Lead 3456599 4 3 NA Molybdenum 3456599 5 5 6.9%			Lower	Upper	-	Lower	Upper	-	Lower	Upper
Arsenic345659922NABarium345659924.123.14.3%Beryllium3456599<0.4										
Barium 3456599 24.1 23.1 4.3% Beryllium 3456599 <0.4	< 0.8	132%	70%	130%	92%	80%	120%	95%	70%	130%
Beryllium 3456599 <0.4 <0.4 NA Boron 3456599 <5	< 1	116%	70%	130%	100%	80%	120%	109%	70%	130%
Boron 3456599 <5 <5 NA Boron (Hot Water Soluble) 3438732 3438732 0.43 0.48 NA Cadmium 3456599 <0.5	< 2.0	100%	70%	130%	100%	80%	120%	106%	70%	130%
Boron (Hot Water Soluble) 3438732 3438732 0.43 0.48 NA Cadmium 3456599 <0.5	< 0.4	93%	70%	130%	86%	80%	120%	91%	70%	130%
Cadmium 3456599 <0.5 <0.5 NA Chromium 3456599 8 7 NA Cobalt 3456599 3.3 3.1 4.5% Copper 3456599 5.6 5.6 0.5% Lead 3456599 4 3 NA Molybdenum 3456599 <0.5	< 5	108%	70%	130%	90%	80%	120%	91%	70%	130%
Chromium 3456599 8 7 NA Cobalt 3456599 3.3 3.1 4.5% Copper 3456599 5.6 5.6 0.5% Lead 3456599 4 3 NA Molybdenum 3456599 <0.5	< 0.10	104%	60%	140%	101%	70%	130%	103%	60%	140%
Cobalt 3456599 3.3 3.1 4.5% Copper 3456599 5.6 5.6 0.5% Lead 3456599 4 3 NA Molybdenum 3456599 <0.5	< 0.5	106%	70%	130%	100%	80%	120%	108%	70%	130%
Copper 3456599 5.6 5.6 0.5% Lead 3456599 4 3 NA Molybdenum 3456599 <0.5	< 5	98%	70%	130%	111%	80%	120%	115%	70%	130%
Lead 3456599 4 3 NA Molybdenum 3456599 <0.5	< 0.5	99%	70%	130%	111%	80%	120%	109%	70%	130%
Molybdenum 3456599 <0.5 <0.5 NA Nickel 3456599 5 5 6.9%	< 1.0	96%	70%	130%	114%	80%	120%	107%	70%	130%
Nickel 3456599 5 5 6.9%	< 1	101%	70%	130%	109%	80%	120%	107%	70%	130%
	< 0.5	105%	70%	130%	111%	80%	120%	116%	70%	130%
Selenium 3456599 <0.8 <0.8 NA	< 1	100%	70%	130%	109%	80%	120%	105%	70%	130%
	< 0.8	102%	70%	130%	107%	80%	120%	113%	70%	130%
Silver 3456599 <0.5 <0.5 NA	< 0.5	119%	70%	130%	108%	80%	120%	109%	70%	130%
Thallium 3456599 <0.5 <0.5 NA	< 0.5	103%	70%	130%	100%	80%	120%	102%	70%	130%
Uranium 3456599 <0.50 <0.50 NA	< 0.50	102%	70%	130%	100%	80%	120%	105%	70%	130%
Vanadium 3456599 15.0 13.7 8.9%	< 0.4	108%	70%	130%	112%	80%	120%	113%	70%	130%
Zinc 3456599 16 15 NA	< 5	103%	70%	130%	110%	80%	120%	114%	70%	130%
Chromium, Hexavalent 3438737 3438737 <0.2 <0.2 NA	< 0.2	102%	70%	130%	101%	80%	120%	92%	70%	130%
Cyanide, Free 3452104 <0.040 NA	< 0.040	97%	70%	130%	106%	80%	120%	110%	70%	130%
Mercury 3456599 <0.10 <0.10 NA	< 0.10	114%	70%	130%	99%	80%	120%	105%	70%	130%
Electrical Conductivity (2:1) 3438732 3438732 1.78 1.85 3.9%	< 0.005	105%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) 3438732 3438732 8.55 8.55 0.1% (Calc.)	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction 3452104 6.41 6.71 4.6%	NA	94%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE:Hamilton

AGAT WORK ORDER: 22T854911

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Jan 31, 2022	PT Date: Jan 31, 2022				DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SP	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Total PCBs (soil) Polychlorinated Biphenyls	3444004		< 0.1	< 0.1	NA	< 0.1	104%	60%	140%	100%	60%	140%	105%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopuka

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

QC Exceedance

CLIENT NAME: AECOM CANADA LTD

AGAT WORK ORDER: 22T854911

PROJECT: 60637047

ATTENTION TO: Arif Chowdhury

RPT Date: Jan 31, 2022	REFERENC	METHOD	BLANK	(SPIKE	MATRIX SPIKE					
PARAMETER	Sample Id	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		Value	Lower	Upper],	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorganics (Soil)										
Antimony		132%	70%	130%	92%	80%	120%	95%	70%	130%

Antimony

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE Hamilton

AGAT WORK ORDER: 22T854911

ATTENTION TO: Arif Chowdhury

			•							
SAMPLING SITE:Hamilton		SAMPLED BY:Indra								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis										
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES							
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER							
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER							
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS							
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER							
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES							
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER							

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: AECOM CANADA LTD PROJECT: 60637047

AGAT WORK ORDER: 22T854911 **ATTENTION TO: Arif Chowdhury**

	-	-	-		
C V W DI		2V·Indr	2		

SAMPLING SITE:Hamilton		SAMPLED BY:In	dra
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	L	L.	L
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE

S			7								5	5835	Coope	rs Ave	ue	La	bora	tory	Use	Only					
			_ La	ho	rato	orie			Ph: 9	- Mi 905.71	ssissa 2,510	uga, (O Pax	Cntanc 905	5 L4Z 3 712 53	Y2 22	Wor	'k Orde	er #:	2	<u>2T</u>	82	54	211		
1.15 1											301	obea	rthiaga	Uabs.c	oin	Coc	ler Qu	antity:	1	1 1	lar	92			_
Chain of C	ustody Record	If this is a [Prinking Wate	er sample,	, please u	se Drink	Ing Water Chain o	Custody Form	(potable	water c	อกรบสา	ed by I	humans	.)		Arri	val Ten	nperati	ires:	_15	5.31	15-	411	5.5	
Report Inform	nation: AECOM€CANADA€LTD					Reg		irements:										eal inte		□Ye			No		N/A
Company: Contact:	ARIF€CHOWDHURY							_	1)- D40		Sev	uar H	5.0			Not	es:	1	20	ng	e				
Address:	€€€€105€COMMERCE€\	/ALLEY€DRI	∕E€WEST			Re 🗸 Re	gulation 153/04 2	Excess So		96 L			у 🗆	Storm		Tur	naro	und 1	Time	e (TAT) Rec	quire	d:		
/1001033.	MARKHAM,€ONTARIO					Tat IZI	ble Ind/Com	Table	ice One	÷.	-	Regi	ion	-			ular 1			-	-	-			
	416€427€9346	-					Res/Park	Regulation			Prov	-	ter Qua	ality				(Rush Su			to 7 Bu	ISINESS	Days		
Phone: Reports to be sent to:		Fax:		-			Agriculture		1 3 3 6	L			es (PW			Rus	II IAI	(RUBN SU	rcharge	s Apply)					
1. Email:	ARIF.CHOWDHURY@AI						exture (Check One) Coarse	CCME			Oth	er				Пг		Busines	S	$\square \frac{2}{D_i}$	Busine	:SS	Da Ne	xt Busi	ness
2. Email:	SERGIY.TCHERNIKOV.	COM					Fine			-		Indica	ite One				-	, ,					May Ap;		
Project Inform	nation:					ts	this submissio	on for a	1	Re	port	Gui	delln	еоп											
Project:	60637047					Rec	ord of Site Co	ndition?		Cer	tifica	te o	of Ana	alysis									or rush T		
Site Location:	HAMILTON						Yes 🛛	No	-		Yes	5		No									tutory h	-	- h
Sampled By:	INDRA									-					-				analy	/sis, ple	ase co	intact y	your AG/	AT CPM	
AGAT Quote #:	Please note: If quotation number is n	ot provided, client will I	be bliled full price i	for analysis,			ple Matrix Le	gend		// DOC	0.	Reg 1	0 2			O. Reg 558 800		eg 406							centration (Y/N)
Invoice Inform	mation:	Bi	II To Same:	Yes 🗆 1		BGW	Biota Ground Water			g, CrVI,						Characterization TCLP: Cs □ ABNs □ B(a)P □ P	Leach	Package							ntratio
Company:	AECOM€CANADA€LTD	_,				0	Oil			als, H		D HWSB] Yes			Zalior □ B(i		tion Pa							Conce
Contact:	SERGIY€TCHERNIKOV					P	Paint			Meta			ed []			aracteriz	Rainwater ocs 🗆 svo	E iza							High (
Address:				_		S SD	Soil Sediment			- red	nics	Ξ	Cs equir			Chara S D S	PLP Rair	Iracte Is, BT							us or
Email:					_		Surface Water			Field Filtered - Metals, Hg,	Inorganics	CrVI,	4 PH G if n			losal V0		ess Soils Chara ICPMS Metals,	AR						zardo
									_	Field	8 I.T		F1-F			Disp M&I	Soils	Soils MS M	EC/SAR						IIY Ha
Samp	le Identification	Date Sampled	Time Sampled	# c Contai		ample Aatrix		ments/ Instructions		Y / N	Metals	Metals - 🗆 CrVI, 🗆 Hg, I	BTEX, F1-F4 PHCs Analyze F4G if required C Yes	PAHs	VOC	Landfill (TCLP: 0	Excess Soils SF SPLP: Metals	Excess pH, ICP			i.				Potentially Haza
BH14t\$S2,4€(3t	5)	2022/01/1(10€AM (AM PM 2	S	OIL									2										
BH11เ\$S2€(1เ3))	2022/01/1(10€AM (S	OIL									Z										
BH9 I \$S2A€(1 I 3)	2022/01/10	10€AM	AM PM 2	S	OIL									☑										
BH91\$\$\$7(15117))	2022/01/10	10€AM	AM PM 1	S	OIL									2									-	
BH15t\$S3€(3t5))	2022/01/07	10€AM	AM PM 2	S	OIL							1		✓										
BH16t\$S3€(3t5))	2022/01/07	10€AM (AM PM 2	S	OIL									7										
BH18€SS3(35))	2022/01/07	10€AM (AM PM 2	S	OIL									7										
			Í	AM PM																-					
			í	AM PM																					
				AM PM													-				-		_		
				AM PM																		+	_	+ +	T.
Samples Relinquished By (Pr	0.01 / 4	~ AC	Date		Time		Samples Rocewood By (P	rint Name and Sign):	/	_		0			Jate		Time					1	5 3 A F	1 17	
€Indrakiran€Rec		T	2022/0	1/18	15.00		416	TL	6	6	7	L	/		Jate		Time						2 JAN		all a
		f)					Commence of the second of the	an owner, and covfo.	C						ALC IN		nong			L	Page .	1	of		
Samples Relibeurghed By (Pr	int North and Sizh2		arcū		Time		Samples Received By (P	rint Name and Sign):						h)ate		Time			Nº:					
							1										1			<u> </u>					

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT

CLIENT NAME: AECOM CANADA LTD 105 COMMERCE VALLEY DR.W 7TH FLOOR MARKHAM, ON L3T7W3 (905) 886-7022 ATTENTION TO: Arif Chowdhury PROJECT: 60637047 AGAT WORK ORDER: 22T857227 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Feb 04, 2022 PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T857227 PROJECT: 60637047

O. Reg. 153(511) - Metals & Inorganics (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

DATE RECEIVED: 2022-01-25 DATE REPORTED: 2022-02-04 BH03-SS3B BH05-SS3A BH10-SS2B SAMPLE DESCRIPTION: BH01-SS4 (5-7) BH02-SS3 (3-5) BH04-SS4 (5-7) (3-5) (3-5) BH05-SS4 (5-7) BH07-SS3 (3-5) (1-3) SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2022-01-21 2022-01-21 2022-01-14 2022-01-20 2022-01-12 2022-01-12 2022-01-22 2022-01-14 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 G/S RDL 3460006 3460022 3460023 3460028 3460030 3460032 3460033 3460036 Parameter Unit 40 0.8 <0.8 <0.8 <0.8 <0.8 Antimony <0.8 <0.8 <0.8 <0.8 µg/g Arsenic 18 5 7 7 5 6 8 7 3 µg/g 1 Barium 670 2.0 64.3 175 96.4 80.2 79.2 97.0 115 66.6 µg/g Beryllium 8 0.4 0.6 1.3 0.9 0.8 0.7 0.9 1.0 0.4 µg/g 8 Boron µg/g 120 5 13 7 6 8 7 7 <5 Boron (Hot Water Soluble) µg/g 2 0.10 4.95 0.30 0.32 0.34 0.45 0.11 0.19 0.38 Cadmium µg/g 1.9 0.5 <0.5 0.7 <0.5 <0.5 <0.5 <0.5 <0.5 < 0.5 Chromium µg/g 160 5 20 28 27 23 24 26 30 14 Cobalt 80 0.5 10.1 18.1 13.6 11.0 12.9 15.1 µg/g 11.5 5.6 38.7 25.5 Copper µg/g 230 1.0 31.5 31.5 31.3 41.3 43.4 15.8 26 19 Lead 120 12 19 41 20 16 24 µg/g 1 Molybdenum µg/g 40 0.5 <0.5 0.8 0.6 <0.5 0.6 0.9 <0.5 < 0.5 270 26 25 21 21 29 33 Nickel µg/g 1 19 10 Selenium <0.8 <0.8 µg/g 5.5 0.8 <0.8 1.0 <0.8 <0.8 <0.8 <0.8 Silver 40 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <0.5 < 0.5 µg/g 3.3 0.5 < 0.5 < 0.5 <0.5 < 0.5 <0.5 < 0.5 <0.5 < 0.5 Thallium µg/g Uranium 33 0.50 0.57 2.15 0.77 0.75 0.72 0.79 0.76 0.71 µg/g Vanadium µg/g 86 0.4 28.7 45.8 37.3 32.2 34.6 34.0 38.2 21.6 Zinc 340 5 64 108 92 94 124 80 83 102 µg/g <0.2 < 0.2 <0.2 <0.2 Chromium, Hexavalent 8 0.2 <0.2 < 0.2 <0.2 < 0.2 µg/g Cyanide, Free µg/g 0.051 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 <0.040 <0.10 < 0.10 Mercury µg/g 3.9 0.10 < 0.10 <0.10 < 0.10 < 0.10 < 0.10 <0.10 Electrical Conductivity (2:1) mS/cm 1.4 0.005 4.78 1.21 1.87 1.60 2.25 0.412 0.415 1.68 Sodium Adsorption Ratio (2:1) N/A 12 N/A 43.7 10.9 16.2 17.2 6.78 2.63 3.84 17.7 (Calc.) pH, 2:1 CaCl2 Extraction pH Units 5.0-9.0 NA 7.34 7.47 7.32 7.51 7.35 7.07 7.01 7.42

AGAT WORK ORDER: 22T857227 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-01-25						DATE REPORTED: 2022-02-04
					BH17-SS3A	
	SA			BH07-SS4 (5-7)	(3-5)	
			PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2022-01-22 10:00	2022-01-12 10:00	
Parameter	Unit	G/S	RDL	3460037	3460038	
Antimony	hð\ð	40	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	8	5	
Barium	µg/g	670	2.0	112	131	
Beryllium	µg/g	8	0.4	1.0	0.5	
Boron	µg/g	120	5	12	5	
Boron (Hot Water Soluble)	µg/g	2	0.10	<0.10	0.47	
Cadmium	µg/g	1.9	0.5	<0.5	<0.5	
Chromium	µg/g	160	5	34	17	
Cobalt	µg/g	80	0.5	16.9	9.3	
Copper	µg/g	230	1.0	47.6	20.6	
ead	µg/g	120	1	17	16	
lolybdenum	µg/g	40	0.5	0.5	0.6	
lickel	µg/g	270	1	37	16	
Selenium	µg/g	5.5	0.8	<0.8	<0.8	
Silver	µg/g	40	0.5	<0.5	<0.5	
Thallium	µg/g	3.3	0.5	<0.5	<0.5	
Jranium	µg/g	33	0.50	0.79	1.09	
Vanadium	µg/g	86	0.4	42.5	26.4	
Zinc	µg/g	340	5	93	74	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	
Cyanide, Free	µg/g	0.051	0.040	<0.040	<0.040	
Mercury	µg/g	3.9	0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.203	1.64	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	2.55	25.7	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	6.83	7.26	

AGAT WORK ORDER: 22T857227 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-01-25

DATE REPORTED: 2022-02-04

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3460006-3460038 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22T857227 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE: Hamilton

ATTENTION TO: Arif Chowdhury

SAMPLED BY:Indra

					TUTALFOD	3 (3011)				
DATE RECEIVED: 2022-01-25								I	DATE REPORTEI	D: 2022-02-04
					BH03-SS3B	BH05-SS3A		BH10-SS2B	BH17-SS3A	
		SAMPLE DES	CRIPTION:	BH02-SS3 (3-5)	(3-5)	(3-5)	BH07-SS3 (3-5)	(1-3)	(3-5)	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2022-01-21 10:00	2022-01-14 10:00	2022-01-12 10:00	2022-01-22 10:00	2022-01-14 10:00	2022-01-12 10:00	
Parameter	Unit	G / S	RDL	3460022	3460023	3460030	3460033	3460036	3460038	
Polychlorinated Biphenyls	µg/g	1.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Moisture Content	%		0.1	31.0	13.5	11.4	19.0	14.3	21.2	
Surrogate	Unit	Acceptab	le Limits							
Decachlorobiphenyl	%	60-1	130	92	84	100	76	84	112	

Total PCBs (soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 3460022-3460038 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

CLIENT NAME: AECOM CANADA LTD

Exceedance Summary

AGAT WORK ORDER: 22T857227 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Arif Chowdhury

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
3460006	BH01-SS4 (5-7)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Boron (Hot Water Soluble)	µg/g	2	4.95
3460006	BH01-SS4 (5-7)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	4.78
3460006	BH01-SS4 (5-7)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	12	43.7
3460023	BH03-SS3B (3-5)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.87
3460023	BH03-SS3B (3-5)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	12	16.2
3460028	BH04-SS4 (5-7)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.60
3460028	BH04-SS4 (5-7)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.	N/A	12	17.2
3460030	BH05-SS3A (3-5)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	2.25
3460036	BH10-SS2B (1-3)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.68
3460036	BH10-SS2B (1-3)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	17.7
3460038	BH17-SS3A (3-5)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	1.64
3460038	BH17-SS3A (3-5)	ON T2 S ICC CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	25.7

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE: Hamilton

AGAT WORK ORDER: 22T857227

ATTENTION TO: Arif Chowdhury SAMPLED BY:Indra

Soil Analysis

			201	I Ana	arysis	5									
RPT Date: Feb 04, 2022		DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	1.10	eptable mits	
	la					Value	Lower Upper			Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	3475208	<0.8	<0.8	NA	< 0.8	123%	70%	130%	103%	80%	120%	81%	70%	130%	
Arsenic	3475208	3	3	NA	< 1	119%	70%	130%	102%	80%	120%	100%	70%	130%	
Barium	3475208	57.1	55.9	2.1%	< 2.0	111%	70%	130%	112%	80%	120%	109%	70%	130%	
Beryllium	3475208	0.4	0.5	NA	< 0.4	111%	70%	130%	118%	80%	120%	119%	70%	130%	
Boron	3475208	7	6	NA	< 5	86%	70%	130%	99%	80%	120%	103%	70%	130%	
Boron (Hot Water Soluble)	3457204	0.10	0.11	NA	< 0.10	107%	60%	140%	103%	70%	130%	110%	60%	140%	
Cadmium	3475208	<0.5	<0.5	NA	< 0.5	113%	70%	130%	114%	80%	120%	109%	70%	130%	
Chromium	3475208	16	16	NA	< 5	109%	70%	130%	114%	80%	120%	110%	70%	130%	
Cobalt	3475208	5.9	6.3	6.6%	< 0.5	110%	70%	130%	113%	80%	120%	107%	70%	130%	
Copper	3475208	12.6	12.5	0.8%	< 1.0	103%	70%	130%	120%	80%	120%	107%	70%	130%	
Lead	3475208	24	23	4.3%	< 1	109%	70%	130%	118%	80%	120%	102%	70%	130%	
Molybdenum	3475208	<0.5	<0.5	NA	< 0.5	121%	70%	130%	112%	80%	120%	115%	70%	130%	
Nickel	3475208	11	11	0.0%	< 1	106%	70%	130%	112%	80%	120%	100%	70%	130%	
Selenium	3475208	<0.8	<0.8	NA	< 0.8	126%	70%	130%	108%	80%	120%	104%	70%	130%	
Silver	3475208	<0.5	<0.5	NA	< 0.5	103%	70%	130%	111%	80%	120%	102%	70%	130%	
Thallium	3475208	<0.5	<0.5	NA	< 0.5	119%	70%	130%	110%	80%	120%	99%	70%	130%	
Uranium	3475208	0.50	<0.50	NA	< 0.50	116%	70%	130%	115%	80%	120%	105%	70%	130%	
Vanadium	3475208	25.3	25.4	0.4%	< 0.4	117%	70%	130%	104%	80%	120%	105%	70%	130%	
Zinc	3475208	42	43	2.4%	< 5	108%	70%	130%	116%	80%	120%	118%	70%	130%	
Chromium, Hexavalent	3460022 3460022	<0.2	<0.2	NA	< 0.2	92%	70%	130%	93%	80%	120%	86%	70%	130%	
Cyanide, Free	3471930	<0.040	<0.040	NA	< 0.040	100%	70%	130%	94%	80%	120%	89%	70%	130%	
Mercury	3475208	<0.10	<0.10	NA	< 0.10	111%	70%	130%	106%	80%	120%	102%	70%	130%	
Electrical Conductivity (2:1)	3471930	0.146	0.154	5.3%	< 0.005	105%	80%	120%							
Sodium Adsorption Ratio (2:1) (Calc.)	3471930	0.069	0.070	2.1%	NA										
pH, 2:1 CaCl2 Extraction	3471930	6.55	6.66	1.6%	NA	94%	80%	120%							

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Page 7 of 11

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE: Hamilton

AGAT WORK ORDER: 22T857227

ATTENTION TO: Arif Chowdhury

SAMPLED BY: Indra

			Trac	ce Or	gani	cs Ar	nalysi	is							
RPT Date: Feb 04, 2022			[DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits			ptable nits	Recovery	Acceptable Limits	
							Value	Lower	Upper		Lower	Upper		Lower	Upper
Total PCBs (soil) Polychlorinated Biphenyls	3470828		< 0.1	< 0.1	NA	< 0.1	109%	60%	140%	98%	60%	140%	92%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopuka

Page 8 of 11

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

AGAT WORK ORDER: 22T857227

ATTENTION TO: Arif Chowdhury

SAMPLING SITE:Hamilton		SAMPLED BY:Indra						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Soil Analysis								
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES					
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER					
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER					
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS					
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER					
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES					
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER					

Method Summary

CLIENT NAME: AECOM CANADA LTD PROJECT: 60637047

AGAT WORK ORDER: 22T857227

ATTENTION TO: Arif Chowdhury

SAMPLING SITE: Hamilton	nilton SAMPLED BY:Indra									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Trace Organics Analysis										
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD							
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD							
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE							

AGAT Laborate		Work Order #: 227857227
Report Information:	se Drinking Water Chain of Custody Form (potable water consumed by humans) Regulatory Requirements: (Please check all applicable bores)	Custody Seal Intact: Yes No N/A
Contact: Address: 105 COMMERCE VALLEY DRIVE WEST MARKHAM, ONTARID 111/-477-934/	Regulation 153/04 Table 2 Indicate One Res/Park Regulation 558 Regulation 558 Prov. Water Quality	Notes: Turnaround Time (TAT) Required: Regular TAT Image: 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)
Phone: Reports to be sent to: 1. Email: 2. Email: ARIF. CHOW DHURY @AELOM.COM SERGIY. TCHERNIKOV @AELOM.COM	Agriculture □ Objectives (PWQO) Soil Texture (check One) □ CCME □ □ Other □ □ Indicate One	3 Business 2 Business Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):
Project Information: Project: 60637047 Site Location: Hamilton Sampled By: INDRA	Is this submission for a Report Guideline on Record of Site Condition? Certificate of Analysis Yes Yes	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM
AGAT Quote #: PO: PO: PO: PO: PO: Please note: If quotation number is not provided, client will be billed full price for analysis.	Sample Matrix Legend 0. Reg 153 B Biota GW Ground Water	U.V.N)
Company: AECOM CANADA LTD Contact: SERGIY TCHERNIKOV Address:	B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water Wetrals & Inorganics Matrix Special Instructions Analyze F4G if required □ Yes PAHS	VOC Landfill Disposal Characterization TCLP: TCLP:Mwi
Comple Identification	ample Comments/ Y/N We the set of	Protext Landfill Toue: C Excesss PPLP: L B, ICF Salt - E Salt - E Potentic
BH02-553 (3-5) 2022/01/21 10AM AM 2 BH03-553B (3-5) 2022/01/21 10AM AM 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
BH07-SS3 (3-5) 2022/01/22-10 AM PM 2 BH010-SS2B(1-3) 2022/01/14 10 AM PM 2 BH07-SS4(5-7) 2022/01/22-10 AM PM 1		
BH17-SS3A(3-5) 4022 [01/12 to Atm AM 2 BH17-SS8(20-22) 2022 [01/12 to Atm AM 1 Samples Relinguished By (Print Name and Sight Indva Kiran Reddy Atturu Wy 2022 [01/25] Tree Samples Relinguished By (Print Name and Sight) Samples Relinguished By (Print Name and Sight)	ppm led lamarasin all	Date Time 122 JAN 25 7:0394
Somples Relinquished By (Print Name and Sign): Date Time Somples Relinquished By (Print Name and Sign): Date Time Somples Relinquished By (Print Name and Sign): Date Time Somples Relinquished By (Print Name and Sign): Date Time	Samples Received By (Print Name and Sign):	Page of Date N°: T 129157 ient I Yellow Copy - AGAT I White Copy- AGAT Date Issued March 9, 2021 Page 11 of 11

CLIENT NAME: AECOM CANADA LTD 105 COMMERCE VALLEY DR.W 7TH FLOOR MARKHAM, ON L3T7W3 (905) 886-7022 ATTENTION TO: Arif Chowdhury PROJECT: 60637047 AGAT WORK ORDER: 22T858760 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Feb 07, 2022 PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 22T858760 PROJECT: 60637047

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

				O. Reg. S	558 Metals and Inorganics
DATE RECEIVED: 2022-01-31					DATE REPORTED: 2022-02-07
		SAMPLE DES	CRIPTION:	TCLP-1	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2022-01-29 10:00	
Parameter	Unit	G / S	RDL	3470134	
Arsenic Leachate	mg/L	2.5	0.010	<0.010	
Barium Leachate	mg/L	100	0.010	0.641	
Boron Leachate	mg/L	500	0.050	0.134	
Cadmium Leachate	mg/L	0.5	0.010	<0.010	
Chromium Leachate	mg/L	5	0.050	<0.050	
Lead Leachate	mg/L	5	0.010	0.019	
Mercury Leachate	mg/L	0.1	0.01	<0.01	
Selenium Leachate	mg/L	1	0.010	<0.010	
Silver Leachate	mg/L	5	0.010	<0.010	
Uranium Leachate	mg/L	10	0.050	<0.050	
Fluoride Leachate	mg/L	150	0.10	0.21	
Cyanide Leachate	mg/L	20	0.05	<0.05	
(Nitrate + Nitrite) as N Leachate	mg/L	1000	0.70	<0.70	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 22T858760 PROJECT: 60637047

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

					•	
DATE RECEIVED: 2022-01-31						DATE REPORTED: 2022-02-07
		SAMPLE DES	CRIPTION:	TCLP-1		
		SAM	PLE TYPE:	Soil		
		DATES	SAMPLED:	2022-01-29 10:00		
Parameter	Unit	G / S	RDL	3470134		
PCB's Leachate	mg/L	0.3	0.005	<0.005		
Surrogate	Unit	Acceptab	le Limits			
Decachlorobiphenyl	%	50-1	140	118		

O. Reg. 558 - PCBs

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3470134 The soil sample was leached using the Regulation 558 procedure. Analysis was performed on the leachate. PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 22T858760 PROJECT: 60637047

0 Reg 558 - SV/0Cs

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

DATE RECEIVED: 2022-01-31					DATE REPORTED: 2022-02-0
		SAMPLE DES	CRIPTION:	TCLP-1	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2022-01-29 10:00	
Parameter	Unit	G/S	RDL	3470134	
Pyridine Leachate	mg/L	5.0	0.010	<0.010	
Cresols Leachate	mg/L	200	0.012	<0.012	
o-Cresol Leachate	mg/L		0.004	<0.004	
Meta & Para-Cresol Leachate	mg/L	200	0.008	<0.008	
Hexachloroethane Leachate	mg/L	3	0.004	<0.004	
Nitrobenzene Leachate	mg/L	2.0	0.004	<0.004	
Hexachlorobutadiene Leachate	mg/L	0.5	0.004	<0.004	
2,4,6-Trichlorophenol Leachate	mg/L	0.5	0.05	<0.05	
2,4,5-Trichlorophenol Leachate	mg/L	400	0.004	<0.004	
2,4-Dinitrotoluene Leachate	mg/L	0.13	0.004	<0.004	
2,3,4,6-Tetrachlorophenol Leachate	mg/L	10	0.004	<0.004	
Hexachlorobenzene Leachate	mg/L	0.13	0.004	<0.004	
Dinoseb Leachate	mg/L	1	0.004	<0.004	
Benzo(a)pyrene Leachate	mg/L	0.001	0.001	<0.001	
Pentachlorophenol Leachate	mg/L	6	0.006	<0.006	
Surrogate	Unit	Acceptab	ole Limits		
2-Fluorophenol	%	50-	140	78	
Phenol-d6	%	50-	140	84	
2,4,6-Tribromophenol	%	50-	140	78	
Chrysene-d12	%	50-	140	89	

3470134 The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate. Cresols total is a calculated parameter. The calculated value is the sum o-Cresol and m&p-Cresol.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukolof

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 22T858760 PROJECT: 60637047 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Arif Chowdhury

SAMPLED BY:

O. Reg. 558 - VOCs DATE RECEIVED: 2022-01-31 **DATE REPORTED: 2022-02-07** SAMPLE DESCRIPTION: TCLP-1 SAMPLE TYPE: Soil DATE SAMPLED: 2022-01-29 10:00 Parameter Unit G/S RDL 3470134 Vinyl Chloride Leachate mg/L 0.2 0.030 < 0.030 1.1 Dichloroethene Leachate mg/L 1.4 0.020 < 0.020 5.0 0.030 <0.030 Dichloromethane Leachate mg/L Methyl Ethyl Ketone Leachate mg/L 200 0.090 < 0.090 Chloroform Leachate 10.0 0.020 < 0.020 mg/L 1,2-Dichloroethane Leachate mg/L 0.5 0.020 < 0.020 Carbon Tetrachloride Leachate mg/L 0.5 0.020 < 0.020 Benzene Leachate mg/L 0.5 0.020 < 0.020 Trichloroethene Leachate mg/L 5.0 0.020 <0.020 Tetrachloroethene Leachate 3.0 mg/L 0.050 < 0.050 Chlorobenzene Leachate mg/L 8.0 0.010 < 0.010 20.0 1.2-Dichlorobenzene Leachate mg/L 0.010 < 0.010 1.4-Dichlorobenzene Leachate mg/L 0.5 0.010 <0.010 Unit Acceptable Limits Surrogate Toluene-d8 % Recovery 50-140 98 4-Bromofluorobenzene % Recovery 50-140 83

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 3470134 Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE:

AGAT WORK ORDER: 22T858760 ATTENTION TO: Arif Chowdhury

SAMPLED BY:

Soil Analysis

RPT Date: Feb 07, 2022			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1 Dup #2 RPD Blank Measured Limits Recovery Lim			Recovery	Recoverv	Recovery	ptable nits	Recovery	1 1 1 1	ptable nits			
		iù					Value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 558 Metals and Inorganic	cs														
Arsenic Leachate	3460977		<0.010	<0.010	NA	< 0.010	94%	70%	130%	120%	80%	120%	128%	70%	130%
Barium Leachate	3460977		0.243	0.245	0.8%	< 0.010	100%	70%	130%	107%	80%	120%	116%	70%	130%
Boron Leachate	3460977		<0.050	<0.050	NA	< 0.050	106%	70%	130%	99%	80%	120%	115%	70%	130%
Cadmium Leachate	3460977		<0.010	<0.010	NA	< 0.010	101%	70%	130%	106%	80%	120%	109%	70%	130%
Chromium Leachate	3460977		<0.050	<0.050	NA	< 0.050	101%	70%	130%	120%	80%	120%	121%	70%	130%
Lead Leachate	3460977		0.015	0.015	NA	< 0.010	104%	70%	130%	104%	80%	120%	102%	70%	130%
Mercury Leachate	3460977		<0.01	<0.01	NA	< 0.01	96%	70%	130%	90%	80%	120%	99%	70%	130%
Selenium Leachate	3460977		<0.010	<0.010	NA	< 0.010	102%	70%	130%	119%	80%	120%	117%	70%	130%
Silver Leachate	3460977		<0.010	<0.010	NA	< 0.010	100%	70%	130%	101%	80%	120%	104%	70%	130%
Uranium Leachate	3460977		<0.050	<0.050	NA	< 0.050	100%	70%	130%	108%	80%	120%	108%	70%	130%
Fluoride Leachate	3460977		0.24	0.24	NA	< 0.10	100%	90%	110%	102%	90%	110%	97%	70%	130%
Cyanide Leachate	3460977		<0.05	<0.05	NA	< 0.05	100%	70%	130%	94%	80%	120%	114%	70%	130%
(Nitrate + Nitrite) as N Leachate	3460977		<0.70	<0.70	NA	< 0.70	98%	80%	120%	94%	80%	120%	92%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 11

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE:

AGAT WORK ORDER: 22T858760 ATTENTION TO: Arif Chowdhury SAMPLED BY:

Trace Organics Analysis

			mac		gann	00 / 11	iary 5	15							
RPT Date: Feb 07, 2022			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER		nple	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lin	eptable nits
		נ					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 558 - VOCs															
Vinyl Chloride Leachate	3461970		<0.030	<0.030	NA	< 0.030	86%	50%	140%	91%	50%	140%	87%	50%	140%
1,1 Dichloroethene Leachate	3461970		<0.020	<0.020	NA	< 0.020	87%	50%	140%	83%	60%	130%	94%	50%	140%
Dichloromethane Leachate	3461970		<0.030	<0.030	NA	< 0.030	104%	50%	140%	77%	60%	130%	85%	50%	140%
Methyl Ethyl Ketone Leachate	3461970		<0.090	<0.090	NA	< 0.090	88%	50%	140%	84%	50%	140%	113%	50%	140%
Chloroform Leachate	3461970		<0.020	<0.020	NA	< 0.020	88%	50%	140%	89%	60%	130%	94%	50%	140%
1,2-Dichloroethane Leachate	3461970		<0.020	<0.020	NA	< 0.020	87%	50%	140%	89%	60%	130%	89%	50%	140%
Carbon Tetrachloride Leachate	3461970		<0.020	<0.020	NA	< 0.020	83%	50%	140%	108%	60%	130%	111%	50%	140%
Benzene Leachate	3461970		<0.020	<0.020	NA	< 0.020	84%	50%	140%	75%	60%	130%	74%	50%	140%
Trichloroethene Leachate	3461970		<0.020	<0.020	NA	< 0.020	82%	50%	140%	78%	60%	130%	107%	50%	140%
Tetrachloroethene Leachate	3461970		<0.050	<0.050	NA	< 0.050	84%	50%	140%	74%	60%	130%	72%	50%	140%
Chlorobenzene Leachate	3461970		<0.010	<0.010	NA	< 0.010	89%	50%	140%	82%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene Leachate	3461970		<0.010	<0.010	NA	< 0.010	84%	50%	140%	81%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene Leachate	3461970		<0.010	<0.010	NA	< 0.010	95%	50%	140%	87%	60%	130%	102%	50%	140%
O. Reg. 558 - SVOCs															
Pyridine Leachate	3470134 34701	34	< 0.010	< 0.010	NA	< 0.010	74%	50%	140%	96%	50%	140%	76%	50%	140%
Cresols Leachate	3470134 34701	34	< 0.012	< 0.012	NA	< 0.012									
o-Cresol Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	89%	50%	140%	75%	50%	140%	84%	50%	140%
Meta & Para-Cresol Leachate	3470134 34701	34	< 0.008	< 0.008	NA	< 0.008	78%	50%	140%	76%	50%	140%	72%	50%	140%
Hexachloroethane Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	85%	50%	140%	84%	50%	140%	84%	50%	140%
Nitrobenzene Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	87%	50%	140%	75%	50%	140%	75%	50%	140%
Hexachlorobutadiene Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	76%	50%	140%	78%	50%	140%	78%	50%	140%
2,4,6-Trichlorophenol Leachate	3470134 34701	34	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	82%	50%	140%	85%	50%	140%
2,4,5-Trichlorophenol Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	86%	50%	140%	84%	50%	140%	84%	50%	140%
2,4-Dinitrotoluene Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	98%	50%	140%	78%	50%	140%	79%	50%	140%
2,3,4,6-Tetrachlorophenol Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	85%	50%	140%	85%	50%	140%	86%	50%	140%
Hexachlorobenzene Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	84%	50%	140%	86%	50%	140%	85%	50%	140%
Dinoseb Leachate	3470134 34701	34	< 0.004	< 0.004	NA	< 0.004	78%	50%	140%	85%	50%	140%	84%	50%	140%
Benzo(a)pyrene Leachate	3470134 34701		< 0.001	< 0.001	NA	< 0.001	85%	50%	140%	84%	50%	140%	78%	50%	140%
Pentachlorophenol Leachate	3470134 34701	34	< 0.006	< 0.006	NA	< 0.006	79%	50%	140%	76%	50%	140%	85%	50%	140%
O. Reg. 558 - PCBs															
PCB's Leachate	3468845		< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	89%	50%	140%	98%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoh

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 11

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

AGAT WORK ORDER: 22T858760 ATTENTION TO: Arif Chowdhury

SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			1
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	3 ICP-MS
Fluoride Leachate	INOR-93-6018	EPA 1311 & modified from SM4500-F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	TECHNICON AUTO ANALYZER
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	LACHAT FIA

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

AGAT WORK ORDER: 22T858760

ATTENTION TO: Arif Chowdhury

		ATTENTION TO: /				
SAMPLING SITE:		SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Trace Organics Analysis						
PCB's Leachate	ORG-91-5112	Regulation 558, EPA SW846 3510C/8082	GC/ECD			
Decachlorobiphenyl	ORG-91-5112	EPA SW846 3510C/8082 GC/ECD				
Pyridine Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Cresols Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION			
o-Cresol Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Meta & Para-Cresol Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Hexachloroethane Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Nitrobenzene Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Hexachlorobutadiene Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
2,4,6-Trichlorophenol Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
2,4,5-Trichlorophenol Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
2,4-Dinitrotoluene Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
2,3,4,6-Tetrachlorophenol Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Hexachlorobenzene Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Dinoseb Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Benzo(a)pyrene Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Pentachlorophenol Leachate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Phenol-d6	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS			
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS			

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60637047

SAMPLING SITE:

AGAT WORK ORDER: 22T858760

ATTENTION TO: Arif Chowdhury SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS		
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS		
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS		
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS		
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS		
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS		
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		

22T858760	Laboratory Use Only Work Order #: USH (Docord Nee Cooler Quantity: Arrival Temperatures: <u>25, 17, 9, 17, 27</u>	Outlody Seal Intact: Dyes Dyo Motes: Turnaround Time (TAT) Required: Dyn Turnaround Time (TAT) Required: Story Business Days Regular TAT Story Business Days Rush TAT Story Business Days Basiness 2 Business Days Days Days OR Date Required (Rush Surcharges May Apply):	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM	y Hazardous of High Concentration Package MS (Brocs Extension Package) Materials E Vocs E Savcs Solis SCHP Rainwater Lesch MS (Metals E Vocs E Svocs Solis SCHP Rainwater Lesch MS (Metals E TC, FL-F4 B System Syste	الا من من الا من ال الا من الا من الا من الا من الا من الا من الا من الا من ال الا من الا من من المن المن المن المن المن المن المن ال	Image Page Page fina Page Of
127	5335 Coopers Avenue Missesauga, Ontario 147, 172 Phr. 965, 712, 5100, Fax, 905, 712, 5122 v.chvianth.dg/dbbs.com usble water consumed by humans)	E 4100	Report Guldeline on Certificate of Analysis	ield Filtaned - Metalls, Hg, CrW, DOC B Inorganics	Metals & Met	CM n Ci Ci La Alla
	ies Phi.	Regulatory Requirements: Preservent all approximate on each all approximate on each all approximate on each all approximate on each approximate on the provided	Is this submission for a Record of Site Condition?	Sample Matrix Legend B Biota aw Ground Water O Oil P Peint S Soil SD Sodiment SW Surface Water	ble Comments/ tx Special Instructions L On Hold On Hold	Samples Received By (Plant, Thank, Pril, Say Samples Received By (Plant, Thank, Pril, Say Samples Received By (Plant Varme and Say
	The 905,712,5160 Fax 9553 Geoper Misserange, Ontatio Phe 905,712,5160 Fax 955,7 webreath.aga this is a phinking Water sample, please use prinking Water Chain of Custody Form (potable water consumed by humans)	W W U U U U U U U U U U U U U U U U U U		PO: I deficient with 2x blief Auf proc five analysis Bill To Same: Yes D No D	Date Time # of Sampled Sampled Sampled Continuers Sample 2022/01/26 10AM MM 5 SOTL 2022/01/26 10AM MM 3 SOTL	1000 PM
	Chain of Custody Record	ation: ABECOM CANADALTD ARECHOW DHURY 105COM MERCEVALLEYDRIX ARKHAM DNTARID 4164279346 F AR JE CHOW DHURY® ABCOM SERG JY TCHERNIKOV COM	mation: 60637047 HAM TTO N	nse // audation numer is not provident	Sample Identification 2022 2022 2023	Pred Name and Sapit Dy Line and Sapit Proc. Name and Sapit Proc. Name and Sapit
	Chain of	Report Inform Company: Compary: Contact: Address: Address: Phone: Afepons to be sent to: 1. Email: 2. Email: 2. Email:	Project Information: Project: 606370 Site Location: HAM IV	Sampled By: <u>NUKA</u> AGAT Quote #: <u>Fease</u> Invoice Information: Company: <u>AECOb</u> Contact: <u>SERG</u> Address: Address:	sai TCLP-1 SPLP-1 SPLP-2	Summa introductor for fiber future and fight Indiak fiberat e eldyph fitturu Sumpes referenced for fibrit tama and Scott

22JANUI 10:02M

Mustafa Alkiki, P.Eng. Geotechnical Engineer

Error! Reference source not found. AECOM Canada Ltd. 1000-5090 Explorer Drive Mississauga, ON L4W 4X6 Canada

T: 905 238 0007 www.aecom.com

