HYDROGEOLOGY INVESTIGATION REPORT

UPPER WEST SIDE COMMUNITY

CITY OF HAMILTON

PREPARED FOR:

CORBETT LAND STRATEGIES INC

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

NOVEMBER 20, 2023

CFCA FILE NO. 2521 - 6807

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	September 15, 2023	Issued DRAFT report for external coordination.
Rev. 1	November 2, 2023	Issued DRAFT report for coordination with updated results.
Rev. 2	November 20, 2023	Issued for 1st Submission.

TABLE OF CONTENTS

1.0		BACKGROUND	. 1
	1.1 1.2	Site Situation Proposed Development	
	1.2	Previous Studies	
2.0		EXISTING CONDITIONS	. 4
	2.1	Physiography, Drainage & Topography	
	2.2 2.3	Regional Geology Local Geology	
	2.3 2.4	Surface Water Features	
	2.5	Source Protection Information	
	2.6	Hydrogeology	
	2.6.		
	2.6.		
	2.6.	3 Aquifer Properties	6
3.0		FIELD METHODOLOGY	. 7
	3.1	Site Reconnaissance	. 7
	3.2	Monitoring Well Installation	. 8
	3.3	Groundwater Monitoring	
	3.4	Door-to-Door Survey	
	3.5	Groundwater Quality Sampling	
	3.6	Surface Water Monitors Installation	. 9
4.0		RESULTS	. 9
	4.1	Groundwater Levels	. 9
	4.2	Door-to-Door Survey Results	10
	4.3	Surface Water Levels	
	4.4	Groundwater Quality	10
5.0		DESIGN CONSIDERATIONS	11
	5.1	Groundwater Conditions	11
	5.2	Dewatering Considerations	11
6.0		CONCLUSIONS & RECOMMENDATIONS	11
7.0		REFERENCES	13

LIST OF TABLES

Table 1:	Upper West Side Community Land Use Areas
Table 2:	Summary of Background Reports for Upper West Side
Table 3:	Hydrostratigraphy of the Hamilton Area
Table 4:	Monitoring Well Construction Details

LIST OF APPENDICES

- Appendix A: Terms of Reference
- Appendix B1: Borehole Logs (EXP 2018)
- Appendix B2: Borehole Logs (Crozier 2023)
- Appendix C: Karst Letter (EXP 2019)
- Appendix D: MECP Well Records
- Appendix E: Hydrograph
- Appendix F: Door-to-Door Survey
- Appendix G: Groundwater Quality
- Appendix H1: Groundwater Levels
- Appendix H2: Surface Water Levels

LIST OF FIGURES

- Figure 1: Site Location Plan
- Figure 2: Site Overview
- Figure 3: Topography
- Figure 4:Physiography
- Figure 5: Bedrock Geology
- Figure 6: Surficial Geology
- Figure 7: MECP Well Location Plan
- Figure 8: Monitoring Well & Borehole Location Plan
- Figure 9: Door-to-Door Survey Locations

1.0 Background

C.F. Crozier & Associates Inc. (Crozier) has been retained by the Upper West Side Landowners Group to prepare a comprehensive Hydrogeological Investigation Report to support the development of the Secondary Plan area for the proposed urban neighbourhood known as the Upper West Side Community. The subject lands (herein referred to as the Study Area) are located in the Twenty Road West Urban Expansion Area and portions of the Airport Employment Growth (AEGD) Secondary Plan Area according to the Urban Hamilton Official Plan.

The hydrogeological report has been prepared to support the establishment of a Secondary Plan for the Upper West Side Community area. The scope of this report was designed to meet the relevant City of Hamilton (City) and Niagara Peninsula Conservation Authority (NPCA) criteria. The scope of work for this report is outlined within the Terms of Reference prepared and submitted to the City for comment on July 2023. A copy of the Terms of Reference has been included as Appendix A.

1.1 Site Situation

The Study Area is located within the southwestern district of Glanbrook within the City of Hamilton and covers a total area of approximately 264.75 ha. The Study Area, known as the Upper West Side (UWS) Community lands is located between Twenty Road West to the north, Upper James Street to the east, Dickenson Road West to the south and Glancaster Road to the west (Figure 1). The Study Area is comprised of multiple land parcels—555 Glancaster Road, 9285, 9445, 9511, 9575 and 9751 Twenty Road West and 2060 Upper James Street.

The UWS Community lands currently consist of agricultural lands, natural features, single family homes and the former Glancaster Golf and Country Club. The Study Area is currently zoned as Agriculture (A1), Rural (A2), Open Space (P4) and Conservation/Hazard Land (P5) according to the City of Hamilton Official Plan.

Tributaries of Twenty Mile Creek flow across the Study Area northwards towards the Upper Twenty Mile Creek Wetland Complex and ultimately outlet at Lake Ontario, east of Lincoln (NPCA, 2006). Twenty Mile Creek flows parallel to the escarpment, approximately 360 m from the Site. Shallow ponds and wetlands are located within the Study Area. The entire lands surrounding Twenty Mile Creek have been designated as provincially significant wetland by the Ministry of Natural Resources. The locations of surface water features within and around the Study Area lands on Figures 1 and 2.

1.2 Proposed Development

According to the Upper West Side Secondary Plan, Land Use Plan prepared by (Corbett Land Strategies, October 2023), residential, mixed use, institutional development, parks, open space and stormwater management facilities are planned for the Study Area. Table 1 outlines the areas for each planned development type.

Land Use Designation	Area (ha)
Low Density Residential 1	3.12
Low Density Residential 2	6.50
Medium Density Residential	84.64
High Density Residential	6.08
Community Parks	7.98
Neighbourhood Parks	2.39
Natural Open Space	103.44
Mixed Use	12.82
Institutional Use	6.11
Compensation Areas	2.98
Utility Use	6.46
Major Roads	42.00
Schools	4.51
Employment	105.71

Table 1: Upper West Side Community Land Use Areas

For further information on the proposed land uses, please refer to the Planning Justification Report (under separate cover) prepared by Corbett.

1.3 Previous Studies

Several studies were conducted on the property to characterize existing conditions and to support previous planning applications conducted for the Study Area. Crozier has completed a detailed review of the background documents and a summary is provided in Table 2. The contents of each report have been considered while preparing this report.

Report Title & Author	Scope/Purpose	Major Findings Relating to Hydrogeology
Preliminary Hydrogeological Investigation (EXP, July 2018)	This report was prepared to examine the local hydrogeological settings, determine preliminary construction dewatering and existing groundwater quality.	 -A total of 22 monitoring wells were installed on the property—five (5) nested pairs (6 meters below ground surface (mbgs) and 12 mbgs), four (4) intermediate wells (8 mbgs) and eight (8) shallow wells (6 mbgs). -The soils noted on the subject lands include topsoil, fill, silt to sand, and silty clay in stratigraphic order. -Hydraulic conductivity testing was conducted across the subject lands range from 1.4 x 10⁻⁵ m/s to 9.3 x 10⁻⁸ m/s. The geometric mean hydraulic conductivity for the coarser materials on the subject lands was determined to be 3.8 x 10⁻⁶ m/s and fine materials was determined to be 7.8 x 10⁻⁸ m/s. -Groundwater elevations within the shallow wells ranged from 221.36 masl to 234.96 masl and 221.26 masl to 237.15 masl within the intermediate/deep wells in June 2018. Artesian conditions were noted up to 2.8 mbgs at some monitoring locations. -Additional monitoring was recommended.
Preliminary Geotechnical Investigation (EXP, June 2018)	This investigation was undertaken to provide geotechnical recommendations pertinent to the former proposed Garth Industrial Subdivision, located in the centre of the Upper West Side Study Area.	 -33 boreholes were advanced for geotechnical purposes across the site. -Depth to bedrock is estimated to be 30 mbgs in the area of the site. -The soils encountered during drilling was topsoil, silty clay fill, silt to sand and silty clay in stratigraphic order. -Shallow excavations not exceeding 3 mbgs are not expected to encounter significant groundwater. -A groundwater drainage system and a clay liner are recommended for stormwater management ponds proposed in the area of artesian conditions. To prevent uplift, the groundwater table should be lowered 0.5 m below the base of the pond level.

Table 2: Summary of Background Reports for Upper West Side

2.0 Existing Conditions

The following sections below outline the existing conditions of the Study Area based on literature review and field observations.

2.1 Physiography, Drainage & Topography

Regional topography is characterised as rolling with steep slopes at the flank of the Niagara Escarpment to gentle rolling and flat towards Lake Ontario (NPCA, 2006). As shown in Figure 3, topography of the Study Area ranges from approximately 242 masl in the west to 218 masl in the east at Twenty Mile Creek. The Study Area is located within the Twenty Mile Creek Watershed, in the Upper Twenty Mile Creek Subwatershed (NPCA, 2006). Surface water drainage appears to be from southwest-west to northeast-east across the Study Area, following topography.

Ontario Geological Survey (OGS) mapping indicates that the Study Area is located within the physiographic region known as the Haldimand Clay Plain (Figure 4). Located between the Niagara Escarpment and Lake Erie, the Haldimand Clay Plain is primarily comprised of clay-rich and poorly drained soils deposited in the deep-water stages of Glacial Lakes Whittlesey and Warren (Chapman and Putnam, 1984).

2.2 Regional Geology

The Study Area sits atop a bedrock basement of the Guelph Formation. The Guelph Formation is characterized by tan or buff coloured, massive bedded dolostone. Karstification is possible in areas of thin cover or exposed bedrock due to the carbonate origin of the bedrock. Based on Ministry of Natural Resources and Forestry (MNRF) mapping and local well records, the depth to bedrock is estimated to be approximately 30 mbgs or at an elevation of approximately 212 masl to 188 masl.

Regional sufficial geology consists primarily of fine-textured glaciolacustrine deposits comprised of silt, clay, and minor sand and gravel. These soils are representative of the Beverly Silt Loam and Brantford Silt Loam soil groups. These soils are imperfectly drained, slowly permeable soils with a medium to high water-holding capacity and a rapid surface runoff. The area is interspersed with sandy sediments in the headwaters area and loamy sediments over clay soils (NPCA, 2006).

The bedrock and surficial geology of the Study Area are displayed in Figures 4 and 5, respectively.

2.3 Local Geology

Detailed subsurface investigation has been conducted within the Study Area throughout the project timeline. Previously, collaborative hydrogeological and geotechnical investigations were conducted for the Study Area to support a previous development application with the City of Hamilton. The scope of both investigations included the advancement of a number of boreholes across the subject lands and the installation of a number of monitoring wells to investigate the subsurface conditions.

A total of 22 monitoring wells were installed as part of the previous hydrogeological investigation and 33 boreholes were advanced as part of the geotechnical investigation in Spring 2018. In general, the following soils were encountered in stratigraphic order:

- 0 0.17 m: topsoil
- 0.17 0.60 m: brown, moist, silty clay fill

- 0.60 10.0 m: brown, moist to wet, silt to silty sand; grey encountered between 3 and 5 mbgs
- 0.60 11.0 m: brown to grey, moist to wet, silty clay, trace sand and gravel

Monitoring wells/boreholes installed within the southern portion of the Study Area (BH/MW29-S, BH/MW29-D, BH/MW30-S, BH/MW30-D, BH/MW11, BH/MW33-S and BH/MW33-D, BH/MW10, BH/MW31-S and BH/MW31-D) encountered silty clay material at a higher elevation than the remaining wells and the unit below the silty clay was observed to be sandy and under slight pressure (EXP, 2018). Detailed borehole logs prepared by EXP have been appended to this report in Appendix B.

To supplement the existing monitoring well network, an additional four (4) boreholes and twelve (12) monitoring wells were advanced across the Study Area as part of this Hydrogeological Investigation (see Appendix A). Similar strata to previous investigations were encountered during drilling and additional borehole logs have been provided in Appendix B2.

It should be noted that the Study Area is identified as an area of potential karst according to OGS mapping, based upon the bedrock type. Through field investigation, no bedrock outcrops were encountered. Over 33 boreholes were drilled with depths up to 12.7 mbgs of overburden material. Based upon the field investigation, karstic features are not presumed to be present across the Study Area. A karst letter was previously completed by EXP. in 2019. The karst letter is attached as Appendix C.

2.4 Surface Water Features

There are nine (9) identified tributaries within the Study Area according to environmental surveys conducted by NRSI and GeoMorphix staff as part of the EIS and from field observations by Crozier staff. The tributaries are interpreted to flow east towards the main branch of Twenty Mile Creek, located just outside the Study Area boundary. The Study Area is located approximately 8.2 km southwest of the Lake Ontario shoreline. Surface water features are shown on Figures 1 and 2.

2.5 Source Protection Information

According to the MECP Source Protection Information Atlas, the Study Area is located within the Niagara Peninsula Source Protection Area and is therefore governed by the policies outlined within the Approved Source Protection Plan for the Niagara Peninsula Source Protection Area.

The Study Area is located within a Significant Groundwater Recharge Area (SGRA) and atop a Highly Vulnerable Aquifer (HVA). Within an SGRA, the rate of annual recharge to the underlying water supply aquifer is greater than the surrounding area. Across the Study Area the vulnerability score ranges from 4 to 6 within the SGRA. The HVA below the Study Area is noted to have a vulnerability score of 6. No significant drinking water threats and source protection policies related to the HVA and SGRA are identified for the Study Area under the Clean Drinking Water Act 2006.

Despite no significant drinking water threats being identified for the Study Area, a number of low to moderate drinking water threats are identified for the future use of the property, including the following:

- 1) Use of stormwater management facilities
- 2) Application, handling and storage of road salt
- 3) Storage of snow
- 4) An activity that reduces the recharge of an aquifer.

Best management strategies should be employed such that the prescribed low to moderate drinking water threats above will not become significant drinking water threats in the future.

2.6 Hydrogeology

The following sections below detail the existing hydrogeological conditions of the Upper West Side Community area based on regional studies, local studies and relevant background information.

2.6.1 MECP Well Records

According to the MECP Well Records Database, there are 130 identified well records within 500 m of the Study Area boundary. A summary table of the well records has been appended to this report as Appendix D.

In general, the following can be concluded from the identified well records:

- In stratigraphic order, topsoil, clay, sand/silt and limestone was encountered in most wells.
- The majority of the records indicated that the wells were installed for domestic purposes, reportedly producing between 10 liters per minute (LPM) to 30 LPM.
- Two identified domestic supply aquifers were noted—the dolostone/limestone bedrock located approximately 30 mbgs and the overburden sandy silt to sand aquifer located approximately 20 mbgs.

Figure 6 shows the spatial distribution of all the identified well records within 500 m of the Study Area boundary.

2.6.2 Groundwater Properties

Regional shallow and deep groundwater flow direction is interpreted to follow surface and bedrock topography and flow northeast/east towards Lake Ontario. NPCA mapping indicates that along the tributaries within the Study Area boundary, groundwater discharge is observed. Local studies indicate that baseflow within the tributaries is low throughout the summer and visible water flow within the Study Area is minimal.

2.6.3 Aquifer Properties

According to the Niagara Peninsula Source Protection Area Assessment Report (NPCA, 2013), there are four (4) primary types of aquifers within the area: surficial overburden, the Guelph Formation, the Onondaga/Bois Blanc Formations and the contact zone aquifer. The hydrostratigraphy of the source protection area is summarized in Table 3 below.

Age	Name	Function	Material	Supply
1 - Youngest	Recent Quaternary Sediments	Aquifer	Sand, silt	Local domestic
2	Beverly Silt Loam, Brantford Silt Loam	Aquitard	Silts, clays	
3	Contact Zone	Aquifer	Weathered dolostone, limestone	
4	Onondaga/Bois Blanc Formation	Aquifer	Limestone, dolostone	Local domestic
5	Salina Formation	Aquifer	Dolostone, shale	Local domestic
6	Guelph Formation	Aquifer	Dolostone	City of Hamilton
7	Cataract Group	Aquitard	Sandstone, shale	
8 - Oldest	Queenston Formation	Aquitard	shale	

	Table 3: Hydros	ratigraphy of the	Hamilton Area
--	-----------------	-------------------	---------------

Sands and gravels of recent glacial events form the overburden aquifer across the Hamilton Area. Thicker deposits are found near buried bedrock valleys such as the Dundas Valley, that stretches from northwest of Stratford to the Hamilton harbour (NPCA, 2009). Major bedrock groundwater resources for water supply are held within the dolostones and limestones of the Onondaga, Bois Blanc, Salina and Guelph Formations. Karst topography is common within the Salina Formation due to groundwater dissolution of the dolostones. Karstification causes significant groundwater recharge within stream beds above the escarpment.

Groundwater quality within the Hamilton Area has been reported in multiple studies undertaken by the City of Hamilton. According to the Hamilton Rural Well Water Quality Report from 2017, exceedances of the Ontario Drinking Water Quality Standards (ODWQS) for arsenic, barium, fluoride, lead, nitrates and sodium have been observed in the past. All exceeding parameters are noted to be naturally occurring in the area based on the chemical composition of the bedrock. Nitrates are common in groundwater in areas where septic systems are used and in agricultural areas. Local groundwater quality within the Study Area is discussed within Section 4.4.

3.0 Field Methodology

3.1 Site Reconnaissance

A preliminary site reconnaissance visit was conducted to investigate the location of and the status of the existing monitoring wells that were installed in 2018 under the supervision of a previous engineering consultant. Of the 22 monitoring wells installed, 21 were located and 1 was identified to be damaged (Figure 7)

During additional site visits conducted by Crozier in September 2023, five (5) additional monitoring wells were discovered on the 555 Glancaster Road property. No further details of these wells have been disclosed to the Crozier team.

3.2 Monitoring Well Installation

The 2023 drilling program was conducted from September 6 to September 15, 2023 with the installation of fourteen (14) boreholes across the Study Area, twelve (12) of which were converted to monitoring wells to supplement the existing monitoring well network (Figure 8). All wells were constructed with 2-inch Schedule 40 PVC pipe and completed with monument well casing. Screen depths and total depths of each of the wells were determined in the field based on soils encountered and target unit identified.

Table 4 below outlines the construction details of the 2023 monitoring wells and monitoring wells logs are provided in Appendix B2.

Monitoring Well ID	Depth (mbgs)	Estimated Ground Elevation (masl)	Stick up Height (m)	Screened Interval (mbgs)	Screened Material
MW23-1	7.01	239.90	1.08	3.96-7.01	silt
MW23-2	7.01	242.80	1.00	3.96-7.01	silt
MW23-3	7.62	250.10	1.12	4.57-7.62	silt
MW23-4	5.48	240.08	1.05	2.43-5.48	silt
MW23-5	8.23	233.13	1.03	5.18-8.23	silt
MW23-6	9.10	235.93	1.05	6.05-9.10	silt-silty sand
MW23-7	9.10	229.33	1.12	6.05-9.10	silt-silty sand
MW23-8	5.48	226.24	1.05	2.43-5.48	silt
MW23-9	5.18	225.00	1.12	2.13-5.18	silty clay
MW23-10	6.10	233.83	1.07	3.05-6.10	silt
MW23-11	6.71	237.03	1.08	3.66-6.71	sand
MW23-12	6.10	232.69	0.98	3.05-6.10	silt

Table 4: 2023 Monitoring Well Construction Details

Best efforts were made during monitoring well installation to isolate the target unit from any coarse material above the well screen through the placement of the sand pack. In general, the majority of monitoring wells were installed within a silt to silty sand unit. Further details are presented in Section 4.0.

3.3 Groundwater Monitoring

Manual groundwater measurements will continue for a minimum of one (1) year in order to capture the spring freshet and seasonal fluctuations. Manual measurements collected at the monitoring wells will supplement the existing data collected by others in 2018 and by Crozier staff collected in late Summer 2023. Automatic level loggers have been placed in select monitoring and have been set to collect water levels on an hourly basis. Additional loggers were installed within the 2023 monitoring wells in Fall 2023. A hydrograph representing groundwater levels across the Study Area are attached as Appendix E.

3.4 Door-to-Door Survey

A door-to-door survey was conducted by Crozier Staff on September 8, 2023 to confirm the location of and details of nearby water supply wells and septic systems within and around the Study Area. A questionnaire was used to address the following information about the wells and septic systems on the adjacent properties:

- Property address
- Existence of a well, septic system and/or cistern on the property
- Well use, age, depth
- History of water quantity and quality

A copy of the questionnaire and obtained responses are included in Appendix F. Figure 9 presents the addresses visited during the door-to-door survey. Results are summarized in Section 4.2 below.

3.5 Groundwater Quality Sampling

Groundwater quality sampling was conducted in October 2023 within the Study Area. One (1) representative water quality sample was obtained from monitoring well MW23-1 using standard hand purging methods. Three (3) well volumes were removed prior to obtaining the sample and water was observed for general clarity and colour prior to bottling the sample. The sample was sent to a licensed third-party laboratory, ALS Canada Ltd. for analysis and resulting concentrations were compared to the City of Hamilton Sewer Use By-Law. Results and discussion of groundwater quality within the Study Area is presented in Section 4.0 and Appendix G.

3.6 Surface Water Monitors Installation

Shallow piezometers were installed across the Study Area to investigate the interaction between groundwater and surface water features within the properties. A total of fifteen (15) piezometers were driven by hand across the Study Area as shown in Figure 8. Installation details are presented in Appendix H1.

4.0 Results

The following sections outline the results of the investigation at the time of this report. Note that groundwater monitoring is ongoing and this report will be updated as additional results are obtained.

4.1 Groundwater Levels

Groundwater levels collected by EXP and Crozier to date are provided in Appendix H1. In general, groundwater levels have ranged from 0.27 mbgs to -2.82 meters above ground surface (mags) or 239.40 masl to 221.54 masl. Groundwater flow is interpreted to flow from BH/MW1 in the west to

BH/MW7 in the east. Artesian conditions have been noted at MW12, MW13, MW29-S, MW29-D, MW30-D, and MW31-D.

From the existing borehole logs and field observations collected thus far, it is interpreted that shallow groundwater is semi-confined through the Study Area. The water bearing unit is interpreted to be a shallow silty sand to sandy silt unit located at an elevation of approximately 228 – 227 masl to 219 masl in the west and from 220 masl to 213 masl. A layer varying in thickness of silty clay and silt is interpreted to partially confine the water bearing unit below, driving artesian conditions observed in the monitoring wells that intercept the sandy silt/silty sand unit.

Wells installed within the silty clay and silt unit have recorded water levels at the top of unit at approximately 231.50 masl. Water levels within this unit are interpreted to be unconfined within the Study Area and the unit is anticipated to respond to seasonal fluctuation.

4.2 Door-to-Door Survey Results

At the time of this report, twelve (12) responses have been received from the door-to-door survey. A detailed table of the survey is appended to this report in Appendix F.

In general, most properties have a private water supply wells near the Study Are, along Glancaster and Dickenson roads and some use their wells for drinking water. Some property owners rely on cistern to supply water to their homes or as additional water supply. Some homeowners or tenants have noted high levels of sulphur and iron in their water and quantity issues in the past. No noted bacteriological issues were reported by homeowners or tenants.

Each property is noted to be serviced by private onsite sewage systems. The majority of the onsite sewage systems are in the backyards or side yards and are older than 20 years.

4.3 Surface Water Levels

Surface water levels were collected at the time of piezometer install in October 2023 and are provided in Appendix H2. In general, shallow groundwater levels were measured to be lower than the surface water levels outside of the pipe, suggesting that the majority of surface water features are operating as a groundwater recharge area across the Study Area. Note that surface water monitoring is ongoing and this interpretation is preliminary.

4.4 Groundwater Quality

Details laboratory results are provided in Appendix G. Four (4) exceedances of the Hamilton Sewer Use By-Law were noted: total suspended solids, total aluminum, total iron and total manganese. The significant presence of total suspended solids within the groundwater sample is not uncommon for the method of sampling described in Section 3.5 above. Hand purging the well prior to sampling stirs sediments that may have been collected within the base of the monitoring well and pulls additional fines through the screen during sampling. The elevated concentration of metals such as aluminum, iron and manganese are interpreted to be naturally occurring due to the composition of the overburden glacial materials and the underlying bedrock.

Exceedances of the Hamilton Sewer Use By-Law indicate that any future groundwater discharge from the Study Area for dewatering purposes must be treated or filtered prior to discharging to the City sewer system. Note that dewatering treatment methods or discharge plans are beyond the scope of this report.

5.0 Design Considerations

Sections 5.1 and 5.2 below outline preliminary design considerations for the proposed development. Note that design parameters should be reevaluated following the spring freshet.

5.1 Groundwater Conditions

As described in Section 4.1, groundwater levels have ranged from from 0.27 mbgs to -2.82 meters above ground surface (mags) or 239.40 masl to 221.54 masl. Given that the shallow aquifer is interpreted to be semi-confined in nature, some response to seasonal change and to precipitation is expected to occur. It is anticipated that short-term dewatering during construction for the purposes of excavation and that long-term dewatering may be required for any structure permanently completed at an elevation below the measured groundwater table. It is recommended that detailed dewatering assessment be undertaken at the Site Plan stage of each development within the Study Area.

At the time of this report, it is understood that five (5) stormwater management facilities (SMF) will be constructed on site (see Servicing and Stormwater Management Report prepared by Urbantech, submitted under separate cover). If the proposed SMF are to intercept the measured groundwater table, groundwater control methods or design elements may be required to mitigate groundwater discharge into the facility. Seasonally high groundwater conditions will be provided following the Spring freshet for design purposes following Spring 2024.

5.2 Dewatering Considerations

If proposed building footings or SWF are to be extended below the reported seasonally high groundwater conditions, it can be expected that short-term and/or long-term groundwater dewatering will be required. If construction volumes are expected to fall between 50,000 L/day and 400,000 L/day registration with the MECP Environmental Activity Sector Register is required. If construction dewatering volumes are to exceed 400,000 L/day, a Permit to Take Water will be required. Similarly, if daily permanent dewatering volumes are to exceed 50,000 L/day post-construction, an additional Permit to Take Water will be required for the groundwater discharge. Local permitting will also likely be required prior to any groundwater discharge.

Groundwater dewatering volumes should be evaluated once final footings for the proposed buildings are determined.

6.0 Conclusions & Recommendations

At the time of this report, Crozier is prepared to make the following conclusions and recommendations:

- The soils of Study Area are primarily fill, silty clay to silt and silty sand to sandy silt in stratigraphic order. The Study Area sits atop a bedrock basement of dolostone and limestone, interpreted to be encountered at a depth of approximately 30 mbgs.
- Groundwater levels have been observed to be 0.27 mbgs to 2.82 mags or at elevations of 236.90 to 221.54 masl. Groundwater is interpreted to flow from west to east across the Study Area. Groundwater monitoring is ongoing across the Study Area.

- Artesian conditions have been recorded on the properties within the monitoring wells screened within a confined water bearing, sandy silt to silty sand unit.
- The silty clay to silt unit above the water bearing unit is interpreted to be discontinuous across the Study Area.
- Exceedances of the City of Hamilton Sewer Use By-Law for total suspended solids, iron, aluminum and manganese were reported. Treatment and/or filtration will be required to meet the City of Hamilton standards if short-term or long-term groundwater discharge to the City sewer system is required.
- Due to the high groundwater levels recorded to date and artesian conditions, it is anticipated that active construction dewatering and long-term dewatering will be required if excavations are to extend below an elevation of 228-227 masl in the west area of the Study Area and 220 masl in the east. Dewatering volumes should be evaluated once final floor elevations are determined for the proposed developments planned.
- This report and its findings are advised to be preliminary and should not be used for final design purposes.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

Caitlyn MacPhee, EIT, GIT Hydrogeology Intern

C.F. CROZIER & ASSOCIATES INC.

In M

Chris Gerrits, M.Sc., P.Eng. Senior Project Manager (Hydrogeology)

J:\2500\2521 - Upper West Side Land Owners Group Inc. co Corbett Land Strategies\6807 - Upper West Side Community -Hydrogeology\Reports\Hydrogeology report\2023.09.15_6807_Upper West Side Hydrogeology Report_DRAFT.docx

7.0 References

Chapman, L.J. and D.F. Putnam. 1984. The Physiography of Southern Ontario, 3rd Edition. Ontario Geological Survey, Special Volume 2.

EXP Services Inc. July 2018. Final Preliminary Hydrogeological Investigation.

EXP Services Inc. June 2018. Preliminary Geotechnical Investigation.

Natural Resource Solutions Inc. June 2018. Environmental Impact Study.

Natural Resource Solutions Inc. February 2020. Central and East Blocks Environmental Impact Study and Linkage Assessment.

Niagara Peninsula Source Protection Committee. November 2013. Updated Assessment Report, Niagara Peninsula Source Protection Area. Retrieved from: http://www.sourceprotectionniagara.ca/documents/assessment-report/approved-assessment-report/

Ontario Geological Survey. 1990. Bedrock Topography. Retrieved from: <u>http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth</u>

Ontario Ministry of Environment, Conservation and Parks. September 2023. Source Protection Information Atlas. Retrieved from: <u>https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-US</u>

Ontario Ministry of Environment, Conservation and Parks. March 2019. Water Management: Policies, Guidelines, Provincial Water Quality Objectives. Retrieved from: <u>https://www.ontario.ca/page/water-management-policies-guidelines-provincial-waterguality-objectives#section-15</u>

APPENDIX A

Terms of Reference

JULY 19, 2023

PROJECT NO: 2521-6807

SENT VIA: EMAIL C/O CANDICE HOOD CANDICE@CORBETTLANDSTRATEGIES.CA

Development Engineering City of Hamilton 71 Main Street W Hamilton, Ontario L8P 4Y5

Attention:Tu Vu, P.Eng.
Project Manager – Development Engineering ApprovalsRE:CITY OF HAMILTON FILE NO: FC – 23-049
TERMS OF REFERENCE – HYDROGEOLOGY REPORT
UPPER WEST SIDE COMMUNITY
555 GLANCASTER ROAD, 9285, 9445, 9511, 9625, 9751 9575 TWENTY ROAD W &
2060 UPPER JAMES STREET
GLANBROOK, ONTARIO

Dear Tu,

C.F. Crozier & Associates Inc. (Crozier) has been retained to provide Hydrogeological Services to support the development applications for the proposed Upper West Side Community located at 555 Glancaster Road, 9285, 9445, 9511, 9625, 9575 and 9751 Twenty Road West and portions of 2060 Upper James Street in the Glanbrook district of Hamilton, Ontario. Crozier has prepared this Terms of Reference for the Hydrogeology Investigation and Report to support the applications with the City of Hamilton (City). The following Terms of Reference has been completed in reference to the Formal Consultation Document dated April 26, 2023 and the City of Hamilton's Guidelines for Hydrogeological Studies and Technical Standards for Private Services (Hamilton Water, February 2023).

The following sections below outline background information about the subject property (herein referred to as the Site) and our proposed workplan.

Background

The Site covers a total area of approximately 222.23 ha and is defined as the lands located between Twenty Road West to the north, Upper James Street to the east, Dickenson Road West to the south and Glancaster Road to the west. Known as the Upper West Side Community lands, the Site is comprised of multiple land parcels at 555 Glancaster Road, 9285, 9445, 9511, 9575 and 9751 Twenty Road West and 2060 Upper James Street in the Glanbrook district of Hamilton. The Site is located within the Twenty Road West Urban Expansion Area and portion of the Airport Employment Growth District Secondary Plan area.

The Upper West Side Community lands are currently comprised of agricultural lands, natural features, single family homes and the former Glancaster Golf and Country Club. The proposed

55 Wyndham St N, Suite 215 Guelph, ON N1H 7T8 T. 548.708.0022 cfcrozier.ca

Upper West Side Community will include low, medium, and high density residential, parkland, commercial space, mixed use buildings, institutional buildings, Airport Prestige Business and Airport Light Business areas, stormwater infrastructure and designated natural heritage space according to the Secondary Plan Land Use Plan.

As part of previous development applications with the City, a comprehensive Hydrogeological Investigation was completed for the Upper West Side Community Lands by a previous consultant in July 2018. The previous investigation included the implementation of a large monitoring well network, conduction of groundwater monitoring, and analysis of groundwater regime. Only measurements in June 2018 were collected and no continuous groundwater monitoring methods appeared to be used. Comments were issued by the Niagara Peninsula Conservation Authority and the City on the previous investigation and are summarized below:

- A door-to-door well survey must be completed to locate and confirm the details of water supply wells in the area around the Site to assess the potential impact of dewatering on local groundwater users.
- Additional groundwater monitoring is required to characterize seasonally high groundwater conditions and determining groundwater dewatering requirements. Previous groundwater monitoring revealed potential artesian conditions in the south portion of the site. Further groundwater investigation should be conducted to further understand the artesian conditions.
- Further investigation into potential dewatering requirements should be completed.

In addition to developing a workplan to respond to the comments from the City and the NPCA, the existing monitoring network will need to be expanded to include two (2) additional land parcel located at the northeast corner of the study area and the other, representing a new participating landowner—that was not previously included in the Hydrogeological Investigation.

The following sections describe the proposed workplan to prepare a detailed and comprehensive Hydrogeological Investigation report to characterize the hydrogeological driven constraints on the development and assess the potential impacts of dewatering for construction and permanent dewatering. The report will also investigate that the proposed development will not have any adverse effects on the groundwater and/or surface water resources within the area around the Site.

Proposed Workplan

Task 1: Physical Setting Review

In order to characterize the local geological and hydrogeological regime, Crozier will:

- Review all existing background reports and studies completed for the Site and surrounding areas.
- Review local geological studies, watershed studies and environmental studies for the Site and surrounding area.

• Complete one (1) site reconnaissance to examine and confirm the existing site conditions and the condition of the existing monitoring wells on the Site. We have assumed that the 2018 monitoring wells are in good condition and can be used for future groundwater investigation. If wells are deemed to be unusable or damaged, wells will be repaired to their original condition or replaced with a monitoring well within the same area. During the site reconnaissance, additional monitoring well locations will be scoped to gather additional groundwater information within the areas of the proposed Stormwater Infrastructure, the additional landowner lands in the northeast and any additional areas where additional hydrogeological information would be vital to the analysis.

Task 2: Supplemental Monitoring Well Construction

To supplement the existing monitoring well network, Crozier is proposing the installation of an additional 8 -12 monitoring wells within the additional 10 ha of land in the northeast corner of the Upper West Side Community Lands and the additional lands. The additional wells will be added to extend the monitoring network across the new lands and to investigate any additional features that should be investigated such as the proposed Stormwater Infrastructure and around natural features.

Shallow piezometers will be installed within the natural watercourses and ponds on the Site to investigate the vertical groundwater gradient and characterize the shallow groundwatersurface water interaction. Note that locations and number of piezometers will be determined in Task 1 and preliminary locations are attached to these terms of reference. Locations are subject to change following revisions to the stormwater management ponds and design locations.

Task 3: Groundwater Monitoring, Sampling & Testing

Concurrently with Tasks 1 & Task 2, Crozier will install a number of automatic water level recording devices within selected existing and new monitoring wells on the property to continuously capture water levels. The automatic measurements captured will supplement the manual measurements collected at each well. Manual measurements will be collected on roughly a bi-monthly basis for a minimum of one (1) year in order to capture seasonally high groundwater conditions and automatic readings will occur on a hourly basis within selected wells.

In addition to the groundwater monitoring program, Crozier will collect additional shallow groundwater samples from select wells. Samples will be collected and submitted to an accredited analytical laboratory to establish baseline water quality and for comparison to previous groundwater sampling results. Results will also be compared and analyzed against the City's Sewer Use By-Law for groundwater discharge purposes.

During the field program, Crozier will complete a detailed door-to-door survey within the anticipated dewatering zone of influence. Crozier will survey home and business owners about their water supply well, water quality and quantity. Crozier will use best efforts to collect offsite water samples to compare to onsite water quality with the home/business owner's permission.

Task 4: Hydrogeological Investigation Report

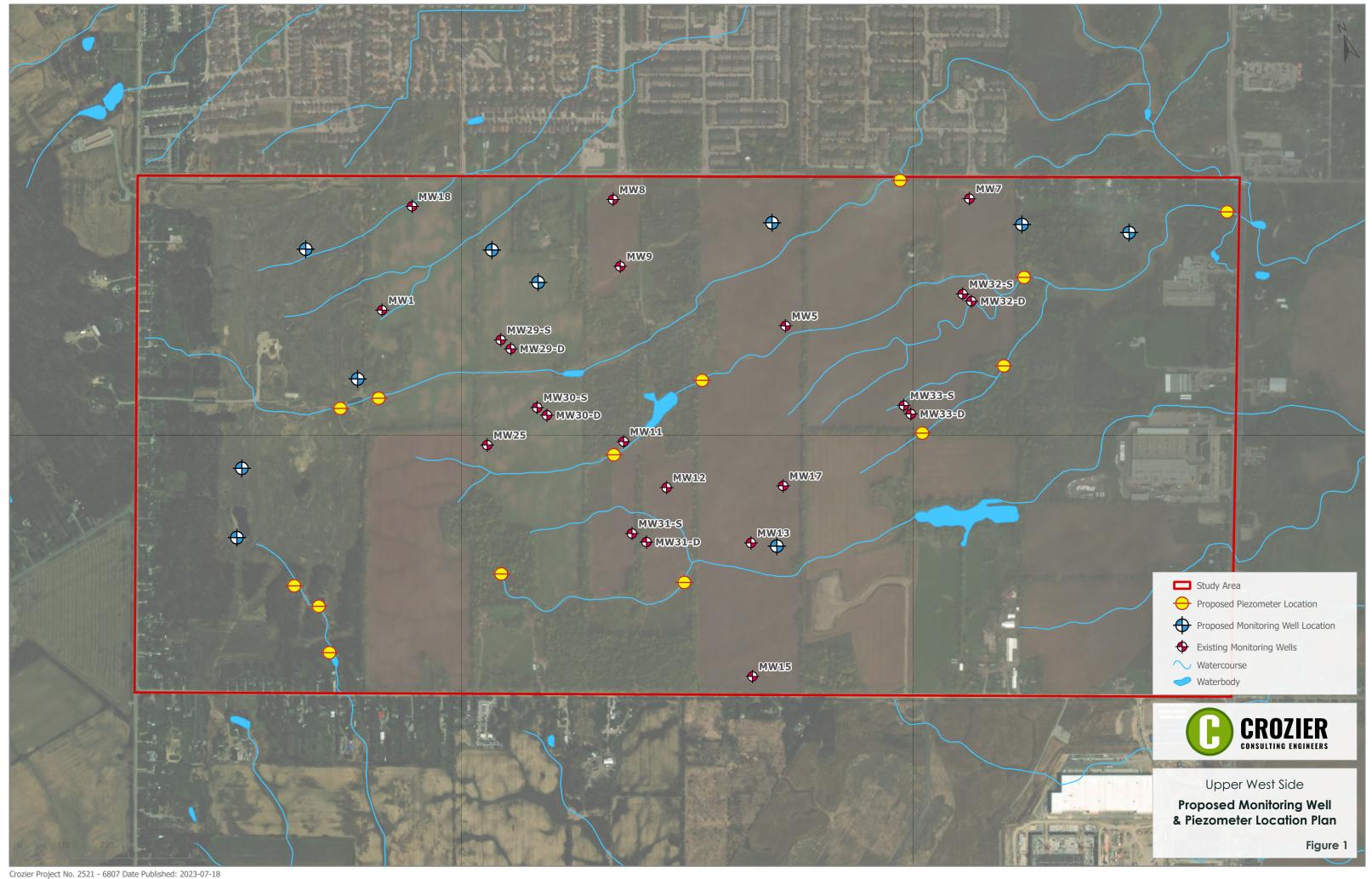
Following the completion of the field program, Crozier will prepare a detailed, comprehensive Hydrogeological Investigation Report to support the proposed development applications. This report will characterize the hydrogeological regime and determine seasonally high groundwater elevations across the Site for design purposes. The report will discuss the findings of the field investigation and will discuss potential mitigation measures if required. Additionally, the report will include a site-wide water balance to support potential Low Impact Development Structure design, long-term and short-term dewatering volumes, dewatering permitting requirements and additional design constraints. The report will be complete with Geographical Information Systems (GIS) produced figures and all monitoring well construction logs and calculations.

We are looking forward to receiving your feedback on the proposed workplan. Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Sincerely,

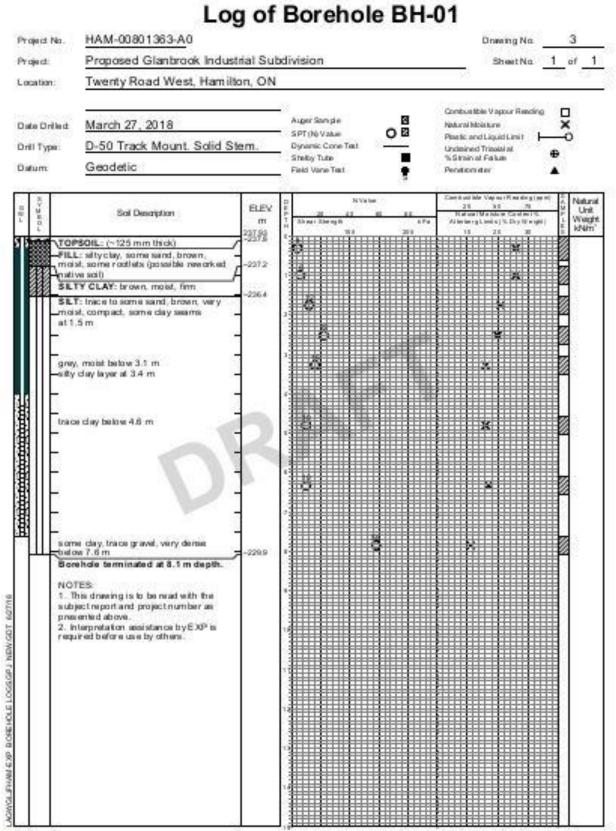
C.F. CROZIER & ASSOCIATES INC.

Caitlyn MacPhee, EIT, GIT Hydrogeology Intern


cm/dd

C.F. CROZIER & ASSOCIATES INC.

Chris Gerrits, M.Sc., P.Eng. Senior Project Manager (Hydrogeology)


J:\2500\2521 - Upper West Side Land Owners Group Inc. co Corbett Land Strategies\6807 - Upper West Side Community - Hydrogeology\Letters\23.07.18_(2521-6807)_Terms of Reference Hydrogeology (UWS).docx

Attachment: Proposed Monitoring Well and Piezometer Locations

APPENDIX B1

Borehole Logs (EXP 2018)

E0P Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693

Time	Water Level (m)	Depth to Cave (m)
an completion June 5, 2018	5.22 bgs 0.78 bgs	no cave

tgs (below ground surface)

Log of Borehole BH-02

oject No.	HAM-00801363-A0			Drawing *	4a4
oja d±	Proposed Glanbrook Industrial S	Subdivision		Sheet	ia <u>1</u> of
acaa taican :	Twenty Road West, Hamilton, C	0N			
ate Drille d:	March 27, 2018	Auger Sarapie		Combustble V apour Ra Natural Moleture	acing D X
di Type:	D-50 Track Mount. Solid Stem.	SPT (N) Value Dynomic Cone Test	08	Plantic and Liquid Limit Underined Trippial at	⊢ •
atum	Geodetic	Sitelby Tube Field Varie Text		SiStrainal Failue Penditionater	⊕ ▲
			5	Combadiate Vapor (Read	national 18 Local
S B D L	Soil Description ELL n 2363	T There The orth	H	28 88 Nation (Marislane: Card Allecter of London V. Paul	21 9 Ut
Filling mainstring set set set set set set set set set set	BOHL: (~175 mm thick) Case Same rootiets (possible revorked Same rootiets (possible revorked Case Same clay, trace sand, brown, Socar Same clay, trace sand, brown, Socar Same clay, trace sand, brown, Same clay searce Same clay searc	e e e	8	11 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	

EXP Services Inc. Hemilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693

Time	Water Level (m)	Depth to Cave (m)
an campletion	5.83 bgs	TO CAVE

bgs (below ground safface)

Pr	aja ct.	No.	Log c	of	Bo	breh	Ole	эВ	H-1	03	Dn	wring Na	5	5	
Pr	aparet:		Proposed Glanbrook Industrial	Sub	divis	ion				-	8 8	SheetNo	1	of	đ
Lo	cation	L.	Twenty Road West, Hamilton, G	ON											
Dr	ta Dr II Typ tum		March 28, 2018 D-50 Track Mount. Solid Stem. Geodetic	S=	S.PT Dyna Sitel	r Sample (N) Value Imic Cone 1 by Tube Vane Text		0		Netura Pante Under Si Si ta	u Mointa	uid Limit sist at	0.8	× P X P	
u B L	- UP K < III		Sol Description	EV m	DEFTH	21 ar Zhenj k	N Veller		394	Ne	IN I	na rR na dirig 10 29 Anne Carol en 1 5 3 4 Diry IV e	-	W	Aura Jrit Nigh
WAYALEHWARD OF BOREHOLE LOOKIGPU NEW KICT BOTHE		FILL mais statistics s	SOIL: (~150 mm lhick) -224 .: sity clay, trace sand, brown, it, some routlets (possible neericed) -234 .: sity clay, trace sand, brown, it, some routlets (possible neericed) -234 .: sity clay, trace to some brown, most, compact -234 .: sity clay, trace to some brown, most, compact -234 .: sity SILT to SILTY SAND: grey, it, very dense -234 below 4.6 m -234 .: brown 6.1 m -224 .: brown 8.1 m -224	1.1 1.1				5			з. Э				

*exp.

EXP Services Inc. Hamilton, Ontario Telephone: 905 573-4000 Facsimile: 905 573 9693

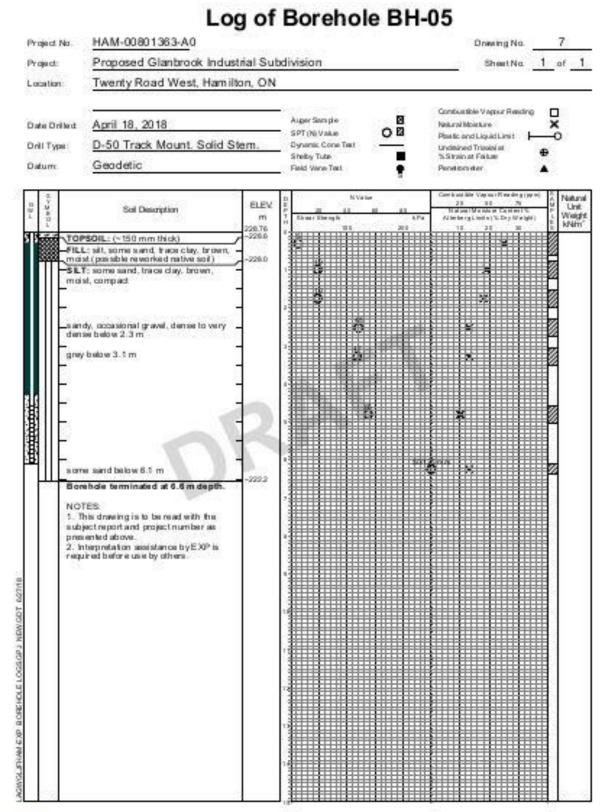
Tirra	Water Level (m)	Depth to Cave (m)
an completion	6.05 bgs	no cave

age (above ground surface) tigs (below ground surface)

Log of Borehole BH-04

Project No.	HAM-00801363-A0			Drawing No.	6
Project:	Proposed Glanbrook Ind	ustrial Sub	division	SheetNo.	1 of 1
Location:	Twenty Road West, Ham	ilton, ON			NS - 55
Date Onlied Onli Type:	April 3, 2018 D-50 Track Mount. Solid	Stem.	Auger Sample SPT (N) Value O 22 Cynanic Cone Test	Construct tible V apour Reading Natural Moisture Plastic and Liquid Limit — Undprined Trizolal at	×
Datum	Geodetic		Shelby Tube Field Varie Task	% Strain at Failure Perution ster	A
uter a	Sal Description	ELEV m 230.70	0 NValue 0 20 40 40 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Care is not linke. Vap nor 15 no ding (pp m) 2.0 0.0 20 Nation (Machine Content) 5, Materian (Links) 5, Day 15 no (di) Materian (Links) 5, Day 15 no (di)	R Natural
SE1 mail den:	PSDHL: (~150 mm thick) FY CLAY: brown, moist, firm, lets F: some clay, trace sand, brown, st, compact: as below 2.3 m e clay, trace to some sand, asional gravel, very dense w 3.1 m	-229.9		*	

grey below 4.6 m 0 1 10 324.0 SILTY SAND: grey, wet, very dense -224.2 Borehole terminated at 6.6 m depth. NOTES 1. This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others.



LAGWOLLFHAM 5 XP BLOREHOLE LOGS GP J NEW GDT 62746

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9693

Tima	Water Level (m)	Depth to Cave (m)
an campletian	5.79 bgs	no cave
	10X: 0	

age phove ground surface tigs (below ground surface)

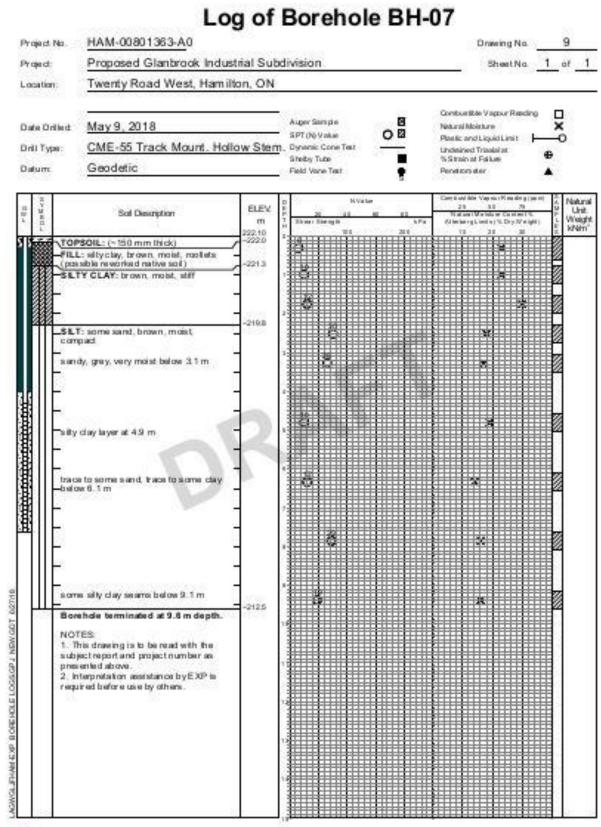
*exp.

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9893

Level (m)	Depth to Cave (m)
4.91 bgs 0.73 bgs	no cave

ags (below ground surface) bgs (below ground surface)

Log of Borehole BH-06


Project No.	HAM-00801363-A0		Drawing No. 8
Project:	Proposed Glanbrook Industrial S	Subdivision	SheetNo. 1 of 1
Location	Twenty Road West, Hamilton, C)N	
Date Orille d Oril Type Datum	April 3, 2018 D-50 Track Mount. Solid Stem. Geodetic	Auger Sant ple	Contrustible Vapour Reading Natural Mointure X Pastic and Liquid Linit O Underined Triasial at 5:Stroin at Falce Penation dar
n R p B C 4 R	Sol Description ELL	F	Care hand bler. Van de reg (norm) A 2 K Martanal 2 K Mar
sun sun grey very Ber NO 1.1 sub pre	PSOIL: (~150 mm link) TY CLAY: brown, moist, firm, lists T: some diay, trace sand, brown, st, compact se below 1.5 m assonal gravel below 2.3 m dy, compact below 3.1 m y dense below 4.6 m y dense below 4.6 m whole terminated at 6.6 m depth. TES his dowing is to be read with the jactreport and project number as sented above. herpretation assistance by EXP is ared before use by others.		

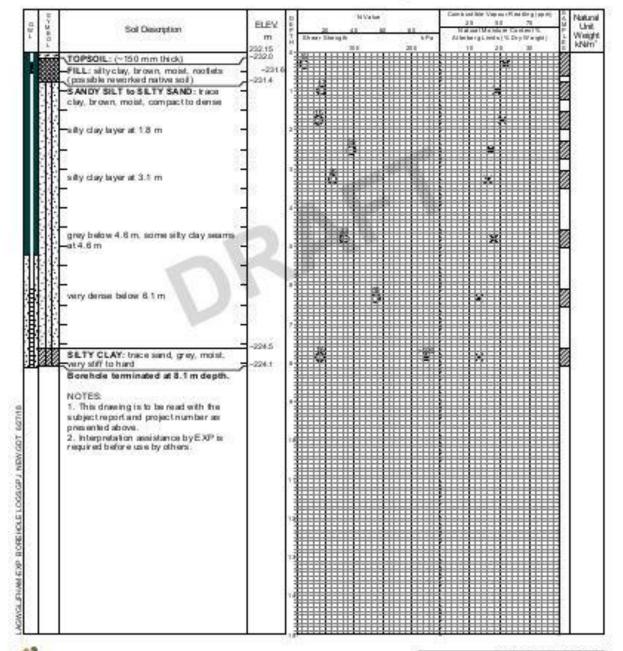
*exp.

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9693

Таты	Water Level	Depth to Cave (m)
an campletion	5.84 bgs	no cava
os ébose grand su	dice.	

tige (below ground surface)

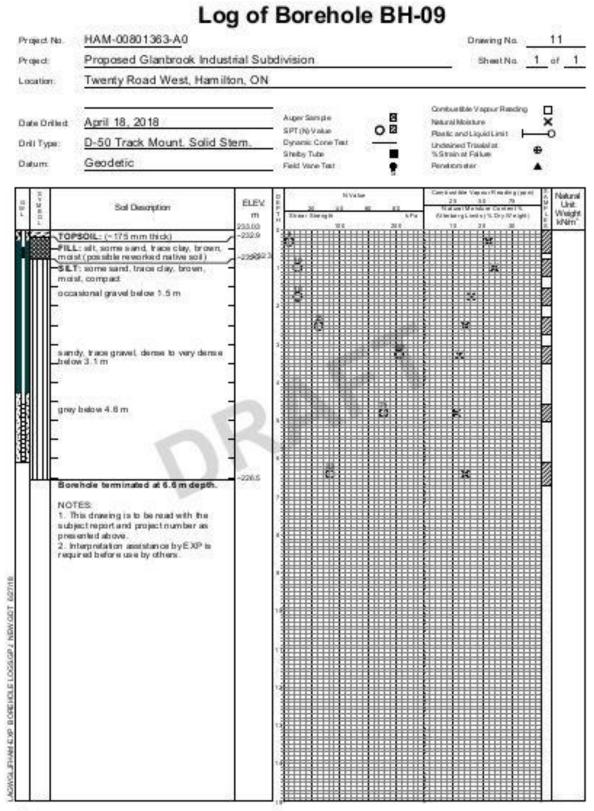
*exp


EXP Services in: Hemitton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693

W abar Level (m)	Cave (m)
9.21 bgs 0.27 bgs	no caive -
	the set is integrated

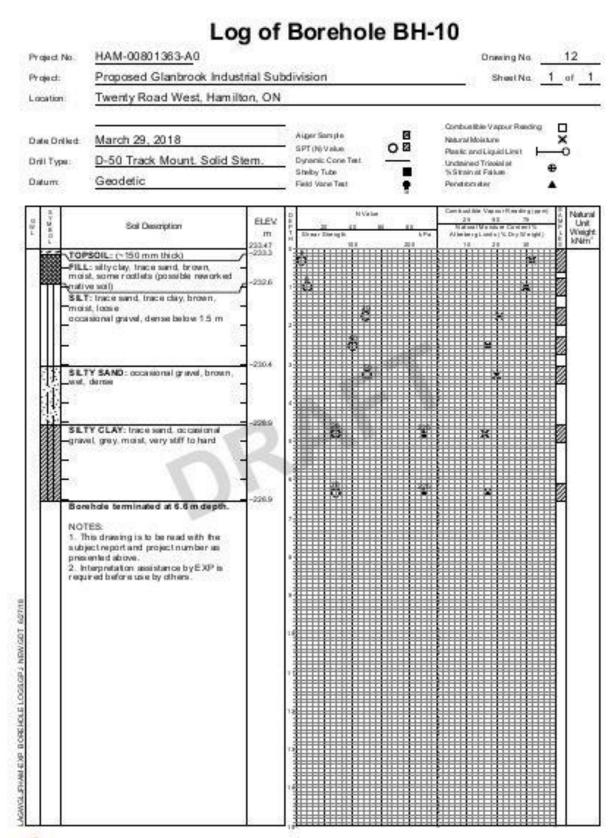
age above ground surface bgs (below ground surface)

Log of Borehole BH-08


Project No.	HAM-00801363-A0			Drawing No.	10
Project:	Proposed Glanbrook Industrial Subo	livision		SheetNa	1 of 1
Location	Twenty Road West, Hamilton, ON				
Date Online	May 11, 2018	Auger Sample	00	Conitsue lible V apour Reading Natural Moleture	×
Drill Type:	CME-55 Track Mount. Hollow Stem	SPT (N) Value Dynamic Cone Test Sheby Tube		Plantic and Liquid Linit Undmineid Trisolal at % Strain at Fallue	-0 +
Datum	Geodetic	Field Vace Test		Pendition der	

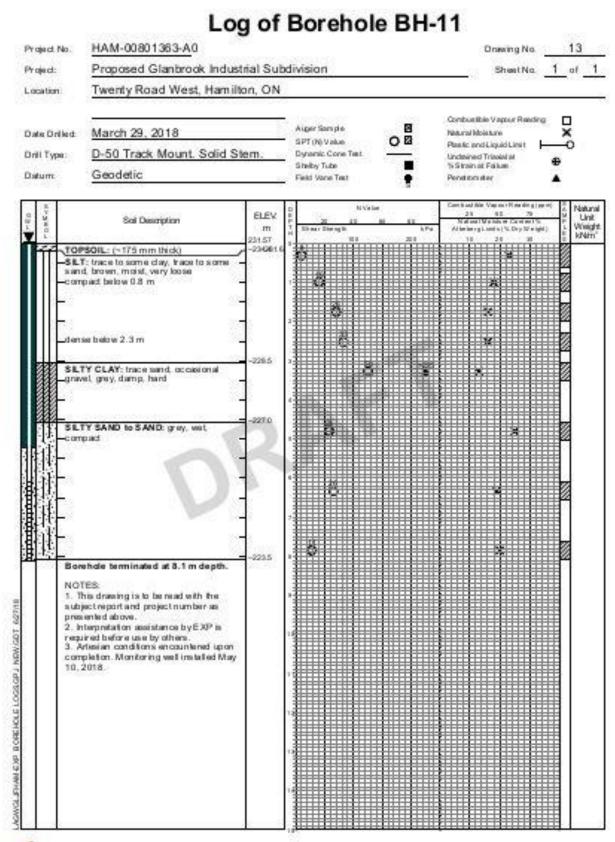
*exp. EXP Services Inc. Hamilton, Onfario Telephone: 905:573:4000 Facalmile: 905:573:9693

Water Level (m)	Depth to Cave (m)
7.61 bgs 0.53 bgs	no cave
	W atar Level (m) 7.61 bgs 0.53 bgs


age above ground surface bgs (below ground surface

EXP Services Inc. Hemitton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693

Time	Water Level (m)	Depth to Cave (m)
an campletian June 4, 2018	4.63 bgs 0.74 bgs	no caive
June 4, 2018 0.74 bgs	E.	

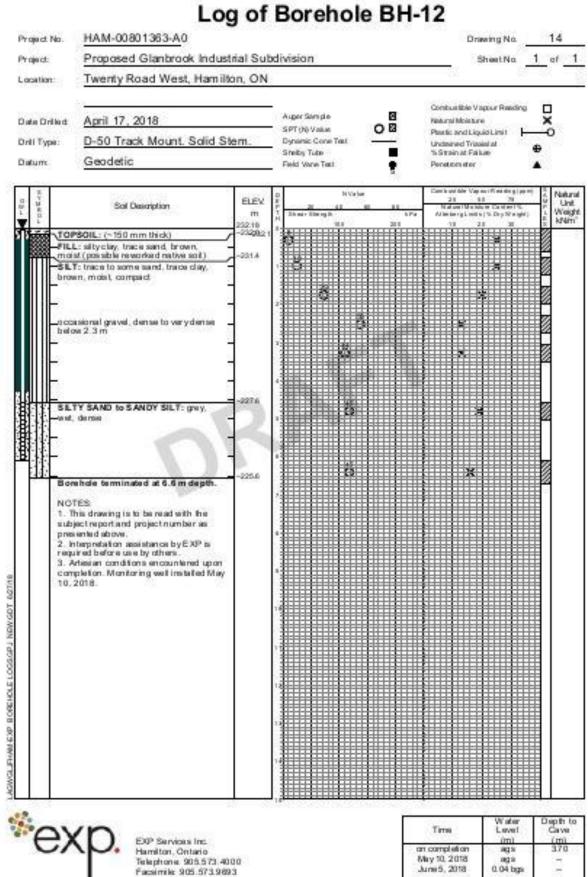


*exp.

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9893

Time	Water Level (m)	Depth to Cave (m)
an completion	dry	no cave
os ábose ordandasa	the d	

bgs (below ground surface)



*exp.

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9893

Time	Water Level	Depth to Cave (m)
an campletian May 10, 2018 June 5, 2018	ags ags 1,20 aga	870

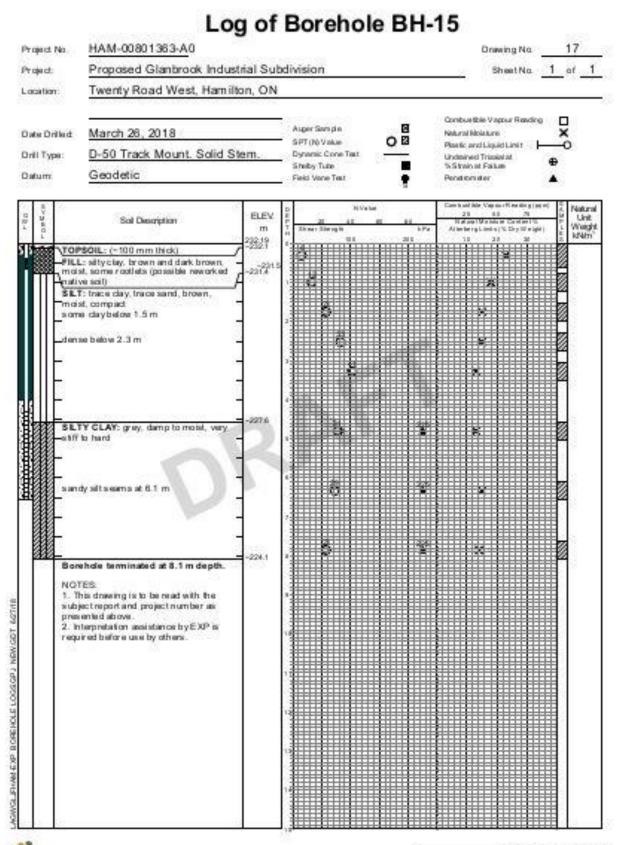
age above ground surface bgs (below ground surface)

EXP Services Inc. Hamilton, Ontario Telephone 905.573.4000 Facsimile 905.573.9893

Timi	Water Level (m)	Cave (m)
an completion May 10, 2018 June 5, 2018	ags ags 0.04 bgs	370

age (blove graind surflice) bgs (below ground surflice)

Project No.	HAM-00801363-A0	f Borehole BH-1	Drawing No. 15
Project:	Proposed Glanbrook Industrial S	ubdivision	SheetNo. 1 of
acation:	Twenty Road West, Hamilton, O	4	
Date Drilled	April 17, 2018	AugerSample O	Combuetble Vapour Randing 🔲 Netural Moleture X Plantic and Liquid Limit 🖂 O
Drill Type: Datum:	D-50 Track Mount. Solid Stem. Geodetic	Dynamic Cone Text	Underlined Trissial at 5 Strain at Fallues Penditorister
a K vie	Sol Description ELE [®] m		Construct life: Vapour R textiling (pt m) 21 8 71 44 Not your Takine Constraint () 4 All when the set of constraint () 4 All when the set
Pilling and Stel prob grey grey sum Bor NO 1.7 sub pros 2.1 rep	PSOIL: (~ 150 mm th(ck)	10.000	

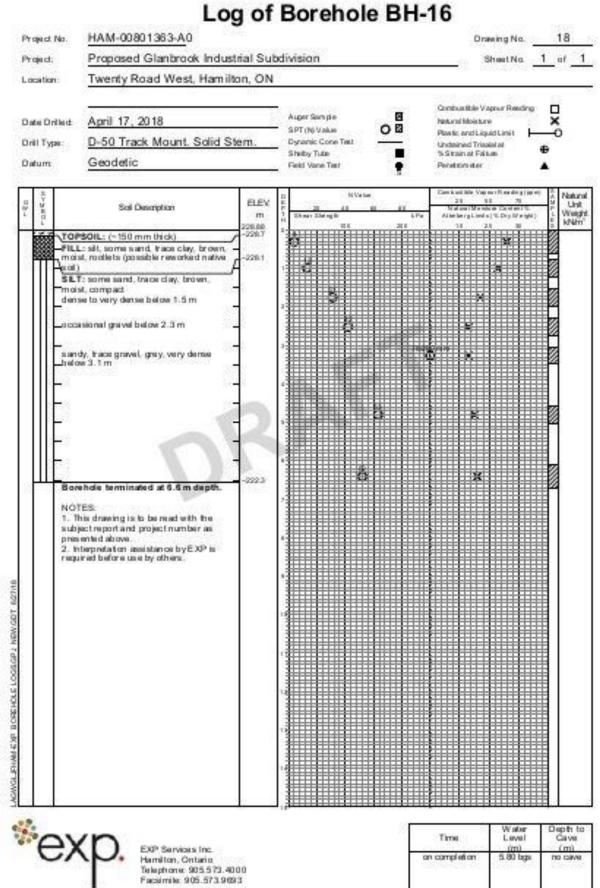

*exp EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693 ٠

Water Level (m) dry 0.19 ags Depth to Cave (m) no cave Time: an campletion June 5, 2018 age (blow graind surface) bgs (below ground surface)

Pri	ape et.		Proposed Glanbrook Indu	strial Sul	bdivision			She	etNo.	af .
La	atio	1:	Twenty Road West, Ham	gan dis ci. N				0.85375	0.000	
					<u>8</u>		Cont	us lible V Apo	Datation	2
Da	te D	illed	April 17, 2018		Auger Sample	0	Net.r	al Moisture	영영영	×
Dri	U Ty	181	D-50 Track Mount. Solid	Stem.	SPT (N) Value Dynamic Cone Test		- Under	c and Liquid L ined Triaxial I		-0
Da	lum		Geodetic		Shelby Tube Field Varie Test	7 - B		ain at Failum Iors der		
3	_	2	8	27	-	- 23	402008	89433		
a la	No.		Soil Description	ELEV	1 2 41	Value	0. 80	end tikle. Vap na vil 21. – 51. 6 una 1 M s toka ter	78 Content V	A Nature
1	8 1 1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	m 229.76	1 Ihmar Elersyth H Ill		tifu dite	tergiletisi'i 18 38	Dry (V x igH) 38	E KNH
3		_	*SOIL: (~150 mm thick) L: silty clay, trace sand, brown,	1-229.6	10				*	
ŝ		mais Asol)	et, rootle tsi (possible revorke dimative	A-228.9						
	4		TY CLAY: trace sand, brown, very at to wat, soft to firm	1						6
	Ħ	mas	a to wee, sort to rem	8 <u>1</u> 8 - :	. 2				25	
	H	800		ee 9.						
	H	ŝ		1	Ī					4
1	T		f: trace to some clay, grey, moist, pact	-226.7						
			6							
		- 33		2 - C						
			dy, occasional gravel, dense below	-	1 8					
		-4.Br	n							1
		-20		1						
		12			1					
3	ш	Bon	ahole terminated at 6.6 m depth.	-223.2		2	l i	X		2
		NOT	res:							
			his drawing is to be read with the actreport and project number as							
		pres	ented above.		-					
			terpretation assistance by EXP ts ined before use by others.							
							1			
š.,										
8										
2										
1										
Ę										
ł					13		ł			
1										
Į.					1					
1	-	-		12 - 3						
2	-		P. EXP Services Inc. Hamilton, Ontario Telechone, 905 573.				8	200	Water.	Depth
10	1	1	D EXP Services Inc.				Tim		Lavel (m)	Cave

Tirra	Water Lievel (m)	Depth to Cave
an completion	N/A	0.9(bildged
		31

bgs (below ground surface)



EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facalmile: 905.573.9693

Time	Wister Level (m)	Cave (m)
an completion Mar. 27 June 4, 2018	dry 1.59 bgs 0.65 bgs	

age phose ground surface bgs (below ground surface

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9693

Time	Water Lavel (m)	Depth to Cave (m)
an campletian	5.80 bgs	no cave
us bour one works an	dice.	

tgs (below ground surface)

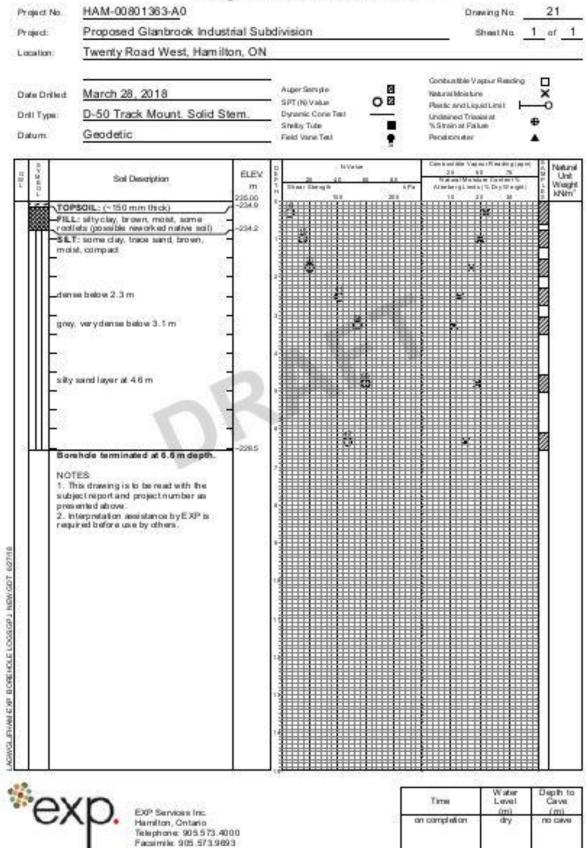
rojed	t No.	HAM-00801363-A0		11993						wing N	1000	19
rojad	5	Proposed Glanbrook Industrial Subdivision						Sheet No. 1 of				of
scatio	an:	Twenty Road West, Han	tilton, ON									
as n	hilled	April 17, 2018	8	Auger S	angie		8		a Shie V Moistar	apour Re	nding	Ū,
nii Ty		D-50 Track Mount. Solid	Stem	SPT (N) Dynamie	Value Cone Tex			Plastic		uid Limit	÷	-0
atum		Geodetic		Shelby Field W	Tube ine Tast		:	-5.5ta	in at Fai on der		•	
1.	1		1	P	5	(Valiat	1			ai : Keoli		No.
PDIEK.		Sol Description	ELEV	P T H H	ll di Dengh	- 44	11	Nat	erg Lieti	n at Conda s (% Dry 0 18		WK
1		SOIL: (~150 mm thick) .: silt, some s and, trace clay, brow	231.03	翻	IIII		211			¥	i de la compañía de la	
m		al, rootlets (possible revorked nativ										2
	SLT	f: some sand, trace clay, brown, at, complact	-	I						1	i	2
Ш	L	en, saarrija eest		,翻教						\$		2
	L		1	讍					57			
					Г II							2
Ш	gray	, some clay seams below 3.1 m		蒹葭								2
	Γ.		1									1
	E		1	鎌田								
	1		-	田田					×			7
	100			*鎌倉							i i i	4
	P2 -		-									
	÷0										<u>нн</u> ,	4
Щ	- m	isional gravel, very dense below 6.	-224.5	日翻			a	i i				2
	Bon	ancie terminated at 6.6 m depth	50 mm	,#								7
	NOT											
	is ubj	his drawing is to be read with the actreport and project number as										
		ented above. terpretation assistance by EXP is		1 ###								
		ired before use by others.									1	
				*###								
	1											
	1			1								
	1											
	1			.耕耕							####	
	1			日期								
											1	
	1			"翻目								
				1								
				翻								
				###								
								A REAL PROPERTY AND ADDRESS OF		A D D D D D		

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facermile: 905.573.9893

Lavel (m)	Depth to Cave (m)
dry 0.50 bgs	no cave
	United for the second s

age (blove ground surface) bgs (below ground surface)

Log of Borehole BH-18 HAM-00801363-A0 Project No. Drawing No. 20 Proposed Glanbrook Industrial Subdivision SheetNa. 1 of 1 Project: Location: Twenty Road West, Hamilton, ON Combusible Vapour Rending Auger Sample: 8 Date Drilled March 28, 2018 Netural Moisture × OB SPT(N) Value Plantic and Liquid Limit -D-50 Track Mount. Solid Stem. Dynamic Cone Test Drill Type: Underlined Trizolal at Siteby Tute % Sitrain at Failue Geodetic Datum Field Vane Test Penetorsiter Constituted date: Map on a Kines date of point N Value Natural ELEY. 2.8 12 7 COWNER. Unit Sol Description m latin rgL inits (N. Dry W Weight 44 kNm^{*} 21 19.61 10 ÷. -210.7TOPSOIL: (~150 mm thick) FILL: sity clay, brown, moist, some rootlets (possible new orked native soil) 223.1 SETY CLAY: brown, moist, stiff æ 2123 SILTY SAND to SANDY SILT: brown, ø wet, compact. ¥ occasional gravel, moist, very dense beloe 2.3 m ð grey below 3,1 m 110 - X 221.7 SETY CLAY: gray, damp, hard -227.3 Borehole terminated at 6.6 m depth. NOTES. 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others 3. Artesian conditions encountered. AGWOLJFHMM EXP. BOREHOLE LOGAGP J NEW GDT 627/16


*exp

EXP Services Inc. Hemition, Ontario Telephone: 905.573.4000 Facemile: 905.573.9693

Time	Water Level (m)	Depth to Cave (m)
an campletion June 4, 2018	5.3 bgs 0.85 aga	no cave

tgs (below ground surface)

Log of Borehole BH-19

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9693

Татна	Water Level (m)	Depth to Cave (m)
an campletian	dry	no cava
	200	

tos (below ground surface)

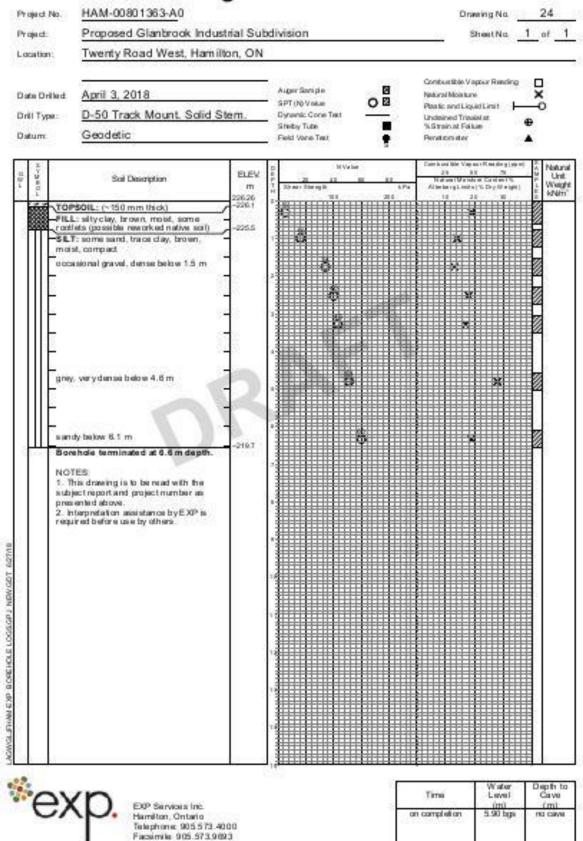
Project No.	Log of HAM-00801363-A0	Borehole BH-2	O Drawing No. 22
Project	Proposed Glanbrook Industrial Su	bdivision	SheetNo 1 of 1
Location:	Twenty Road West, Hamilton, ON		<u>- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10</u>
Date Drille d Drill Type: Datum:	March 28, 2018 D-50 Track Mount. Solid Stem. Geodetic	Auger Sample I N SPT (N) Value I P Dynamic Cone Text I U Shelby Tube 1	ionibusilible Vapour Reading 🔹 🗮 altural Molatave X fastic and Liquid Linit 🖾 O Indiaired Triabial at LiStrain at Failue 🖶 levelocimater 🔺
Fill Fill Fill Fill Fill Fill Fill Fill	Soil Description ELEW m PSOIL: (~175 mm thick) -24.6 L' saity clay, brown, molet, some late (possible rework of native soil) -24.6 To trace to some clay, trace to some d, brown, moist, compact -24.0 y below 3.1 m - where below 4.6 m - PSDE: report and project number as cented above. - Interpretation assistance by EXP is ared before use by others. -		Set both Mar Vegee (P. ed. derg (pr. ed.) 1 Nature 10 10 10 10 10 10

exp.

E39 Services Inc. Hamilton, Ontario Telephone 905.573.4000 Faceimile 905.573.9693

Tima	Water Level (m)	Depth to Cave (m)
an completion	dry	ILC CAME
a gestes sur		

ags (below ground surface) bgs (below ground surface)


Y aja ct. I	No. <u>H</u>	AM-00801363-A0						Drawin	gNo.	23	1
Y aje ct:	- William - Colored - Colo				ivision			She	et.No.	<u>1</u> of	-
acation: Twenty Road West, Hamilton, ON		5									
ats Drilled April 3, 2018		pril 3, 2018		26	Auger Sam pie	Ø		a tible V apou Molature	Randing	×	
ovT In	255 102	-50 Track Mount. Solid S	Stem.		SPT (N) Value Dynamic Cone Test	08		and Liquid L red Triaxial a	STOL 100	-0	
)atum	200 - 27	ieodetic	63021		Shelby Tube Field Vanie Test	Ŧ	%Sta	in at Failure studier		⊕ ▲	
N N N	5	Sal Description	ELEV	1	N Val	-	3	d ible. Vap es r R 8 8 8 and 1 M to ible er 6	28	2 1	Lie U
E L			m 228.50	TH	Thear Liney is 113	694 201	Allera	ergLinis[5]	Dry (V elight) 30		Ni N
1		L: (~175 mm thick) tyclay, brown, molat, some	r-228.5	1	ð						
	rooteta	(possible neerked native soll)	-227.6		14.						
	SETTO	LAY: brown, moist, firm	-227.0							12	
Ш	SLT: sa	indy, brown, mobil, compact			\$			*			
	S OTHER SH	nd, very dense below 2.3 m	a		1						
										12	
1111	o cca sio r	ial gravel, grey below 3.1 m		1		2		×			
1111	200		in a second	1						1	
888	SETY C	LAY: grey, moist, hard	-223.9			5 1 2					
	572			1						۴	
	23		1								
	some se	nd seams at 6.1 m	1	1	1 k						
200	120Y 100	e terminated at 6.6 m depth.	-222.0		1 1 1					22	
	NOTES			2	1					ŧ.	
		frawing is to be read with the eport and project number as								1	
	presente	id above.									
		natation assistance byEXP is before use by others.									
					1						
										1	
				1							
										目目	
				T							
										1	
					1						
					1					ŧ	
				1	1						
				1	*****					- H - H -	

EXP Services Inc. Hamilton, Ontario Telephone: 905.513.4000 Faceimile: 905.513.9693

Tirne	Water Level (m)	Depth to Cave (m)
an campletion	5.51 bgs	TRIC CHI

bgs (below ground surface)

Log of Borehole BH-22

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9693

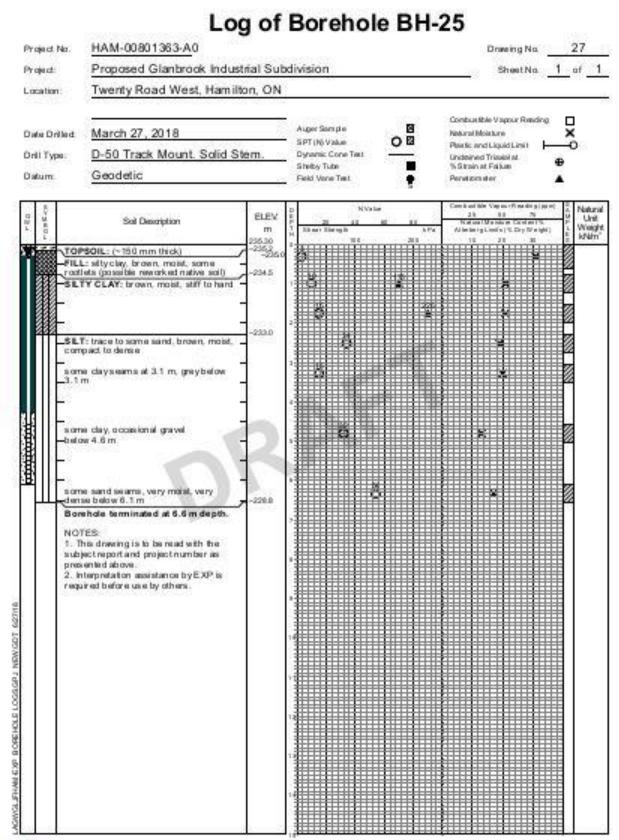
Water Level (m)	Depth to Cave (m)
5.90 bgs	INC CAVE
	Water Level (m) 5.90 bgs

tos (below ground surface)

Log of Borehole BH-23 HAM-00801363-A0 Project No. Drawing No. 25 Proposed Glanbrook Industrial Subdivision SheetNo 1 of 1 Project: Twenty Road West, Hamilton, ON Location: Combustible Vapour Reading Auger Stende 8 April 18, 2018 Date Drille d Netural Moletane × OB SPT(N) Value Plastic and Liquid Linit o **Drill Type:** D-50 Track Mount. Solid Stem. Dynamic Cone Test Undmined Triasial at Shelby Tube % Strain at Falkie Geodetic Datum Field Varie Test Perstonater : Conclused filler. Vap. no. 175 within a 1 pp. m. N Va has Natural ELEV 24 88 28 Kaluer Michael Caster I a Providence Unit Sol Description Weight kNim" m Al berine rig L teril to (%. Dr p 19 e light) 3.h min 223.80 TOPSOIL: (~150 mm thick) FILL: sil, some sand, trace clay, brown, moist (possible reworked native soil) -225.0 SLT: some sand, trace day, brown, moist, compact. ¢ accasional gravel below 1.5 m ē grey, dans a below 2.3 m 8 2 s andy below 3.1 m 1 very moist below 4.6 m x h x -217.5 Borehole terminated at 6.6 m depth. NOTES: 1. This drawing is to be read with the subjectreport and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 000000 B ORCHOLE LOGG/GPJ NEW/GDT DOCUMENTS. **DWD**

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9893

Timi	Water Level (m)	Depth to Cave (m)
an campletion	. 5.21 bga	to cave
a gestes con		5

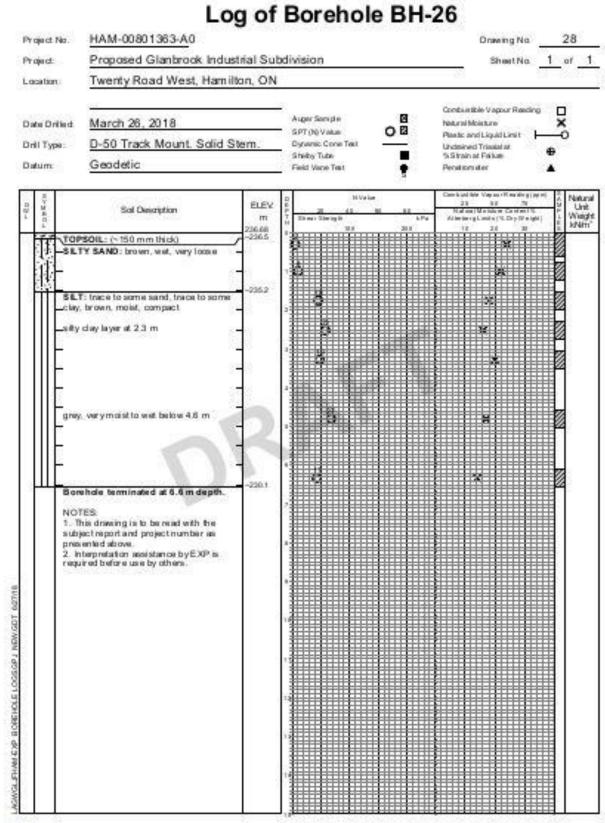

bgs (below ground surface)

Log of Borehole BH-24

Propess Proposed Glanbrook Industrial Subdivision Deskina 1 of Loadion Twenty Road West, Hamilton, ON Ager flangle String Tok Vale String Tok Vale Strin	Project	No.	HAM-00801363-A0					Dre	wing No.	26	ŝ
Date Drive: Determine: Deter	Project:		Proposed Glanbrook Indust	ial Sub	bdir	vision			heatNo.	1 of	1
Inter Drived March 28, 2018 D-50 Track Mount. Solid Stem. Strike Stem. Drived D-50 Track Mount. Solid Stem. Drived Geodetic Sol Description Fill Via Track Mount. Solid Stem. Fill Via Sol Description Fill Via Track Mount. Solid Stem. Fill Via Sol Description Fill Via Track Mount. Solid Stem. Fill	ocation	1:	Twenty Road West, Hamilto	n, ON							_
Soli Dialitykan m 2001 100 mm (hab) 2001 100 mm (hab) 2001 100 mm (hab) 100 mm	Dnill Typ Datum:		D-50 Track Mount. Solid St			SPT (N) Value Dynamic: Cone Test Shelby Tube Reld Wane Test		Netural Moistur Plantic and Liq Underined Triac Scholo at Fait Penducraster	e Actianit ⊨ Lang Lang Lang	₩ 0 0 0 0 0 0 0 0 0 0 0 0 0	
VDPSDLL : (-150 mm thts) VDPSDLE : (-150 mm thts)	Neil-		Sol Description	m	10 T H	CONTRACTOR STREET	2	N at use 1 M m int	see Californi S.	1. W	Ve
		FILL road SET SET com loose com loose com loose com loose com loose com loose com	 altyclay, brown, moist, some statigosalble neverified native soil) Y CLAY: brown, moist, very stiff to Trace day, brown, moist, pact, some sand pockets at 1.5 m a to some sand, greybelow 2.3 m moist to wetbelow 3.1 m a at 4.6 m and below 6.1 m a drawing is to be read with the entroport and project number as ented above. bigmotal conseistance by E.0P is read before use by others. 	-236.0 -235.4 -234.7		6 6 8 8	*				

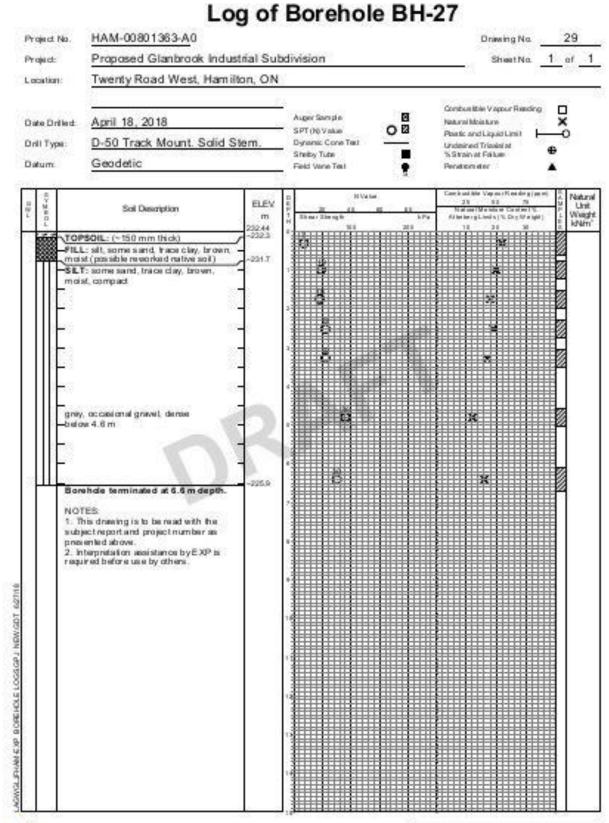
Time	Water Level (m)	Depth to Cave (m)
an completion	5.52 bgs	no cave
as these are not as	deret.	

tgs (below ground surface)



EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693

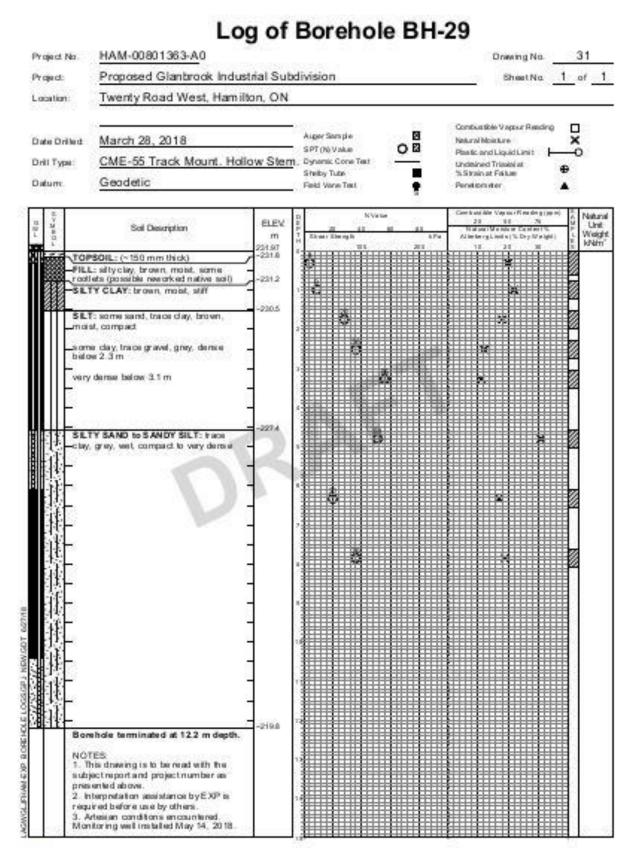
Time	Water Level (m)	Depth to Cave (m)
an completion June 5, 2018	5.81 bgs 0.34 bgs	no cave
ge tilbove graund su	ribice)	5 <u>5</u>


bgs (below ground surface)

EXP Services Inc. Hamilton, Ontario Tetephone: 905.573.4000 Facsimile: 905.573.9893

Time	Water Level (m)	Depth to Cave (m)
an campilation	4.32 bgs	TRO CARVE
os above around su	dicé	

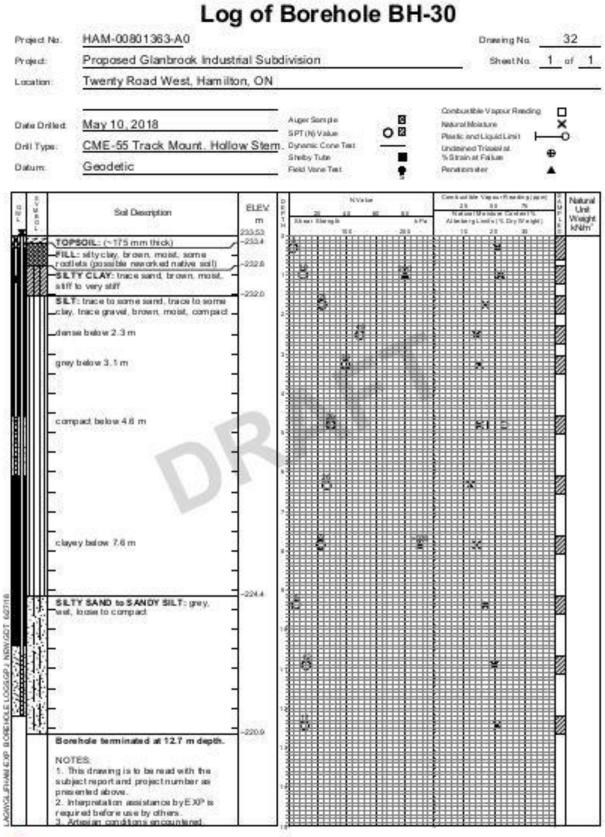
EXP Services Inc. Hamilton, Ontario Telephone: 905.573.9090 Faceimile: 905.573.9093


Time.	Water Level	Depth to Cave (m)
an campietian	5.83 bgs	TID Calve
e bbove grand su	ritica	G.

Project No.	Log of HAM-00801363-A0	Borehole Bl	H-28
Project:	Proposed Glanbrook Industrial Su	bdivision	SheetNo. 1 of
Location:	Twenty Road West, Hamilton, Of	and the second	2 200000000000000000000000000000
Data Drilled Drill Type: Datum:	April 18, 2018 D-50 Track Mount. Solid Stern. Geodetic	Auger Sansple 2 SPT (N) Value 2 Dynamic Coole Teat Shelby Tube Field Ware Teat	Contoutible Vapour Reading Natural Notative X Plastic and Liquid Limit O Unclaimed Trissial at % Strain at Failure Penation ster A
	Soil Description ELEV m 225.12	D NValue P 28 42 49 49 1 Notes Daragh 10 20 20 20 20	Learth and ble Voy no riting day () pp 11 23 25 26 28 49 U National Mandalan Contract 10, Walk Alle lear () 10 26 29 28 5 10 000 10, 1000 10, 10 000 10, 10 000 10, 10 000 10, 10000 10, 1000 10, 10000 10,
Ber NO 1.7 Subalt	PSOIL: (~150 mm thick) L: sit, some sand, trace clay, brown, st (passible neworked native soil) T: some sand, trace clay, brown, st, compact y, occasional gravel below 2.3 m dy, trace gravel, very dense as 3.1 m below 6,1 m rende terminated at 6.6 m depth. TES: his drawing is to be read with the ject report and project number as anited above. herepretation assistance by E.30° is		

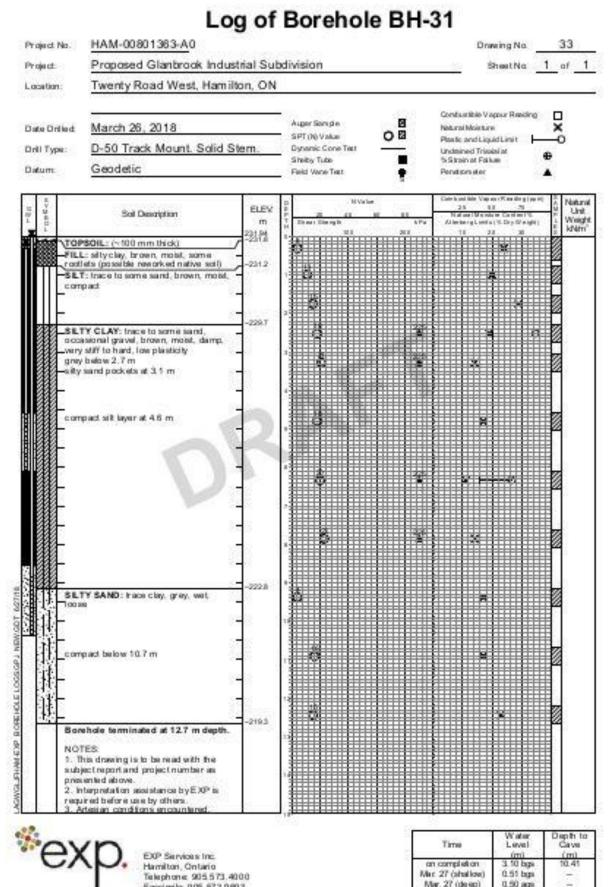
EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9693

Time	Water Level (m)	Depth to Cave (m)
an campletian	5.94 bgs	no cave


age phove ground surface bgs (below ground surface)

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Faceimile: 905.573.9693

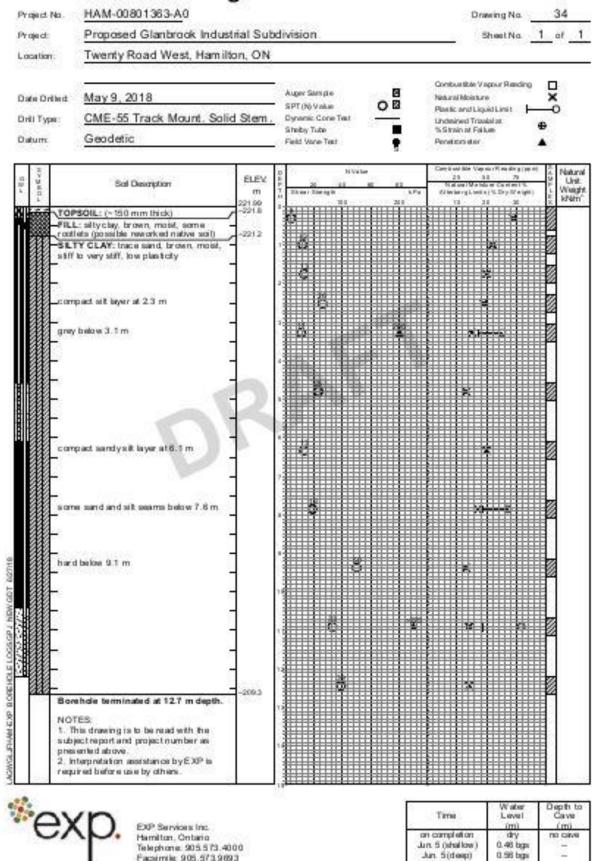
Time	Water Level (m)	Depth to Cave
an completion	0.84 bgs	6.1
Mer: 29 (shallow)	103.8	200 C
Mar. 29 (de ep)	aga.	-
Jun 5 (shallow)	2.90 apri	-
Jun 5(deep)	1.37 aga	24


bgs (below ground saface)

EXP Services Inc. Hamilton, Ontario Telephone: 905.573,4000 Facemile: 905.573,9693

(m)	Carve (m)
ags . 18 bgs . 70 ags	93
	(m) ags 18 bgs 170 ags

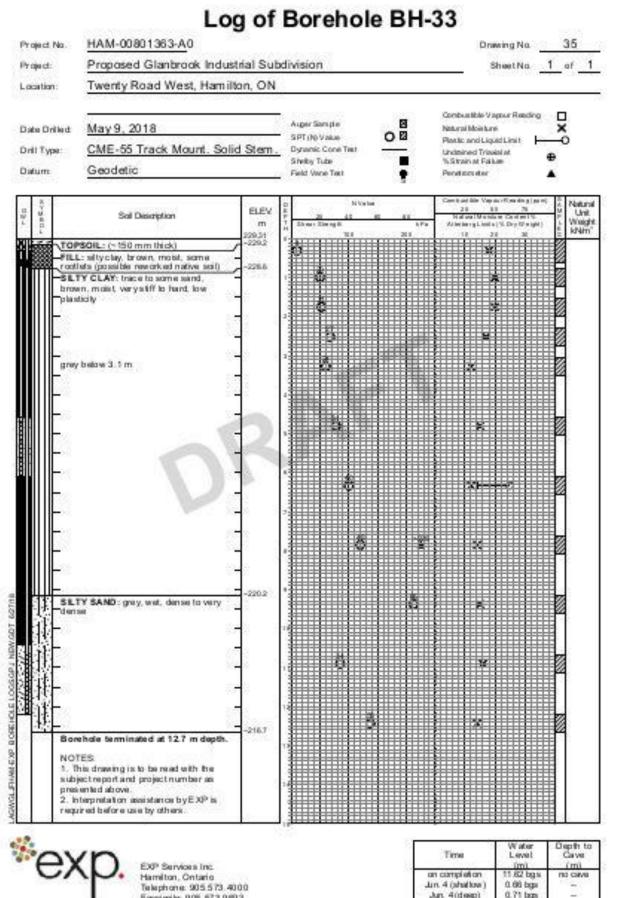
bgs (below ground surface)



EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9893

Time	Water Level (m)	Depth to Cave (m)
an completion	3.10 bgs	10.41
Mirc 27 (shallow)	0.51 bgs	-
Mar. 27 (delep)	0.50 aga	
Jun. 5 (shallow)	0.20 hps	
Jun 5(deep)	1.12 apps	100

bgs (below ground surface)


Log of Borehole BH-32

EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4000 Facsimile: 905.573.9893

Time	W abar Level (m)	Depth to Cave (m)
an campletion Jun. 5 (shallow) Jun. 5 (deep)	dry 0.46 bgs 0.56 bgs	no caive

age above ground surface bgs (below ground surface)

Telephone: 905 573.4000 Facsimile: 905.573.9693

Jun. 4 (shallow) 0.66 bgs -0.71 bgs Jun 4(deep) _

age phose ground surface bgs (below ground surface

APPENDIX B2

Borehole Logs (Crozier 2023)

BOREHOLE BH23-1

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 8.23 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19804, -79.9298 COORD SYS UTM SURFACE ELEVATION 242.03 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/08

	1	I	1			1			I
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
	Z4Z	SS1	SS		SILT: Brown, moist, soft to medium stiff, silt		м		2/3/4/8
0.5	241.5								
- 1	241	SS2							5/8/12/15
1.5	240.5	SS3							8/11/17/22
- 2	240								
2.5	239.5	SS3			CLAYEY SILT: Grey, moist, very stiff, silt				12/15/28/37
- 3	239								
- 3.5	238.5								
	238	SS4							8/11/12/14
4.5	237.5				SILT: Grey, moist, stiff, silty with trace clay				
5	237								
5.5	236.5	SS5							3/5/8/11
6	236	SS6							9/15/21/26
6.5	235.5								
	235								
7.5	234.5	SS7			SILT: Grey, moist, hard, silt				21/40/50 for
8	234								6"
- 8.5	- 233.5				Termination Depth at 8.23 m				
9	233								
9.5	232.5								
_									

BOREHOLE BH23-2

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 8.23 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19507, -79.9299 COORD SYS UTM SURFACE ELEVATION 243.08 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/08

		1						1		r
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log		Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	243 242.5	SS1	SS			SILT: Brown, dry to moist, soft to medium stiff, silt		D - M		2/3/3/3
1 1	242	SS2								2/6/7/13
- 1.5	241.5	SS3								8/11/13/23
2 2.5	241 240.5	SS3				CLAYEY SILT: Grey, moist, stiff, silt trace sand		М		6/10/15/14
- 3	240									
- 3.5	239.5	SS4								12/14/15/20
- 4 - 4.5	239 238.5									12/14/10/20
5	238					SILT: Grey, moist, stiff, silty with sand seams				
5.5	237.5	SS5								16/23/28/40
- 6 - 6.5	237	SS6								8/14/11/13
- - - - 7	236.5 236	 								
- 7.5	235.5	SS7			7	7 SILTY SAND: Grey, wet to moist, silty sand		W - M	₽	18/25/41/50
8	235									
8.5	234.5					Termination Depth at 8.23 m				
- 9	234									
- 9.5 	233.5									

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 8.23 DIAMETER 0.152

CASING PVC

COORDINATES 43.19337 -79.9316 COORD SYS UTM SURFACE ELEVATION 243.93 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/12

	1	1		1			1		1	1
Depth (m)	Elevation (m)	Samples	Sample Type		Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	243.5	SS1	SS			SILT: Brown, medium stiff, moist, silt trace sand		М		2/3/3/5
- 1	243	SS2								4/2/4/8
1.5	242.5	SS3	-							9/14/16/19
2	242					SILTY CLAY: Grey, moist, very stiff, silty clay				
2.5	241.5	SS4								7/9/14/12
- 3	241	SS5								4/5/4/5
3.5	240.5									
4	240	SS6				SILT: Grey, stiff, moist to wet, silt				10/11/14/15
4.5	239.5									
5	239							W M	⊻	
5.5	238.5	SS7						IVI		15/22/21/21
6	238									
6.5	237.5									
7	237	SS8	1							22/26/21/21
7.5	236.5		-							
8	236									
8.5	235.5					Termination Depth at:8.23 m				
9	235									
9.5	234.5									
	234									

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 6.7 DIAMETER 0.152

CASING PVC

COORDINATES 43.19018, -79.9295 COORD SYS UTM SURFACE ELEVATION Est. 240 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/12

					-			-	_
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
_		SS1	SS		SILT: Brown, medium stiff, moist, silt		м		1/2/3/4
0.5	239.5								
1	239	SS2							6/7/9/12
1.5	238.5	SS3							8/12/15/5
2	238								
2.5	237.5	SS4			SILT: Grey, moist, very stiff, silt trace clay				8/12/15/16
- 3	237	SS5							8/13/18/21
3.5	236.5								0/13/10/21
- 	236	SS6							15/19/24/23
4.5	235.5								
5	235								
5.5	234.5	SS7							8/14/11/13
6	234		-						
6.5	233.5								
- - - -	233				Termination Depth at:6.7 m				
7.5	232.5								
 8 	232								
8.5	231.5								
9	231								
9.5	230.5								
L	I	1	1		I	1		L	1

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687

÷

.

DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 6.1 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19753 -79.9272 COORD SYS UTM SURFACE ELEVATION 239.90 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/13

						1			
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	239.5	SS1	SS		SILTY CLAY: Brown, dry, stiff, silty clay trace sand		D		1/2/3/4
- 1	239	SS2							1/3/8/11
- 1.5	238.5	SS3							4/5/12/15
2 - 2.5	238 237.5	SS4							7/12/22/26
-3	237	 			SILT: Brown, moist, stiff, silt, grey at 2.74		M-W		7/19/29/21
3.5	236.5								7/18/28/31
4	236 235.5								
- 4.5 	235	SS6							10/26/39/43
5.5	234.5								
6	234	SS7		Ž	<u>7</u>			⊻	20/32/50 for
6.5	233.5 233								5"
- 7 - 7 .5	232.5	SS8			T				28/40/50 for 4"
-8	- 232				Termination Depth at 7.46 m				
8.5	231.5								
9	231 230.5								
9.5	230								

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 7.01 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19268-79.9277 COORD SYS UTM SURFACE ELEVATION 242.8 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/13

	1	1	1	1		1			1
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	242.5	SS1	SS		SILT: Brown to grey at 3.05, moist, stiff to very stiff, silt trace clay, trace sand		М		5/5/6/5
- 1	242	SS2							5/8/12/15
1.5	241.5 241	SS3							8/14/19/23
2 2.5	240.5	SS4							7/9/15/16
- 3	240	 SS5							4/7/7/8
3.5	239.5 239								4/////0
4	238.5								
4.5 5	238	SS6							-/13/16/17
5.5	237.5								
6	237 236.5	SS7							10/19/21/26
6.5 7	236	SS8							10/22/24/27
7.5	235,5				Termination Depth at 7.01 m				
8	235 234.5								
8.5 9	234								
9 9.5	233.5								
	233								

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 7.62 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19171, -79.9323 COORD SYS UTM SURFACE ELEVATION 250.01 WELL TOC 1.08 m LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/06

COMMENTS Former Golf Course

		1			Γ	T			1
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
	250	SS1	SS	{ { { { } } } }	TOPSOIL				3/3/4/5
0.5	249.5				SILT: Brown, dry, soft, silt		D		
- - 1	249	SS2	-		SILT: Brown, moist, medium stiff to stiff, silt, trace clay		M-D		3/3/4/5
- 1.5	248.5	SS3	-						9/14/15/17
2	248								
2.5	- 247.5	SS3			SILT: Grey, moist to dry, very stiff to hard, silt				13/14/14/20
- 3	247								
	246.5								
4	246	SS4							10/14/21/32
	245.5								
5	245						•		
5.5	244.5	SS5		<u> </u>	7			<u>₹</u>	19/15/21/24
6	244				SILT: Grey, wet at 5.79 m, hard, silt		W		
6.5	243.5						•		
7	243	SS6					- M - D	-	9/13/42/50 for 4"
7.5	<u>-242.5</u>								
	- 242				Termination Depth at 7.62 m				
8.5	241.5								
9	241								
9.5	240.5								

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 5.48 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19035 -79.933 COORD SYS UTM SURFACE ELEVATION 240.08 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/06

		r							
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	240 	SS1	SS		SILT: Brown to grey at 3.81, moist to wet, stiff to very stiff, silt trace clay, trace sand		М		3/3/6/10
- 1	239	SS2							6/13/14/14
- 1.5	238.5	SS3							6/12/13/12
2 2.5	238	SS4							8/9/16/14
-3	237.5 237	 					W		4/6/8/11
3.5	236.5			Ž	Z		M	. ⊻ 1	
-4	- 236								4/6/9/14
4.5 5	- 235.5 - 235	SS6							4/9/14/19
5.5	234.5			Ž	Ž		W	∑ 2	
6	234	SS7							7/23/28/41
6.5 	233.5				Termination Depth at 6.71 m				
7	233								
7.5	232.5								
8	232								
- 8.5	231.5								
9	231								
9.5	230.5								

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 8.23 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19388 -79.9122 COORD SYS UTM SURFACE ELEVATION 233.13 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/11

	1	I								
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log		Material Description	/ell Ilation	Moisture	Water	Blow Counts
	233	SS1	SS			SILT: Brown, moist, soft, silt trace sand, trace clay	K	D - M		4/4/3/5
0.5	232.5	SS2								4/6/7/13
- 1	232	552								4/0/7/13
1.5	231.5	SS3				SILTY CLAY: Brown, moist, silty clay				6/7/8/7
2	231					CII T. Drown, stiff, dry to projet, silt trace				
2.5	230.5	SS4	1			SILT: Brown, stiff, dry to moist, silt, trace sand, grey at 6.1				9/10/13/11
- 3	- 230	 								5/5/11/13
3.5	229.5									5/5/11/15
4										
4.5	229									
5	228.5	SS6								12/15/24/27
- 5.5	228									
	227.5									
6	227	SS7								12/27/27/28
6.5	226.5									
7	226									
7.5	225.5	SS8			¥	SILTY SAND: Grey, wet, stiff, silty sand		W -M	⊻	20/31/31/37
8	225									
8.5	224.5					Termination Depth at 8.23 m				
9	224									
9.5	223.5									

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 7.01 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19484 -79.9227 COORD SYS UTM SURFACE ELEVATION 235.93 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/09

	1					1			
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	235.5	SS1	SS		SILTY CLAY: Brown, moist, soft to medium stiff, silty clay		M		2/3/3/9
1	235	SS2							2/2/2/3
- 1.5	234.5 234	SS3							3/6/10/14
- 2 	234	SS4							6/12/10/18
	233	 			SILT: Grey, moist, very stiff, silt				8/15/25/43
- 3.5	232.5								
- 4 - 4.5	232								
- 5	- 231	SS6							27/36/40/46
5.5	230.5								
6	230 229.5	SS7							25/50 for 6"
6.5 7	229								
- 7.5	228.5	SS8			SILTY SAND: Grey, dry, stiff, silty sand		D	-	26/30/34/
8	228				SILT: Grey, moist to wet, hard, silt		M-W		50 for 6"
- 8.5 	227.5 227								
9.5	226.5	SS9			¥			¥	14/24/30/50 for 6"
	226				Termination Depth at 9.75 m				

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 9.1 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.1947 -79.9151 COORD SYS UTM SURFACE ELEVATION 229.33 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/10

Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log		Material Description	Vell allation	Moisture	Water	Blow Counts
0.5	229	SS1	SS			SILTY CLAY: Brown, moist, soft to medium stiff, silty clay, silt seams		D		4/5/5/6
- 1	- 228.5 - 228	SS2								2/2/7/12
- 1.5 - 2	227.5	SS3				SILT: Brown, moist, very stiff, silt, grey at 4.57m		М		6/9/16/20
2.5	227	SS4								6/15/19/28
3	226.5 226	SS5								11/19/30/50 for 6"
3.5 4	225.5									
4.5	225 224.5	SS6								8/23/31/50 for 6"
5 5.5	224									
6	223.5	SS7								16/22/35/50
6.5	223 222.5									for 6"
7 7.5	222									
8	221.5	SS8			¥	SILTY SAND: Grey, wet, stiff, silty sand SILT: Grey, moist to wet, hard, silt		W D-M	₽	25/42/50 for 6"
- 8.5 - 9	221 220.5									
9	220	SS9								15/25/31/41
	219.5				+	Termination Depth at 9.75 m				

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 5.49 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19186 -79.9057 COORD SYS UTM SURFACE ELEVATION 226.34 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/11

		[1	1	<u> </u>	
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	226	SS1	SS		SILTY CLAY: Brown, moist, silty clay trace sand		D-M		2/3/2/3
- 1	225.5	SS2							3/5/7/9
- 1.5	225								
2	224.5	SS3							4/6/8/11
2.5	224	SS4							8/9/7/7
- 3	223.5	 			SILT: Brown, stiff, moist to wet, silt, trace sand, grey at 3.66				20/17/14/14
3.5	- 223			Ĭ	Z			Σ	20/17/14/14
4	222.5 222						W -M		
4.5	221.5	SS6							7/13/13/13
5	221								
5.5					Termination Depth at 5.49 m				
6	220.5 220								
6.5	219.5								
7	219								
7.5	218.5								
8	218								
8.5	217.5								
9 9.5	217								
	216.5								

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 5.18 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.1907 -79.9031 COORD SYS UTM SURFACE ELEVATION 225.00 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/11

instantial constraint instantin instantial constraint instant			1				 1		
0.5 224.5 SS2 SS2 SS3 3/3/3/5 1.5 223.5 SS3 SS3 SULT: Brown, stiff, moist to wel, silt, trace sond, grey at 3.05 3/9/15/18 2.6 222.5 SS4 SS5	Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Moisture	Water	Blow Counts
1 224 SS2 3/3/3/5 1.5 223.5 SS3 SS3 2 223 223 2.5 222.5 SS4 3/3/3/5 3.6 221.5 4 221.5 4.5 220.5 SS6 5 5.5 219.5 SS6 5 6.5 219.5 5 1 6.5 218.5 1 1 7.5 217.5 1 1 8.5 216.5 1 1 9 216 1 1	-		SS1	SS		SILTY CLAY: Brown, moist, silty clay	м		3/3/5/6
1 224 523 1.5 223.5 SS3 2 223 2.5 222.5 3.5 221.5 4 221 5.5 220.5 SS6 1 5.5 219.5 6.5 219.5 6.5 218.5 7 218 7.5 217.5 8.5 216.5 9 216			SS2						3/3/3/5
2 223	- 1	224							
2.5 222.5 $\overline{SS4}$ $\overline{SS4}$ \overline{V} <td>- 1.5</td> <td>223.5</td> <td>SS3</td> <td></td> <td></td> <td>SILT: Brown, stiff, moist to wet, silt, trace sand, grey at 3.05</td> <td></td> <td></td> <td>3/9/15/18</td>	- 1.5	223.5	SS3			SILT: Brown, stiff, moist to wet, silt, trace sand, grey at 3.05			3/9/15/18
2.3 222.3 SS5 W V	2	223							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5	222.5	SS4						4/8/2/9
4 221	- 3	222	SS5			L ¥	w	₽	6/8/11/17
4.5 220.5 SS6 SS6 SILTY CLAY: Grey, wet, stiff, silty clay Image: Constraint of the state of t	3.5	221.5		-					
5 220 SS6 SILTY CLAY: Grey, wet, stiff, silty clay 2/2/3/4 5.5 219.5 Termination Depth at 5.18 m Image: Comparison of the comparis	4	221							
5 220 Image: Constraint of the second s	4.5	220.5	326	-		SILTY CLAY: Grey wet stiff silty clay			2/2/3/4
5.5 219.5 6 219 6.5 218.5 7 218 7.5 217.5 8 217 8.5 216.5 9 216	5	220				SILT OLAT. OFEY, wet, suit, sity day			2121314
6.5 218.5 7 218 7.5 217.5 8 217 8.5 216.5 9 216	5.5	219 <u>.</u> 5				Termination Depth at 5.18 m			
7 218 7.5 217.5 8 217 8.5 216.5 9 216	6	219							
7.5 217.5 8 217 8.5 216.5 9 216	6.5	218.5							
8 217 8.5 216.5 9 216	- 7	218							
8 217 8.5 216.5 9 216	- 7.5	217.5							
8.5 216.5 9 216	_	_							
9 216	_								
	_	_							
	_	-							
		215.5							

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 6.1 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.19572 -79.9199 COORD SYS UTM SURFACE ELEVATION 233.83 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/13

	1	1							
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	- 233	SS1	SS		SILTY CLAY: Brown, moist, soft to stiff, silty clay, grey at 3.05		W		2/2/2/3
- 1	232.5	SS2							2/3/2/3
- 1.5	- 232 - 231.5	SS3							3/3/6/6
2 2.5	231	SS4							5/6/10/13
- 3	230.5	 SS5							3/5/8/9
- 3 <u>.</u> 5 4	230 229.5				SILT: Grey, moist, stiff, silt				
4.5	229	SS6							14/25/32/41
5	228.5 228								
5.5 6	227.5								
6.5	- 227	SS7			Termination Depth at 6.1 m				10/14/24/24
- 7	226.5 226								
7.5 8	225.5								
8.5	225								
9 9.5	224.5 224								
- 9.0	223.5								

MONITORING WELL MW23-11

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH DIAMETER 0.152

CASING PVC

COORDINATES COORD SYS UTM SURFACE ELEVATION WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/12

COMMENTS

		I					1	•	•	
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log		Material Description	Well Installation	Moisture	Water	Blow Counts
_	231	SS1	SS			SILT: Brown, medium stiff, moist, silt		м		3/3/4/5
0.5	236.5									
- 1	236	SS2								3/3/4/5
1.5	235.5	SS3				SILT: Grey, moist, very stiff, silt				9/14/15/17
2	235									
2.5	234.5	SS4	-							13/14/14/20
- 3	234									
3.5	233.5									
4	233	SS5								10/14/21/32
4.5	232.5									
5	232									
5.5	231.5	SS6								19/15/21/24
6	231									
6.5	230.5									
- 7	230	SS7	1							9/13/42/50 for 4"
7.5	229.5									
8	229				·	Termination Depth at: 7.62 m				
8.5	228.5									
9	228									
9.5	227.5									
_	-									

MONITORING WELL MW23-12

PROJECT NUMBER 2521-6807 PROJECT NAME Upper West Side CLIENT UWS Landowner Group ADDRESS Multiple Addresses DRILLING DATE 2023/09/06 - 2023/09/15 LICENCE NO. 7687 DRILLING COMPANY Elements GEO Corp DRILLER DRILL RIG DRILLING METHOD Solid Stem TOTAL DEPTH 6.1 DIAMETER 0.152 m

CASING PVC

COORDINATES 43.18512 -79.9194 COORD SYS UTM SURFACE ELEVATION 232.69 WELL TOC LOGGED BY LT CHECKED BY CM

SCREEN PVC

COMPLETION2023/09/13

COMMENTS

	_								
Depth (m)	Elevation (m)	Samples	Sample Type	Graphic Log	Material Description	Well Installation	Moisture	Water	Blow Counts
0.5	232.5	SS1	SS		SILT: Brown, dry, silt trace clay		D		5/6/7/7
- - 1 -	232 231.5	SS2			SILTY CLAY: Brown, dry, stiff, silty clay				5/5/7/8
- 1.5 - 2	- 231	SS3							4/5/7/8
- 2.5	230.5 230	SS4			SILT: Brown, wet, stiff, silt, grey at 3.05		W - M	-	4/8/8/9
- 3	229.5	SS5		Ĭ	Z			Ā	3/5/8/10
- 3.5 	229								
4.5	- 228.5 - 228	SS6							7/9/11/10
5	227.5								
- 5 <u>.</u> 5 - 6	- 227								
6.5	226.5 226	SS7			SILTY CLAY: Grey, wet to moist, silty clay trace sand SILT: Grey, moist to wet, silt		M-W		4/4/5/5
- 7 - 7.5	225.5								
8	225 224,5	SS8							9/9/14/16
8.5	- 224				Termination Depth at 8.23 m				
- 9 - 9.5	223.5								
	223								

APPENDIX C

Karst Letter (EXP 2019)

September 5, 2019

Mr. Nick Wood, MES(PI) Manager, Development Planning Corbett Land Strategies Inc. 483 Dundas Street West, Suite 212 Oakville, ON L6M 1L9

Re: HAM-00801363-B0

Proposed Subdivision Twenty Road West, Hamilton, ON

Dear Mr. Wood:

EXP Services Inc. (EXP) was retained by Corbett Land Strategies Inc. to carry out a geotechnical investigation at the above noted site with the results presented in EXP's Report No. HAM-00801363-A0 Rev. 1 dated March 4, 2019. A karst assessment was subsequently requested by the City of Hamilton's Planning and Economic Development Department.

The Ontario Geological Survey map *Karst Study for Southern Ontario* (2008) identifies the site as being in an area of potential karst based on the rock type which is susceptible to karst processes. No bedrock outcrops were observed at the site and bedrock was not encountered in any of the thirty-three (33) boreholes advanced throughout the property. The boreholes were drilled to a maximum depth of 12.7 m below grade. As such, given the relative overburden thickness, an assessment of karst features is not considered to be applicable at the site.

We trust that this information is sufficient for your present requirements. Should you have any further questions concerning the above, please do not hesitate to contact the undersigned directly.

Sincerely,

EXP Services Inc.

Dikher Bhangal

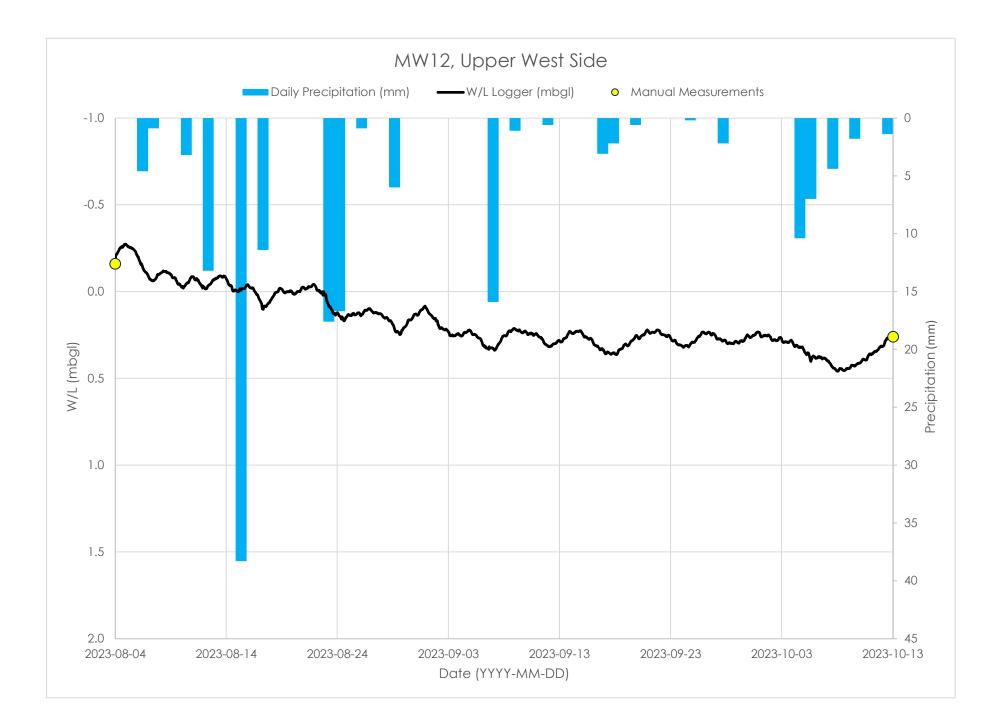
Dilsher Bhangal, M.Eng. Designer, Hamilton Geotechnical Services

Jell Galdu

Jeffrey Golder, P.Eng. Manager, Hamilton Geotechnical Services

y:\word reports-vision\00801300\00801363-b0 geo. inv. twenty road subdivision\letter - karst response\ham-00801363-b0 karst assessment letter.docx\

APPENDIX D


MECP Well Summary Table

oct Numb 01	21 4907					MECP WATER WELL RECORDS Location: Upper West Side Community Lands			
ect Number: 25 bared by: BL/LS						Date completed: September 13, 2023			
Well ID	Diameter (cm)	Depth (m)	Static Level	Quantity (Lpm)	Quality	Materials	Aquifer ¹	Use	Date Complete
6803137	15.2	28.7	2.44	7.6	clear	blue clay, limestone	BR	Domestic	01/09/19
6803144 6803146	15.2	31.4 28.0	7.92 9.14	7.6	clear clear	clay, limestone clay, limestone	BR BR	Domestic Domestic	09/25/19
6803149	15.2	35.1	27.43	3.8	clear	limestone	BR	Domestic	09/19/19
6803150	91.4	11.6	1.22	18.9	clear	brown clay, blue hard pan, blue clay and silt, gravel	OB	Domestic	09/25/19
6803151 6803153	91.4 15.2	11.9 25.9	1.22 6.10	18.9 12.5	clear clear	brown sandy loam, blue hard clay, coarse grey sand yellow clay, grey limestone	OB BR	Domestic Domestic	05/04/19
6803154	15.2	31.7	3.05	12.6	clear	yellow clay, grey limestone	BR	Domestic	09/15/19
6803155 6803156	15.2	27.1 33.2	2.13	15.1	clear clear	clay, limestone	BR BR	Domestic Domestic	09/21/19
6803157	17.8	35.4	9.14	0.9	clear	loam, blue clay, limestone brown clay, blue clay, limestone	BR	Domestic	07/31/19
6803158	15.2	25.6	9.14	15.1	clear	brown clay, limestone	BR	Domestic	02/23/19
6803159 6803160	15.2	31.4 32.6	12.19 3.05	7.6	clear clear	brown clay, limestone	BR BR	Domestic Domestic	05/11/19
6803162	15.2	37.8	7.62	7.6	clear	clay, limestone clay, fine sand, gray rock	BR	Livestock	01/26/19
6803170	15.2	30.5	5.79	18.9	clear	brown clay, limestone	BR	Domestic	02/02/19
6803173 6803217	15.2	28.0 32.9	4.57 6.10	3.8 18.9	clear clear	sandy loam, brown clay, grey clay, limestone clay, rock	BR BR	Domestic Domestic	07/27/19
6803224	15.2	32.9	13.72	18.9	clear	brown clay, sandy loam, blue clay, limestone	BR	Domestic	10/07/19
6803241	15.2	18.9	9.14	7.6	clear	loam, blue clay, limestone	BR	Domestic	09/16/19
6803243 6803253	15.2 15.2	23.8	7.62	18.9 7.6	clear clear	brown clay, blue clay, limestone topsoil, limestone	BR BR	Domestic Domestic	03/05/19
6803254	15.2	18.3	6.10	3.8	clear	blue clay, sand, limestone	BR	Domestic	09/09/19
6803255	15.2	24.7	3.66	113.6	clear	topsoil, yellow clay, limestone	BR	Domestic	11/12/19
6803262 6803265	15.2	22.3 20.7	7.01 6.10	113.6 18.9	clear	clay, limestone soft brown clay, sand, gravel	BR OB	Domestic Domestic	08/18/19
6803265	15.2	20.7	6.10 9.14	18.9	clear clear	soft brown clay, sana, gravel clay, clay and gravel, limestone	BR	Domestic	11/12/19
6803267	15.2	21.3	3.66	18.9	clear	brown clay, silt, blue clay, limestone	BR	Domestic	11/20/19
6803270	15.2 15.2	22.3 26.5	9.14 13.72	22.0 49.2	clear	clay, limestone	BR BR	Domestic	11/29/19
6803272 6803274	15.2	26.5	9.14	49.2 60.6	clear clear	clay, limestone clay, rock	BR	Domestic Domestic	12/22/19
6803277	15.2	14.3	6.10	22.7	clear	brown clay, sand, rock	BR	Domestic	03/09/19
6803278	15.2	21.6	17.07	2.6	clear	loam, blue clay, limestone	BR	Domestic	03/16/19
6803280 6803285	15.2	23.8	12.80 10.67	15.1 7.6	clear clear	loam, blue clay, limestone clay, sand, limestone	BR BR	Domestic Domestic	04/26/19
6803286	15.2	22.3	12.19	8.7	clear	loam, blue clay, limestone	BR	Domestic	06/30/1
6803317	15.2	23.2	3.66	11.4	clear	blue clay, limestone	BR	Domestic	01/19/19
6803320 6803349	15.2	23.5 24.7	11.58 10.67	3.8 35.2	clear sulphur	loam, blue clay, limestone loam, blue clay, limestone	BR BR	Domestic Domestic	02/03/19
6803357	15.2	24.4	9.14	50.3	clear	loam, blue clay, limestone	BR	Commerical	09/04/19
6803360	15.2	24.1	7.62	1.2	clear	loam, blue clay, limestone	BR	Domestic	09/08/1
6803361 6803363	15.2	18.3	9.14	13.2 8.3	clear clear	loam, blue clay, limestone loam, blue clay, limestone	BR BR	Domestic Domestic	09/28/19
6803395	15.2	23.8	11.58	16.3	clear	loam, blue clay, imesione	BR	Domestic	09/21/1
6803396	15.2	21.9	10.67	12.5	clear	loam, blue clay, limestone	BR	Domestic	09/23/1
6803411 6803429	15.2	21.3 23.2	10.67 9.45	1.9 2.6	clear clear	loam, blue clay, limestone loam, blue clay, limestone	BR BR	Domestic Domestic	04/04/19
6803431	15.2	21.6	9.14	1.1	clear	blue clay, limestone	BR	Domestic	10/15/1
6803438	15.2	20.7	9.14	9.5	clear	blue clay, limestone	BR	Domestic	05/08/1
6803439 6803443	15.2	19.5 19.5	10.36 9.75	5.7 30.3	clear	blue clay, limestone	BR BR	Domestic	05/20/19
6803444	15.2	20.4	9.14	1.9	clear clear	blue clay, limestone blue clay, limestone	BR	Domestic Domestic	07/10/19
6803445	15.2	19.8	9.14	26.5	clear	blue clay, limestone	BR	Domestic	10/15/19
6803448	15.2	20.7	9.14 9.14	18.9 3.8	clear	clay, limestone	BR BR	Domestic	02/06/19
6803450 6803456	15.2 15.2	14.3	3.66	3.8	clear clear	brown clay, sandy clay, limestone clay, limestone	BR	Domestic Domestic	06/08/19
6803603	15.2	35.4	4.57	18.9	clear	brown clay, blue clay, limestone	BR	Domestic	11/10/19
6803618	15.2	17.4	3.05	7.6	clear	clay, limestone	BR	Domestic	03/26/1
6803621	15.2	21.6	0.00	0.0	clear	clay, sandy clay	OB	Abandoned	01/25/1
6803624	15.2	17.1	7.62	18.9	clear	brown clay, blue clay, limestone	BR	Domestic	05/23/1
6803625	15.2	18.3	3.66	18.9	clear	clay, limestone	BR	Domestic	07/10/19
6803630 6803632	15.2	23.5 23.2	3.66 6.10	18.9 0.0	clear dark	clay, limestone clay, limestone	BR BR	Domestic Domestic	08/20/19
6803633	15.2	21.3	4.57	15.1	clear	clay, sand, limestone	BR	Domestic	03/09/1
6803636	15.2	21.3	9.14	1.1	clear	brown clay, sandy clay, limestone	BR	Domestic	03/15/1
6803820	76.2	33.8	4.27	7.6	clear	topsoil, brown clay, brown sand, blue hard clay, blue sand and clay, brown clay	OB	Domestic	12/10/19
6803821	91.4	39.3	2.13	18.9	clear	brown sandy clay, sand, gray hard pan, fine sand, coarse sand	OB	Domestic	06/10/19
6803825	91.4	14.0	1.22	18.9	clear	black loam, brown sand and clay, grey hard pan, sand, hard clay, red/grey sand and gravel	OB	Domestic	04/02/1
6803827	15.2	11.9	10.67	18.9	clear	brown clay, grey sand, blue clay, limestone	BR	Domestic	05/12/1
6803829	91.4	11.6	9.14	15.1	clear	topsoil, clay, running sand, limestone	BR	Domestic	01/12/1
6803863 6803865	15.2 15.2	25.9 24.4	10.67 9.14	18.9 0.9	clear Fresh	brown clay, grey sand, blue clay, limestone Top Soil, clay, running sand, liestone	BR BR	Domestic Domestic	09/06/1
6803866	15.2	24.4	9.14	0.9	Fresh	Top Soil, clay, running sand, liestone	BR	Domestic	11/23/1
6803867	15.2	29.0	6.10	11.4	Fresh	topsoil, brown clay, blue clay, limestone	BR	Domestic	12/18/1
6803868 6803869	15.2 15.2	29.3 27.7	6.10 9.14	11.4 0.9	Fresh Fresh	brown clay, grey clay, limestone loam, blue clay, limestone	BR BR	Domestic Domestic	01/08/1
6803870	15.2	28.3	12.19	11.4	Fresh	topsoil, brown clay, blue clay, limestone	BR	Domestic	07/23/1
6803873	15.2	27.4	15.24	7.6	Fresh	topsoil, brown clay, grey clay, limestone	BR	Domestic	12/27/1
6803874 6803875	15.2	29.0 22.6	10.06 6.10	1.9	Fresh Fresh	Blue clay, shale rock, grey limestone	BR BR	Domestic Domestic	08/03/1
6803875	15.2	22.6	6.10	1.9	Fresh	blue clay, shale, limestone brown clay, blue clay, limestone	BR	Domestic	03/04/1
6803877	15.2	26.8	9.75	18.9	Fresh	brown clay, blue clay, quick sand, fine sand, limestone	BR	Domestic	05/26/1
6807034	91.4	13.4	1.22	18.9	Fresh	brown clay, blue hard clay, hard pan, blue clay, redish brown sand	OB	Domestic	02/24/1
6807337	15.2	27.7	5.79	5.7	Fresh	limestone	BR	Domestic	10/09/19
6807351	76.2	17.7	1.22	7.6	-	Grey clay, blue clay	OB	Domestic	08/20/19
6807354 6807419	76.2 76.2	16.8 14.6	11.58 2.13	11.4 18.9	Fresh Fresh	Grey silt, blue clay, bottom on bedrock grey clay, blue clay	BR OB	Domestic Domestic	09/06/19
			1 4.10	10.7	119211				10/00/13

6808463	91.4	16.8	3.05	30.3	Fresh	Brown sandy clay, grey sandy silt stones, grey silty clay black	BR	Domestic	05/30/1973
6808826	91.4	15.2	6.10	30.3	Fresh	stones brown topsoil, brown sandy soil, grey sandy silt, grey sand	BR	Domestic	06/13/1974
6808901	91.4	15.2	0.00	22.7	Fresh	brown topsoil, brown sandy clay, grey sandy silt, grey sand	OB	Domestic	07/23/1974
6808902	91.4	15.2	5,18	11.4	Fresh	brown sandy clay, blue clay, brown sand, grey silt, grey sand	OB	Domestic	07/24/1974
6808904	91.4	9.1	0.00	0.0	Fresh	Brown Sandy Clay, bloe clay, brown sand, grey sin, grey sand Brown Sandy Clay, arey sandy clay	OB	Domestic	07/18/1974
6808990	91.4	16.2	13.11	22.7	Fresh	Brown Clay, grey sandy clay, grey sanay clay Brown Clay, grey sand, blue clay, gravel, blue clay	OB	Domestic	10/15/1974
6809067	91.4	15.2	2.44	22.7	Fresh	brown clay, grey sand, blue clay, gravel, blue clay brown sandy clay, Blue Clay, grey silt, grey sand	OB	Domestic	01/03/1975
6809218	91.4	13.1	0.00	30.3	Fresh	Brown sandy clay, grey sandy clay, grey sand	OB	Domestic	07/30/1975
6809219	91.4	10.7	0.00	11.4	Fresh	Brown Sandy Clay, grey sandy Clay, grey sand Brown Sand, grey silt & clay	OB	Domestic	07/30/1975
6810128	91.4	13.1	1.52	15.1	116311	brown sand, clay, grey sand	OB	Domestic	06/12/1980
6810128	91.4	18.3	3.05	22.7	fresh		OB	Domestic	08/07/1980
6810174	91.4	18.3	0.91	11.4	fresh	brown sandy clay, blue clay, grey silt, grey sand, blue clay	OB	Domestic	
						Brown sandy clay, grey silt, grey sand Brown sandy clay, brown sand, brown sandy clay, grey silty clay,		Domestic	11/20/1986
6811639	91.4	10.7	2.44	3.8	fresh	red sand	OB	Domestic	03/08/1989
6811747	15.9	30.5	5.49	9.5	fresh	Blue Clay, Grey shale	BR	Domestic	07/27/1989
6812138	91.4	15.2	3.05	11.4	fresh	Brown Sandy clay, grey silt, blue clay	OB	Domestic	10/21/1991
6814216	5.0	5.0	0.00	0.0	fresh	Brown Sandy silt, grey clay silt	OB	not used	03/24/2005
7104587	5.1	6.0	0.00	0.0	fresh	Brown silty sand	OB	not used	11/28/2007
7204011	-	-	-	-	-	-	-	Empty Record	04/24/2013
7206136	-	-	-	-	-	-	-	Empty Record	01/08/2013
7218337	-	-	-	-	-	-	-	Abandoned	07/02/2013
7221436	3.8	4.5	-	-	-	Silt, Clay	OB	Monitoring	05/26/2014
7221437	3.8	4.5	-	-	-	Silt, Clay	OB	Monitoring	05/26/2014
7221735	4.6	6.1	-	-	-	Clay	OB	Monitoring	05/20/2014
7299389	5.1	6.1	-	-	-	Brown Sand, Grey Silt	OB	Monitoring	09/15/2017
7299390	5.1	6.1	-	-	-	Brown Sand, grey silt, clay	OB	Monitoring	09/25/2017
7307480	-	4.6	-	-	-	Silt till	OB	Monitoring	03/13/2018
7307481	-	-	-	-	-	-	-	Empty Record	02/02/2018
7307482	-	-	-	-	-	-	-	Empty Record	02/15/2018
7313568	5.1	6.1	0.00	0.0		Brown Clay silt, grey clay, slit	OB	Monitoring	04/18/2018
7319591	-	-	-	-	-	-	-	Monitoring	04/15/2018
7339881	-	9.1	-	-	-	Brown Clay silt, grey clay, slit	OB	Monitoring	07/05/2019
7340837	5.1	12.2	-	-	-	brown clay, silt, grey clay, silt	OB	Monitoring	06/17/2019
7352629	-	N/A	-	-	-			Empty Record	11/12/2019
7354409	5.1	12.2	-	-	-	Brown silt, clay, grey silt, fine sasnd, grey fine sand, silt	OB	Monitoring	11/20/2019
7359727	-	6.1	-	-	-			Empty Record	05/05/2020
7373663	5.1	4.6	-	-	-	grey clay	OB	Monitoring	07/06/2020
7375592	-	N/A	-	-	-		-	Empty Record	09/19/2020
7375593	-	N/A	-	-	-	-	-	Empty Record	09/19/2020
7375594	-	N/A	-	-	-	-	-	Empty Record	09/19/2020
7375595	-	N/A	-	-	-	-	-	Empty Record	09/19/2020
7393607	5.1	7.6	-	-	-	Brown Sand, silt, brown clay, silt	OB	Monitoring	03/29/2021

APPENDIX E

Hydrograph

APPENDIX F

Door-to-Door Survey Results

SEPTEMBER 7, 2023

PROJECT NO: 2521 - 6807

SENT VIA: HAND DELIVERED

Attention: Property Owner/Tenant

RE: DOOR TO DOOR WELL AND SEPTIC SURVEY CITY OF HAMILTON

To whom it may concern,

C.F. Crozier & Associates Inc. (Crozier) has been retained to complete a detailed study of the nearby area to assess groundwater conditions and potential impacts occurring to the shallow groundwater system. Hence, Crozier is conducting a door-to-door survey to determine the location of any water supply wells, cisterns and private sewage systems in your area. We would appreciate participation in this survey to assist us in our study.

Attached is a questionnaire concerning your property and private well, cistern and/or septic system (if applicable). Please review and provide your responses using the forms located in the QR code below or via email to <u>cmacphee@cfcrozier.ca</u>. Alternatively, please feel free to call our office to provide us with your questionnaire responses. Please provide your response by September 30, 2023 if possible. Rest assured, we will not share your contact information with any third parties and the information provided in this questionnaire will only be used for the purposes of this study.

The City of Hamilton provides great resources on maintaining private wells and good water quality on your property and can be accessed at the following site:

https://www.hamilton.ca/home-neighbourhood/house-home/private-wells-cisterns

Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Scan QR Code below to Access the form

Sincerely,

CROZIER CONSULTING ENGINEERS

Caitlyn MacPhee, EIT/GIT Hydrogeology ^{SS/CM/cj}

Enclosure

2800 High Point Dr., Suite 100 Milton, ON L9T 6P4 T. 905.875.0026 F. 905.875.4915 cfcrozier.ca

Door to Door Well & Septic Survey Questionnaire

1. What is your address?

The following questions 2 – 8 pertain to private water supply wells. If you do not have a well on your property, you may skip to question 9.

- 2. Do you have a private well on your property?
- 3. Does your well supply your drinking water?
- 4. What is the age of your well?
- 5. Is it a dug or drilled well?
- 6. How deep is your well?
- 7. Have you had any quantity or quality issues with your well? Briefly describe any issues.
- 8. Would you be willing to allow us to collect a sample of your water for laboratory analysis at no cost to you? All results will be provided to you for your records.

The following questions 9 - 10 pertain to cisterns. If you do not have a cistern on your property, you may skip to question 11.

- 9. Do you have a cistern on your property?
- 10. Does the cistern supply your drinking water?

- 11. What size is your cistern? Is it external or internal?
- 12. Do you have a surface water intake on your property?
- 13. Do you have any water treatment systems (e.g., water softener, chlorinator etc.)?
- 14. Do you have a septic system on your property?
- 15. Where is your sewage system located (i.e., front of your home, side yard etc.)?
- 16. What type of sewage system is it (i.e., septic tan with a leaching bed or holding tank)?
- 17. What is the age of your septic system?

If you are willing, please provide your contact information for any follow up questions we may have. If you answered yes to question 8, please provide your preferred method of contact so we may coordinate sampling:

Reminder: Your contact information will not be shared with any third parties.

DOOD TO DOOD SUBVEY OUESTIONNAIDE DESDONSES

CROZIER	Project Name	DOON: Upper West Side Community	TO DOOR SURVEY QUESTIONNAIRE RESPONSES Date: 2023-11-03					
CONSULTING ENGINEERS	Project Number		Unity Date: 2023-11-03 Filled By: BL Checked By: CM					
1. What is your address?	2. Do you have a private well on your property?	3. Does your well supply your drinking water	4. What is the age of your well (yrs)?	5. How deep is your well?	6. Is it a dug or drilled well?	7. Have you had any quantity or quality issues with your well?		
9717 Dickenson Road W	Yes	Yes	33	137 ft	Drilled	Yes, only getting 0.18gpm. Supposed to get 1gpm.		
1261 Glancaster Rd	N/A	N/A	N/A	N/A	NA	N/A		
559 Glancaster Rd	N/A	N/A	N/A	N/A	NA	N/A		
9810 Dickerson Rd	No	N/A	N/A	N/A	NA	N/A		
9798 Dickenson Rd W	Yes	Yes	53	25 ft	Dug	In early 2000 we had very little rain and the well was dry. Had a local water truck fill the well and never a problem since.		
9856 Dickenson Rd. W	Yes	Yes	Not sure	25 ft	Drilled	No		
9807 Dickenson Rd W	Yes	No	22	120 ft	Drilled	Not quantity but quality. Sometimes high levels of sulphur and iron.		
9813 Dickenson Rd W	Yes	Yes	40-50	60 ft	Drilled	No		
9883 Dickenson Rd W	Yes	Yes	40 years	not sure	Dug	Odouress water		
9671 Dickenson Rd W	Yes	Yes	10 years	119 ft	Drilled	E.Coli		
9778 Dickenson Rd W	N/A	N/A	N/A	N/A	N/A	N/A		
9188 Dickenson Rd W	No	No	N/A	N/A	N/A	N/A		

Project Name Project Numbe	e: Upper West Side Community r: 2521-6807	Date: 2023-11-03 Filled By: BL Checked By: CM						
What is your address?	8. Would you be willing to allow us to collect a water sample for laboratory analysis at no cost to you? All results will be provided to you for your records.	9. Do you have a cistern on your property?	10. Does your cistern supply drinking water?	11. What size is your cistern? Is it an internal or external tank?	12. Do you have a surface water intake at your property?			
9717 Dickenson Road W	Yes	Yes	Yes	Internal - 300 gallons	Yes			
1261 Glancaster Rd	N/A	N/A	N/A	N/A	No			
559 Glancaster Rd	N/A	N/A	N/A	N/A	N/A			
9810 Dickerson Rd	N/A	Yes	Yes	External - 2000 gallons	No			
9798 Dickenson Rd W	Yes	N/A	N/A	N/A	No			
9856 Dickenson Rd. W	Yes	No	N/A	N/A	No			
807 Dickenson Rd W	Yes	No	N/A	NA	No			
2813 Dickenson Rd W	Yes	No	N/A	N/A	No			
883 Dickenson Rd W	Yes	No	N/A	N/A	No			
2671 Dickenson Rd W	Yes	Yes	Yes	External - 3000 gallons	No			
778 Dickenson Rd W	Yes	Yes	Yes	3000 gallons	No			
188 Dickenson Rd W	N/A	No	N/A	N/A	No			

DOOR TO DOOR SURVEY QUESTIONNAIRE RESPONSES

Project Name: Upper West Side Community

Date: 2023-11-03

			Checked By:	СМ	
What is your address?	13. Do you have any water treatement systmes?	14. Do you have a septic system on your property?	15. Where is your system located?	16. What type of sewage system do you have?	17. What is the age of your septic system?
9717 Dickenson Road W	Yes, oxygenator, water software, UV light.	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	unknown
1261 Glancaster Rd	No	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	approx. 58 years old
559 Glancaster Rd	N/A	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	unknown
9810 Dickerson Rd	No	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	60 years
9798 Dickenson Rd W	No	Yes	Main tanks at East side of the house with tile bed in front of the home.	Septic Tank with Leaching Bed or Drain Field	20 - 25 years
9856 Dickenson Rd. W	No	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	Not sure
9807 Dickenson Rd W	No	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	22 years Waterloo bio filter system
9813 Dickenson Rd W	Yes	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	40 years
9883 Dickenson Rd W	No	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	40 years
9671 Dickenson Rd W	Yes	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	10 years
9778 Dickenson Rd W	UV Light	Yes	Backyard	Septic Tank with Leaching Bed or Drain Field	30+ years
9188 Dickenson Rd W	N/A	Yes	Side Yard	Unsure	More than 20 years

APPENDIX G

Groundwater Quality Results

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2333338	Page	: 1 of 12
Client	: CF Crozier & Associates	Laboratory	: ALS Environmental - Waterloo
Contact	: Caitlyn MacPhee	Account Manager	Andrew Martin
Address	: 2800 High Point Drive Milton ON Canada L9T 6P4	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone		Telephone	: +1 519 886 6910
Project	: UWS-2521-10807	Date Samples Received	: 16-Oct-2023 17:45
PO	:	Date Analysis Commenced	: 17-Oct-2023
C-O-C number	: 20-1083366	Issue Date	: 25-Oct-2023 18:44
Sampler	: CLIENT		
Site	:		
Quote number	: 2023 Standing Offer		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
John Tang	Lab Analyst	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Metals, Waterloo, Ontario
Rachel Cameron	Supervisor - Semi-Volatile Extractions	Organics, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Zeba Patel		Microbiology, Waterloo, Ontario

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
MW23-1	Water	Solids, total suspended [TSS]		HALSUB	SAN	13500 mg/L	350 mg/L
	Water	Aluminum, total		HALSUB	SAN	163 mg/L	50 mg/L
	Water	Iron, total		HALSUB	SAN	394 mg/L	50 mg/L
	Water	Manganese, total		HALSUB	SAN	19.7 mg/L	5 mg/L

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable). For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Workorder Comments

RRR: DCM LOR increased due to the potential of laboratory contamination. <1 or Not Detected with LOR of 1 equals Zero (0). Not Detected = Absent; Detected = Present.

Sample Comments

Sample	Client Id	Comment
WT2333338-001	MW23-1	RRR/RRQC: Recovery of 3,3-Dichlorobenzidine in the Laboratory Control Sample is outside of ALS control limits. Associated non-detect sample results have not been affected. RRR; Surrogate result is outside of ALS control limits; associated Reporting Limits have been adjusted as required and non-detect results are reliable.

Qualifiers

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HSED	High sediment content in submitted water sample. Analysis could only proceed using
	aqueous fraction after decanting. Results may be biased low and may be
	inappropriate for regulatory or compliance purposes.
OWP	Organic water sample contained visible sediment (must be included as part of
	analysis). Measured concentrations of organic substances in water can be biased
	high due to presence of sediment.
RRR	Refer to report comments for issues regarding this analysis.
SHMI	Surrogate recovery was outside ALS DQO (High) due to Matrix Interference
SP	Sample was preserved at the laboratory.

Matrix: Craundurator		Client	sample ID	MW23-1	 	 	
Matrix: Groundwater	Sampling date/time		13-Oct-2023	 	 	 	
				11:00			
		5	Sub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2333338-001	 	 	
Physical Tests							
рН		E108/WT	pH units	7.97	 	 	
Solids, total suspended [TSS]		E160/WT	mg/L	13500 DLHC	 	 	
Anions and Nutrients							
Chloride	16887-00-6	E235.CI/WT	mg/L	16.6	 	 	
Fluoride	16984-48-8	E235.F/WT	mg/L	0.381	 	 	
Kjeldahl nitrogen, total [TKN]		E318/WT	mg/L	1.92 DLM	 	 	
Phosphorus, total	7723-14-0	E372-U/WT	mg/L	1.70 DLM	 	 	
Sulfate (as SO4)	14808-79-8	E235.SO4/WT	mg/L	44.2	 	 	
Cyanides							
Cyanide, strong acid dissociable (Total)		E333/WT	mg/L	<0.0020	 	 	
Microbiological Tests							
Coliforms, Escherichia coli [E. coli]		E012A.EC/WT	CFU/100 mL	Not Detected	 	 	
Total Metals							
Aluminum, total	7429-90-5	E420/WT	mg/L	163 DLHC	 	 	
Antimony, total	7440-36-0	E420/WT	mg/L	<0.00100 DLHC	 	 	
Arsenic, total	7440-38-2	E420/WT	mg/L	0.113 DLHC	 	 	
Bismuth, total	7440-69-9	E420/WT	mg/L	0.00298 DLHC	 	 	
Cadmium, total	7440-43-9	E420/WT	mg/L	0.00223 DLHC	 	 	
Chromium, total	7440-47-3	E420/WT	mg/L	0.920 DLHC	 	 	
Cobalt, total	7440-48-4	E420/WT	mg/L	0.168 DLHC	 	 	
Copper, total	7440-50-8	E420/WT	mg/L	0.648 DLHC	 	 	
Iron, total	7439-89-6	E420/WT	mg/L	394 DLHC	 	 	
Lead, total	7439-92-1	E420/WT	mg/L	0.228 DLHC	 	 	
Manganese, total	7439-96-5	E420/WT	mg/L	19.7 DLHC	 	 	
Mercury, total	7439-97-6	E508/WT	mg/L	0.0000208	 	 	
Molybdenum, total	7439-98-7	E420/WT	mg/L	0.00980 DLHC	 	 	

		Client	sample ID	MW23-1	 	 	
Matrix: Groundwater						 	
		Sampling	date/time	13-Oct-2023 11:00	 	 	
			Duck Adaptive	Groundwater	 	 	
Analyte	CAS Number		Sub-Matrix Unit	WT2333338-001	 	 	
Analyte	CAS Number	Method/Lab	Onn	W12333330-001	 	 	
Total Metals							
Nickel, total	7440-02-0	E420/WT	mg/L	0.648 DLHC	 	 	
Selenium, total	7782-49-2	E420/WT	mg/L	0.00142 DLHC	 	 	
Silver, total	7440-22-4	E420/WT	mg/L	0.000846 DLHC	 	 	
Tin, total	7440-31-5	E420/WT	mg/L	0.0211 DLHC	 	 	
Titanium, total	7440-32-6	E420/WT	mg/L	0.833 DLHC	 	 	
Vanadium, total	7440-62-2	E420/WT	mg/L	0.264 DLHC	 	 	
Zinc, total	7440-66-6	E420/WT	mg/L	0.958 DLHC	 	 	
Aggregate Organics							
Carbonaceous biochemical oxygen demar	nd	E555/WT	mg/L	7.6	 	 	
[CBOD]							
Oil & grease (gravimetric)		E567/WT	mg/L	<5.0	 	 	
Oil & grease, animal/vegetable (gravimetri	ic)	EC567A.SG/WT	mg/L	<5.0	 	 	
Oil & grease, mineral (gravimetric)			mg/L	<5.0	 	 	
Phenols, total (4AAP)		E562/WT	mg/L	0.0013 ^{SP}	 	 	
Volatile Organic Compounds							
Benzene	71-43-2	E611D/WT	µg/L	<0.50 ^{OWP}	 	 	
Chloroform	67-66-3	E611D/WT	µg/L	<0.50 OWP	 	 	
Dichlorobenzene, 1,2-	95-50-1	E611D/WT	µg/L	<0.50 ^{OWP}	 	 	
Dichlorobenzene, 1,4-	106-46-7	E611D/WT	µg/L	<0.50 OWP	 	 	
Dichloroethylene, cis-1,2-	156-59-2	E611D/WT	µg/L	<0.50 ^{OWP}	 	 	
Dichloromethane	75-09-2	E611D/WT	µg/L	<29.0 ^{OWP,} RRR	 	 	
Dichloropropylene, trans-1,3-	10061-02-6	E611D/WT	µg/L	<0.30 ^{OWP}	 	 	
Ethylbenzene	100-41-4	E611D/WT	µg/L	<0.50 OWP	 	 	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D/WT	µg/L	<0.50 OWP	 	 	
Tetrachloroethylene	127-18-4	E611D/WT	µg/L	<0.50 ^{OWP}	 	 	
Toluene	108-88-3	E611D/WT	µg/L	<0.50 OWP	 	 	
Trichloroethylene	79-01-6	E611D/WT	µg/L	<0.50 ^{OWP}	 	 	
Xylene, m+p-	179601-23-1	E611D/WT	µg/L	<0.40 OWP	 	 	
Xylene, o-	95-47-6	E611D/WT	µg/L	<0.30 OWP	 	 	

		Client	sample ID	MW23-1	 	 	
Matrix: Groundwater							
		Sampling	date/time	13-Oct-2023 11:00	 	 	
		s	Sub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2333338-001	 	 	
Volatile Organic Compounds							
Xylenes, total	1330-20-7	E611D/WT	µg/L	<0.50	 	 	
Volatile Organic Compounds Surrogates	5						
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%	93.7	 	 	
Difluorobenzene, 1,4-	540-36-3	E611D/WT	%	96.2	 	 	
Polycyclic Aromatic Hydrocarbons							
Anthracene	120-12-7	E641A-L/WT	mg/L	<0.000028 DLM	 	 	
Benz(a)anthracene	56-55-3	E641A-L/WT	mg/L	<0.000010	 	 	
Benzo(a)pyrene	50-32-8	E641A-L/WT	mg/L	<0.000060 DLM	 	 	
Benzo(b+j)fluoranthene	n/a	E641A-L/WT	mg/L	<0.000016 DLM	 	 	
Benzo(e)pyrene	192-97-2	E641A-L/WT	mg/L	0.000018	 	 	
Benzo(g,h,i)perylene	191-24-2	E641A-L/WT	mg/L	0.000010	 	 	
Benzo(k)fluoranthene	207-08-9	E641A-L/WT	mg/L	0.000015	 	 	
Chrysene	218-01-9	E641A-L/WT	mg/L	<0.000054 DLM	 	 	
Dibenz(a,h)acridine	226-36-8	E642D/WT	mg/L	<0.000050	 	 	
Dibenz(a,h)anthracene	53-70-3	E641A-L/WT	mg/L	<0.000050	 	 	
Dibenz(a,j)acridine	224-42-0	E642D/WT	mg/L	<0.000050	 	 	
Dibenzo(a,i)pyrene	189-55-9	E642D/WT	mg/L	<0.000050	 	 	
Dibenzo(c,g)carbazole, 7H-	194-59-2	E642D/WT	mg/L	<0.000050	 	 	
Dinitropyrene, 1,3-	75321-20-9	E642D/WT	mg/L	<0.0010	 	 	
Dinitropyrene, 1,6-	42397-64-8	E642D/WT	mg/L	<0.0010	 	 	
Dinitropyrene, 1,8-	42397-65-9	E642D/WT	mg/L	<0.0010	 	 	
Fluoranthene		E641A-L/WT	mg/L	<0.000052 DLM	 	 	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L/WT	mg/L	<0.000010	 	 	
Methylcholanthrene, 3-	56-49-5	E642D/WT	mg/L	<0.000050	 	 	
Perylene	198-55-0	E641A-L/WT	mg/L	0.000012	 	 	
Phenanthrene	85-01-8	E641A-L/WT	mg/L	0.000095	 	 	
Pyrene	129-00-0	E641A-L/WT	mg/L	0.000069	 	 	
PAHs, total (ON Sewer Use)	n/a	EC640A/WT	mg/L	<0.00175	 	 	

		Client	sample ID	MW23-1	 	 	
Matrix: Groundwater							
		Sampling	date/time	13-Oct-2023 11:00	 	 	
		s	ub-Matrix	Groundwater	 	 	
Analyte	CAS Number		Unit	WT2333338-001	 	 	
Polycyclic Aromatic Hydrocarbons Surro	gates						
Chrysene-d12	1719-03-5	E641A-L/WT	%	131	 	 	
Naphthalene-d8	1146-65-2	E641A-L/WT	%	223 SHMI	 	 	
Phenanthrene-d10	1517-22-2	E641A-L/WT	%	107	 	 	
Terphenyl-d14, p-	1718-51-0	E642D/WT	%	41.6	 	 	
Phthalate Esters							
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E655F/WT	µg/L	<11.6 HSED, RRR	 	 	
Di-n-butyl phthalate	84-74-2	E655F/WT	µg/L	<1.0 HSED	 	 	
Semi-Volatile Organics							
Dichlorobenzidine, 3,3'-	91-94-1	E655F/WT	µg/L	<0.40 HSED, RRR	 	 	
Semi-Volatile Organics Surrogates							
Fluorobiphenyl, 2-	321-60-8	E655F/WT	%	79.1	 	 	
Terphenyl-d14, p-	1718-51-0	E655F/WT	%	43.0 RRR	 	 	
Chlorinated Phenolics							
Pentachlorophenol [PCP]	87-86-5	E655F/WT	µg/L	<0.50 HSED	 	 	
Phenolics Surrogates							
Tribromophenol, 2,4,6-	118-79-6	E655F/WT	%	113	 	 	
Polychlorinated Biphenyls							
Aroclor 1016	12674-11-2	E687/WT	µg/L	<0.020	 	 	
Aroclor 1221	11104-28-2	E687/WT	µg/L	<0.020	 	 	
Aroclor 1232	11141-16-5	E687/WT	µg/L	<0.020	 	 	
Aroclor 1242	53469-21-9	E687/WT	µg/L	<0.020	 	 	
Aroclor 1248	12672-29-6	E687/WT	µg/L	<0.020	 	 	
Aroclor 1254	11097-69-1	E687/WT	µg/L	<0.020	 	 	
Aroclor 1260	11096-82-5	E687/WT	µg/L	<0.020	 	 	
Aroclor 1262	37324-23-5	E687/WT	µg/L	<0.020	 	 	
Aroclor 1268	11100-14-4	E687/WT	µg/L	<0.020	 	 	
Polychlorinated biphenyls [PCBs], total		E687/WT	µg/L	<0.060	 	 	

		Client	sample ID	MW23-1	 	 	
Matrix: Groundwater	Sampling date/time			13-Oct-2023 11:00	 	 	
		S	ub-Matrix	Groundwater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2333338-001	 	 	
Polychlorinated Biphenyls Surrogates							
Decachlorobiphenyl	2051-24-3	E687/WT	%	86.0	 	 	
Tetrachloro-m-xylene	877-09-8	E687/WT	%	72.6	 	 	
Organochlorine Pesticides							
Aldrin	309-00-2	E660F/WT	µg/L	<0.0080	 	 	
Chlordane, cis- (alpha)	5103-71-9	E660F/WT	µg/L	<0.0080	 	 	
Chlordane, total	57-74-9	E660F/WT	µg/L	<0.011	 	 	
Chlordane, trans- (gamma)	5103-74-2	E660F/WT	µg/L	<0.0080	 	 	
DDT, 2,4'-	789-02-6	E660F/WT	µg/L	<0.0040	 	 	
DDT, 4,4'-	50-29-3	E660F/WT	µg/L	<0.0040	 	 	
DDT, total		E660F/WT	µg/L	<0.0060	 	 	
Dieldrin	60-57-1	E660F/WT	µg/L	<0.0080	 	 	
Hexachlorobenzene	118-74-1	E660F/WT	µg/L	<0.0080	 	 	
Hexachlorocyclohexane, gamma-	58-89-9	E660F/WT	µg/L	<0.0080	 	 	
Mirex	2385-85-5	E660F/WT	µg/L	<0.0080	 	 	
Aldrin + Dieldrin		E660F/WT	µg/L	<0.011	 	 	
Organochlorine Pesticides Surrogates							
Decachlorobiphenyl	2051-24-3	E660F/WT	%	76.9	 	 	
Tetrachloro-m-xylene	877-09-8	E660F/WT	%	68.1	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	9 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Summary of Guideline Limits

Analyte	CAS Number	Unit	HALSUB	HALSUB			
			SAN	STM			
Physical Tests							
рН		pH units	6 - 10 pH units	6.5 - 8.5 pH units			
Solids, total suspended [TSS]		mg/L	350 mg/L				
Anions and Nutrients							
Chloride	16887-00-6	mg/L	1500 mg/L				
Fluoride	16984-48-8	mg/L	10 mg/L				
Kjeldahl nitrogen, total [TKN]		mg/L	100 mg/L				
Phosphorus, total	7723-14-0	mg/L	10 mg/L				
Sulfate (as SO4)	14808-79-8	mg/L	1500 mg/L				
Cyanides							
Cyanide, strong acid dissociable (Total)		mg/L	2 mg/L				
/icrobiological Tests							
Coliforms, Escherichia coli [E. coli]		CFU/100mL		200 CFU/100mL			
otal Metals				OF O/TOOME			
Aluminum, total	7429-90-5	mg/L	50 mg/L				
Antimony, total	7440-36-0	mg/L	5 mg/L				
Arsenic, total	7440-38-2	mg/L	1 mg/L				
Bismuth, total	7440-69-9	mg/L	5 mg/L				
Cadmium, total	7440-43-9	mg/L	1 mg/L				
Chromium, total	7440-47-3	mg/L	3 mg/L				
Cobalt, total	7440-48-4	mg/L	5 mg/L				
Copper, total	7440-50-8	mg/L	3 mg/L				
Iron, total	7439-89-6	mg/L	50 mg/L				
Lead, total	7439-92-1	mg/L	3 mg/L				
Manganese, total	7439-96-5	mg/L	5 mg/L				
Mercury, total	7439-97-6	mg/L	0.05 mg/L				
Molybdenum, total	7439-98-7	mg/L	5 mg/L				
Nickel, total	7440-02-0	mg/L	3 mg/L				
Selenium, total	7782-49-2	mg/L	5 mg/L				
Silver, total	7440-22-4	mg/L	5 mg/L				
Tin, total	7440-31-5	mg/L	5 mg/L				
Titanium, total	7440-32-6	mg/L	5 mg/L				
Vanadium, total	7440-62-2	mg/L	5 mg/L				
Zinc, total	7440-66-6	mg/L	3 mg/L				
Aggregate Organics							
Carbonaceous biochemical oxygen demand [CBOD]		mg/L	300 mg/L			1	

Page:10 of 12Work Order:WT2333338Client:CF Crozier & AssociatesProject:UWS-2521-10807							S
Analyte	CAS Number	Unit	HALSUB SAN	HALSUB STM			
Aggregate Organics - Continued						i i i i i i i i i i i i i i i i i i i	
Oil & grease (gravimetric)		mg/L					
Oil & grease, animal/vegetable (gravimetric)		mg/L	150 mg/L				
Oil & grease, mineral (gravimetric)		mg/L	15 mg/L				
Phenols, total (4AAP)		mg/L	1 mg/L				
/olatile Organic Compounds							
Benzene	71-43-2	µg/L	10 µg/L				
Chloroform	67-66-3	µg/L	40 µg/L				
Dichlorobenzene, 1,2-	95-50-1	µg/L					
Dichlorobenzene, 1,4-	106-46-7	µg/L	80 µg/L				
Dichloroethylene, cis-1,2-	156-59-2	μg/L					
Dichloromethane	75-09-2	μg/L	2000 µg/L				
Dichloropropylene, trans-1,3-	10061-02-6	µg/L					
Ethylbenzene	100-41-4	µg/L	160 µg/L				
Tetrachloroethane, 1,1,2,2-	79-34-5	µg/L	1400 µg/L				
Tetrachloroethylene	127-18-4	μg/L	1000 µg/L				
Toluene	108-88-3	μg/L	16 µg/L				
Trichloroethylene	79-01-6	μg/L	400 µg/L				
Xylene, m+p-	179601-23-1	μg/L					
Xylene, o-	95-47-6	µg/L					
Xylenes, total	1330-20-7	μg/L					
/olatile Organic Compounds Surrogates		15			1 1		
Bromofluorobenzene, 4-	460-00-4	%					
Difluorobenzene, 1,4-	540-36-3	%					
Polycyclic Aromatic Hydrocarbons					1		
Anthracene	120-12-7	mg/L				1	
Benz(a)anthracene	56-55-3	mg/L					
Benzo(a)pyrene	50-32-8	mg/L					
Benzo(b+j)fluoranthene	n/a	mg/L					
Benzo(e)pyrene	192-97-2	mg/L					
Benzo(g,h,i)perylene	191-24-2	mg/L					
	207-08-9	mg/L					
Benzo(k)fluoranthene	218-01-9						
Chrysene Dibenz(a,h)acridine	216-01-9	mg/L mg/L					
	53-70-3						
Dibenz(a,h)anthracene	224-42-0	mg/L					
Dibenz(a,j)acridine	189-55-9	mg/L					
Dibenzo(a,i)pyrene		mg/L					
Dibenzo(c,g)carbazole, 7H-	194-59-2	mg/L					
Dinitropyrene, 1,3-	75321-20-9	mg/L					
Dinitropyrene, 1,6-	42397-64-8	mg/L					

Page	:	11 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Analyte	CAS Number	Unit	HALSUB SAN	HALSUB STM			
Polycyclic Aromatic Hydrocarbons - Continued							
Dinitropyrene, 1,8-	42397-65-9	mg/L					
Fluoranthene	206-44-0	mg/L					
Indeno(1,2,3-c,d)pyrene	193-39-5	mg/L					
Methylcholanthrene, 3-	56-49-5	mg/L					
PAHs, total (ON Sewer Use)	n/a	mg/L					
Perylene	198-55-0	mg/L					
Phenanthrene	85-01-8	mg/L					
Pyrene	129-00-0	mg/L					
Chrysene-d12	1719-03-5	%					
Naphthalene-d8	1146-65-2	%					
Phenanthrene-d10	1517-22-2	%					
Terphenyl-d14, p-	1718-51-0	%					
Phthalate Esters							
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	µg/L	12 µg/L				
Di-n-butyl phthalate	84-74-2	µg/L	80 µg/L				
Semi-Volatile Organics							
Dichlorobenzidine, 3,3'-	91-94-1	µg/L	2 µg/L				
Semi-Volatile Organics Surrogates							
Fluorobiphenyl, 2-	321-60-8	%					
Terphenyl-d14, p-	1718-51-0	%					
Chlorinated Phenolics							
Pentachlorophenol [PCP]	87-86-5	µg/L	5 µg/L				
Tribromophenol, 2,4,6-	118-79-6	%					
Polychlorinated Biphenyls							
Aroclor 1016	12674-11-2	µg/L					
Aroclor 1221	11104-28-2	µg/L					
Aroclor 1232	11141-16-5	µg/L					
Aroclor 1242	53469-21-9	µg/L					
Aroclor 1248	12672-29-6	μg/L					
Aroclor 1254	11097-69-1	µg/L					
Aroclor 1260	11096-82-5	μg/L					
Aroclor 1262	37324-23-5	μg/L					
Aroclor 1268	11100-14-4	μg/L					
Polychlorinated biphenyls [PCBs], total		µg/L	1 µg/L				
Decachlorobiphenyl	2051-24-3	%					
Tetrachloro-m-xylene	877-09-8	%				I	
Organochlorine Pesticides							
Aldrin + Dieldrin		µg/L	0.2 μg/L				
Aldrin	309-00-2	µg/L					

Page	:	12 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Analyte	CAS Number	Unit	HALSUB SAN	HALSUB STM			
Organochlorine Pesticides - Continued			OAN	UT M			
Chlordane, cis- (alpha)	5103-71-9	µg/L					
Chlordane, total	57-74-9	µg/L	100 µg/L				
Chlordane, trans- (gamma)	5103-74-2	µg/L					
DDT, 2,4'-	789-02-6	µg/L					
DDT, 4,4'-	50-29-3	µg/L					
DDT, total		µg/L					
Dieldrin	60-57-1	µg/L					
Hexachlorobenzene	118-74-1	µg/L	0.1 µg/L				
Hexachlorocyclohexane, gamma-	58-89-9	µg/L	100 µg/L				
Mirex	2385-85-5	µg/L	100 µg/L				
Decachlorobiphenyl	2051-24-3	%					
Tetrachloro-m-xylene	877-09-8	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

HALSUB		Ontario Halton Sanitary Sewer By-L
S	AN	Halton Sanitary By-Law (02-03, Mar
S	ГМ	Halton Storm Sewer By-Law 02-03

-Law No. 02-03 (Mar, 2003)

arch 2003)

8 (Mar, 2003)

ALS Canada Ltd.

Work Order

QUALITY CONTROL REPORT Page 1 of 14

Client	CF Crozier & Associates	Laboratory	: ALS Environmental - Waterloo
Contact	: Caitlyn MacPhee	Account Manager	: Andrew Martin
Address	: 2800 High Point Drive	Address	: 60 Northland Road, Unit 1
	Milton ON Canada L9T 6P4		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	:+1 519 886 6910
Project	: UWS-2521-10807	Date Samples Received	: 16-Oct-2023 17:45
PO	:	Date Analysis Commenced	: 17-Oct-2023
C-O-C number	: 20-1083366	Issue Date	: 25-Oct-2023 18:39
Sampler	CLIENT		
Site	:		
Quote number	: 2023 Standing Offer		
No. of samples received	:1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives

:WT2333338

• Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amaninder Dhillon	Team Lead - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
John Tang	Lab Analyst	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Metals, Waterloo, Ontario
Rachel Cameron	Supervisor - Semi-Volatile Extractions	Waterloo Organics, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario
Walt Kippenhuck	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Zeba Patel		Waterloo Microbiology, Waterloo, Ontario

Page	:	2 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1189031)								•		
WT2333137-001	Anonymous	Solids, total suspended [TSS]		E160	3.0	mg/L	49.1	57.3	15.4%	20%	
Physical Tests (QC	Lot: 1197217)										
WT2333892-001	Anonymous	рН		E108	0.10	pH units	8.24	8.14	1.22%	4%	
Anions and Nutrien	ts (QC Lot: 1196134)										
WT2333338-001	MW23-1	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	1.92	2.09	0.171	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1196135)										
WT2333525-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.422	0.426	1.05%	20%	
Anions and Nutrien	ts (QC Lot: 1197211)										
WT2333628-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	39.3	39.2	0.125%	20%	
Anions and Nutrien	ts (QC Lot: 1197212)										
WT2333628-001	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	112	112	0.162%	20%	
Anions and Nutrien	ts (QC Lot: 1197213)										
WT2333628-001	Anonymous	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.062	0.060	0.003	Diff <2x LOR	
Cyanides (QC Lot:	1202167)										
WT2333338-001	MW23-1	Cyanide, strong acid dissociable (Total)		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Microbiological Tes	sts (QC Lot: 1188922)										
WT2333370-001	Anonymous	Coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
Total Metals (QC L	ot: 1188403)										
BF2300316-001	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0205	0.0252	0.0047	Diff <2x LOR	
		Antimony, total	7440-36-0	E420	0.00010	mg/L	0.00014	0.00014	0.000002	Diff <2x LOR	
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00022	0.00022	0.000001	Diff <2x LOR	
		Bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	0.0000056	0.0000006	Diff <2x LOR	
		Chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00026	0.00027	0.0000003	Diff <2x LOR	
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.00153	0.00153	0.000002	Diff <2x LOR	
		Iron, total	7439-89-6	E420	0.010	mg/L	0.038	0.045	0.007	Diff <2x LOR	
		Lead, total	7439-92-1	E420	0.000050	mg/L	0.000077	0.000094	0.000017	Diff <2x LOR	
		Manganese, total	7439-96-5	E420	0.00010	mg/L	0.0652	0.0656	0.596%	20%	

Page	:	4 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC L	ot: 1188403) - continued										
BF2300316-001	Anonymous	Molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00500	0.00499	0.392%	20%	
		Nickel, total	7440-02-0	E420	0.00050	mg/L	0.00093	0.00092	0.00001	Diff <2x LOR	
		Selenium, total	7782-49-2	E420	0.000050	mg/L	0.000090	0.000094	0.000003	Diff <2x LOR	
		Silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00030	mg/L	0.00044	0.00092	0.00048	Diff <2x LOR	
		Vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Zinc, total	7440-66-6	E420	0.0030	mg/L	0.0133	0.0132	0.00006	Diff <2x LOR	
Total Metals (QC L	ot: 1193575)										
TY2310508-006	Anonymous	Mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Aggregate Organics	s (QC Lot: 1189120)										
WT2333355-001	Anonymous	Carbonaceous biochemical oxygen demand [CBOD]		E555	2.0	mg/L	2.6	3.4	26.9%	30%	
	s (QC Lot: 1196136)										
WT2333533-001	Anonymous	Phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	mpounds (QC Lot: 119	· · · · · · · · · · · · · · · · · · ·									
WT2333993-001	Anonymous	Benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	

Page	:	5 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1189031)						
Solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 1196134)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1196135)						
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
nions and Nutrients (QCLot: 1197211)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 1197212)						
Chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 1197213)						
Fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Cyanides (QCLot: 1202167)						
Cyanide, strong acid dissociable (Total)		E333	0.002	mg/L	<0.0020	
licrobiological Tests (QCLot: 1188922)						
Coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
otal Metals (QCLot: 1188403)						
Aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
Bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
Cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	

Page	:	6 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Sub-Matrix: Water

Analyte	CAS Number Metho	od	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1188403) - cont	inued					
Titanium, total	7440-32-6 E420		0.0003	mg/L	<0.00030	
Vanadium, total	7440-62-2 E420)	0.0005	mg/L	<0.00050	
Zinc, total	7440-66-6 E420	1	0.003	mg/L	<0.0030	
Total Metals (QCLot: 1193575)						
Mercury, total	7439-97-6 E508		0.000005	mg/L	<0.000050	
Aggregate Organics (QCLot: 1188319	9)					
Oil & grease (gravimetric)	E567		5	mg/L	<5.0	
Aggregate Organics (QCLot: 1188320)					
Oil & grease, mineral (gravimetric)	E5673	SG	5	mg/L	<5.0	
Aggregate Organics (QCLot: 1189120)					
Carbonaceous biochemical oxygen demand [C	BOD] E555	i	2	mg/L	<2.0	
Aggregate Organics (QCLot: 1196136	5)					
Phenols, total (4AAP)	E562		0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLot	: 1195468)					
Benzene	71-43-2 E611I	D	0.5	µg/L	<0.50	
Chloroform	67-66-3 E611I	D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,2-	95-50-1 E611I	D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7 E611	D	0.5	µg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2 E611I	D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2 E611I	D	1	µg/L	<1.0	
Dichloropropylene, trans-1,3-	10061-02-6 E611I	D	0.3	µg/L	<0.30	
Ethylbenzene	100-41-4 E611I	D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5 E611I	D	0.5	µg/L	<0.50	
Tetrachloroethylene	127-18-4 E611I	D	0.5	µg/L	<0.50	
Toluene	108-88-3 E611I	D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6 E611I	D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1 E611I	D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6 E611I	D	0.3	µg/L	<0.30	
Polycyclic Aromatic Hydrocarbons (0	QCLot: 1195722)					1
Dibenz(a,h)acridine	226-36-8 E642I	D	0.05	µg/L	<0.050	
Dibenz(a,j)acridine	224-42-0 E642I	D	0.05	µg/L	<0.050	
Dibenzo(a,i)pyrene	189-55-9 E642I	D	0.05	µg/L	<0.050	
Dibenzo(c,g)carbazole, 7H-	194-59-2 E642I	D	0.05	µg/L	<0.050	
Dinitropyrene, 1,3-	75321-20-9 E642I	D	1	µg/L	<1.0	
Dinitropyrene, 1,6-	42397-64-8 E642I	D	1	μg/L	<1.0	

Page	:	7 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Sub-Matrix: Water

Analyte	CAS Number I	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (QC	Lot: 1195722) - contin	ued				
Dinitropyrene, 1,8-	42397-65-9 E	E642D	1	µg/L	<1.0	
Methylcholanthrene, 3-	56-49-5 E	E642D	0.05	µg/L	<0.050	
Polycyclic Aromatic Hydrocarbons (QC	Lot: 1195774)					
Anthracene	120-12-7 E	E641A-L	0.01	µg/L	<0.010	
Benz(a)anthracene	56-55-3 E	E641A-L	0.01	µg/L	<0.010	
Benzo(a)pyrene	50-32-8 E	E641A-L	0.005	µg/L	<0.0050	
Benzo(b+j)fluoranthene	n/a E	E641A-L	0.01	µg/L	<0.010	
Benzo(e)pyrene	192-97-2 E	E641A-L	0.01	µg/L	<0.010	
Benzo(g,h,i)perylene	191-24-2 E	E641A-L	0.01	µg/L	<0.010	
Benzo(k)fluoranthene	207-08-9 E	E641A-L	0.01	µg/L	<0.010	
Chrysene	218-01-9 E	E641A-L	0.01	µg/L	<0.010	
Dibenz(a,h)anthracene	53-70-3 E	E641A-L	0.005	µg/L	<0.0050	
Fluoranthene	206-44-0 E	E641A-L	0.01	µg/L	<0.010	
Indeno(1,2,3-c,d)pyrene	193-39-5 E	E641A-L	0.01	µg/L	<0.010	
Perylene	198-55-0 E	E641A-L	0.01	µg/L	<0.010	
Phenanthrene	85-01-8 E	E641A-L	0.01	µg/L	<0.010	
Pyrene	129-00-0 E	E641A-L	0.01	µg/L	<0.010	
Phthalate Esters (QCLot: 1195717)						
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7 E	E655F	2	µg/L	<2.0	
Di-n-butyl phthalate	84-74-2 E	E655F	1	µg/L	<1.0	
Semi-Volatile Organics (QCLot: 119571)	7)					
Dichlorobenzidine, 3,3'-	91-94-1 E	E655F	0.4	µg/L	<0.40	
Chlorinated Phenolics (QCLot: 1195717	')					
Pentachlorophenol [PCP]	87-86-5 E	E655F	0.5	µg/L	<0.50	
Polychlorinated Biphenyls (QCLot: 1194	4420)					
Aroclor 1016	12674-11-2 E	5687	0.02	µg/L	<0.020	
Aroclor 1221	11104-28-2 E	5687	0.02	µg/L	<0.020	
Aroclor 1232	11141-16-5 E	5687	0.02	µg/L	<0.020	
Aroclor 1242	53469-21-9 E	5687	0.02	µg/L	<0.020	
Aroclor 1248	12672-29-6 E	5687	0.02	µg/L	<0.020	
Aroclor 1254	11097-69-1 E	5687	0.02	µg/L	<0.020	
Aroclor 1260	11096-82-5 E	5687	0.02	µg/L	<0.020	
Aroclor 1262	37324-23-5 E	5687	0.02	µg/L	<0.020	
Aroclor 1268	11100-14-4 E	E687	0.02	µg/L	<0.020	
Organochlorine Pesticides (QCLot: 119	4419)					

Page :	8 of 14
Work Order :	WT2333338
Client :	CF Crozier & Associates
Project :	UWS-2521-10807

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Organochlorine Pesticides (QCLot:	1194419) - continued					
Aldrin	309-00-2	E660F	0.008	µg/L	<0.0080	
Chlordane, cis- (alpha)	5103-71-9	E660F	0.008	µg/L	<0.0080	
Chlordane, trans- (gamma)	5103-74-2	E660F	0.008	µg/L	<0.0080	
DDT, 2,4'-	789-02-6	E660F	0.004	µg/L	<0.0040	
DDT, 4,4'-	50-29-3	E660F	0.004	µg/L	<0.0040	
Dieldrin	60-57-1	E660F	0.008	µg/L	<0.0080	
Hexachlorobenzene	118-74-1	E660F	0.008	µg/L	<0.0080	
Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.008	µg/L	<0.0080	
Mirex	2385-85-5	E660F	0.008	µg/L	<0.0080	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Metho	od	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1189031)									
Solids, total suspended [TSS]	E160		3	mg/L	150 mg/L	93.8	85.0	115	
Physical Tests (QCLot: 1197217)									
рН	E108			pH units	7 pH units	100	98.0	102	
Anions and Nutrients (QCLot: 1196134)									
Kjeldahl nitrogen, total [TKN]	E318		0.05	mg/L	4 mg/L	105	75.0	125	
Anions and Nutrients (QCLot: 1196135)									
Phosphorus, total	7723-14-0 E372-	·U	0.002	mg/L	0.393 mg/L	95.6	80.0	120	
Anions and Nutrients (QCLot: 1197211)									
Sulfate (as SO4)	14808-79-8 E235.	SO4	0.3	mg/L	100 mg/L	99.9	90.0	110	
Anions and Nutrients (QCLot: 1197212)									
Chloride	16887-00-6 E235.	CI	0.5	mg/L	100 mg/L	99.3	90.0	110	
Anions and Nutrients (QCLot: 1197213)									
Fluoride	16984-48-8 E235.	F	0.02	mg/L	1 mg/L	101	90.0	110	
Cyanides (QCLot: 1202167)									
Cyanide, strong acid dissociable (Total)	E333		0.002	mg/L	0.25 mg/L	97.2	80.0	120	
Total Metals (QCLot: 1188403)									
Aluminum, total	7429-90-5 E420		0.003	mg/L	0.1 mg/L	97.1	80.0	120	
Antimony, total	7440-36-0 E420		0.0001	mg/L	0.05 mg/L	102	80.0	120	
Arsenic, total	7440-38-2 E420		0.0001	mg/L	0.05 mg/L	105	80.0	120	
Bismuth, total	7440-69-9 E420		0.00005	mg/L	0.05 mg/L	99.1	80.0	120	
Cadmium, total	7440-43-9 E420		0.000005	mg/L	0.005 mg/L	104	80.0	120	
Chromium, total	7440-47-3 E420		0.0005	mg/L	0.0125 mg/L	99.6	80.0	120	
Cobalt, total	7440-48-4 E420		0.0001	mg/L	0.0125 mg/L	95.0	80.0	120	
Copper, total	7440-50-8 E420		0.0005	mg/L	0.0125 mg/L	97.2	80.0	120	
Iron, total	7439-89-6 E420		0.01	mg/L	0.05 mg/L	96.1	80.0	120	
Lead, total	7439-92-1 E420		0.00005	mg/L	0.025 mg/L	103	80.0	120	
Manganese, total	7439-96-5 E420		0.0001	mg/L	0.0125 mg/L	102	80.0	120	
Molybdenum, total	7439-98-7 E420		0.00005	mg/L	0.0125 mg/L	98.0	80.0	120	
Nickel, total	7440-02-0 E420		0.0005	mg/L	0.025 mg/L	97.6	80.0	120	
Selenium, total	7782-49-2 E420		0.00005	mg/L	0.05 mg/L	99.2	80.0	120	

Page :	10 of 14
Work Order :	WT2333338
Client :	CF Crozier & Associates
Project :	UWS-2521-10807

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike Recovery (%) Recovery Limits				
Analyte	CAS Number N	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Total Metals (QCLot: 1188403) - continu	ued								
Silver, total	7440-22-4 E	420	0.00001	mg/L	0.005 mg/L	94.8	80.0	120	
Tin, total	7440-31-5 E	420	0.0001	mg/L	0.025 mg/L	100	80.0	120	
Titanium, total	7440-32-6 E	420	0.0003	mg/L	0.0125 mg/L	97.1	80.0	120	
Vanadium, total	7440-62-2 E	420	0.0005	mg/L	0.025 mg/L	99.2	80.0	120	
Zinc, total	7440-66-6 E	420	0.003	mg/L	0.025 mg/L	99.5	80.0	120	
Total Metals (QCLot: 1193575)									
Mercury, total	7439-97-6 E	508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Aggregate Organics (QCLot: 1188319)									
Oil & grease (gravimetric)	E	567	5	mg/L	200 mg/L	95.6	70.0	130	
Aggregate Organics (QCLot: 1188320)									
Oil & grease, mineral (gravimetric)	E	567SG	5	mg/L	100 mg/L	91.9	70.0	130	
Aggregate Organics (QCLot: 1189120)						1			
Carbonaceous biochemical oxygen demand [CBOD]	E	555	2	mg/L	198 mg/L	86.2	85.0	115	
Aggregate Organics (QCLot: 1196136)						1			I
Phenols, total (4AAP)	E	562	0.001	mg/L	0.02 mg/L	105	85.0	115	
Volatile Organic Compounds (QCLot: 1	195468)					1			
Benzene	71-43-2 E	611D	0.5	µg/L	100 µg/L	97.9	70.0	130	
Chloroform	67-66-3 E	611D	0.5	µg/L	100 µg/L	100	70.0	130	
Dichlorobenzene, 1,2-	95-50-1 E	611D	0.5	µg/L	100 µg/L	92.3	70.0	130	
Dichlorobenzene, 1,4-	106-46-7 E	611D	0.5	µg/L	100 µg/L	95.6	70.0	130	
Dichloroethylene, cis-1,2-	156-59-2 E	611D	0.5	µg/L	100 µg/L	98.0	70.0	130	
Dichloromethane	75-09-2 E	611D	1	µg/L	100 µg/L	110	70.0	130	
Dichloropropylene, trans-1,3-	10061-02-6 E	611D	0.3	µg/L	100 µg/L	85.4	70.0	130	
Ethylbenzene	100-41-4 E	611D	0.5	µg/L	100 µg/L	90.4	70.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5 E	611D	0.5	µg/L	100 µg/L	102	70.0	130	
Tetrachloroethylene	127-18-4 E	611D	0.5	µg/L	100 µg/L	94.6	70.0	130	
Toluene	108-88-3 E	611D	0.5	µg/L	100 µg/L	91.1	70.0	130	
Trichloroethylene	79-01-6 E	611D	0.5	µg/L	100 µg/L	96.6	70.0	130	
Xylene, m+p-	179601-23-1 E	611D	0.4	μg/L	200 µg/L	95.9	70.0	130	
Xylene, o-	95-47-6 E		0.3	μg/L	100 μg/L	91.9	70.0	130	
Polycyclic Aromatic Hydrocarbons (QC	l of: 1195722)								1
Dibenz(a,h)acridine	226-36-8 E	642D	0.05	µg/L	1.6 µg/L	87.3	60.0	130	
Dibenz(a,j)acridine	224-42-0 E	642D	0.05	μg/L	1.6 μg/L	102	60.0	130	

Page	:	11 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Polycyclic Aromatic Hydrocarbons (Q	CLot: 1195722) - continu	ed							
Dibenzo(a,i)pyrene	189-55-9		0.05	μg/L	1.6 µg/L	83.2	60.0	130	
Dibenzo(c,g)carbazole, 7H-	194-59-2	E642D	0.05	µg/L	1.6 µg/L	91.5	60.0	130	
Dinitropyrene, 1,3-	75321-20-9	E642D	1	μg/L	1.6 µg/L	102	60.0	130	
Dinitropyrene, 1,6-	42397-64-8	E642D	1	μg/L	1.6 µg/L	82.1	60.0	130	
Dinitropyrene, 1,8-	42397-65-9	E642D	1	μg/L	1.6 µg/L	120	60.0	130	
Methylcholanthrene, 3-	56-49-5	E642D	0.05	µg/L	1.6 µg/L	86.9	60.0	130	
Polycyclic Aromatic Hydrocarbons (Q	CLot: 1195774)								
Anthracene	120-12-7	E641A-L	0.01	μg/L	0.5263 µg/L	110	50.0	140	
Benz(a)anthracene	56-55-3	E641A-L	0.01	µg/L	0.5263 µg/L	125	50.0	140	
Benzo(a)pyrene	50-32-8	E641A-L	0.005	µg/L	0.5263 µg/L	113	50.0	140	
Benzo(b+j)fluoranthene	n/a	E641A-L	0.01	µg/L	0.5263 µg/L	79.1	50.0	140	
Benzo(e)pyrene	192-97-2	E641A-L	0.01	μg/L	0.5263 µg/L	84.3	50.0	140	
Benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	μg/L	0.5263 µg/L	92.2	50.0	140	
Benzo(k)fluoranthene	207-08-9	E641A-L	0.01	μg/L	0.5263 µg/L	95.0	50.0	140	
Chrysene	218-01-9	E641A-L	0.01	μg/L	0.5263 µg/L	122	50.0	140	
Dibenz(a,h)anthracene	53-70-3	E641A-L	0.005	μg/L	0.5263 µg/L	102	50.0	140	
Fluoranthene	206-44-0	E641A-L	0.01	μg/L	0.5263 µg/L	113	50.0	140	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	μg/L	0.5263 µg/L	114	50.0	140	
Perylene	198-55-0	E641A-L	0.01	μg/L	0.5263 µg/L	108	50.0	140	
Phenanthrene	85-01-8	E641A-L	0.01	µg/L	0.5263 µg/L	110	50.0	140	
Pyrene	129-00-0	E641A-L	0.01	µg/L	0.5263 µg/L	112	50.0	140	
Phthalate Esters (QCLot: 1195717)									
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	6.4 µg/L	134	50.0	140	
Di-n-butyl phthalate	84-74-2	E655F	1	µg/L	6.4 µg/L	114	50.0	140	
Semi-Volatile Organics (QCLot: 11957	717)								
Dichlorobenzidine, 3,3'-	91-94-1	E655F	0.4	µg/L	1.6 µg/L	# 23.1	50.0	140	RRQC
Chlorinated Phenolics (QCLot: 11957 [,]	17)								
Pentachlorophenol [PCP]	87-86-5	E655F	0.5	µg/L	4.8 µg/L	106	50.0	140	
Polychlorinated Biphenyls (QCLot: 11									
Aroclor 1016	12674-11-2		0.02	μg/L	0.2 µg/L	123	60.0	140	
Aroclor 1221	11104-28-2	E687	0.02	μg/L	0.2 µg/L	123	60.0	140	
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 µg/L	123	60.0	140	

Page	:	12 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

RRQC

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Polychlorinated Biphenyls (QCLot: 1194420) - continued										
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	123	60.0	140		
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	119	60.0	140		
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	115	60.0	140		
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 µg/L	# 142	60.0	140	LCS-ND	
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 µg/L	# 142	60.0	140	LCS-ND	
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 µg/L	# 142	60.0	140	LCS-ND	
Organochlorine Pesticides (QCL	_ot: 1194419)									
Aldrin	309-00-2	E660F	0.008	µg/L	0.2 µg/L	70.0	50.0	150		
Chlordane, cis- (alpha)	5103-71-9	E660F	0.008	µg/L	0.2 µg/L	99.6	50.0	150		
Chlordane, trans- (gamma)	5103-74-2	E660F	0.008	µg/L	0.2 µg/L	75.2	50.0	150		
DDT, 2,4'-	789-02-6	E660F	0.004	µg/L	0.2 µg/L	134	50.0	150		
DDT, 4,4'-	50-29-3	E660F	0.004	µg/L	0.2 µg/L	87.1	50.0	150		
Dieldrin	60-57-1	E660F	0.008	µg/L	0.2 µg/L	85.9	50.0	150		
Hexachlorobenzene	118-74-1	E660F	0.008	µg/L	0.2 µg/L	94.6	50.0	150		
Hexachlorocyclohexane, gamma-	58-89-9	E660F	0.008	µg/L	0.2 µg/L	103	50.0	150		
Mirex	2385-85-5	E660F	0.008	µg/L	0.2 µg/L	108	50.0	150		
Qualifiers										
Qualifier	Description									
LCS-ND	Lab Control Sample recov	ery was slightly outside A	LS DQO. Repo	orted non-detect re	esults for associated sam	nples were unaffec	ted.		-	

Refer to report comments for information regarding this QC result.

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
Laboratory sample Client sample ID					Sp	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	ents (QCLot: 1196134						1				
WT2333338-001	MW23-1	Kjeldahl nitrogen, total [TKN]		E318	28.2 mg/L	2.5 mg/L	113	70.0	130		
Anions and Nutri	ents (QCLot: 1196135										
WT2333525-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	ND mg/L	0.1 mg/L	ND	70.0	130		
Anions and Nutri	ents (QCLot: 1197211						1 1			1	
WT2333628-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	101 mg/L	100 mg/L	101	75.0	125		
nions and Nutri	ents (QCLot: 1197212						1				
WT2333628-001	Anonymous	Chloride	16887-00-6	E235.Cl	ND mg/L	100 mg/L	ND	75.0	125		
	ents (QCLot: 1197213			2200.01	112 11.9/2	100g, 2		10.0	120		
WT2333628-001	Anonymous	Fluoride	16984-48-8	E235.F	0.978 mg/L	1 mg/L	97.8	75.0	125		
Cyanides (QCLo	3	Thomas	10904-40-0	E235.F	0.978 Hig/L	T Hig/L	97.6	75.0	125		
	MW23-1	Overside, strong said discosistely (Tatal)		5000		0.05 //			105		
WT2333338-001		Cyanide, strong acid dissociable (Total)		E333	0.231 mg/L	0.25 mg/L	92.2	75.0	125		
otal Metals (QC						-					
BF2300316-002	Anonymous	Aluminum, total	7429-90-5	E420	0.0925 mg/L	0.1 mg/L	92.5	70.0	130		
		Antimony, total	7440-36-0	E420	0.0518 mg/L	0.05 mg/L	104	70.0	130		
		Arsenic, total	7440-38-2	E420	0.0515 mg/L	0.05 mg/L	103	70.0	130		
		Bismuth, total	7440-69-9	E420	0.0488 mg/L	0.05 mg/L	97.6	70.0	130		
		Cadmium, total	7440-43-9	E420	0.00514 mg/L	0.005 mg/L	103	70.0	130		
		Chromium, total	7440-47-3	E420	0.0120 mg/L	0.0125 mg/L	96.4	70.0	130		
		Cobalt, total	7440-48-4	E420	0.0117 mg/L	0.0125 mg/L	93.8	70.0	130		
		Copper, total	7440-50-8	E420	0.0122 mg/L	0.0125 mg/L	97.9	70.0	130		
		Iron, total	7439-89-6	E420	0.047 mg/L	0.05 mg/L	94.9	70.0	130		
		Lead, total	7439-92-1	E420	0.0257 mg/L	0.025 mg/L	103	70.0	130		
		Manganese, total	7439-96-5	E420	0.0126 mg/L	0.0125 mg/L	100	70.0	130		
		Molybdenum, total	7439-98-7	E420	0.0123 mg/L	0.0125 mg/L	98.7	70.0	130		
		Nickel, total	7440-02-0	E420	0.0240 mg/L	0.025 mg/L	96.2	70.0	130		
		Selenium, total	7782-49-2	E420	0.0240 mg/L	0.05 mg/L	100	70.0	130		
		Silver, total	7440-22-4	E420	0.00483 mg/L	0.005 mg/L	96.6	70.0	130		
		Tin, total	7440-22-4	E420	0.00483 mg/L	0.005 mg/L	101	70.0	130		
		Titanium, total			Ū,						
			7440-32-6	E420	0.0116 mg/L	0.0125 mg/L	92.4	70.0	130		
		Vanadium, total	7440-62-2	E420	0.0244 mg/L	0.025 mg/L	97.8	70.0	130		

Page	:	14 of 14
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (Q0	CLot: 1188403) - contir	ued								
BF2300316-002	Anonymous	Zinc, total	7440-66-6	E420	0.0240 mg/L	0.025 mg/L	96.1	70.0	130	
Total Metals (Q0	CLot: 1193575)									
TY2310514-001	Anonymous	Mercury, total	7439-97-6	E508	0.0000936 mg/L	0.0001 mg/L	93.6	70.0	130	
Aggregate Orga	nics (QCLot: 1196136)									
WT2333533-001	Anonymous	Phenols, total (4AAP)		E562	0.0210 mg/L	0.02 mg/L	105	75.0	125	
Volatile Organic	Compounds (QCLot:	195468)								
WT2333993-001	Anonymous	Benzene	71-43-2	E611D	95.9 µg/L	100 µg/L	95.9	60.0	140	
		Chloroform	67-66-3	E611D	98.9 µg/L	100 µg/L	98.9	60.0	140	
		Dichlorobenzene, 1,2-	95-50-1	E611D	90.9 µg/L	100 µg/L	90.9	60.0	140	
		Dichlorobenzene, 1,4-	106-46-7	E611D	93.7 µg/L	100 µg/L	93.7	60.0	140	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	96.4 µg/L	100 µg/L	96.4	60.0	140	
		Dichloromethane	75-09-2	E611D	107 µg/L	100 µg/L	107	60.0	140	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	82.6 µg/L	100 µg/L	82.6	60.0	140	
		Ethylbenzene	100-41-4	E611D	88.7 µg/L	100 µg/L	88.7	60.0	140	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	102 µg/L	100 µg/L	102	60.0	140	
		Tetrachloroethylene	127-18-4	E611D	91.8 µg/L	100 µg/L	91.8	60.0	140	
		Toluene	108-88-3	E611D	89.0 µg/L	100 µg/L	89.0	60.0	140	
		Trichloroethylene	79-01-6	E611D	94.4 µg/L	100 µg/L	94.4	60.0	140	
		Xylene, m+p-	179601-23-1	E611D	190 µg/L	200 µg/L	94.8	60.0	140	
		Xylene, o-	95-47-6	E611D	90.8 µg/L	100 µg/L	90.8	60.0	140	

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2333338	Page	: 1 of 12
Client	CF Crozier & Associates	Laboratory	: ALS Environmental - Waterloo
Contact	: Caitlyn MacPhee	Account Manager	: Andrew Martin
Address	2800 High Point Drive	Address	: 60 Northland Road, Unit 1
	Milton ON Canada L9T 6P4		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: UWS-2521-10807	Date Samples Received	: 16-Oct-2023 17:45
PO	:	Issue Date	: 25-Oct-2023 18:43
C-O-C number	: 20-1083366		
Sampler	: CLIENT		
Site	·		
Quote number	: 2023 Standing Offer		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

• No Method Blank value outliers occur.

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- Test sample Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sample (LCS) Recover	ries							
Semi-Volatile Organics	QC-MRG4-1195717 002		Dichlorobenzidine, 3,3'-	91-94-1	E655F	23.1 % RRQC	50.0-140%	Recovery less than lower control limit
Polychlorinated Biphenyls	QC-MRG2-1194419 002		Aroclor 1260	11096-82-5	E687	142 % LCS-ND	60.0-140%	Recovery greater than upper control limit
Polychlorinated Biphenyls	QC-MRG2-1194419 002		Aroclor 1262	37324-23-5	E687	142 % LCS-ND	60.0-140%	Recovery greater than upper control limit
Polychlorinated Biphenyls	QC-MRG2-1194419 002		Aroclor 1268	11100-14-4	E687	142 % LCS-ND	60.0-140%	Recovery greater than upper control limit

Result Qualifiers

Qualifier	Description
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
RRQC	Refer to report comments for information regarding this QC result.

Regular Sample Surrogates

Sub-Matrix: Groundwater

Sub-Matrix. Groundwater							
Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Result	Limits	Comment
Samples Submitted							
Polycyclic Aromatic Hydrocarbons Surrogates	WT2333338-001	MW23-1	Naphthalene-d8	1146-65-2	223 %	60.0-140	Recovery greater than upper
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2333338-001	MW23-1	Terphenyl-d14, p-	1718-51-0	43.0 %	60.0-140	Recovery less than lower
						%	data quality objective

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand (Carbonaceous) - 5 day										
HDPE [BOD HT-4d]										
MW23-1	E555	13-Oct-2023					17-Oct-2023	4 days	4 days	✓
Aggregate Organics : Mineral Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
MW23-1	E567SG	13-Oct-2023	19-Oct-2023	28	6 days	1	19-Oct-2023	40 days	0 days	1
				days						
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid)										
MW23-1	E567	13-Oct-2023	19-Oct-2023	28	6 days	✓	19-Oct-2023	40 days	0 days	1
				days						
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) [ON MECP]						_				
MW23-1	E562	13-Oct-2023	20-Oct-2023	28	7 days	✓	20-Oct-2023	28 days	7 days	1
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										,
MW23-1	E235.CI	13-Oct-2023	20-Oct-2023	28	7 days	1	23-Oct-2023	28 days	10 days	1
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]	E005 E									,
MW23-1	E235.F	13-Oct-2023	20-Oct-2023	28	7 days	1	23-Oct-2023	28 days	10 days	1
				days						
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]	5005 00 i					,				,
MW23-1	E235.SO4	13-Oct-2023	20-Oct-2023	28	7 days	1	23-Oct-2023	28 days	10 days	1
				days						

Page	:	5 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Matrix: Water					E٧	aluation: × =	Holding time exce	edance ; •		Holding Tin
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Le	vel)									
Amber glass total (sulfuric acid) [ON MECP] MW23-1	E318	13-Oct-2023	23-Oct-2023	28 days	10 days	√	24-Oct-2023	28 days	11 days	*
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP] MW23-1	E372-U	13-Oct-2023	22-Oct-2023	28 days	9 days	~	23-Oct-2023	28 days	10 days	V
Chlorinated Phenolics : BNA (Ontario Sanitary Sewer SVOC Target List)	by GC-MS									
Amber glass/Teflon lined cap [ON MECP] MW23-1	E655F	13-Oct-2023	19-Oct-2023	14 days	6 days	4	23-Oct-2023	40 days	3 days	*
Cyanides : Total Cyanide										
UV-inhibited HDPE - total (sodium hydroxide) MW23-1	E333	13-Oct-2023	24-Oct-2023	14 days	11 days	1	24-Oct-2023	14 days	11 days	~
Microbiological Tests : E. coli (MF-mFC-BCIG)								1		
Sterile HDPE (Sodium thiosulphate) [ON MECP] MW23-1	E012A.EC	13-Oct-2023					17-Oct-2023	48 hrs	94 hrs	¥ EHTR
Organochlorine Pesticides : OCP Analysis by GC-MS-MS or GC-MS										
Amber glass/Teflon lined cap [ON MECP] MW23-1	E660F	13-Oct-2023	19-Oct-2023	14 days	6 days	4	24-Oct-2023	40 days	5 days	1
Phthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by G	C-MS									
Amber glass/Teflon lined cap [ON MECP] MW23-1	E655F	13-Oct-2023	19-Oct-2023	14 days	6 days	√	23-Oct-2023	40 days	3 days	*
Physical Tests : pH by Meter										
HDPE [ON MECP] MW23-1	E108	13-Oct-2023	20-Oct-2023	14 days	7 days	V	21-Oct-2023	14 days	8 days	*
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP] MW23-1	E160	13-Oct-2023					18-Oct-2023	7 days	5 days	1

atrix: Water							Holding time exce			Tiolulity
nalyte Group : Analytical Method	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation Ho		g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
olychlorinated Biphenyls : PCB Aroclors by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
MW23-1	E687	13-Oct-2023	19-Oct-2023	14	6 days	1	20-Oct-2023	40 days	1 days	1
				days						
olycyclic Aromatic Hydrocarbons : PAHs (ON Special List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
MW23-1	E642D	13-Oct-2023	19-Oct-2023	14	6 days	✓	23-Oct-2023	40 days	4 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS (Low Level)								1	II	
Amber glass/Teflon lined cap (sodium bisulfate)										
MW23-1	E641A-L	13-Oct-2023	19-Oct-2023	14	7 days	✓	20-Oct-2023	40 days	1 days	✓
				days	-				-	
emi-Volatile Organics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-	MS			-						
Amber glass/Teflon lined cap [ON MECP]										
MW23-1	E655F	13-Oct-2023	19-Oct-2023	14	6 days	1	23-Oct-2023	40 days	3 days	1
				days	,				,	
otal Metals : Total Mercury in Water by CVAAS				, ,						
Glass vial total (hydrochloric acid) [ON MECP]										
MW23-1	E508	13-Oct-2023	19-Oct-2023	28	6 days	1	20-Oct-2023	28 days	7 days	1
				days	,				,	
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
MW23-1	E420	13-Oct-2023	17-Oct-2023	180	4 days	1	17-Oct-2023	180	4 days	1
				days	· uujo			days		
alatila Ormania Compoundo : VOCo (Footore Conodo List) huddonose COM				dayo			1	aayo		
olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-M Glass vial (sodium bisulfate)										
MW23-1	E611D	13-Oct-2023	19-Oct-2023	14	6 days	1	19-Oct-2023	14 days	6 days	1
	LUTID	10-000-2020	10-001-2020	14	C duys	•	10-000-2020	14 duys	Juuys	•

Legend & Qualifier Definitions

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

Rec. HT: ALS recommended hold time (see units).

Page	:	7 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	1189120	1	20	5.0	5.0	1
Chloride in Water by IC	E235.Cl	1197212	1	10	10.0	5.0	
E. coli (MF-mFC-BCIG)	E012A.EC	1188922	1	16	6.2	5.0	✓
Fluoride in Water by IC	E235.F	1197213	1	12	8.3	5.0	4
pH by Meter	E108	1197217	1	12	8.3	5.0	<u> </u>
Phenols (4AAP) in Water by Colorimetry	E562	1196136	1	20	5.0	5.0	
Sulfate in Water by IC	E235.SO4	1197211	1	10	10.0	5.0	×
Total Cyanide	E333	1202167	1	1	100.0	5.0	<u> </u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1196134	1	18	5.5	5.0	
Total Mercury in Water by CVAAS	E508	1193575	1	16	6.2	5.0	- -
Total Metals in Water by CRC ICPMS	E420	1188403	1	16	6.2	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1196135	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	1189031	1	11	9.0	4.7	~
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1195468	1	16	6.2	5.0	✓
Laboratory Control Samples (LCS)							
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	1189120	1	20	5.0	5.0	1
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	1195717	1	12	8.3	5.0	✓
Chloride in Water by IC	E235.Cl	1197212	1	10	10.0	5.0	~
Fluoride in Water by IC	E235.F	1197213	1	12	8.3	5.0	✓
Mineral Oil & Grease by Gravimetry	E567SG	1188320	1	9	11.1	5.0	~
OCP Analysis by GC-MS-MS or GC-MS	E660F	1194419	1	2	50.0	5.0	~
Oil & Grease by Gravimetry	E567	1188319	1	12	8.3	5.0	~
PAHs (ON Special List) by GC-MS	E642D	1195722	1	7	14.2	5.0	~
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	1195774	1	2	50.0	5.0	~
PCB Aroclors by GC-MS	E687	1194420	1	17	5.8	4.7	✓
pH by Meter	E108	1197217	1	12	8.3	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	1196136	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1197211	1	10	10.0	5.0	✓
Total Cyanide	E333	1202167	1	1	100.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1196134	1	18	5.5	5.0	~
Total Mercury in Water by CVAAS	E508	1193575	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1188403	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1196135	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	1189031	1	11	9.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1195468	1	16	6.2	5.0	1

Page	:	8 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Aatrix: Water Quality Control Sample Type			ion: × = QC frequ	ount		Frequency (%	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	/ Evaluation
Method Blanks (MB)							
Biochemical Oxygen Demand (Carbonaceous) - 5 day	E555	1189120	1	20	5.0	5.0	
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	1195717	1	12	8.3	5.0	✓ ✓
Chloride in Water by IC	E0351	1197212	1	10	10.0	5.0	✓ ✓
E. coli (MF-mFC-BCIG)	E200.01 E012A.EC	1188922	1	16	6.2	5.0	 ✓
Fluoride in Water by IC	E235.F	1197213	1	12	8.3	5.0	
Mineral Oil & Grease by Gravimetry	E567SG	1188320	1	9	11.1	5.0	 ✓
OCP Analysis by GC-MS-MS or GC-MS	E660F	1194419	1	2	50.0	5.0	✓ ✓
Oil & Grease by Gravimetry	E567	1188319	1	12	8.3	5.0	 ✓
PAHs (ON Special List) by GC-MS	E642D	1195722	1	7	14.2	5.0	
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	1195774	1	2	50.0	5.0	
PCB Aroclors by GC-MS	E687	1194420	1	17	5.8	4.7	✓ ✓
Phenols (4AAP) in Water by Colorimetry	E562	1196136	1	20	5.0	5.0	- -
Sulfate in Water by IC	E235.SO4	1197211	1	10	10.0	5.0	-
Total Cyanide	E333	1202167	1	1	100.0	5.0	✓ ✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1196134	1	18	5.5	5.0	✓
Total Mercury in Water by CVAAS	E508	1193575	1	16	6.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	1188403	1	16	6.2	5.0	 ✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1196135	1	20	5.0	5.0	1
TSS by Gravimetry	E160	1189031	1	11	9.0	4.7	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1195468	1	16	6.2	5.0	1
Matrix Spikes (MS)							
Chloride in Water by IC	E235.Cl	1197212	1	10	10.0	5.0	1
Fluoride in Water by IC	E235.F	1197213	1	12	8.3	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	1196136	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	1197211	1	10	10.0	5.0	✓
Total Cyanide	E333	1202167	1	1	100.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1196134	1	18	5.5	5.0	✓
Total Mercury in Water by CVAAS	E508	1193575	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	1188403	1	16	6.2	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1196135	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1195468	1	16	6.2	5.0	1

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	ALS Environmental -			5 1 55 5 5
	Waterloo			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Waterloo			
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	ALS Environmental -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Waterloo			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	ALS Environmental -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Waterloo			
Total Cyanide	E333	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	ALS Environmental -			, , , , , , , , , , , , , , , , , , , ,
	Waterloo			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
	ALS Environmental -			
	Waterloo			

Page Work Order	:	10 of 12 WT2333338
Client Project	:	CF Crozier & Associates UWS-2521-10807

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Metals in Water by CRC ICPMS	E420 ALS Environmental -	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
	ALS Environmental - Waterloo			
Biochemical Oxygen Demand (Carbonaceous)	E555	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
- 5 day	ALS Environmental - Waterloo			depletion is measured using a dissolved oxygen meter. Nitrification inhibitor is added to samples to prevent nitrogenous compounds from consuming oxygen resulting in only carbonaceous oxygen demand being reported by this method.
				Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	ALS Environmental - Waterloo			form a red complex which is measured colorimetrically.
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane and the extract is evaporated to dryness. The residue is then weighed to determine Oil and Grease.
	ALS Environmental - Waterloo			
Mineral Oil & Grease by Gravimetry	E567SG	Water	BC MOE Lab Manual (Oil & Grease) (mod)	The entire water sample is extracted with hexane, followed by silica gel treatment after which the extract is evaporated to dryness. The residue is then weighed to determine
	ALS Environmental - Waterloo			Mineral Oil and Grease.
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental - Waterloo			headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	ALS Environmental -			
	Waterloo			
PAHs (ON Special List) by GC-MS	E642D	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by GC-MS.
	ALS Environmental -			
	Waterloo	\A/atar	EDA 92705 (mod)	RNA are applyzed by CC MS
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
	ALS Environmental -			
	Waterloo			

Page	:	11 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
OCP Analysis by GC-MS-MS or GC-MS	E660F	Water	EPA 8270E (mod)	Pesticides are analyzed by GC-MS or GC-MS
	ALS Environmental - Waterloo			
PCB Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	2007	, and the second s		
	ALS Environmental -			
	Waterloo			
Animal & Vegetable Oil & Grease by	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric)
Gravimetry				minus Mineral Oil & Grease (gravimetric)
	ALS Environmental -			
Total PAH (Ontario Sewer Use Extended List)	Waterloo EC640A	Water	Calculation (Sum of	Total PAH (Ontario Sewer Use) is the sum of the following PAHs: anthracene,
	LCO40A	Wator	the Squares)	benz(a)anthracene, benzo(a)pyrene, benzo(b+j)fluoranthene, benzo(g,h,i)perylene,
	ALS Environmental -		and equal co)	benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene,
	Waterloo			indeno(1,2,3-c,d)pyrene, phenanthrene, pyrene, benzo(e)pyrene, perylene,
				3-methylcholanthrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene,
				7H-dibenzo(c,g)carbazole, dibenzo(a,i)pyrene, dibenz(a,j)acridine, and
				dibenz(a,h)acridine. When the PAH is less than LOR, zero is used for calculation.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
			(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	ALS Environmental -			analytical method as TKN. This method is unsuitable for samples containing high levels
	Waterloo			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
Direction for Total Phoenhorus in water		Water	APHA 4500_P E (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	Waterloo EP372	Water	APHA 4500-P E (mod).	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
Digestion for Total Phosphorus in water		Water	APHA 4500-P E (mod).	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Digestion for Total Phosphorus in water Oil & Grease Extraction for Gravimetry	EP372 ALS Environmental -	Water Water	APHA 4500-P E (mod).	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
	EP372 ALS Environmental - Waterloo			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent.
	ALS Environmental - Waterloo EP567 ALS Environmental -		BC MOE Lab Manual	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent.
Oil & Grease Extraction for Gravimetry	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo	Water	BC MOE Lab Manual (Oil & Grease) (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction.
	ALS Environmental - Waterloo EP567 ALS Environmental -		BC MOE Lab Manual	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the
Oil & Grease Extraction for Gravimetry	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo EP581	Water	BC MOE Lab Manual (Oil & Grease) (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
Oil & Grease Extraction for Gravimetry	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo EP581 ALS Environmental -	Water	BC MOE Lab Manual (Oil & Grease) (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the
Oil & Grease Extraction for Gravimetry	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo EP581	Water	BC MOE Lab Manual (Oil & Grease) (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
Oil & Grease Extraction for Gravimetry VOCs Preparation for Headspace Analysis	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo EP581 ALS Environmental - Waterloo	Water	BC MOE Lab Manual (Oil & Grease) (mod) EPA 5021A (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.
Oil & Grease Extraction for Gravimetry VOCs Preparation for Headspace Analysis	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo EP581 ALS Environmental - Waterloo	Water	BC MOE Lab Manual (Oil & Grease) (mod) EPA 5021A (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system. Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
Oil & Grease Extraction for Gravimetry VOCs Preparation for Headspace Analysis	ALS Environmental - Waterloo EP567 ALS Environmental - Waterloo EP581 ALS Environmental - Waterloo EP601	Water	BC MOE Lab Manual (Oil & Grease) (mod) EPA 5021A (mod)	of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low. Samples are heated with a persulfate digestion reagent. The entire water sample is extracted with hexane by liquid-liquid extraction. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system. Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are

Page	:	12 of 12
Work Order	:	WT2333338
Client	:	CF Crozier & Associates
Project	:	UWS-2521-10807

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	ALS Environmental -			
	Waterloo			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
Pesticides, PCB, and Neutral Extractable	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid
Chlorinated Hydrocarbons Extraction				extraction.
	ALS Environmental -			
	Waterloo			

2
Chain of Custody (COC)
2
¥.
2
st
g
4
0
8
-
Þ
na
3
lic
a
Analytical Request
à
Je
Form
Ť
3

COC Number: 20 - 1083366

of

Canada Toll Free: 1 800 668 9878

Street: PO/AFE: City/Province: Phone: Contact: Company: Report To Invoice To Postal Code: ALS Account # / Quote #: Contact: Company: LSD: Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user adknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy. REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Released by: Are samples for human consumption/ use? Are samples taken from a Regulated DW System? (ALS use only) ALS Sample # ALS Lab Work Order # (ALS use only): Drinking Water (DW) Samples¹ (client use) U YES YES macpher Copy of Invoice with Report Same as Report To www.alsglobal.com C.F. 8800 high pt drive-100 SIG 4 Company address below will appear on the final report MARCH HAH NO NO Milto R MMa3 NO NO 'n 1 0 Contact and company name below will appear on the final report SHIPMENT RELEASE (client use) 28699 Crozier & Associates 2521-6807 Crozier 49 **Project Information** 1 Macuhee Sample Identification and/or Coordinates (This description will appear on the report) Date: n-13-BR4103 VES | NO YES + Associate. No 1 2023 50 city of Hamilton Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) 1:40 Email 1 or Fax cmacphe electroziere Email 1 or Fax monthe cfcrozier. Ca Email 3 Email2 coorrits @ CP or ogler Select Report Format: Requisitioner: AFE/Cost Center Email 2 Select Invoice Distribution: Select Distribution: ALS Contact: Major/Minor Code: Compare Results to Criteria on Report - provide details below if box checked Received by ocation: Merge QC/QCI Reports with COA YES NO NA **Oil and Gas Required Fields (client use)** INITIAL SHIPMENT RECEPTION (ALS use only) 3-10-23 (dd-mmm-yy) M BMAIL **Reports / Recipients** Date TY POF DY EXCEL DEDO (DIGITAL) Invoice Recipients BY BMAIL D MAIL D 15-1-0 WHITE - LABORATORY COPY Routing Code: PO# Sampler D MAIL 1:00 (hh:mm) Time D FAX let-23 FAX Sample Type GW 6 YELLOW - CLIENT COPY Routine [R] If received by 3pm M+F - no surcharges apply
 4 day [P4] if received by 3pm M+F - 20% rush surcharge minimu
 3 day [P3] if received by 3pm M+F - 25% rush surcharge minimu
 2 day [P2] if received by 3pm M+F - 50% rush surcharge minimu NUMBER OF CONTAINERS 1 day [E] if received by 3pm M-F - 100% rush surcharge minimu 22 Time: Submission Comments identified on Sample Receipt Notification: Cooling Method: Cooler Custody Seals Intact: Same day [E2] if received by 10am M-S - 200% rush surcharge. Add may apply to rush requests on weekends, statutory holidays and non-ric Date and Time Required for all E&P TATs: CBOP INIITIAL COOLER TEMPERATURES °C Received by: cyanide Turnaround Time (TAT) Requested Indicate Filtered (F), Preserved (P) or Filtered and E, COli I NONE For all tests with rush TATs requested, please general, TSS OCPS SAMPLE RECEIPT DETAILS (ALS use only) I ICE U YES 7 FINAL SHIPMENT RECEPTION (ALS use only) oil & grease 05-953 04-307 066-992 Ŧ ICE PACKS PAH Analysis Re N/A Sample Custody Seals Intact: Date: PCB 7 Page 7 SVOCS 2023-10-16 ちた FROZEN **Environmental Division** Waterloo Telephone : +1 519 886 6910 7 , TP, Phenol 8-142 GC-949 GC-949 CN- 1100 Work Order Reference WT2333338 Total Mercury COOLER TEMPERATURES °C 7 metals total D YBS ç COOLING INITIATED ON O 101-mn Time: Hayys SAMPLES ON HOLD EXTENDED STORAGE REQU SUSPECTED HAZARD (see n

. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form

0

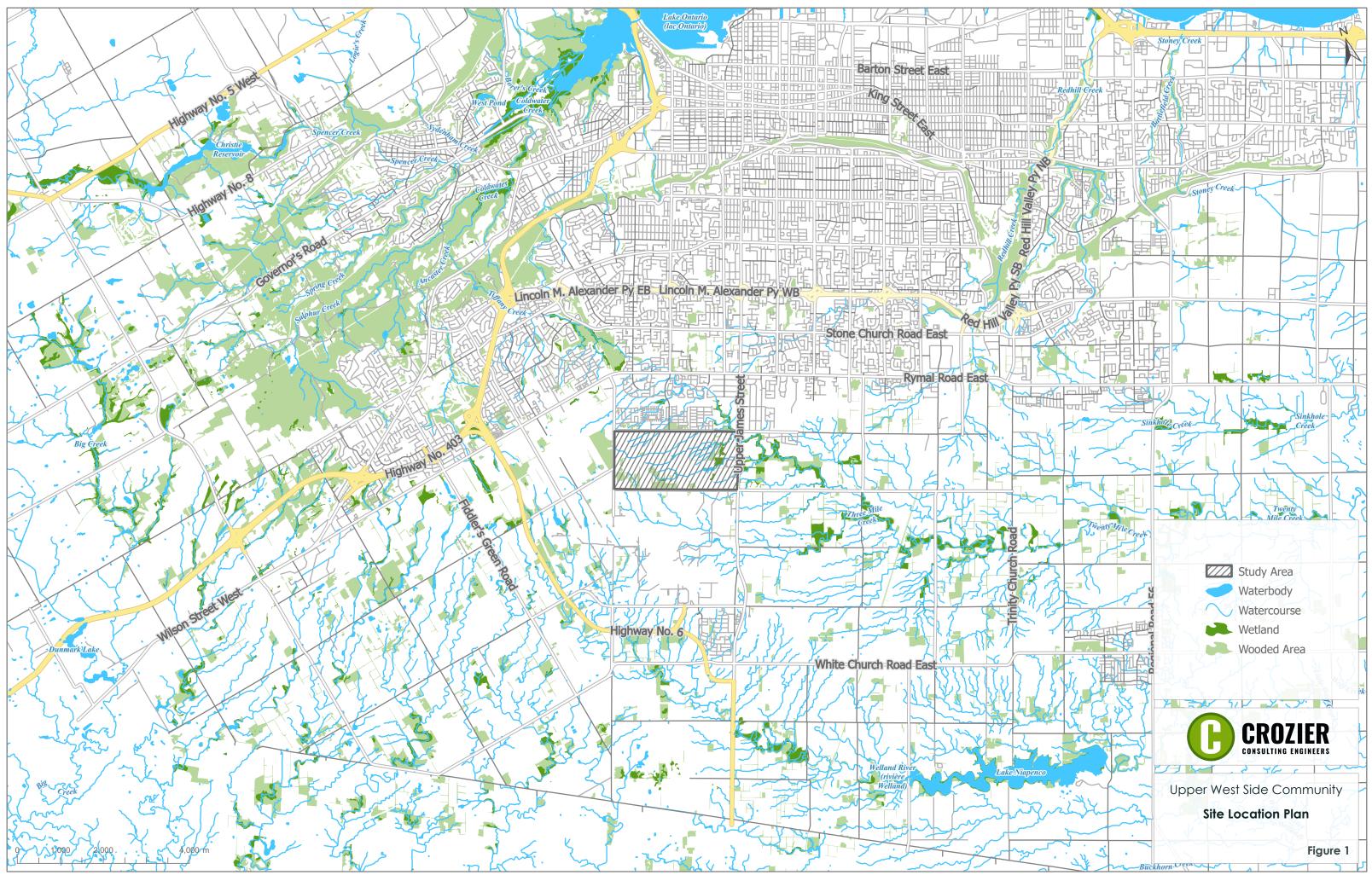
SCH HI

APPENDIX H1

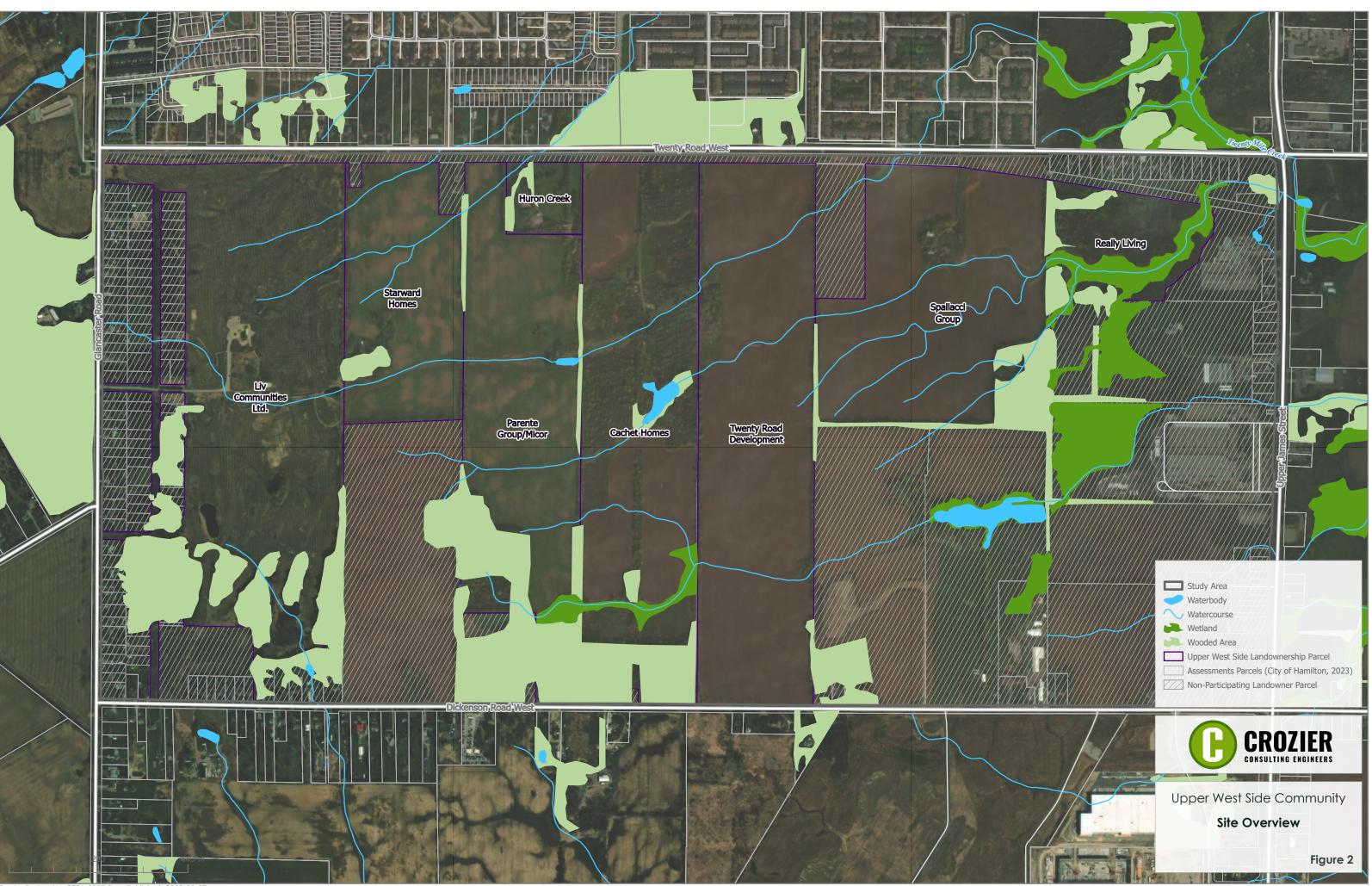
Groundwater Levels

		Water Level (EXP, 2018)											Crozier (2023 - 2024)								
						04-Ju	un-18	05-Ju	in-18	13-Jun-18 14-Jun-18			n-18	19-Ju	ın-18	04-Au	Jg-23	13-Oct-23		26-Oct-23	
Monitoring Well Name	Tag #	Reported Depth (mbgs)	Measured Depth (mbgs)	Estimated Ground Elevation (masl)	Stick Up (m)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masi)	WL (mbgs)	WL (masl)	WL (mbgs)	WL (masl)
MW 1	A228456	7.30	7.86	237.93	0.96			0.78	237.15			1.03	236.90			0.56	237.37	2.35	235.58		237.93
MW 5		6.00		228.75	1.069			0.73	228.02			0.92	227.83			0.86	227.89		228.75	0.77	227.98
MW 7		9.20		222.10	0.884	0.27	221.83					0.58	221.52			0.64	221.46		222.10	0.49	221.61
MW 8		7.70	8.06	232.15	0.8	0.53	231.62					0.65	231.50			0.58	231.57		232.15	0.76	231.39
MW 9		6.10		233.03	0.88	0.74	232.29					0.93	232.10			0.90	232.13		233.03	1.11	231.92
MW 11		7.00		231.57	2.53			-1.2	232.77			-1.37	232.94			unlocated	unlocated	unlocated	unlocated	unlocated	unlocated
MW 12	A242020	5.70	5.58	232.18	0.876			0.04	232.14	0.19	231.99					-0.16	232.34		232.18		232.18
MW 13		5.90		230.40	1.025			-0.19	230.59	0.18	230.22					0.22	230.18	DRY	DRY		230.40
MW 15		7.50		232.19	0.922	0.65	231.54							0.54	231.65	0.45	231.74	2.35	229.84		232.19
MW 17	A228485	6.10		231.03	0.883			0.5	230.53	0.61	230.42					0.52	230.51		231.03	0.80	230.23
MW 18		6.30		233.81	0.905	-0.85	234.66			0.47	233.34					*	*	*	•		233.81
MW 25		6.10		235.30	0.95			0.34	234.96	0.46	234.84					0.52	234.78	DRY	DRY		235.30
MW 29 - S	A242646	6.20	2.39	231.97	0.74			-2.63	234.60	-2.8	234.77	-2.73	234.70			0.89	231.08	0.96	231.01		231.97
MW 29 - D		9.90		231.97	0.94			-2.57	234.54	-2.82	234.79	-2.79	234.76			-0.94	232.91	-0.94	232.91		231.97
MW 30 - S	A242044	6.00	1.46	233.53	0.864			1.18	232.35	0.3	233.23					DRY	-	DRY	DRY		233.53
MW 30 - D	A242045	10.60	10.52	233.53	0.98			-0.7	234.23	-0.57	234.10			-0.45	233.98	-0.624	234.15	0.91	232.62		233.53
MW 31 - S	A226454	6.10	1.39	231.94	0.82			0.2	231.74	0.31	231.63					DRY	-	DRY	DRY		231.94
MW 31 - D		9.30		231.94	2.44			-1.12	233.06	-1.13	233.07					-1.4	233.34	-1.4	233.34		231.94
MW 32 - S		6.10		221.99	0.905	0.46	221.53					0.63	221.36			0.75	221.24		221.99	DRY	DRY
MW 32 - D		12.40		221.99	0.765	0.56	221.43					0.73	221.26			0.62	221.37		221.99	3.19	218.80
MW 33 - S		6.10		229.31	0.93	0.66	228.65					0.88	228.43			0.92	228.39		229.31	DRY	DRY
MW 33 - D		11.00		229.31	0.95	0.71	228.60					0.94	228.37			0.79	228.52		229.31	DRY	DRY
MW23-1		7.01		239.9	1.08													1.31	238.59		239.90
MW23-2		7.01		242.8	1													3.4	239.40		242.80
MW23-3		7.62		240.1	1.12													3.17	236.93		240.10
MW23-4		5.48		240.08	1.05													2.04	238.04		240.08
MW23-5		8.23		233.13	1.03															2.17	230.96
MW23-6		9.1		235.93	1.05													2.7	233.23		235.93
MW23-7		9.1		229.33	1.12															2.27	227.06
MW23-8		5.48		226.24	1.05															2.15	224.09
MW23-9		5.18		225	1.12															4.40	220.60
MW23-10		6.09		233.83	1.07													2.41	231.42		233.83
MW23-11		6.71		237.03	1.08													1.48	235.55		237.03
MW23-12		6.1		232.69	0.98													4.34	228.35		232.69
MW 34			3.85	240	1.01													2.89	237.11		240.00
MW 35			7.05	240	0.85													2.67	237.33		240.00
MW 36			6.71	240	0.86													2.64	237.36		240.00
MW 37			6.9	240	0.83													2.4	237.60		240.00
MW 38			7.04	240	1.01													1.64	238.36		240.00

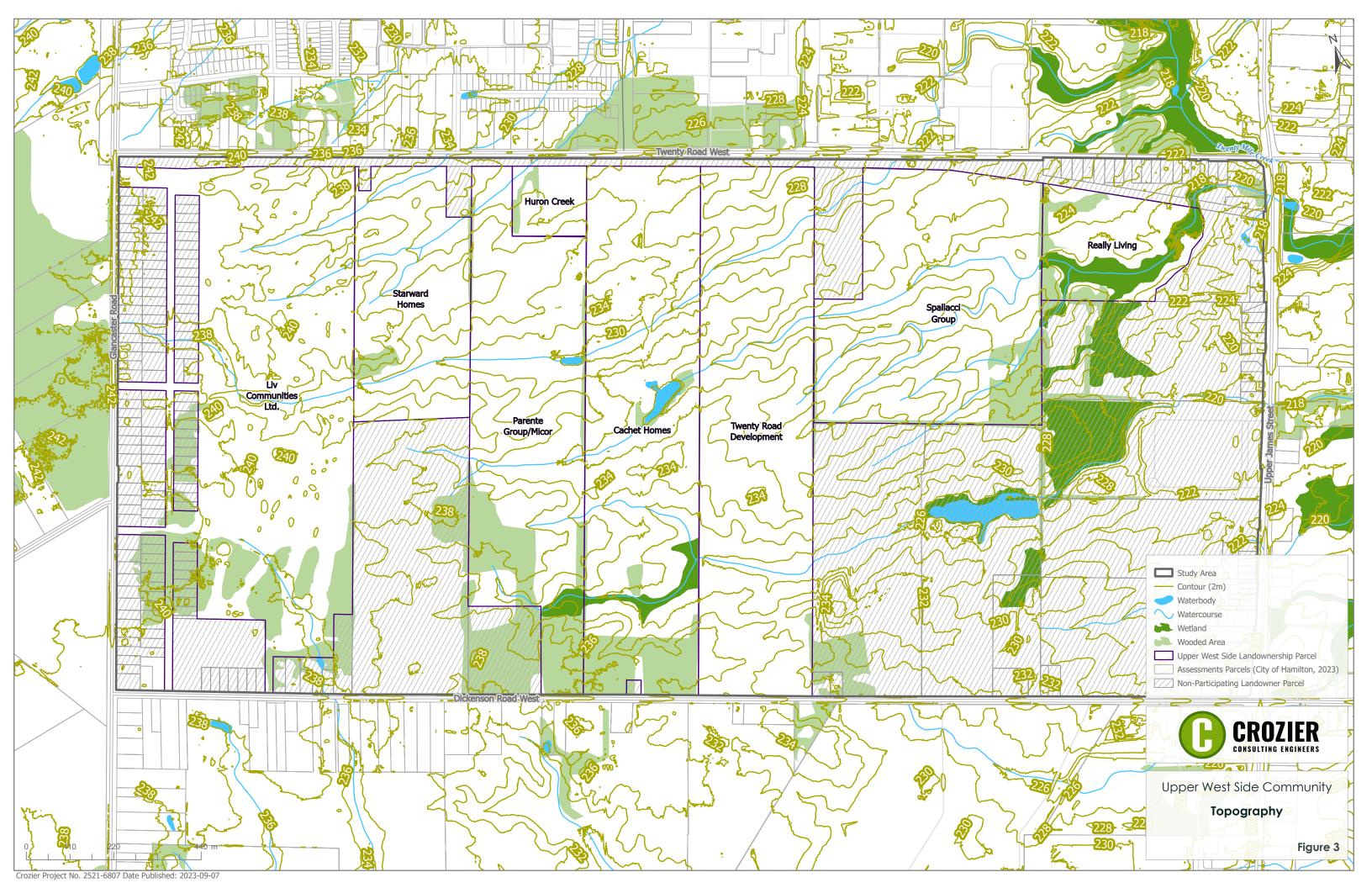
* Damaged well discovered August 4, 2023 **Ground elevation field measured using handheld GPS.

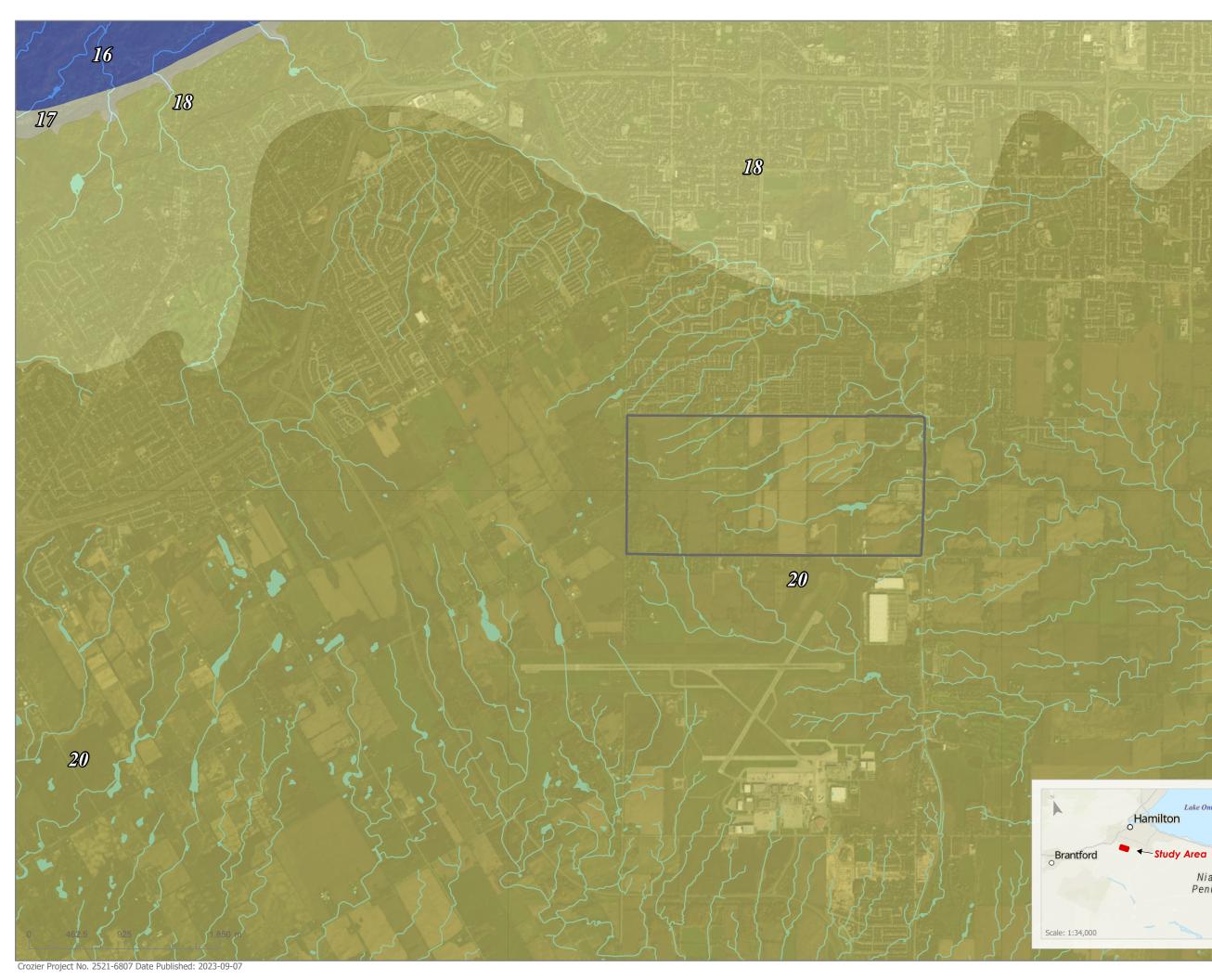

APPENDIX H2

Surface Water Levels


						Water Level (Crozier 2023)											
	UT	М					26-Oct-23										
Piezometer Name	x	Y	Measured Depth (mbgs)	Estimated Ground Elevation (masl)	Stick Up (m)	WL In Pipe (mbgs)	WL Out Pipe (mbgs)	WL Gradient	WL In Pipe (mbgs)	WL Out Pipe (mbgs)	WL Gradient (mbgs)	WL In Pipe (mbgs)	WL Out Pipe (mbgs)	WL Gradient (mbgs)	WL In Pipe (mbgs)	WL Out Pipe (mbgs)	WL Gradient (mbgs)
PZ1	586835	4782253	0.97	235.27	1.30	DRY	DRY	DRY									
PZ2	586857	4782230	1.04	235.82	1.24	DRY	DRY	DRY									
PZ3	586710	4782551	0.80	235.82	1.48	0.45	-0.08	0.53									
PZ4	587083	4782731	1.09	232.11	1.19	0.75	-0.02	0.77									
PZ5	587133	4782731	0.91	232.39	1.37	0.52	-0.03	0.55									
PZ6	587681	4782644	1.07	228.34	1.21	DRY	DRY	DRY									
PZ7	587625	4782662	1.18	227.87	1.10	1.09	-0.02	1.11									
PZ8	587861	4782504	0.95	227.84	1.33	0.86	-0.02	0.88									
PZ9	587953	4782334	1.04	225.44	1.24	DRY	DRY	DRY									
PZ10	587853	4782068	1.05	225.00	1.23	0.89	0.02	0.87									
PZ11	588652	4782268	1.82	221.11	0.46	DRY	DRY	DRY									
PZ12	588524	4782231	0.98	221.11	1.30	DRY	DRY	DRY									
PZ13	588880	4782534	0.99	217.65	1.29	0.65	-0.01	0.66									
PZ14	589293	4782557	0.96	216.00	1.32	DRY	DRY	DRY									
PZ15	587343	4782129	0.95	233.53	1.33	DRY	DRY	DRY									

** Ground elevation field measured using handheld GPS.


FIGURES


Crozier Project No. 2521-6807 Date Published: 2023-09-07

Crozier Project No. 2521-6807 Date Published: 2023-09-07

Bedrock Geology

18

20 Guelph Formation: dolostone: sucrosic, fossiliferous, locally biohermal; locally bituminous (Eramosa Mb)

18 Lockport Formation: dolostone, limestone, argillaceous dolostone; locally cherty; locally bituminous (Eramosa Mb)

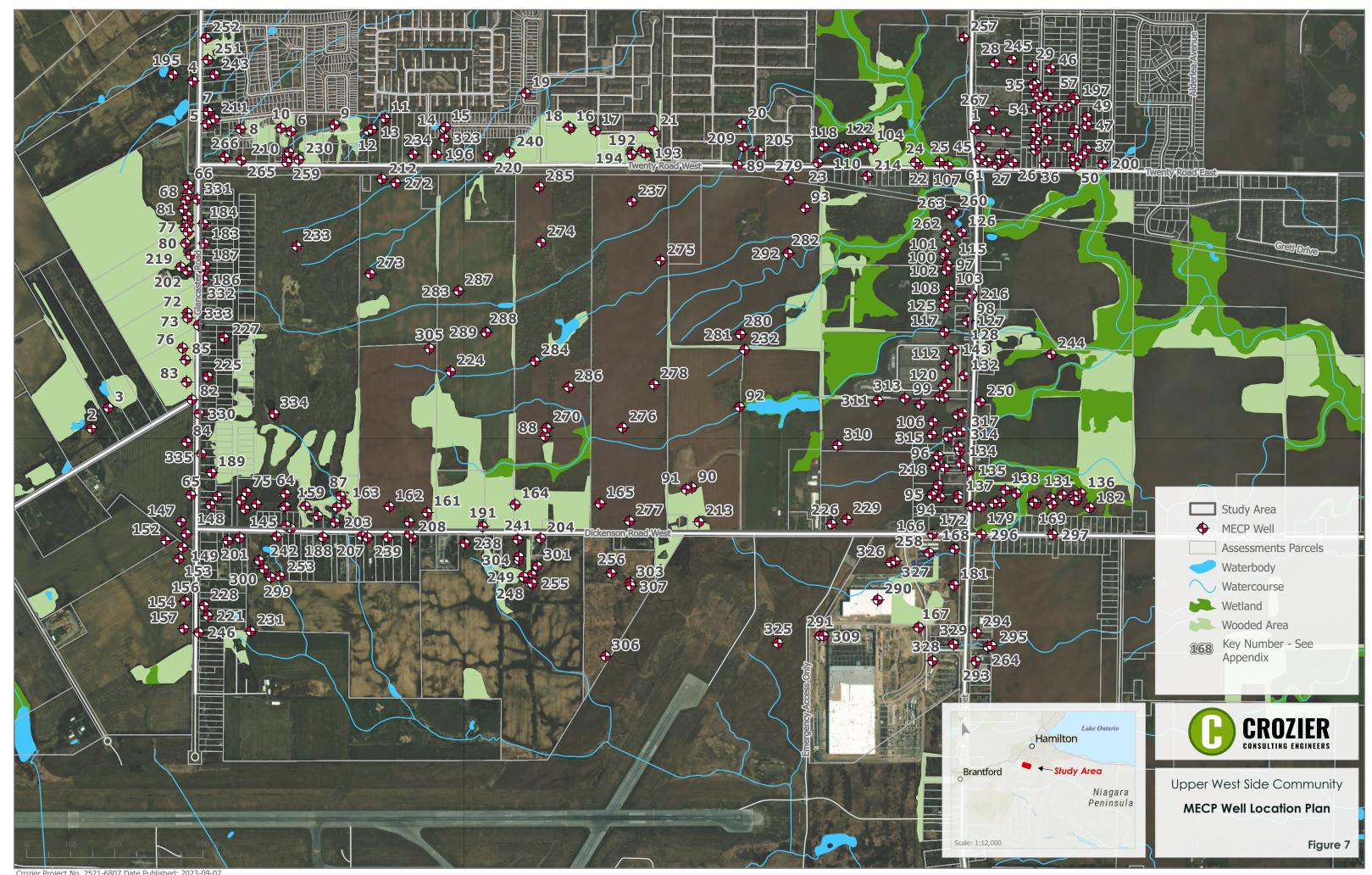
17 Clinton-Cataract Group: shale, sandstone, dolostone, limestone units

16 Queenston Formation: shale, siltstone, minor limestone and sandstone

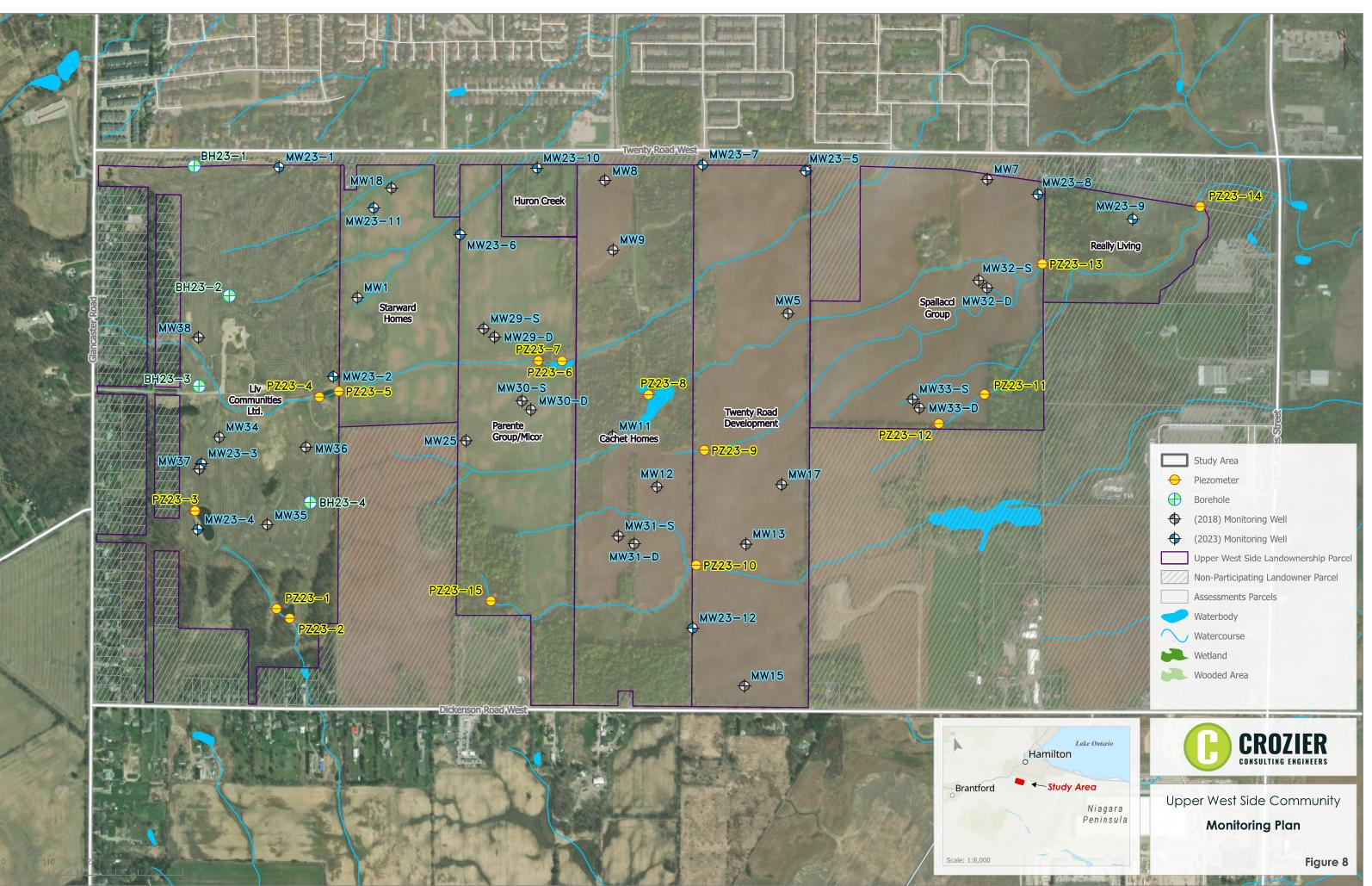
CROZIER CONSULTING ENGINEERS

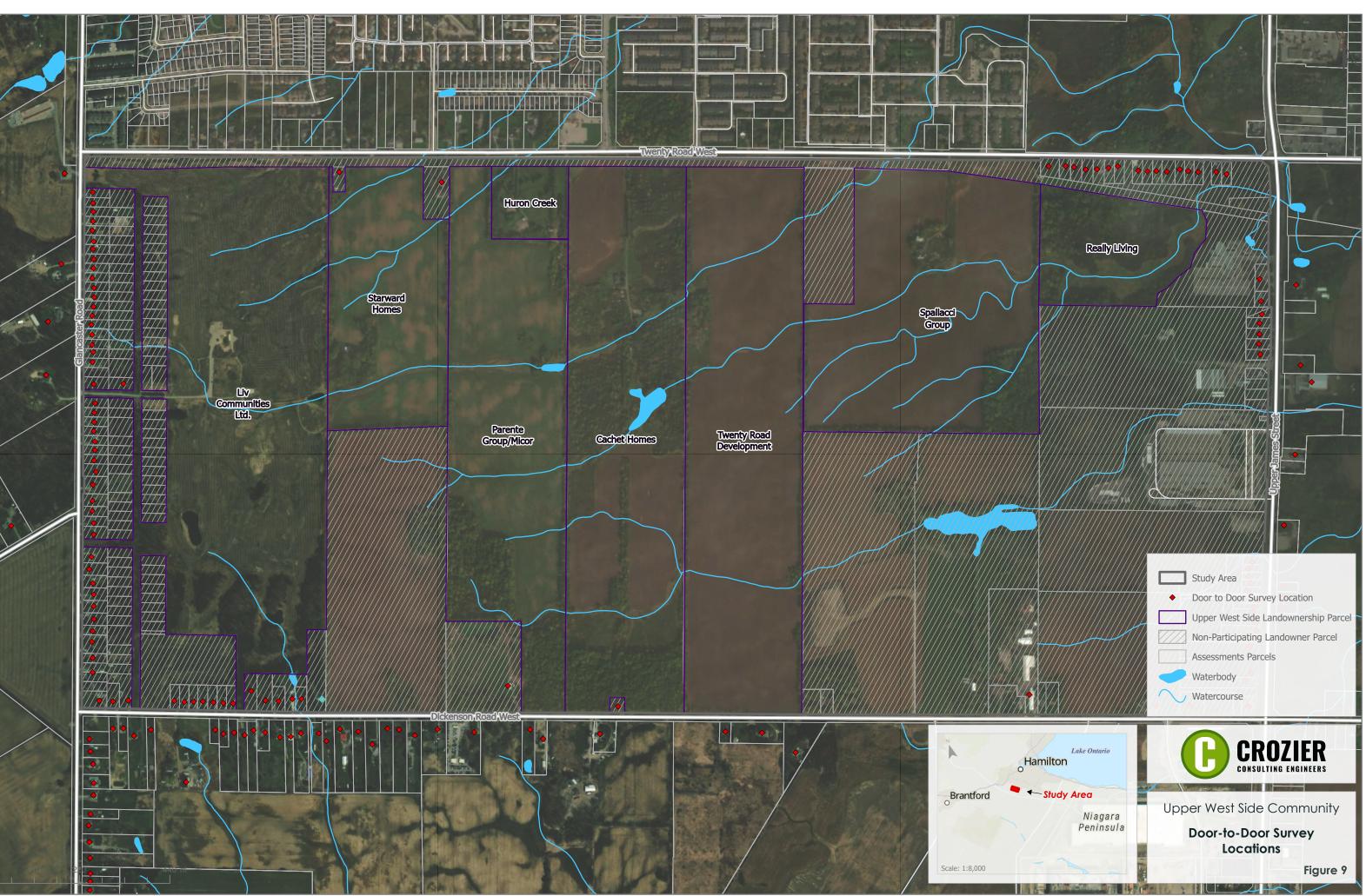
Lake Ontario

Niagara Peninsula


Upper West Side Community

Bedrock Geology


Figure 5


Crozier Project No. 2521-6807 Date Published: 2023-09-07

Crozier Project No. 2521-6807 Date Published: 2023-09-07

Crozier Project No. 2521-6807 Date Published: 2023-11-03

Crozier Project No. 2521-6807 Date Published: 2023-09-07