2024 WASTEWATER FACILITIES ANNUAL REPORT

Table of Contents

1	Woodwar	d Avenue Wastewater Treatment Plant	5
	1.1 Gener	al Information	5
	1.1.1	The Woodward Avenue Wastewater Treatment Plant	5
	1.1.2	The Woodward Avenue Wastewater Treatment Process	5
	1.1.3	Improvements to the Facility	6
	1.2 Regul	atory Instruments	7
	1.2.1	Environmental Compliance Approvals	7
	1.2.2	Effluent Requirements	7
	1.2.3	Sampling Procedures	9
	1.3 Enviro	nmental Compliance Approval Reporting Requirements1	0
	1.3.1	Condition 11 (4A) Influent Monitoring1	0
	1.3.2	Condition 11 (4B) Effluent Monitoring1	2
	1.3.3	Condition 11 (4C) Deviation From the Monitoring Schedule1	4
	1.3.4	Condition 11 (4D) Operating Problems and Corrective Action1	6
	1.3.5	Condition 11 (4E) Maintenance Activities1	7
	1.3.6	Condition 11 (4F) Effluent Quality Assurance and Control Measures1	7
	1.3.7	Condition 11 (4G) Monitoring Equipment Calibration and Maintenance 1	7
	1.3.8	Condition 11 (4H) Design Objectives – Efforts Made and Results Achieved	7
	1.3.9	Condition 11 (4I) Sludge Generation2	1
	1.3.10	Condition 11 (4J) Summary of Complaints	1
	1.3.11	Condition 11 (4K) Summary of Bypass Events, Spills, and Abnormal Discharge Events	1
	1.3.12	Condition 11 (4L) Notice of Modification24	4
	1.3.13	Condition 11 (4M) Efforts Made to Achieve Conformance With F-5-1 and F-5-5	
	1.3.14	Condition 11 (4N) Changes or Updates to the Construction Schedule 2	6
2	Dundas V	Vastewater Treatment Plant2	7
	2.1 Gener	al Information2	7
	2.1.1	The Dundas Wastewater Treatment Plant2	7
	2.1.2	The Dundas Wastewater Treatment Process	7
	2.1.3	Improvements to the Facility2	7

2.2	Regula	atory Instruments	29
2.2	2.1	Environmental Compliance Approval	29
2.2	2.2	Effluent Requirements	.29
2.2	2.3	Sampling Procedures	.29
2.3	Enviro	nmental Compliance Approval Reporting Requirements	30
2.3	5.1	Condition 11 (6A) Effluent Limits Summary and Interpretation	.30
2.3	5.2	Condition 11 (6B) Operating Problems and Corrective Action	.31
2.3	3.3	Condition 11 (6C) Maintenance Activities	.31
2.3	6.4	Condition 11 (6D) Effluent Quality Assurance	.32
2.3	5.5	Condition 11 (6E) Calibration & Maintenance of Effluent Monitoring Equipment	.32
2.3	6.6	Condition 11 (6F) Effluent Objectives - Efforts Made and Results Achieved	. 32
2.3	8.7	Condition 11 (6G) Quantity of Landfill Leachate	.32
2.3	5.8	Condition 11 (6H) Chemical Characterization of Landfill Leachate	.33
2.3	9.9	Condition 11 (6I) Sludge Volume	33
2.3	5.10	Condition 11 (6J) Summary of Complaints	.33
2.3	5.11	Condition 11 (6K) Summary of All Bypass, Spill and Abnormal Dischar Events	•
2.3	5.12	Condition 11 (6L) Other Information Required by the Ministry of the Environment, Conservation and Parks District Manager	.33
3 Wa	stewat	er Collection Facilities	.34
3.1	Gener	al Information	34
3.1	.1	HCS01/HCS06: Greenhill Combined Sewer Overflow Tanks	. 34
3.1	.2	HCS02: Strachan Combined Sewer Overflow Tank	34
3.1	.3	HCS03: James Combined Sewer Overflow Tank	.34
3.1	.4	HCS04: Main/King Combined Sewer Overflow Tank	34
3.1	.5	HCS05: Eastwood Combined Sewer Overflow Tank	34
3.1	.6	HCS07: Red Hill Combined Sewer Overflow Pipe	35
3.1	.7	HCS08: Royal Combined Sewer Overflow Tank	35
3.1	.8	HCS09: Mcmaster Combined Sewer Overflow Tank	35
3.1	.9	HC011: Calvin Street Wastewater Pumping Station	35
3.1	.10	HC018: Twenty Road Wastewater Pumping Station	35
3.1	.11	HC019: English Church Wastewater Pumping Station	36
3.1	.12	HC027: Homestead Wastewater Pumping Station	36

	3.1.13	HC058: Binbrook Wastewater Pumping Station	36
	3.1.14	Real-Time Control Facilities	36
	3.2 Comp	liance Approvals	39
	3.2.1	Sewage Consolidated Linear Infrastructure Environmental Complian Approval	
	3.2.2	Notice of Modification	40
	3.2.3	Monitoring and Analytical Data	40
	3.2.4	Maintenance of Major Equipment	42
	3.2.5	Effluent Quality Assurance or Control Measures Taken	42
	3.2.6	Calibration and Maintenance of Monitoring Equipment	43
	3.2.7	Operating Problems and Corrective Action	43
	3.2.8	Summary of Complaints	43
	3.2.9	Summary of Spills and Abnormal Discharges	44
	3.2.10	Other Information Required by the Ministry of the Environment, Conservation and Parks District Manager	44
	3.2.11	Overview of the Success and Adequacy of the Works and Evaluation the Need for Modifications	
	3.2.12	Summary of Efforts Made to Achieve Conformance With F-5-1 and F	
	3.2.13	Changes or Updates to the Construction Schedule	45
4	Appendic	ces	46
	Appendix A	- Woodward Avenue WWTP Operating Data Summary	46
	Appendix B	- Maintenance Activities	63
	Appendix C	- Calibration and Maintenance of Monitoring Equipment	64
	Appendix D	– Woodward Avenue WWTP Summary of Complaints	67
	Appendix E	 Dundas WWTP Operating Data Summary 	68
	Appendix F	– CSO Tank Analytical Data	81

1 WOODWARD AVENUE WASTEWATER TREATMENT PLANT

1.1 GENERAL INFORMATION

1.1.1 THE WOODWARD AVENUE WASTEWATER TREATMENT PLANT

The Woodward Avenue Wastewater Treatment Plant (WWTP) is located at 700 Woodward Avenue in Hamilton, Ontario. It services a population of approximately 518,228* and features an average day design capacity of 409 million litres per day (ML/d). In 2024, the Plant treated an average of 306.18 ML/d.

*The City of Hamilton experienced a cybersecurity incident on February 25, 2024, which led to a loss of the database used to calculate the population served. This number was the last-calculated population and was reported in the 2023 Annual Report.

1.1.2 THE WOODWARD AVENUE WASTEWATER TREATMENT PROCESS

The Woodward Avenue WWTP began operating in 1964. The original facility consisted of a main pumping station, bar screens, grit removal, primary clarifiers and a sludge digestion system. Over time, the Plant underwent significant upgrades, including the addition of several new treatment processes and the expansion and enhancement of existing processes.

Today, the Plant consists of a main pumping station that conveys flow to the headworks for preliminary treatment, including bar screens and grit removal with vortex separators. Ferric sulphate is added upstream of the preliminary treatment to aid in removing phosphorus. Next, wastewater flows into primary clarifiers, where fine solids settle to the bottom of the tanks as "raw sludge," while lighter materials such as fats, oils, and grease float to the top of the tanks as "scum." Chain and flight systems remove both sludge and scum continuously.

Primary effluent flows into aeration basins where air is forced through diffusers at the bottom of the tanks to supply oxygen for microbial populations that process organic material and oxidize ammonia. Following aeration, wastewater flows into the secondary clarifiers where solids again settle out, this time as "activated sludge" due to the high level of microbial activity. Most of this sludge is returned to aeration as "return activated sludge", and the rest is removed as "waste activated sludge" for further processing. Secondary effluent then flows to the new tertiary treatment process, receiving additional treatment via cloth media disk filters. The treated tertiary effluent is disinfected with chlorine and dechlorinated with sodium bisulphite from May 15 to October 15. The treated effluent is then released into Red Hill Creek.

The raw sludge from the primary clarifiers, and waste activated sludge from the secondary clarifiers are thickened using a polymer and gravity belt thickeners before undergoing biological processing in the anaerobic digesters. The digestion process produces methane biogas which is utilized in one of two ways. The biogas can be used to generate electricity or refined to meet natural gas standards. The biogas utilized to generate electricity is stored in the "Hamilton Globe." Any unused biogas is burned through a flare in accordance with the Environmental Compliance Approval (ECA). Digested solids are subsequently dewatered using a polymer and large centrifuges before feeding into the biosolids facility. This facility uses a thermal reduction process to

create a certified fertilizer product. Operations and maintenance of the biosolids facility are contracted out to Synagro Technologies, which operated under a separate ECA from the Woodward Avenue WWTP listed under <u>Subsection 1.2.1</u>.

1.1.3 IMPROVEMENTS TO THE FACILITY

1.1.3.1 Woodward Upgrade Projects

The Woodward Avenue WWTP has undergone substantial upgrades in recent years to improve the performance and reliability of its treatment processes. The City recently completed the Phase 1 Upgrades to address Hamilton Harbour Remedial Action Plan targets under the existing rated plant capacity. These upgrades consisted of three main construction contracts: Contract 1 was the construction of a new Main Pumping Station for wastewater, completed August 2022. Contract 2 was the construction of a new Electrical Power Centre and power distribution loop, completed November 2022. Contract 3 included the construction of a Tertiary Treatment Facility and the expansion of the South Secondary Treatment process, including the construction of a new Chlorine Contact Tank and Plant outfall. All projects in Phase 1 have been completed.

The City is currently in the early design phase of the Phase 2 Expansion Project. Phase 2 is a continuation from the Phase 1 Woodard Upgrades Project that will increase the average rated capacity from 409 to 500 ML/d and the peak capacity from 614 to 1,000 ML/d, while meeting the same stringent effluent limits under Phase 1. The work also addresses the necessary asset renewal of both the North Secondary Treatment Plant and North Digester Complex to ensure process reliability.

1.1.3.1.1 Contract 3: Tertiary Treatment Facility and Secondary Treatment Expansion – Substantial Performance reached October 30, 2024

Construction and deficiency work continued throughout 2024, including commissioning and performance monitoring of the new Tertiary Treatment Facility, with the 180-day performance test period starting on July 15, 2024. The project is now in the warranty period. Work will continue to address deficiencies in 2025.

1.1.3.2 Anaerobic Digester Improvements

In May 2024, the contract to upgrade Anaerobic Primary Digester #3 and Anaerobic Primary Digester #5 commenced. The sequence of work requires that upgrades to Anaerobic Primary Digester #5 be complete, with the digester returning to service before undertaking upgrades on Anaerobic Primary Digester #3. In 2024, the work performed on Anaerobic Primary Digester #5 included a full cleanout, removal of interior coatings, and partial preparation of the interior surfaces to receive new coatings. This project was expected to be completed in May 2026; however, delays were experienced in December 2024 due to the unexpected presence of vivianite beneath the wall coatings in the immersion zone of Anaerobic Primary Digester #5. The project is expected to be completed August 2026.

1.1.3.3 Thickening Sludge Building (TSB) Biofilter Upgrades

As part of ongoing efforts to improve air quality and reduce odours, the TSB facility received biofilter upgrades. These upgrades included the remediation of biofilter media,

the replacement of two leaking solenoids and the reconfiguration and installation of an exterior-mounted immersion heater to improve the efficiency of biofilter media. This improves the system's overall odour removal and air treatment performance. This work was completed in June 2024.

1.1.3.4 Arc Flash Project

Arc flash mitigation measures across both the Woodward Avenue and Dundas WWTPs were implemented in 2024 to improve electrical safety. The project involved updating electrical system labelling, conducting arc flash studies, and updating single-line drawings to ensure a safer working environment for staff.

1.1.3.5 Tertiary Filter Metric Page

In August 2024, the Supervisory Control and Data Acquisition (SCADA) team developed the Tertiary Filter Metric Page, which provides operators with enhanced capabilities to analyze the performance of tertiary filters. This tool enables more informed decisions, improves filter performance and optimizes maintenance processes.

1.2 REGULATORY INSTRUMENTS

1.2.1 ENVIRONMENTAL COMPLIANCE APPROVALS

1.2.1.1 Sewage

No. 9410-B65QRT: May 14, 2019 – Amended Environmental Compliance Approval

No. 4876-AWNRYL: June 21, 2018 – Biosolids Management Facility Environmental Compliance Approval

1.2.1.2 Air

No. 3677-6LBLSY: February 9, 2006 – Amended Certificate of Approval – Cogeneration Unit No. 5265-B77RLX: December 17, 2018 – Amended Environmental Compliance Approval

No. 9463-B2YLGW: July 26, 2018 – Biosolids Management Facility Environmental Compliance Approval

1.2.2 EFFLUENT REQUIREMENTS

Prior to completion of construction of <u>Contract 3 (Section 1.1.3.1.1)</u> of Proposed Works on October 30, 2024

Secondary Effluent Table

Parameter	Monthly Average Concentration Objectives (mg/L)	Monthly Average Concentration Limits (mg/L)	Monthly Average Daily Loading Limits (kg/d)
cBOD	15.0	25.0	10,225
Total Suspended Solids (TSS)	15.0	25.0	10,225
Total Phosphorus (TP)	0.6	0.8	327

Prior to completion of construction of <u>Contract 3 (Section 1.1.3.1.1)</u> of Proposed Works on October 30, 2024

Final Effluent Table

Parameter	Objectives	Limits
Total Residual Chlorine (Single Sample Result)	Non-detect	0.02 mg/L
E. coli (Monthly Geometric Mean Density)	<200 CFU/100 mL (May 15 - Oct 15)	n/a
pH (Single Sample Result)	6.5 - 8.5	Between 6.0 - 9.5 inclusive

Upon completion of construction of <u>Contract 3 (section 1.1.3.1.1)</u> of Proposed Works on October 30, 2024

Final Effluent Table

Parameter	Concentration Limit	Monthly Average Daily Loading Limit
cBOD	8.0 mg/L (Monthly Average)	3,272 (kg/d)
TSS	10.0 mg/L (Monthly Average)	4,090 (kg/d)
TSS	6.0 mg/L (Annual Average)	-
ТР	0.30 mg/L (Monthly Average)	123 (kg/d)
Total Ammonia Nitrogen	3.0 mg/L (May 01 - Nov 30) 7.0 mg/L (Dec 01 - Apr 30) (Monthly Average)	-
*E. coli	*200 (CFU/100 mL) (May 15 - Oct 15) (Monthly Geometric Mean Density)	-
рН	Between 6.0 - 9.5 inclusive (Single Sample Result)	-
**Total Chlorine Residual	0.02 (mg/L) (Single Sample Result)	-

*If the most probable number (MPN) method is utilized for E. coli analysis, the objective shall be 100 MPN/100 mL

**Total Residual Chlorine shall be non-detectable as measured by a method with a sensitivity of at least 0.02 mg/L

1.2.3 SAMPLING PROCEDURES

Raw influent wastewater is sampled seven days per week. It is tested for alkalinity, ammonia (NH₃), carbonaceous biochemical oxygen demand (cBOD), potential of hydrogen (pH), soluble phosphorus (SP), total phosphorus (TP), total biochemical oxygen demand (tBOD), total Kjeldahl nitrogen (TKN) and total suspended solids (TSS). Twenty-four-hour composite samples are refrigerated before analysis at the on-site City of Hamilton Environmental Laboratory.

Final Effluent is sampled five days per week. It is tested for alkalinity, ammonia, cBOD, nitrates (NO₃), nitrites (NO₂), pH, SP, TP, TKN, TSS, and un-ionized ammonia. Twenty-four-hour composite samples are collected by the samplers on each side of the twin effluent channel and refrigerated before analysis at the on-site City of Hamilton

Environmental Laboratory. The average concentrations for the two samples are reported to the Ministry of the Environment, Conservation and Parks (MECP) for compliance purposes. Total chlorine residual is measured daily in the final effluent on a seasonal basis from May 15 to October 15. E. coli is sampled every week in the final effluent. Samples are always under the strict chain of custody process managed by the Compliance and Regulations Section staff.

1.3 ENVIRONMENTAL COMPLIANCE APPROVAL REPORTING REQUIREMENTS

Regarding Condition 11 'Reporting' in ECA #9410-B65QRT, the following information addresses the items listed under Subsection 4.

1.3.1 CONDITION 11 (4A) INFLUENT MONITORING

Appendix A, titled 'Woodward Avenue WWTP Operating Data Summary', the chart titled 'Plant Flows', outlines influent plant flow quantities, including imported sewage.

Appendix A, titled 'Woodward Avenue WWTP Operating Data Summary', the table titled 'Raw Influent Concentrations' outlines influent parameter concentrations in 2024.

Influent flow values in 2024 were very close to the five-year average, only marginally lower with slightly lower total precipitation. Influent analytical data, while lower than 2023, shows higher concentrations of most parameters than in previous years, particularly TSS, TP and cBOD. This may be the result of recycling process streams within the facility from the newly implemented tertiary treatment system as a result of higher solids capture. These elevated concentrations and loadings likely represent a new baseline with the existing configuration.

Year	Daily Average Plant Flow (ML/d)	Total Precipitation (mm)
2019	390.25	1,087
2020	299.98	797
2021	284.99	938
2022	263.28	680
2023	321.56	991
2024	306.18	868

Daily Average Plant Flow (ML/d) Table

Influent Concentrations (mg/L) Table

Year	TSS	cBOD	TP	SP	NH₃	TKN
2019	231.06	135.78	4.25	1.16	16.01	27.51
2020	281.20	178.22	5.49	1.53	21.40	35.30
2021	244.04	157.70	4.87	1.54	21.72	33.93
2022	261.93	157.51	5.22	1.65	25.55	36.66
2023	568.61	222.91	8.21	1.30	22.23	41.12
2024	499.02	197.85	7.39	1.32	22.28	38.99

Influent Loadings (kg/d) Table

Year	TSS	cBOD	TP	SP	NH₃	TKN
2019	85,614	49,706	1,560	416	5,928	10,203
2020	82,605	52,239	1,611	447	6,258	10,329
2021	66,952	43,215	1,344	426	6,066	9,415
2022	66,165	39,862	1,331	414	6,489	9,309
2023	186,121	71,189	2,664	404	6,906	13,033
2024	150,062	57,738	2,246	365	6,303	11,238

1.3.1.1 Imported Sewage

The Woodward Avenue WWTP receives Imported Sewage from approved septic haulers that discharge at the Plant. These wastewater volumes are included in the overall plant flow data as they are discharged upstream of the influent flow meters. However, this represents a very small proportion (approximately 0.05% in 2024) of the overall flows into the Plant.

The Woodward Avenue WWTP also receives untreated sludge from the Dundas WWTP, which is hauled by truck. This sludge is processed with the sludge generated in the primary treatment process at the Woodward Avenue WWTP. The Dundas WWTP sludge contributed approximately 7.8% of the total raw sludge volume in 2024.

Imported Sewage Table

Month	Septic Haulers (m³/month)	Sludge from Dundas WWTP (m ³ /month)	
Jan	5,658	3,417	
Feb	3,577	3,109	
Mar	5,359	3,041	
Apr	5,586	3,182	
Мау	6,096	3,346	
Jun	4,825	2,640	
Jul	4,922	2,868	
Aug	3,702	2,593	
Sep	5,473	2,438	
Oct	5,499	2,350	
Nov	5,169	2,285	
Dec	1,121	2,936	
Total	56,988	34,207	

1.3.2 CONDITION 11 (4B) EFFLUENT MONITORING

Appendix A, titled 'Woodward Avenue WWTP Operating Data Summary', the chart titled 'Plant Flows', outlines effluent plant flow rates.

The Woodward Avenue WWTP reported a single non-compliance in 2024. On May 25, 2024, Plant Operations staff recorded a total chlorine residual result of 0.15 mg/L, exceeding the ECA limit of 0.02 mg/L, which is based on a single sample result. Subsequently, dechlorination and chlorination doses were adjusted. Upon initial resampling, the result was 0.24 mg/L. Further adjustments were made, and the second resampling result was 0.00 mg/L of Final Effluent Total Residual Chlorine. The event was resolved in 1.5 hours.

Compliance with all other effluent parameter concentrations and loading limits was met throughout the year.

Effluent concentrations for TSS and TP and loadings for TSS are slightly higher than in 2023. However, all other parameters are lower compared to 2023 and previous years. This improvement is due to the enhanced performance of implementing the Tertiary Treatment System. A planned tertiary bypass for maintenance occurred from mid-February to mid-March, which may have skewed the TSS results higher.

<u>Contract 3 (section 1.1.3.1.1)</u> of the Woodward Upgrades Project was completed on October 30, 2024. With this completion, the facility is required to meet more stringent effluent compliance limits for TSS, cBOD, and TP. Additionally, the facility is now required to meet new limits for ammonia and E. coli concentrations. Each of these new limits has been met since their implementation.

Details of plant performance can be found in Appendix A, titled 'Woodward Avenue WWTP Operating Data Summary' in the table titled 'Final Effluent Concentrations' and 'Final Effluent Loadings'. This outlines the concentrations and loadings achieved in 2024.

Year	TSS	cBOD	TP	SP	NH3	TKN
2019	9.10	5.12	0.504	0.282	1.97	3.18
2020	8.38	5.26	0.572	0.362	1.87	3.12
2021	6.91	4.04	0.573	0.401	1.29	2.42
2022	6.10	4.31	0.433	0.302	2.82	3.80
2023	4.34	2.93	0.200	0.064	1.03	1.91
2024	5.18	2.79	0.210	0.058	0.57	1.48

Effluent Concentrations (mg/L) Table

Effluent Loadings (kg/d) Table

Year	TSS	cBOD	TP	SP	NH₃	TKN
2019	3,715	2,036	194	105	762	1,239
2020	2,644	1,637	171	106	582	959
2021	2,045	1,151	162	112	354	676
2022	1,701	1,159	115	79	744	1,003
2023	1,378	949	63	20	321	606
2024	1,654	867	63	16	158	436

1.3.3 CONDITION 11 (4C) DEVIATION FROM THE MONITORING SCHEDULE

The City successfully complied with the Plant's ECA monitoring requirements due to the sampling frequencies exceeding requirements. The following deviations from the monitoring schedule were observed in 2024:

Date	Sample Location	Reason for Deviation
2024-03-20	Final Effluent #2	No sample due to autosampler malfunction
2024-05-22 Secondary Effluent (1,2,5,6) No sample due to		No sample due to autosampler malfunction
2024-09-10	Final Effluent #1	No sample due to autosampler malfunction
2024-09-11	Final Effluent #1	No sample due to autosampler malfunction
2024-09-12	Final Effluent #1	No sample due to autosampler malfunction
2024-09-14	Final Effluent #1	No sample due to autosampler malfunction
2024-09-15	Final Effluent #1	No sample due to autosampler malfunction

Failure of an autosampler triggers staff to generate a work order promptly, resulting in timely repairs by Plant Maintenance staff.

In 2025 the City will be utilizing the following schedule to fulfill the sampling requirements of the Plant's ECA Monitoring Program (Schedule D).

1.3.3.1 CONDITION 11 (4C) 2025 SAMPLING SCHEDULE

2025 Influent Sampling Table

Parameter	Sample Type	Frequency
рН	Grab Sample	Weekly
tBOD	24-hour composite	Daily
TSS	24-hour composite	Daily
TP	24-hour composite	Daily
TKN	24-hour composite	Daily

2025 Primary Effluent Sampling Table

Parameter	Sample Type	Frequency
tBOD	24-hour composite	Daily
TSS	24-hour composite	Daily

2025 Final Effluent Sampling Table

Parameter	Sample Type	Frequency
E. coli	Grab sample	Weekly
Total Residual Chlorine	Grab sample field analysis	Daily (May 15 - Oct 15)
рН	Grab sample field analysis	Weekly
Temperature	Grab sample field analysis	Weekly
Un-ionized Ammonia as NH ₃	Calculated	Weekly
cBOD	24-hour composite	Five times per week
TSS	24-hour composite	Five times per week
TP	24-hour composite	Five times per week
Ammonia as Nitrogen	24-hour composite	Five times per week
TKN	24-hour composite	Five times per week
Nitrate as Nitrogen	24-hour composite	Five times per week
Nitrite as Nitrogen	24-hour composite	Five times per week
Metals (B, Co, Mg, Mn, K, Sr)	Grab sample	Monthly
Bis (2-ethylhexyl) Phthalate	Grab sample	Monthly

2025 Biosolids (Cake) Sampling Table

Parameter	Sample Type	Frequency	
Total Solids	Grab sample	Two times per month	
ТР	Grab sample	Two times per month	
Ammonia as Nitrogen	Grab sample	Two times per month	
Nitrate as Nitrogen	Grab sample	Two times per month	
Metals (As, Cd, Co, Cr, Cu, Pb, Hg, Mo, Ni, K, Se, Zn)	Grab sample	Two times per month	

1.3.4 CONDITION 11 (4D) OPERATING PROBLEMS AND CORRECTIVE ACTION

1.3.4.1 Secondary Effluent Turbidity

Plant Operations staff continued to observe turbid secondary effluent throughout 2024. Investigations at the Plant continue, including process optimization studies.

1.3.4.2 Polymer Storage Tank Corrosion

Dewatering Polymer Storage Tank #2 failed, resulting in a leak in October 2023. Subsequently, the polymer storage tanks were assessed and deemed to be corroded beyond repair. Replacement of these tanks was completed in July 2024.

1.3.4.3 South Secondary Clarifiers

In the summer of 2024, algae accumulated in the south secondary clarifiers. Subsequently, Plant Operations staff systematically drained and cleaned all six south secondary clarifiers.

1.3.4.4 Backwash Manifolds

In December 2023, Plant Operations staff discovered cracks in various welds on the backwash manifolds within the tertiary treatment process related to Contract 3. In late February/early March 2024, all 30 backwash manifolds were replaced.

1.3.4.5 Tertiary Treatment Suction Pipe

In Q1 2023, it was discovered that the suction pipe for the effluent water system was causing air entrainment in the effluent water pumps. Following a consultant review, it was determined that the pipe needed to be redesigned, as part of the work associated with Contract 3. In consultation with the MECP, the Tertiary Treatment System was taken offline on February 22, 2024, to allow for the reinstallation of the suction pipe to

prevent air entrainment. Once the work was completed, the Tertiary Treatment System was put back online on March 14, 2024.

1.3.5 CONDITION 11 (4E) MAINTENANCE ACTIVITIES

City of Hamilton Plant Maintenance staff based at the Woodward Avenue WWTP carry out regular plant maintenance. Typically, a computerized maintenance management system schedules and tracks routine and preventative maintenance. Larger or specialized maintenance activities are completed by third-party external contractors.

Significant maintenance activities completed at the facility in 2024 are provided in Appendix B, titled 'Maintenance Activities.' Historically, the City of Hamilton provides a table summarizing major maintenance activities with expenditures to the City's vertical infrastructure for a reporting year. However, on February 25, 2024, the City of Hamilton experienced a cybersecurity incident that led to the loss of all computerized maintenance management systems and the loss of the ability to provide these expenditures.

1.3.6 CONDITION 11 (4F) EFFLUENT QUALITY ASSURANCE AND CONTROL MEASURES

The City of Hamilton Environmental Laboratory, which is accredited by the Canadian Association for Laboratory Accreditation Incorporated, performs analytical tests to monitor required parameters. The WWTP's operation and performance are monitored by licensed operators and the facility's management team. Standard operating procedures, emergency plans, equipment preventative maintenance and a team of support staff help ensure a rapid and effective response to issues and maintain high-quality effluent and biosolids.

The City of Hamilton's Wastewater Quality Management System (WWQMS) was fully implemented and operational in 2021. The City of Hamilton's WWQMS was endorsed most recently by Council on March 29, 2023. The WWQMS was implemented to ensure the effective and efficient collection and treatment of wastewater that protects the environment, meets legal and regulatory requirements and meets the City of Hamilton's commitment to operating and maintaining a high-quality wastewater system.

1.3.7 CONDITION 11 (4G) MONITORING EQUIPMENT CALIBRATION AND MAINTENANCE

Appendix C, titled 'Calibration and Maintenance of Monitoring Equipment', table titled 'Calibration and Maintenance of Monitoring Equipment,' contains records of the calibrations performed on monitoring equipment in 2024.

1.3.8 CONDITION 11 (4H) DESIGN OBJECTIVES – EFFORTS MADE AND RESULTS ACHIEVED

Efforts made to achieve design objectives include:

- Continual monitoring and periodic adjustment of processes by licensed and highly skilled operators.
- By-law enforcement of sewer use violations.
- Preventive maintenance routines of vital components.

Schedule B of the Woodward WWTP ECA establishes the following design objectives:

Prior to the completion of construction of <u>Contract 3 (section 1.1.3.1.1)</u> of Proposed Works on October 30, 2024

Primary Effluent Overflow Design Objectives Table

Effluent Parameter	Averaging Calculator	Objective
tBOD	Annual Average Removal Percentage	30%
TSS	Annual Average Removal Percentage	50%

Upon completion of construction of <u>Contract 3 (section 1.1.3.1.1)</u> of Proposed Work on October 30, 2024

Primary Effluent Overflow Design Objectives Table

Effluent Parameter	Averaging Calculator	Objective
tBOD	Annual Average Removal Percentage	30%
TSS	Annual Average Removal Percentage	50%
E. coli*	Monthly Geometric Mean Density	<1,000 CFU per 100 mL* (May 15 - Oct 15)
Total Residual Chlorine	Single Sample Result	Non-detect (when chlorine is in use)

* If the MPN method is utilized for the E. coli analysis the objective shall be <1,000 MPN per 100mL.

Removal percentages for the above parameters during secondary bypass events can be found in Appendix A, titled 'Woodward Avenue WWTP Operating Data Summary' in the table titled 'Secondary Bypass Removal Efficiency.' In 2024, the Plant achieved an annual average removal of 63% of tBOD and 72% of TSS. These values exceed the design objectives of the Woodward Avenue WWTP ECA.

*Secondary Effluent Design Objectives Table

Effluent Parameter	Averaging Calculator	Objective (mg/L)
cBOD	Monthly Average Effluent Concentration	15.0
Total Suspended Solids	Monthly Average Effluent Concentration	15.0
Total Phosphorus	Monthly Average Effluent Concentration	0.6

* No Longer applicable after Oct 30, 2024, Upon completion of construction of <u>Contract 3</u> (section 1.1.3.1.1) of Proposed Work.

Prior to the completion of construction of <u>Contract 3 (section 1.1.3.1.1)</u> of Proposed Works on October 30, 2024

Final Effluent Design Objectives Table

Effluent Parameter	Averaging Calculator	Objective	
Total Residual Chlorine**	Single Sample Result	Non-detect (when chlorine is in use)	
E. coli*	Monthly Geometric Mean Density	<200 organisms/100 mL (May 15 to October 15)	
рН	Single Sample Result	6.5 - 8.5 inclusive	

 * If the MPN method is utilized for the E. coli analysis the objective shall be <1,000 MPN per 100mL

** Total Residual Chlorine shall be non-detectable as measured by method with a sensitivity of at least 0.02 mg/L.

Upon completion of construction of <u>Contract 3 (section 1.1.3.1.1)</u> of Proposed Work on October 30, 2024

Final Effluent Design Objectives Table

Effluent Parameter	Averaging Calculator	Objective
cBOD	Monthly Average Effluent Concentration	5.0 mg/L
TSS	Monthly Average Effluent Concentration	5.0 mg/L
TP	Monthly Average Effluent Concentration	0.18 mg/L
Total Ammonia Nitrogen	Monthly Average Effluent2.0 mg/L (May 01 - NConcentration5.0 mg/L (Dec 01 - A)	
E. coli*	Monthly Geometric Mean Density	<100 organisms/100mL (May 15 to October 15)
рН	Single Sample Result	6.5 - 8.5 inclusive
Total Residual Chlorine **	Single Sample Result	Non-detect (when chlorine is in use)
TSS	Annual Average Daily Effluent Loading	1,227 kg/d

* If the most probable number (MPN) method is utilized for E. coli analysis, the objective shall be 100 MPN/100 mL

** Total Residual Chlorine shall be non-detectable as measured by a method with a sensitivity of at least 0.02 mg/L

Throughout 2024, the Woodward Avenue WWTP was in a transitionary phase, while the Tertiary Treatment System commissioning was finalized on October 30, 2024. During this time, effluent reporting was completed using the Final Effluent from the Tertiary Treatment Facility. These results met the secondary effluent objectives without exception. The maximum monthly average effluent concentrations for cBOD, TSS and TP are 3.34 mg/L, 7.81 mg/L and 0.33 mg/L, respectively.

Following the completion of <u>Contract 3 (Section 1.1.3.1.1)</u> on October 30, 2024, the Woodward Avenue WWTP adopted new final effluent objectives. The Plant successfully met the cBOD objective during this period, achieving a maximum monthly average of 2.63 mg/L. However, the final effluent exceeded the objectives for TSS in October and November, with monthly averages of 5.43 mg/L and 5.17 mg/L, respectively. Additionally, the Plant exceeded its TP objective in November and December, with monthly averages of 0.19 mg/L and 0.20 mg/L, respectively.

Final effluent chlorine residual readings for the 2024 disinfection season (May 15 to October 15) averaged 0.012 mg/L. Since the hand-held chlorine analyzers utilized by Plant Operations staff are rated to a precision of +/- 0.01 mg/L, non-detect readings and

readings of 0.01 mg/L are deemed to meet the objective. Individual sample results did, at times, reach 0.02 mg/L, which does not meet the design objective.

During the disinfection season, final effluent E. coli results consistently satisfied the objective of 200 CFU/100 mL prior to completion of construction of <u>Contract 3 (Section 1.1.3.1.1)</u> on October 30, 2024, and 100 CFU/100 mL following completion of construction of Contract 3, with the maximum monthly geometric mean density being 5 organisms/100 mL. The pH objective was met consistently throughout 2024, with results ranging from 6.90 to 7.21.

1.3.9 CONDITION 11 (4I) SLUDGE GENERATION

The biosolids sludge volume generated in 2024 totalled 57,361 tonnes. Based on recent history, the volume anticipated in 2025 is approximately 55,000 tonnes, as production is expected to continue at current rates. A monthly breakdown can be found in Appendix A, titled 'Woodward Avenue WWTP Operating Data Summary' in the table titled 'Biosolids to Synagro.' Starting in May 2020, dewatered biosolids are further processed at the Biosolids Management Facility on-site, which is operated by Synagro Technologies. Synagro Technologies report on this facility under ECA #4876-AWNRYL.

1.3.10 CONDITION 11 (4J) SUMMARY OF COMPLAINTS

Appendix D, titled 'Woodward Avenue WWTP Summary of Complaints,' contains a summary of the complaints received in 2024.

In 2024, three complaints were associated with the Woodward Avenue WWTP, two related to odour and one to noise within the Plant. Plant Operations staff responded to each complaint with a thorough investigation and appropriate corrective action. Following a site-wide odour assessment completed in 2022, efforts in odour mitigation continued in 2024.

However, the cybersecurity incident in February 2024 compromised the City's ability to receive and report complaints, potentially preventing capturing of all customer complaints for the 2024 reporting year. Hamilton Water informed the MECP of deficiencies encountered and provided interim solutions.

1.3.11 CONDITION 11 (4K) SUMMARY OF BYPASS EVENTS, SPILLS, AND ABNORMAL DISCHARGE EVENTS

The Woodward Avenue WWTP experienced 19 bypass and overflow events in 2024, totalling 2,453 ML. This compares to a five-year average of 20 events totalling 2,205 ML, showing that 2024 was a typical year.

Following substantial performance of the Tertiary Treatment System and completion of <u>Contract 3 (section 1.1.3.1.1)</u> on October 30, 2024, the terminology and reporting requirements for plant bypasses and overflows have been updated. "Plant Bypasses" are now termed "Raw Overflows," "Headworks Bypasses" are now "Preliminary Effluent Overflows," and "Secondary Bypasses" are now "Primary Effluent Overflows." Additionally, the City has begun reporting Tertiary Bypasses.

The table below summarizes all bypass events occurring in 2024.

SAC #	Bypass Location	Start Date	Start Time	Stop Date	Stop Time	Duration (Hours)	Volume (ML)
240109-000013	Secondary Bypass	2024-01-09	16:02	2024-01-10	22:28	30.44	234.522
240113-000003	Secondary Bypass	2024-01-13	6:56	2024-01-13	21:37	14.68	92.028
240125-000001	Secondary Bypass	2024-01-24	23:55	2024-01-25	3:27	4.56	6.946
240126-000009	Secondary Bypass	2024-01-26	4:12	2024-01-27	23:14	43.03	399.389
1-4M7FBY / 240126-000012	Headworks Bypass	2024-01-26	4:41	2024-01-26	8:09	3.47	24.244
240314-000010	Secondary Bypass	2024-03-14	21:44	2024-03-15	2:36	4.87	35.490
240411-000003	Secondary Bypass	2024-04-11	7:15	2024-04-13	11:11	51.19	437.975
240527-000006	Secondary Bypass	2024-05-27	13:08	2024-05-27	16:31	3.38	14.280
240528-000009	Secondary Bypass	2024-05-28	22:05	2024-05-29	14:44	16.65	140.956
240710-000005	Secondary Bypass	2024-07-10	8:16	2024-07-11	15:35	21.25	192.290
240714-000025	Secondary Bypass	2024-07-14	15:38	2024-07-15	1:03	9.56	53.010
240716-000016	Secondary Bypass	2024-07-16	12:17	2024-07-17	19:04	30.78	253.637
240724-000009	Secondary Bypass	2024-07-24	12:30	2024-07-24	21:27	8.57	54.360
240923-000002	Secondary Bypass	2024-09-23	6:25	2024-09-23	10:13	2.98	17.320
240925-000001	Secondary Bypass	2024-09-25	2:34	2024-09-25	5:56	3.37	15.935
241029-000004	Secondary Bypass	2024-10-29	12:53	2024-10-29	16:19	3.43	30.995
241120-000009	Tertiary Bypass	2024-11-20	19:50	2024-11-20	20:01	0.18	16.060
241229-000006	Primary Effluent Overflow	2024-12-29	13:00	2024-12-31	0:52	35.87	353.222
241229-000014	Tertiary Bypass	2024-12-29	15:30	2024-12-30	12:30	21.00	80.630

1.3.11.1 Spill Events

Three spill events related to the Woodward Avenue WWTP were reported in 2024. The table below summarizes these spills.

Date	SAC Reference #	Spill Material	Approximate Volume	Event Description
2024-01-15	1-4KZ177	Methane Gas	2300 m ³	On January 15, 2024, at 8:33 a.m., Primary Digester #5 was opened for a planned release of pressurized methane for a 24-hour period. The release was required to allow for rehabilitation work to proceed on the Digester and consent for the activity was provided by the MECP in advance of the opening. At 8:38 a.m., this planned activity and methane gas spill was reported to the MECP Spills Action Centre, estimating a release volume of 2300 m ³ over the 24-hour period. The digester had been idle for 5-week period to minimize gas presence, and prior notifications of the release were made to the local health unit and residents within 500 meters. On January 16, 2024, at 8:30 a.m., the ventilation had confirmed completed, and the report was closed.
2024-07-29	1-9E3KQE	Plant Effluent	409.2 m³	On July 28, 2024, at 11:08 p.m., a low effluent pressure issue was noted. Upon investigation a break was found on the effluent water piping in the vicinity of Aeration Tank A and the spill was estimated to have begun at approximately 10:54 p.m. At 11:20 p.m., the Hamilton Spills hotline was notified. Partial isolation of the leak improved effluent pressure by 11:27 p.m. An Environmental Enforcement Officer was briefed and reported the spill, generating reference #1-9E3KQE. By 11:50 p.m., the leak was fully isolated, and normal pressure was restored. A work request was created to repair the water main leak.

Date	SAC Reference #	Spill Material	Approximate Volume	Event Description
2024-10-30	1-CNS8XU	Methane Gas	5000 m ³	On October 30, 2024, at 3:40 a.m., a methane leak was detected at the bottom of the gas sphere. The issue was reported, and attempts were made to close the isolation valve. Caution tape was installed around the sphere, and contractors were notified of the leak. By 5:00 a.m., the leak was reported to SAC, and further notifications were made to Hamilton Customer Service and Spill Hot Line and Environmental Monitoring and Enforcement. It was determined that the isolation valve was broken, necessitating the draining of the sphere for safe repair. Efforts to drain the sphere began, and gas flow to the flares was monitored. The leak ended by 2:00 a.m. on October 31. Repairs were completed by November 1, with the replacement of a failed gasket and inlet valve. The sphere was purged and refilled, with no leaks detected. Normal operating pressure was restored by November 2, and SAC was notified.

1.3.12 CONDITION 11 (4L) NOTICE OF MODIFICATION

There were no Notices of Modification submitted in 2024.

1.3.13 CONDITION 11 (4M) EFFORTS MADE TO ACHIEVE CONFORMANCE WITH F-5-1 AND F-5-5

Hamilton Water has ongoing programs and has undertaken various projects to meet the MECP's requirements for municipal combined sewer systems as per Procedure F-5-5, "Determination of Treatment Requirements for Municipal and Private Combined".

This is a supporting document for Guideline F-5, "Levels of Treatment for Municipal and Private Sewage Treatment Works Discharging to Surface Waters." Wet weather system capture is highly influenced by annual rainfall conditions. In 2020 and 2022, the City achieved a 91.3% and 91.2% capture rate, respectively, of the combined sewage during wet weather, which is above the limit of 90%; however, it is not achieved consistently year over year. Hamilton Water has retained the services of an engineering consulting firm to assess the status of existing programs and projects as per the requirements of Procedure F-5-5, identifying any gaps requiring additional work. Deliverables include the

development of the following two documents:

- Hamilton Combined Sewer System Characterization Study.
- Pollution Prevention and Control Plan.

Key project milestones and their status are as follows:

- Final Terms of Reference Submission December 2, 2019 (Complete).
- Progress Updates January 31, 2020, and March 31, 2020 (Complete).
- Pollution Prevention and Control Plan Kickoff Workshop July 20, 2022 (Complete).
- Consultation with the MECP and the comments regarding the Draft Combined Sewer System Characterization Study - November 3, 2022, and January 13, 2023 (Complete).
- Part A of the Pollution Prevention and Control Plan: Final Combined Sewer System Characterization Study Submission to the MECP -March 14, 2023 (Complete).
- Part B of the Pollution Prevention and Control Plan: Additional Combined Sewer Overflow Control Alternatives and Proposed Remedial Measures Submission to MECP - August 1, 2023 (Complete).
- Part C of the Pollution Prevention and Control Plan: Implementation Plan Supporting Adaptive Enhancement Strategy Submission to the MECP – March 2025 (Complete).
- The City of Hamilton received comments from the MECP regarding Parts A and B on September 26, 2024. The City provided a response letter to the MECP's comments on January 28, 2025.

In addition, the following projects are underway that will improve combined sewage capture during wet weather and identify options to remove wet weather flow from the combined sewer system:

1.3.13.1 Wastewater Collection System Control Upgrades (Real-Time Control Phase 2)

The Real-Time Control Phase 2 project involved modifications to existing flow control structures within the combined sewer system at several locations and improvements to the system of hydraulic controls to help mitigate combined sewer overflows into Hamilton Harbour. The upgrades specifically target the reduction of combined sewer overflows to the sensitive receiving waters of Cootes Paradise. The work included the modification of weirs, the addition of level monitoring devices and the automation of some control devices in the system. The project was completed in December 2024.

1.3.13.2 Flooding and Drainage Improvement Framework

Following the completion of a draft Flooding and Drainage Master Servicing Study in 2019, the City initiated a new assignment called the Flooding and Drainage Improvement Framework. This new study advanced the work completed in the previous assignment by providing a framework and implementation roadmap of recommended solutions to address short-term and long-term urban flooding issues in the combined

sewer service area. The Flooding and Drainage Improvement Framework was completed in 2022, and the recommendation of the study was a program of further, more detailed studies (including Class Environmental Assessments), investigations, policies and infrastructure work for a twenty-plus-year timeframe to achieve system performance objectives. The cost of the program, over the twenty-plus year timeframe, is estimated at \$1.029 billion. Several studies have been included within the City's 2025 capital budget and are planned for initiation. Some capital budget has been approved to allow for sewer separations as they are recommended by the Class Environmental Assessment and alternative funding opportunities are being explored to continue the program. It is estimated that the projects identified in the Flooding and Drainage Improvement Framework could take at least twenty years to complete.

A milestone was met in 2024 with the Ainslie Wood Neighbourhood Creek Separation Schedule 'B' Class Environmental Assessment (EA), a shorter-term priority project recommendation of the Flooding and Drainage Improvement Framework. The purpose of the Ainslie Wood EA was to consider various design alternatives to separate Chedoke Creek sewer inflows from the combined sewer system and ultimately recommend a preferred solution.

The preliminary preferred solution will result in the diversion of flows from Chedoke Creek to Ancaster Creek, requiring additional studies to define the potential impacts on water quality, water quantity, and the surrounding environment of these watercourses. The City is also initiating the West End Sewer Separation Environmental Assessment, which will take a system-wide approach to addressing combined sewer separation in the area. The West End EA is a major study recommendation of the Flooding and Drainage Improvement Framework. It will overlap with the additional studies required to support the preliminary preferred solution for the Ainslie Wood EA. As such, the City is deferring the finalization of the Ainslie Wood EA until the West End Sewer Separation EA has developed a recommended sewer separation strategy for West Hamilton.

1.3.14 CONDITION 11 (4N) CHANGES OR UPDATES TO THE CONSTRUCTION SCHEDULE

The updated completion dates for the Woodward Avenue WWTP upgrade projects are as follows:

Contract 3: Tertiary Treatment Unit and Secondary Treatment Expansion – October 30, 2024 (Original Contract – December 30, 2021)

2 DUNDAS WASTEWATER TREATMENT PLANT

2.1 GENERAL INFORMATION

2.1.1 THE DUNDAS WASTEWATER TREATMENT PLANT

The Dundas Wastewater Treatment Plant (WWTP) is located at 135 King Street East in Dundas, Ontario. It serves a population of approximately 50,360* and features an average day design capacity of 18.2 ML/d. The Plant treated an average of 12.29 ML/d in 2024 compared to 11.79 ML/d in 2023.

*The City of Hamilton experienced a cybersecurity incident on February 25, 2024, which led to a loss of the database used to calculate the population served. This number was the last-calculated population and was reported in the 2023 Annual Report.

2.1.2 THE DUNDAS WASTEWATER TREATMENT PROCESS

The Dundas WWTP began operations in 1919. The original facility consisted only of grit channels and an Imhoff tank. Over time, the Plant completed several significant upgrades, including adding new treatment processes and expanding and enhancing existing processes.

Today, the Plant consists of a preliminary treatment process containing bar screens and a grit removal chamber. Ferric sulphate is added at this point to aid in removing phosphorous through precipitation. Next, wastewater flows into primary clarifiers, where fine solids settle out to the bottom of the tanks as "raw sludge," while lighter materials such as fats, oils, and grease float to the top of the tanks as "scum." Chain and flight systems remove both sludge and scum continuously. Primary effluent flows into aeration basins where air is forced through diffusers at the bottom of the tanks to supply oxygen for microbial populations that process organic material and oxidize ammonia. Following aeration, wastewater flows into the secondary clarifiers, where solids again settle out, this time as "activated sludge" due to the high level of microbial activity. Most of this sludge will be returned to aeration as "return activated sludge" while the rest will be removed for further processing as "waste activated sludge". The secondary effluent is then disinfected with chlorine from May 1 to October 31. A tertiary sand filtration system is then used to further reduce the effluent's suspended solids and phosphorus content, after which sodium bisulphite is added to remove chlorine, during disinfection season. The treated effluent water is then released into the Desjardins Canal.

The Dundas WWTP does not have its own solids treatment process. Sludge generated at the Dundas WWTP is hauled by truck to the Woodward Avenue WWTP, where it is mixed and processed with the Woodward Avenue WWTP sludge. For additional details, refer to <u>Subsection 1.1.2</u> of the Woodward Avenue WWTP report.

2.1.3 IMPROVEMENTS TO THE FACILITY

The Hamilton Water and Wastewater Master Plan (2006) identified the current strategy to maintain the Dundas WWTP in place with no change in capacity. The current Water, Wastewater and Stormwater Master Plans will update the 2006 Water, Wastewater and 2007 Stormwater Master Plans and consider reviewing capacity demand up to the 2051 horizon year. A streamlined Water, Wastewater and Stormwater Master Plan is expected to be completed in Q3 2025.

In 2024, the City received correspondence from the Hamilton Harbour Remedial Action Plan (HHRAP) Coordinating Committee supporting the Cootes-Grindstone Water Quality Targets Subcommittee recommendation and advised that the total phosphorus target of 0.05 mg/L in the treated final effluent at the Dundas WWTP be adopted and maintained. The Coordinating Committee recognized the reduction in treated final effluent total phosphorus as critical to achieving restoration goals for water quality and aquatic habitat in Cootes Paradise Marsh. The Coordinating Committee also supports reductions of total suspended solids and total ammonia nitrogen that are consistent with the Best Available Technology Economically Achievable. Hamilton Water has developed a comprehensive upgrade approach to enhance plant-treated final effluent using a modern process and technology that can meet the effluent quality targets supported by the Coordinating Committee.

In 2024, in collaboration with various City divisions and an engineering consultant firm, Hamilton Water completed a conceptual design and evaluation study for the Dundas WWTP. This study involved a comprehensive screening and evaluation process to select the Best Available Technology Economically Achievable to meet the proposed effluent criteria and assess the necessary upgrades to achieve various performance levels. The evaluation recommended a membrane bioreactor process, which considered multiple options and costs focused on achieving HHRAP targets and longterm operations and maintenance objectives. As part of the conceptual design, a life cycle assessment was completed that compared several upgrade options and evaluated the long-term costs to the City.

The estimated capital cost for the Dundas WWTP upgrade project is \$254M, including inflation, engineering, construction, and contingency. Timing estimates will evolve as more detailed information is developed. Currently the project design is anticipated to commence in 2025, construction start for 2028, and completion planned by 2033.

In the interim, the Capital Delivery team, is conducting an immediate needs project to address health and safety concerns and ensure efficient facility operations. The project includes concrete repair and restoration, replacement of the guard rails around open tanks, miscellaneous improvements throughout the Plant and replacement of Plant A&B aeration tank diffusers. Construction of this project is anticipated to start in Q2 of 2025.

2.1.3.1 Arc Flash Project

Arc flash mitigation measures across both the Woodward Avenue and Dundas WWTPs were implemented in 2024 to improve electrical safety. The project involved updating electrical system labelling, conducting arc flash studies, and updating single-line drawings to ensure a safer working environment for staff.

2.2 REGULATORY INSTRUMENTS

2.2.1 ENVIRONMENTAL COMPLIANCE APPROVAL

2.2.1.1 Sewage

No. 3101-89PNRC: October 6, 2010 – Amended Certificate of Approval

2.2.1.2 Air

In response to the MECP inspection conducted in March 2020, the City retained a consultant to submit an application for an ECA (Air) for the Dundas WWTP. The initial application was submitted to the MECP in 2020. The consultant completed a noise assessment, and the application was resubmitted to the MECP in 2023. However, the Ministry has requested additional work be completed to support the noise assessment. The updated assessment will be undertaken in 2025.

2.2.2 EFFLUENT REQUIREMENTS

Parameter	Monthly Average Concentration Objectives (mg/L)	Monthly Average Concentration Limits (mg/L)	Effluent Daily Loading Limits (kg/d)	
cBOD	5.0	5.0	91.0	
TSS	5.0	5.0	91.0	
TKN - Summer (May 1 to October 31)	2.0	2.0	36.4	
TKN - Winter (November 1 to April 30)	10	10	182	
TP	0.5	0.5	9.1	
Chlorine Residual (May 1 to October 31)	0.02	0.02	-	
E. coli (May 1 to October 31)	100 organisms /100 mL	-	-	

pH of the effluent is to be maintained between 6.0 and 9.5, inclusive, at all times.

2.2.3 SAMPLING PROCEDURES

Raw influent wastewater is sampled weekly and is tested for ammonia, carbonaceous biochemical oxygen demand (cBOD), chemical oxygen demand (COD), potential of hydrogen (pH), soluble phosphorus (SP), total phosphorus (TP), total biochemical oxygen demand (tBOD), total Kjeldahl nitrogen (TKN) and total suspended solids (TSS).

Final effluent is sampled weekly and is tested for alkalinity, ammonia, cBOD, nitrates (NO₃), nitrites (NO₂), pH, SP, TP, TKN, and TSS. E. coli and total chlorine residuals are sampled weekly on a seasonal basis from May 1 to October 31.

Samples are collected using a flow-proportional automatic water quality sampler and composited over 24 hours. The samples are refrigerated before analysis at the City of Hamilton Environmental Laboratory, located at the Woodward Avenue WWTP.

2.3 ENVIRONMENTAL COMPLIANCE APPROVAL REPORTING REQUIREMENTS

The following information addresses the items listed under Subsection 6 regarding Condition 11 'Reporting' in Certificate of Approval #3101-89PNRC.

2.3.1 CONDITION 11 (6A) EFFLUENT LIMITS SUMMARY AND INTERPRETATION

Throughout 2024, the Dundas WWTP met the effluent concentration and loading limits as per Condition 7 of the Certificate of Approval with monitoring data for all applicable parameters. This has been the ninth consecutive calendar year in which the Plant has achieved 100% compliance with all effluent limits, owing to the mission of continuous improvement and the hard work of dedicated staff. Details of plant performance in 2024 can be found in Appendix E, titled 'Dundas WWTP Operating Data Summary' in the table titled 'Final Effluent Concentrations' and 'Final Effluent Loadings.' Historical data shows effluent concentrations and loadings in 2024 fell within the expected ranges.

Year	TSS	cBOD	TP	SP	TKN	NH₃
2019	0.84	1.26	0.083	0.064	0.62	0.09
2020	0.89	1.26	0.108	0.091	0.60	0.08
2021	0.88	1.99	0.131	0.103	1.27	0.66
2022	1.16	1.49	0.129	0.105	0.67	0.07
2023	0.85	1.21	0.089	0.071	0.57	0.06
2024	0.97	1.41	0.093	0.070	0.60	0.13

Effluent Concentrations (mg/L) Table

Effluent Loadings (kg/d) Table

Year	TSS	cBOD	TP	SP	TKN	NH₃
2019	10.9	16.5	1.1	0.8	8.1	1.2
2020	10.7	15.2	1.3	1.1	7.2	0.9
2021	10.0	21.1	1.5	1.1	13.2	6.4
2022	11.7	15.1	1.3	1.0	6.7	0.6
2023	10.0	14.3	1.1	0.1	6.7	0.7
2024	12.0	17.6	1.1	0.8	7.3	1.7

2.3.2 CONDITION 11 (6B) OPERATING PROBLEMS AND CORRECTIVE ACTION

2.3.2.1 Heavy Rainfall

In July 2024, heavy rains washed out excessive plant solids, resulting in high TKN values in the second half of the month. Plant Operations staff acted to reseed Plant A with activated sludge from Plant B to reestablish effective nitrification. This allowed the plant to remain in compliance with effluent limits and TKN values returned to normal the following month.

2.3.2.2 Elevated E. coli

In October 2024, elevated E. coli levels were observed in the plant's final effluent. In response, chlorine dosage was increased, and Plant Operations staff worked to clean the effluent channels thoroughly. By the end of the month, E. coli levels had decreased to normal levels. While the E. coli levels were elevated during this period, the Plant remained in compliance.

2.3.3 CONDITION 11 (6C) MAINTENANCE ACTIVITIES

City of Hamilton Plant Maintenance staff based at the Woodward Avenue WWTP carry out regular plant maintenance. Typically, a computerized maintenance management system schedules and tracks routine and preventative maintenance. Third-party external contractors complete larger or specialized maintenance activities.

Significant maintenance activities completed at the facility in 2024 are provided in Appendix B, titled 'Maintenance Activities'. Historically, the City of Hamilton provides a table summarizing major maintenance activities with expenditures to the City's vertical infrastructure for a reporting year. However, on February 25, 2024, the City of Hamilton experienced a cybersecurity incident that led to the loss of all computerized maintenance management systems and the loss of the ability to provide these expenditures.

2.3.4 CONDITION 11 (6D) EFFLUENT QUALITY ASSURANCE

The City of Hamilton Environmental Laboratory, which is accredited by the Canadian Association for Laboratory Accreditation Incorporated, performs analytical tests to monitor required parameters. The WWTP's operation and performance are monitored by licensed operators and the facility's management team. Standard operating procedures, emergency plans, equipment preventative maintenance and a team of support staff help ensure a rapid and effective response to issues and maintain high-quality effluent.

The City of Hamilton's Wastewater Quality Management System (WWQMS) was fully implemented and operational in 2021. The City of Hamilton's WWQMS was endorsed most recently by Council on March 29, 2023. The WWQMS was implemented to ensure the effective and efficient collection and treatment of wastewater that protects the environment, meets legal and regulatory requirements and meets the City of Hamilton's commitment to operating and maintaining a high-quality wastewater system.

2.3.5 CONDITION 11 (6E) CALIBRATION & MAINTENANCE OF EFFLUENT MONITORING EQUIPMENT

Appendix C, titled 'Calibration and Maintenance of Monitoring Equipment', table titled 'Calibration and Maintenance of Monitoring Equipment,' contains records of the calibrations performed on monitoring equipment during 2024.

2.3.6 CONDITION 11 (6F) EFFLUENT OBJECTIVES - EFFORTS MADE AND RESULTS ACHIEVED

Condition 6 of the Certificate of Approval identifies effluent concentration objectives for cBOD, TSS, TP, TKN, total residual chlorine and E. coli, which match those of the effluent limit requirements as seen in <u>Section 2.2.2</u>.

Throughout 2024 the Dundas WWTP effluent consistently met the effluent objectives laid out in Condition 6 of the plant Certificate of Approval.

Details of plant performance can be found in Appendix E, titled 'Dundas WWTP Operating Data Summary' in the table titled 'Final Effluent Concentrations' and 'Final Effluent Loadings.' Efforts made to obtain these objectives include:

- Continual monitoring and periodic adjustment of processes by licensed and highly skilled operators
- By-law enforcement of sewer use violations
- Preventive maintenance routines of vital components

2.3.7 CONDITION 11 (6G) QUANTITY OF LANDFILL LEACHATE

Leachate from the Redland Brow Landfill contributed 60,441 m³ in 2024. Appendix E, titled 'Dundas WWTP Operating Data Summary', the table titled 'Redland Brow Landfill Leachate' captures the monthly volume of leachate entering the Dundas WWTP.

2.3.8 CONDITION 11 (6H) CHEMICAL CHARACTERIZATION OF LANDFILL LEACHATE

Appendix E, titled 'Dundas WWTP Operating Data Summary' in the table titled '2024 Redland Brow Landfill Sampling Results' contains the 2024 quarterly sewer discharge sampling results from the Redland Brow Landfill.

2.3.9 CONDITION 11 (6I) SLUDGE VOLUME

Raw sludge collected at the Dundas WWTP is hauled by truck to the Woodward Avenue WWTP for processing. The sludge volume generated in 2024 totalled 34,207 m³. Based on recent history, the volume anticipated in 2025 is forecasted to be approximately 38,000 m³. Monthly details can be found in Appendix E, titled 'Dundas WWTP Operating Data Summary' in the table titled 'Sludge Hauled to Woodward.'

2.3.10 CONDITION 11 (6J) SUMMARY OF COMPLAINTS

No complaints were received at the Dundas WWTP in 2024.

However, the cybersecurity incident in February 2024 compromised the City's ability to receive and report complaints, potentially preventing capturing all customer complaints for the 2024 reporting year. Hamilton Water informed the MECP of deficiencies encountered and provided interim solutions.

2.3.11 CONDITION 11 (6K) SUMMARY OF ALL BYPASS, SPILL AND ABNORMAL DISCHARGE EVENTS

In 2024, there was one spill event at the Dundas WWTP (SAC #1-DH3ZYF). On November 17, 2024, Plant Operations staff were alerted to high levels in the Filter Inlet Chamber and Effluent Chamber.

Pumps couldn't be started remotely, which caused secondary effluent being discharged to the plant outfall. An operator was dispatched and started the pumps manually, ending the discharge. The duration of the spill was 11 minutes and the volume was approximately 77 m³.

2.3.12 CONDITION 11 (6L) OTHER INFORMATION REQUIRED BY THE MINISTRY OF THE ENVIRONMENT, CONSERVATION AND PARKS DISTRICT MANAGER

The District Manager requested no additional information for inclusion in this report.

3 WASTEWATER COLLECTION FACILITIES

3.1 GENERAL INFORMATION

The City of Hamilton operates 71 sewage pumping stations and nine combined sewer overflow tank facilities. It is required to report on the performance of 21 facilities due to conditions within the individual facilities' ECAs. Reporting requirements are anticipated to be expanded with the development of the Sewage Consolidated Linear Infrastructure Environmental Compliance Approval (CLI ECA). This report is intended to satisfy the reporting requirements of the existing ECAs.

3.1.1 HCS01/HCS06: GREENHILL COMBINED SEWER OVERFLOW TANKS

The Greenhill Combined Sewer Overflow Tanks are located on the south side of Greenhill Avenue and east of Rosseau Road. The first tank (HCS01) has a capacity of 75,000 m³ and was completed in 1988. The second tank (HCS06) was built upstream of the first tank and has a volume of 65,000 m³. It was completed in 2004 and was designed to reduce the frequency of combined sewer overflows entering Red Hill Creek at the Greenhill Combined Sewer Overflow Outfall. Flow into tank HCS06 is regulated upstream. If it becomes full, overflows to HCS01 and, upon its filling, will overflow into a wetland area adjacent to Red Hill Creek.

3.1.2 HCS02: STRACHAN COMBINED SEWER OVERFLOW TANK

The Strachan Combined Sewer Overflow Tank is located at 201 Harbourfront Drive, near Hamilton's Bayfront Park. The tank volume is 23,000 m³, consisting of two relatively equally sized cells. It was completed in 1993 and was designed to reduce the frequency of combined sewer overflows entering Hamilton Harbour at the former Queen Street and Hess Street Combined Sewer Overflow Outfalls.

3.1.3 HCS03: JAMES COMBINED SEWER OVERFLOW TANK

The James Street Combined Sewer Overflow Tank is located at the foot of James Street, north of Guise Street. The tank volume is 2,000 m³ and was completed in 1993. The station was designed to reduce the frequency of combined sewer overflows entering Hamilton Harbour at the James Street Combined Sewer Overflow Outfall.

3.1.4 HCS04: MAIN/KING COMBINED SEWER OVERFLOW TANK

The Main/King Combined Sewer Overflow Tank is located in Cathedral Park, bounded by Main Street West, Highway 403, King Street West and Dundurn Street. The tank volume is 75,000 m³ and consists of two cells. Cell #1 has an approximate volume of 22,000 m³ and Cell #2 has an approximate volume of 53,000 m³. It was completed in 1997 and was designed to reduce the frequency of combined sewer overflows entering Chedoke Creek at the Glen Road and former McKittrick Combined Sewer Overflow Outfalls.

3.1.5 HCS05: EASTWOOD COMBINED SEWER OVERFLOW TANK

The Eastwood Park Combined Sewer Overflow Tank is located in Eastwood Park on the southwest corner of Ferguson Avenue and Dock Service Road. The tank volume is 25,000 m³, consisting of two similarly sized cells. It was completed in 1997 and was designed to reduce the frequency of combined sewer overflows entering Hamilton Harbour at the Catharine Street and Ferguson Avenue combined sewer overflow outfalls.

3.1.6 HCS07: RED HILL COMBINED SEWER OVERFLOW PIPE

The Red Hill Combined Sewer Overflow Pipe is located below the Red Hill Valley Parkway between Lawrence Road and Barton Street. The 2.7 km by 3 m diameter pipe has a storage capacity of approximately 14,400 m³. This facility became operational on December 20, 2011. It was designed to capture combined sewer overflows from Lawrence Road, Queenston Road, and Melvin Avenue, which would have historically been discharged into Red Hill Creek.

3.1.7 HCS08: ROYAL COMBINED SEWER OVERFLOW TANK

The Royal Avenue Combined Sewer Overflow Tank is located in Stroud Park, on the southwest corner of Royal Avenue and Stroud Road. The tank volume is 15,000 m³. It was completed in late 2007 and was designed to reduce the frequency of combined sewer overflows entering Chedoke Creek from the Royal Avenue Combined Sewer System.

3.1.8 HCS09: MCMASTER COMBINED SEWER OVERFLOW TANK

The McMaster Combined Sewer Overflow Tank is located in the Zone 6 parking lot at McMaster University. The tank was completed in April 2012. The storage volume of 5,935 m³ was designed to reduce combined sewer overflows to Coldwater Creek, which discharges into Cootes Paradise.

3.1.9 HC011: CALVIN STREET WASTEWATER PUMPING STATION

The Calvin Street Wastewater Pumping Station is located at 170 Calvin Street. The facility is a single-storey building with an adjacent subsurface wet well. The station collects wastewater in a wet well and automatically pumps it to the Woodward Avenue WWTP. There are two sewage lift pumps (one duty and one standby), each with a rated capacity of 59 L/s. The station is equipped with an overflow to protect the sewer catchment from surcharging. Should the pumps fail to operate or when sewage inflows are greater than the pump capacity ratings, there is a possibility that the station will overflow into Ancaster Creek before basement flooding occurs.

3.1.10 HC018: TWENTY ROAD WASTEWATER PUMPING STATION

The Twenty Road Wastewater Pumping Station is located at 1980 Upper James Street. The station is a single-storey building laid out in a dry well/wet well configuration. The dry well contains the sewage lift pumps, piping, and process instrumentation. The site has an outdoor pad-mounted generator with a noise abatement enclosure. The wet well is a single cell with three pumps (two duty, one standby), each with a rated capacity of 320 L/s. Should the pumps fail to operate or when sewage inflows are greater than the pump capacity ratings, there is a possibility that the station will overflow into the final receiver, Twenty Mile Creek.

3.1.11 HC019: ENGLISH CHURCH WASTEWATER PUMPING STATION

The English Church Wastewater Pumping Station is located at 2844 Upper James Street. The station is a single-storey building with an adjacent subsurface wet well. The station collects wastewater in a wet well and automatically pumps it to the Woodward Avenue WWTP. There are three sewage lift pumps (two duty, one standby) with a rated capacity of 210 L/s. There are no overflow provisions at this facility.

3.1.12 HC027: HOMESTEAD WASTEWATER PUMPING STATION

The Homestead Wastewater Pumping Station is located at 3359 Homestead Drive. It is a single-storey building with an adjacent subsurface wet well. The station collects wastewater in two wet wells and automatically pumps it to the Woodward Avenue WWTP. There are three sewage lift pumps (two duty, one standby) with a rated capacity of 91 L/s. There are no overflow provisions at this facility.

3.1.13 HC058: BINBROOK WASTEWATER PUMPING STATION

The Regional Road 56 Binbrook Wastewater Pumping Station is located at 3255 Regional Road 56 in Binbrook. The station is a single-storey building with an adjacent subsurface wet well. The station collects wastewater in a wet well and automatically pumps it to the Woodward Avenue WWTP. There are three sewage lift pumps (two duty, one standby) with a rated capacity of 257 L/s. The station is rated for an initial period peak flow of 231 L/s and an ultimate peak flow of 507 L/s. There is a wet weather valve between the two discharge forcemains. During high flow conditions (two pumps are running), the valve will open to allow sewage to flow through both forcemains. There are no overflow provisions at this facility. There is currently an ongoing pilot project to reduce/eliminate hydrogen sulphide odours in the downstream sewers through the addition of hydrogen peroxide as an oxidizing agent. It is the intention of Hamilton Water to maintain the pilot project until a permanent process can be implemented at the site.

3.1.14 REAL-TIME CONTROL FACILITIES

3.1.14.1 HCG03: Rosemary-Wentworth Regulator

The Rosemary-Wentworth (HCG03) regulator chamber is located underground on the northeast corner of Rosemary Street and Wentworth Street. It houses the isolation actuator and associated gate. The Rosemary-Wentworth regulator chamber directs dry weather flow to the Burlington-Hillyard area, where flows enter the Western Sanitary Interceptor North branch. The Rosemary-Wentworth (HCG03) monitoring chamber is located underground in the middle of the intersection of Rosemary Street and Wentworth Street. A water level meter was installed to monitor the upstream gate water level for overflow detection. The purpose of the Rosemary-Wentworth regulator site is to limit the surcharge of the Western Sanitary Interceptor and the peak flow at the Woodward Avenue WWTP. The regulator chamber houses the isolation sluice gate and electric actuator which, when closed, directs flow to the 2,440 mm by 2,540 mm combined sewer overflow north along Wentworth Street toward Hamilton Harbour. The Rosemary-Wentworth (HCG03) station isolation gate is controlled based on the Western Sanitary Interceptor North branch water level measurement at the Wellington-Burlington (HCG14) Western Sanitary Interceptor North branch monitoring chamber. The control building houses the electrical and communication equipment for the

operation of the Rosemary-Wentworth (HCG03) Real-Time Control Station. It is located at the southeast corner of Rosemary Street and Wentworth Street.

3.1.14.2 HCG07: Ferguson-Ferrie Regulator

The Ferguson-Ferrie Wastewater Regulator (HCG07) is located at the intersection of Ferguson Street and Ferrie Street, where the local collector sewer crosses the Western Sanitary Interceptor South branch. The purpose of the Ferguson-Ferrie regulator site is to limit the surcharge of the Western Sanitary Interceptor and the peak flow at the Woodward Avenue WWTP. The Ferguson-Ferrie regulator chamber is equipped with an isolation slide gate to limit the surcharge of the flow being conveyed to the Western Sanitary Interceptor South branch. The gate is operated based on level measurements on the receiving Western Sanitary Interceptor South branch provided by the Mary-Ferrie (HCG08) station. The Ferguson-Ferrie station consists of a main control panel that houses the programmable automation controller panel and the isolation gate local control panel for the operation of the Ferguson-Ferrie (HCG07) station. It is located at the northeast corner of Ferguson Street and Ferrie Street. The Mary-Ferrie (HCG08) control building houses the electrical and communication equipment for the operation of the Ferguson-Ferrie (HCG07) station. It is located at the northwest corner of Mary Street and Ferrie Street. A duct bank from Mary-Ferrie (HCG08) along Ferrie Street relays power and communications to the Ferguson-Ferrie (HCG07) control panel near the gate regulator chamber.

3.1.14.3 HCG08: Mary-Ferrie Regulator

The Mary-Ferrie Wastewater Regulator is located at the intersection of Mary Street and Ferrie Street where the local collector sewer crosses the Western Sanitary Interceptor South branch. The purpose of the Mary-Ferrie regulator site is to maximize the interception capacity available in the Western Sanitary Interceptor South branch during small to medium-sized rain events by intercepting the sub-catchment flows into the Western Sanitary Interceptor South branch without exceeding downstream conveyance capacity and preventing backflows from the interceptor into the local collection system. To control the flow to the Western Sanitary Interceptor South branch, the Mary-Ferrie regulator chamber is equipped with a modulation slide gate and backup isolation slide gate. The gates are operated based on level measurements on the receiving Western Sanitary Interceptor South branch and based on level monitoring within the regulator chamber. The station consists of a single-storey control building with a subsurface regulator chamber located at the intersection of Mary Street and Ferrie Street. The control building houses the electrical, control and communication equipment. Two slide gates with associated actuators are housed in the regulator chamber. The isolation gate facilitates the maintenance of the modulation gate and provides a redundant backup if necessary. The modulation gate controls the site's flow.

3.1.14.4 HCG09: Main-Ewen Regulator

The Main-Ewen Regular is located at the intersection of Main Street West and Ewen Road. This site consists of a manual sluice gate and crest weir. During storm or wet weather events that may exceed the treatment capacity of the Woodward Avenue WWTP, excess wastewater overflowing the weir is diverted to the McMaster Combined Sewage Overflow.

3.1.14.5 HCG14: Wellington-Burlington Regulator

The Wellington-Burlington Wastewater Regulator is located at the intersection of Wellington Street North and Burlington Street East, where the Wellington Combined Sewer Overflow Outfall Sewer crosses the Western Sanitary Interceptor North branch. The Wellington Combined Sewer Overflow Outfall Sewer runs south to north along Wellington Street, where combined overflows from the numerous regulators along Wellington Street are conveyed north to Hamilton Harbour. The purpose of the Wellington-Burlington regulator is to reduce the volume of combined sewer overflows to Hamilton Harbour by capturing combined sewage from the Wellington Combined Sewer Overflow Outfall Sewer and conveying it to the Western Sanitary Interceptor North branch when capacity is available. The regulator chamber has modulation and backup isolation slide gates to control the flow being conveyed to the Western Sanitary Interceptor North branch. The gates are operated based on level measurements on the receiving Western Sanitary Interceptor North branch, level measurements within the combined sewer overflow outfall sewer, and level monitoring within the regulator itself. The station consists of a single-storey control building with a subsurface regulator chamber. The control building houses the electrical, control and communications equipment. Two slide gates with associated actuators are housed in the chamber. The isolation gate facilitates the maintenance of the modulation gate and provides a redundant backup if necessary. The modulation gate controls the site's flow. Two flap gates are also located just downstream of the flow diversion channel to the regulator preventing the receiving lake from backflowing into the regulator.

3.1.14.6 HCG26: Glen Road Regulator and Glen-Tope Overflow Chamber

The Glen Road Regulation Chamber is located on the east side of Glen Road, between Macklin Street North and Tope Crescent in Hamilton. The station itself consists of an outside control cabinet with two adjacent underground chambers: the Glen-Road / Main King #1 regulation chamber and the Glen-Tope overflow chamber. The Glen Road station is a regulation chamber with a 1.7 m wide by 1.0 m high modulating sluice gate. The flows from the Cootes Paradise Area (from the HCG27 Sterling Weir Chamber) are routed through the Glen Road chamber, where the gate position is controlled so the flows are routed to the Glen-Tope overflow chamber without overflowing, and then to the Woodward Avenue WWTP. At Glen Road, when the chamber level reaches an elevation of 87.65 m, the excess flows are discharged in the Main/King CSO Tank. The overflow structure consists of a 3-stop log wall. Three other spare stop logs are stored in the chamber (storage rack) for future use. At Glen-Tope, when the level reaches an elevation of 81.00 m, the excess flows are discharged to the Glen Road combined sewer overflow site. The programmable automation controller panel controls the gate to minimize overflows at Glen-Tope and then minimize the overflows to the Main/King CSO Tank.

3.1.14.7 HCG27 Sterling Weir Chamber

The Sterling Weir Chamber consists of an overflow chamber equipped with two bending weirs. A bending weir consists of a structural frame fixed to an overflow weir wall, a pivoting flap, and a counterweight structure. The bending weir mechanism is entirely passive and does not require any external energy for operation. The fixed

counterweights act directly against the bending weir flap to maintain a constant upstream water level for all overflows varying from zero to the design flow. The opening of each bending weir is monitored by an inclinometer and transmitted to the programmable automation controller. A programmed angle/flow relation provides an overflow measurement.

The flows from the Main/Ewen chamber, the McMaster CSO tank and the Dundas Diversion tank are routed through the Sterling Chamber to the Glen-Road Chamber and from there to the Woodward WWTP. The flows in excess are discharged to Cootes Paradise via the Sterling Canal.

The overflow level is not reached in dry weather and during small wet weather events. Therefore, the bending weirs are closed, and all the incoming flow is routed to the downstream Glen Road Regulator.

During major wet weather events, the chamber level rises. When the overflow level is reached, the weight of the water exceeds the force exerted by the counterweights, and the bending weirs open. The upstream level is maintained at the overflow level. The installation is set for an initial control of the upstream water level at elevation 94 m.

3.2 COMPLIANCE APPROVALS

Facility	ECA Number	Issue Date
HCS01/HCS06: Greenhill Combined Sewer Overflow Tanks	6240-8YAJ3G	September 19, 2012
HCS02: Strachan Combined Sewer Overflow Tank	0706-5UHHVC	February 4, 2004
HCS03: James Combined Sewer Overflow Tank	3-1194-92-006	October 16, 1992
HCS04: Main/King Combined Sewer Overflow Tank	3-1455-94-956	January 6, 1995
HCS05: Eastwood Combined Sewer Overflow Tank	3-1686-95-966	February 8, 1996
HCS07: Red Hill Superpipe	7667-5W4LBK	April 23, 2004
HCS08: Royal Combined Sewer Overflow Tank	5975-6ADPCK	May 31, 2005
HCS09: McMaster Combined Sewer Overflow Tank	7422-7K9GZE	November 14, 2008

Facility	ECA Number	Issue Date
HC011: Calvin Street	0185-CMXL2M	March 29, 2023
HC018: Twenty Road Wastewater Pumping Station	6048-BS9KV5	March 23, 2021
HC019: English Church Wastewater Pumping Station	8318-BSCP8D	September 11, 2020
HC027: Homestead Wastewater Pumping Station	2627-BSEQB2	September 11, 2020
HC058: Binbrook Wastewater Pumping Station	4299-B75MSK	February 7, 2019
HCG03, HCG07, HCG08, HCG09, HCG14, HCG26 and HCG27: Real-Time Control Facilities	5433-CJ7JMB	April 5, 2023

3.2.1 SEWAGE CONSOLIDATED LINEAR INFRASTRUCTURE ENVIRONMENTAL COMPLIANCE APPROVAL

The application for a Sewage CLI ECA was submitted as per the deadline on January 21, 2021. The City of Hamilton received drafts of the CLI ECA from MECP in 2023 and had in-person meetings in Q1 and Q3 2024, as well as multiple virtual meetings in Q4 2024 with the Ministry to discuss on Hamilton-specific conditions in the Sewage CLI ECA.

The City of Hamilton and the Ministry of the Environment, Conservation and Parks continue to work towards a finalized Sewage CLI ECA.

3.2.2 NOTICE OF MODIFICATION

No Notices of Modification were submitted in 2024 for any of the above facilities.

3.2.3 MONITORING AND ANALYTICAL DATA

The Table '2024 Overflow Events' below summarizes the overflows from each of the reported facilities in 2024, and the table 'Historical Overflow Events' compares the 2024 overflows to previous years. It should be noted that 2023 represents the first year that the real-time control structures (HCG03, HCG07, HCG08 and HCG14) are required to be included in this report, and they account for the majority of overflow events reported since that time. Analytical results of samples collected during storm events can be found in Appendix F, titled 'CSO Tank Analytical Data.'

2024 Overflow Events Table

Facility	Number of Overflow Events	Total Duration (Hours)	Total Volume (ML)
HCS01: Greenhill CSO Tank	7	108.2	600.754
HCS02: Strachan CSO Tank	0	0.0	0
HCS03: James CSO Tank	0	0.0	0
HCS04: Main/King CSO Tank	8	62.0	178.174
HCS05: Eastwood CSO Tank	2	55.8	220.741
HCS07: Red Hill Superpipe	0	0.0	0
HCS08: Royal CSO Tank	5	67.7	80.707
HCS09: McMaster CSO Tank	0	0.0	0
HCG03: Rosemary - Wentworth Regulator*	61	170.9	n/a
HCG07: Ferguson-Ferrie Regulator	0	0.0	0
HCG08: Mary-Ferrie Regulator	0	0.0	0
HCG14: Wellington-Burlington Regulator	25	29.3	n/a
All facilities	108	493.85	1,080.376

* Overflows due to the height of the upstream static weir and not due to the operation of the control gate. Historical Overflow Events Table

Year	Number of Overflow Events	Total Duration (Hours)	Total Volume (ML)
2019	23	382.53	1219.65
2020	13	261.03	963.04
2021	27	406.00	1639.60
2022	10	158.00	699.70
2023	124	661.17	1300.83
2024	108	493.85	1080.38
5-year average	39	373.75	1164.56

A review of the historical trend of the sewage characteristics and flow rates is required per ECA 5433-CJ7JMB for RTC Phase I & II sites. However, as this amended ECA was issued in April 2023 and Phase II sites were commissioned in 2024, no historical data is currently available.

3.2.4 MAINTENANCE OF MAJOR EQUIPMENT

City of Hamilton Plant Maintenance staff based at the Woodward Avenue WWTP carry out regular facilities maintenance. Typically, a computerized maintenance management system schedules and tracks routine and preventative maintenance. Larger or specialized maintenance activities are completed by third-party external contractors.

Significant maintenance activities completed at the wastewater pumping stations and combined sewer overflow facilities in 2024 are provided in Appendix B, titled 'Maintenance Activities.' Historically, the City of Hamilton provides a table summarizing major maintenance activities to the City's vertical infrastructure for a reporting year including expenditures. However, on February 25, 2024, the City of Hamilton experienced a cybersecurity incident that led to the loss of all computerized maintenance management systems and the loss of the ability to provide these expenditures.

3.2.5 EFFLUENT QUALITY ASSURANCE OR CONTROL MEASURES TAKEN

The City of Hamilton Environmental Laboratory, which is accredited by the Canadian Association for Laboratory Accreditation Incorporated, performs analytical tests to monitor required parameters. The WWTP's operation and performance are monitored by licensed operators and the facility's management team. Standard operating procedures, emergency plans, equipment preventative maintenance and a team of support staff help ensure a rapid and effective response to issues and maintain high-quality effluent.

The City of Hamilton's Wastewater Quality Management System (WWQMS) was fully

implemented and operational in 2021. The City of Hamilton's WWQMS was most recently endorsed by Council on March 29, 2023. The WWQMS was implemented to ensure the effective and efficient collection and treatment of wastewater in a manner that protects the environment, meets regulatory requirements and meets the City of Hamilton's commitment to operating and maintaining a high-quality wastewater system.

3.2.6 CALIBRATION AND MAINTENANCE OF MONITORING EQUIPMENT

Appendix C, titled 'Calibration and Maintenance of Monitoring Equipment' table titled 'Wastewater Collection Facilities Calibration and Maintenance of Monitoring Equipment', contains the calibration activities on the monitoring equipment during 2024.

3.2.7 OPERATING PROBLEMS AND CORRECTIVE ACTION

The wastewater collection facilities generally operated as designed in 2024, except for the issues noted below.

Wastewater Collection Facility	Operational Issues and Actions Taken
HC011: Calvin Street Wastewater Pumping Station	The pumps at HC011 were experiencing erratic operation and frequently pumping at low levels, causing them to airlock. In June 2024, a radar-level instrument was installed to address this issue. As a result, the pumps are now operating as designed.
HC018: Twenty Road Wastewater Pumping Station	On September 12th, the utility-owned transformer at this station was shorted, damaging the variable frequency drive on Pump #1, which will be repaired in 2025.
HCS08: Royal CSO Tank	In 2024, it was discovered that the overflow volume calculations at this location could be inaccurate. The City has engaged a consultant to investigate and recalculate overflow volumes using all available historical data.

3.2.8 SUMMARY OF COMPLAINTS

One complaint about the wastewater collection stations covered in <u>Section 3.1</u> was received in 2024.

On May 7, 2024, a resident reported sewage odours around the Greenhill Combined Sewer Overflow Facility (HCS06). It was explained that the tank had recently been utilized during a storm event and was emptied and washed on the day of the complaint. Plant Operations staff visiting the facility the following day detected only slight odours.

However, the cybersecurity incident in February 2024 compromised the City's ability to receive and report complaints, potentially preventing capturing all customer complaints for the 2024 reporting year. Hamilton Water informed the MECP of deficiencies encountered and provided interim solutions.

3.2.9 SUMMARY OF SPILLS AND ABNORMAL DISCHARGES

All discharge events at these facilities in 2024 were combined sewer overflow events caused by heavy precipitation during storm events.

3.2.10 OTHER INFORMATION REQUIRED BY THE MINISTRY OF THE ENVIRONMENT, CONSERVATION AND PARKS DISTRICT MANAGER

The District Manager requested no additional information for inclusion in this report.

3.2.11 OVERVIEW OF THE SUCCESS AND ADEQUACY OF THE WORKS AND EVALUATION OF THE NEED FOR MODIFICATIONS

These combined sewer overflow tank facilities and wastewater pumping stations are operating effectively as designed. Several facilities are undergoing upgrades and modifications to optimize system operations and maintain the facilities in a state of good repair.

3.2.11.1 Rosemary-Wentworth Regulator (HCG03) Overflow Weir Modification

It was determined that there is an opportunity to increase the overflow weir height at HCG03 to reduce overflows to the environment. Accordingly, a plan has been developed to raise the weir height by 45 cm. This work is pending approval of an amendment to the ECA for this facility, submitted Q2 2024.

3.2.11.2 Main/King Combined Sewer Overflow (HCS04) Rehabilitation

The Main/King Combined Sewer Overflow (HCS04) Rehabilitation Project was initiated to address Provincial Order 1-J25YB, Item 7, and implement select recommendations from the "CSO Facilities Engineering Feasibility Study" completed by Hatch on April 28, 2020. The primary focus was upgrading existing actuators with redundant gate position sensors. The project achieved substantial performance in August 2024.

3.2.11.3 Binbrook Odour Control Pilot Project

In previous years, high hydrogen sulphide (H₂S) levels were causing significant corrosion of new concrete sewers and odour concerns for residents living along Highway 56 and Highway 20. A pilot project with USP Technologies - Canada (USP) was approved in December 2020. USP's scope included the interim supply of chemicals, equipment, logistics, monitoring and program management of an odour and corrosion control system to mitigate high levels of hydrogen sulphide in the wastewater collection system. As a result of this success and the benefits to the City's assets, the City has decided to make the dosing system permanent. The design of the works will start in 2025, with construction to follow in 2026-2027.

3.2.11.4 Arc Flash Project

Arc flash mitigation measures across the Wastewater Collection Facilities were implemented in 2024 to improve electrical safety. The project involved updating electrical system labelling, conducting arc flash studies, and updating single-line drawings to ensure a safer working environment for staff.

3.2.12 SUMMARY OF EFFORTS MADE TO ACHIEVE CONFORMANCE WITH F-5-1 AND F-5-5

Hamilton Water has ongoing programs and has undertaken various projects to meet the Ministry's requirements for municipal combined sewer systems as per Procedure F-5-5, "Determination of Treatment Requirements for Municipal and Private Combined". For additional details, refer to <u>Subsection 1.3.13</u> of the Woodward Avenue WWTP report.

3.2.13 CHANGES OR UPDATES TO THE CONSTRUCTION SCHEDULE

The updated completion dates for the Real-Time Control Program – Phase II Sites are as follows:

Real-Time Control Program - Phase II: December 2024 (Original – October 2024)

4 APPENDICES

Appendix A - Woodward Avenue WWTP Operating Data Summary

Plant Flows

Month	Monthly Volume (ML)	Daily Average Flow (ML/d)	Daily Maximum Flow (ML/d)	Daily Minimum Flow (ML/d)	Peak Instantaneous Flow (ML/d)	# of days >409 (ML/d)	# of days >90(%) of 409 (ML/d)	Disinfected Volume (ML)
Jan	12,841.585	414.245	937.834	249.326	1,458.000	14	15	-
Feb	7,973.248	274.940	504.183	214.999	652.000	1	1	-
Mar	9,269.531	299.017	541.130	230.688	943.000	3	4	-
Apr	11,526.053	384.202	874.027	259.788	1,243.000	9	12	-
May	9,624.539	310.469	691.959	234.905	1,264.000	4	5	5,845
Jun	8,860.499	295.350	482.300	226.876	794.000	1	3	8,861
Jul	11,583.941	373.676	736.460	235.081	1,435.000	11	12	11,584
Aug	7,899.731	254.830	361.085	212.324	804.000	0	0	7,900
Sep	7,887.169	262.906	540.720	209.531	891.000	2	2	7,887
Oct	7,992.428	257.820	399.831	211.793	952.000	0	2	3,994
Nov	7,569.751	252.325	432.656	216.695	667.000	1	1	-
Dec	9,125.180	294.361	715.961	219.274	1,160.000	3	3	-
Total	112,153.655	-	-	-	12,263.000	49	60	46,070.05
Avg	9,346.138	306.178	601.512	226.773	1,021.917	4	5	7,678.34
Max	12,841.585	414.245	937.834	259.788	1,458.000	14	15	11,583.94
Min	7,569.751	252.325	361.085	209.531	652.000	0	0	3,994.18

Plant Bypassing

Plai	nt Bypass (Raw Ove	rflow)	Primary/ (Prelimina	Headworł Iry Effluen	ks Bypass at Overflow)		condary By ry Effluent		Te	rtiary Byp	bass	Proportion of Plant Flow
Month	# of Events	Hours	Volume (ML)	# of Events	Hours	Volume (ML)	# of Events	Hours	Volume (ML)	# of Events	Hours	Volume (ML)	%
Jan	0	0.00	0.00	1	3.47	24.24	4	92.71	732.89	-	-	-	5.90
Feb	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	-	-	-	0.00
Mar	0	0.00	0.00	0	0.00	0.00	1	4.87	35.49	-	-	-	0.38
Apr	0	0.00	0.00	0	0.00	0.00	1	51.19	437.98	-	-	-	3.80
May	0	0.00	0.00	0	0.00	0.00	2	20.03	155.24	-	-	-	1.61
Jun	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	-	-	-	0.00
Jul	0	0.00	0.00	0	0.00	0.00	4	70.16	553.30	-	-	-	4.78
Aug	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	-	-	-	0.00
Sep	0	0.00	0.00	0	0.00	0.00	2	6.35	33.26	-	-	-	0.42
Oct	0	0.00	0.00	0	0.00	0.00	1	3.43	31.00	-	-	-	0.39
Nov	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	1	0.18	16.06	0.21
Dec	0	0.00	0.00	0	0.00	0.00	1	35.87	353.22	1	21.00	80.63	4.75
.	•						10						
Total	0	0.00	0.00	1	3.47	24.24	16	284.61	2,332.36	2	21.18	96.69	22.24
Avg	0	0.00	0.00	0	0.29	2.02	1	23.72	194.36	1	10.59	48.35	1.85
Max	0	0.00	0.00	1	3.47	24.24	4	92.71	732.89	1	21.00	80.63	5.90
Min	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	1	0.18	16.06	0.00

Raw Influent Concentrations

Month	TSS (mg/L)	tBOD (mg/L)	cBOD (mg/L)	TP (mg/L)	SP (mg/L)	NH₃ (mg/L)	TKN (mg/L)	Temp (C)	Alkalinity (mg/L)	pH Grab
Jan	343.84	203.08	170.81	4.78	1.07	18.07	29.47	14.40	245.23	7.82
Feb	679.64	230.78	203.50	6.44	1.29	23.59	34.97	15.23	273.50	7.78
Mar	476.94	243.45	206.02	8.27	1.31	22.91	40.74	15.12	268.24	7.78
Apr	644.20	257.85	214.63	9.00	1.04	17.84	40.29	15.53	262.50	7.68
May	506.18	237.18	208.61	7.56	1.25	21.67	40.04	18.46	265.60	7.63
Jun	612.75	240.07	195.72	8.96	1.05	22.44	41.09	20.40	254.68	7.60
Jul	416.37	216.26	163.15	6.56	1.16	18.77	33.81	22.19	239.76	7.56
Aug	415.97	242.32	196.63	6.50	1.69	23.93	39.71	23.65	266.42	7.58
Sep	475.28	241.72	207.72	7.09	1.53	24.10	40.50	23.61	259.22	7.55
Oct	454.76	239.89	203.63	7.95	1.45	24.71	42.26	22.49	272.97	7.66
Nov	460.00	229.78	193.82	7.96	1.50	25.41	42.28	20.47	279.27	7.55
Dec	502.32	294.72	209.98	7.59	1.44	23.85	42.66	17.58	274.72	7.60
Avg	499.02	239.76	197.85	7.39	1.32	22.28	38.99	19.09	263.51	7.65
Max	679.64	294.72	214.63	9.00	1.69	25.41	42.66	23.65	279.27	7.82
Min	343.84	203.08	163.15	4.78	1.04	17.84	29.47	14.40	239.76	7.55

Raw Influent - Daily Loadings

Month	TSS (kg/d)	tBOD (kg/d)	cBOD (kg/d)	TP (kg/d)	SP (kg/d)	NH₃ (kg/d)	TKN (kg/d)
Jan	134,508	77,551	63,542	1,822	372	6,531	10,909
Feb	190,720	62,518	55,369	1,764	343	6,313	9,399
Mar	139,633	71,610	60,001	2,421	376	6,607	11,841
Apr	241,644	95,157	78,320	3,332	362	6,280	14,344
May	163,761	72,254	63,093	2,312	352	6,258	11,901
Jun	177,680	69,829	56,511	2,564	297	6,483	11,869
Jul	143,444	72,461	53,776	2,133	365	6,117	11,186
Aug	106,728	61,391	49,618	1,645	420	5,954	9,968
Sep	123,822	61,516	52,723	1,811	373	6,038	10,255
Oct	116,461	61,119	51,994	2,023	362	6,208	10,676
Nov	116,152	57,745	48,503	1,993	369	6,265	10,521
Dec	146,186	83,674	59,412	2,186	386	6,583	11,982
Avg	150,062	70,569	57,738	2,167	365	6,303	11,238
Мах	241,644	95,157	78,320	3,332	420	6,607	14,344
Min	106,728	57,745	48,503	1,645	297	5,954	9,399

North Primary Effluent

Month	TSS (mg/L)	cBOD (mg/L)	NH₃ (mg/L)	TKN (mg/L)	TP (mg/L)	SP (mg/L)
Jan	93.27	69.74	17.87	23.15	2.24	0.22
Feb	92.33	69.93	23.05	28.51	2.26	0.21
Mar	97.71	78.68	21.77	29.94	2.70	0.30
Apr	107.56	60.93	17.30	26.36	2.39	0.15
May	105.54	70.65	21.04	29.14	2.49	0.13
Jun	104.07	72.37	21.42	27.69	2.43	0.14
Jul	90.85	57.77	18.00	23.77	2.13	0.15
Aug	70.98	70.87	22.08	28.25	2.06	0.14
Sep	74.78	77.87	24.16	29.90	2.17	0.15
Oct	101.12	82.58	24.70	31.70	2.69	0.20
Nov	96.43	79.23	25.89	31.33	2.62	0.23
Dec	95.37	79.68	23.45	31.35	2.65	0.24
Avg	94.17	72.52	21.73	28.42	2.40	0.19
Max	107.56	82.58	25.89	31.70	2.70	0.30
Min	70.98	57.77	17.30	23.15	2.06	0.13

South Primary Effluent

Month	TSS (mg/L)	cBOD (mg/L)	NH₃ (mg/L)	TKN (mg/L)	TP (mg/L)	SP (mg/L)
Jan	76.06	60.32	18.07	22.47	1.92	0.19
Feb	85.08	68.34	23.28	28.65	2.17	0.17
Mar	72.95	74.26	22.25	29.14	2.28	0.26
Apr	95.25	55.43	17.19	25.20	2.20	0.14
May	98.00	66.87	21.27	29.14	2.34	0.11
Jun	96.10	67.53	21.40	27.50	2.28	0.11
Jul	78.89	51.73	18.33	23.59	1.97	0.14
Aug	65.36	68.00	22.19	28.48	1.94	0.13
Sep	70.65	75.00	24.16	29.45	2.08	0.12
Oct	101.35	81.94	24.65	31.10	2.74	0.19
Nov	92.53	78.37	25.79	30.06	2.59	0.21
Dec	90.13	77.87	23.10	31.15	2.57	0.23
Avg	85.20	68.81	21.81	28.00	2.26	0.17
Max	101.35	81.94	25.79	31.15	2.74	0.26
Min	65.36	51.73	17.19	22.47	1.92	0.11

Primary Treatment Summary

Month	TSS Reduction (%)	cBOD Reduction (%)	TP Reduction (%)
Jan	72	61	52
Feb	85	66	61
Mar	81	63	69
Apr	83	72	76
May	79	67	69
Jun	81	64	71
Jul	78	66	67
Aug	81	64	68
Sep	84	63	71
Oct	77	59	67
Nov	79	59	66
Dec	80	61	64
Avg	80	64	67
Мах	85	72	76
Min	72	59	52

Aeration North Summary

Month	North Flow (ML/day)	MLSS (mg/L)	MLVSS (mg/L)	SRT (days)	HRT (hrs)
Jan	235	2,782	2,036	10	8
Feb	166	2,489	1,847	12	10
Mar	178	2,483	1,877	8	10
Apr	221	2,466	1,813	6	8
May	183	2,233	1,630	6	10
Jun	177	2,216	1,566	7	10
Jul	212	2,086	1,402	8	9
Aug	153	2,175	1,539	13	11
Sep	157	1,918	1,393	8	11
Oct	154	2,133	1,548	8	11
Nov	151	1,974	1,465	8	11
Dec	171	2,286	1,717	9	10
Avg	180	2,270	1,653	9	10
Max	235	2,782	2,036	13	11
Min	151	1,918	1,393	6	8

Aeration South Summary

Month	South Flow (ML/day)	MLSS (mg/L)	MLVSS (mg/L)	SRT (days)	HRT (hrs)
Jan	159	2,138	1,551	8	7
Feb	111	1,837	1,374	8	9
Mar	122	1,904	1,464	9	9
Apr	150	2,264	1,672	7	7
May	120	1,762	1,289	7	9
Jun	110	1,758	1,237	7	9
Jul	144	1,426	965	11	8
Aug	107	1,959	1,371	21	9
Sep	105	1,902	1,358	14	10
Oct	90	1,947	1,382	9	11
Nov	84	1,966	1,425	11	12
Dec	104	2,001	1,470	9	11
Avg	117	1,905	1,380	10	9
Max	159	2,264	1,672	21	12
Min	84	1,426	965	7	7

RAS TSS

Month	North TSS (mg/L)	South TSS (mg/L)		
Jan	7,188	5,285		
Feb	6,477	4,229		
Mar	6,785	4,370		
Apr	7,294	5,847		
May	6,125	4,150		
Jun	5,757	3,898		
Jul	5,867	3,603		
Aug	5,401	4,368		
Sep	5,786	4,085		
Oct	5,882	4,258		
Nov	5,001	4,441		
Dec	5,624	6,075		
Avg	6,099	4,551		
Max	7,294	6,075		
Min	5,001	3,603		

Secondary Effluent Concentration Average

Month	cBOD (mg/L)	TSS (mg/L)	SP (mg/L)	TP (mg/L)	NH₃ (mg/L)	TKN (mg/L)	NO ₃ (mg/L)	NO2 (mg/L)	Alkalinity (mg/L)	pH (Composite)
Jan	9.15	26.56	-	0.545	0.16	2.50	17.23	0.51	116.65	7.41
Feb	10.92	29.27	0.166	0.628	0.17	2.50	21.68	0.32	103.37	7.45
Mar	5.65	17.11	0.263	0.503	0.26	1.63	21.68	0.22	107.46	7.46
Apr	12.95	45.04	0.199	0.871	0.32	4.53	18.25	0.13	125.01	7.47
May	17.39	48.59	0.211	0.916	0.25	4.65	17.29	0.14	107.60	7.42
Jun	12.47	36.67	0.137	0.685	0.25	3.80	15.81	0.18	110.40	7.64
Jul	10.35	32.26	0.162	0.641	0.46	3.25	15.20	0.19	108.06	7.67
Aug	7.23	17.71	0.191	0.479	0.42	2.33	16.35	0.17	106.25	7.70
Sep	5.93	17.35	0.138	0.454	0.26	2.23	17.28	0.13	88.21	7.58
Oct	10.54	29.56	0.150	0.646	0.65	3.73	16.38	0.12	109.71	7.62
Nov	8.57	25.36	0.183	0.616	0.71	3.06	18.17	0.12	107.27	7.57
Dec	10.00	29.61	0.186	0.724	0.47	3.80	18.78	0.13	107.10	7.50
Avg	10.09	29.59	0.180	0.642	0.37	3.17	17.84	0.20	108.09	7.54
Max	17.39	48.59	0.263	0.916	0.71	4.65	21.68	0.51	125.01	7.70
Min	5.65	17.11	0.137	0.454	0.16	1.63	15.20	0.12	88.21	7.41

Secondary Effluent Loadings

Month	cBOD (kg/d)	TSS (kg/d)	SP (kg/d)	TP (kg/d)	NH₃ (kg/d)	TKN (kg/d)	NO₃ (kg/d)	NO2 (kg/d)	Alkalinity (kg/d)
Jan	2,151	6,488		126	33	589	3,809	109	27,086
Feb	1,775	4,734	28	104	31	402	3,589	55	17,539
Mar	999	3,035	45	88	47	287	3,661	37	18,441
Apr	2,785	10,023	42	189	62	968	3,903	28	27,194
May	3,179	8,861	35	166	46	843	2,979	25	19,676
Jun	2,246	6,717	24	125	44	696	2,775	32	19,671
Jul	2,234	7,076	31	137	78	688	3,091	40	24,305
Aug	1,097	2,752	29	73	62	355	2,383	25	15,398
Sep	986	2,943	20	72	43	360	2,570	20	13,549
Oct	1,674	4,667	22	100	96	582	2,591	19	17,038
Nov	1,306	3,883	27	94	105	465	2,788	19	16,360
Dec	1,709	5,126	29	123	75	644	3,178	23	18,400
Avg	1,845	5,526	30	116	60	573	3,110	36	19,555
Max	3,179	10,023	45	189	105	968	3,903	109	27,194
Min	986	2,752	20	72	31	287	2,383	19	13,549

Secondary Effluent Removals

Month	TSS (%)	cBOD (%)	TP (%)
Jan	91	94	86
Feb	95	95	89
Mar	96	97	94
Apr	92	93	90
May	90	91	88
Jun	93	94	92
Jul	92	93	89
Aug	95	96	92
Sep	96	97	94
Oct	93	95	92
Nov	94	96	92
Dec	94	95	90
Avg	94	95	91
Max	96	97	94
Min	90	91	86

Final Effluent Concentrations

Month	TSS (mg/L)	cBOD (mg/L)	TP (mg/L)	SP (mg/L)	Unionized NH3 (ug/L)	NH₃ (mg/L)	TKN (mg/L)	NO₃ (mg/L)	NO2 (mg/L)	Alkalinity (mg/L)	Temp (°C)	pH (Grab)	E. coli (MPN/ 100ml)
Jan	5.05	2.73	0.176	0.034	0.84	0.27	0.87	17.52	0.28	111.89	15.36	7.05	-
*Feb	7.81	3.29	0.253	0.067	0.80	0.20	1.22	22.79	0.19	97.75	15.96	7.05	-
*Mar	4.84	3.15	0.326	0.157	0.38	0.31	1.24	22.47	0.15	103.39	15.43	6.90	-
Apr	6.18	2.79	0.224	0.045	0.63	0.55	1.60	18.20	0.12	122.98	15.49	7.00	-
Мау	5.64	3.30	0.226	0.048	1.14	0.39	1.41	19.26	0.10	100.27	18.06	7.04	5.00
Jun	4.63	3.34	0.185	0.043	1.73	0.44	1.32	17.92	0.10	97.02	20.06	7.05	1.00
Jul	4.59	2.57	0.197	0.052	4.44	0.69	1.45	16.49	0.12	98.77	22.29	7.07	2.00
Aug	3.19	2.45	0.181	0.067	4.03	0.59	1.49	17.81	0.12	94.25	21.79	7.21	1.00
Sep	5.17	2.31	0.170	0.046	1.89	0.46	1.30	19.24	0.10	78.05	21.26	7.00	1.00
Oct	5.43	2.63	0.185	0.046	5.47	0.99	1.94	18.37	0.11	101.35	21.07	7.11	1.00
Nov	5.17	2.52	0.190	0.045	2.79	1.07	1.91	19.54	0.15	102.71	17.55	7.10	-
Dec	4.45	2.43	0.204	0.051	5.11	0.88	1.99	19.80	0.14	99.70	15.00	7.04	-
Avg	5.18	2.79	0.210	0.058	2.44	0.57	1.48	19.12	0.14	100.68	18.28	7.05	1.83
Max	7.81	3.34	0.326	0.157	5.47	1.07	1.99	22.79	0.28	122.98	22.29	7.21	5.00
Min	3.19	2.31	0.170	0.034	0.38	0.20	0.87	16.49	0.10	78.05	15.00	6.90	1.00

* Indicates months impacted by planned Tertiary Bypass

Final Effluent Loadings

Month	TSS (kg/d)	cBOD (kg/d)	TP (kg/d)	SP (kg/d)	Unionized NH₃ (kg/d)	NH₃ (kg/d)	TKN (kg/d)	NO₃ (kg/d)	NO2 (kg/d)	Alkalinity (kg/d)
Jan	2,182.88	1,103.45	69.89	12.65	0.35	91.41	334.21	6,689.36	107.77	46,126.48
*Feb	2,172.98	908.55	70.96	19.74	0.24	55.73	336.97	6,182.08	55.73	27,360.11
*Mar	1,462.31	986.32	92.47	43.21	0.11	96.14	373.74	6,551.90	45.69	30,811.17
Apr	2,346.59	1,051.79	83.12	15.54	0.21	183.48	576.34	6,682.59	44.81	46,266.60
May	1,783.17	1,013.56	67.69	13.64	0.32	107.08	415.19	5,668.82	31.31	31,166.59
Jun	1,440.02	1,044.97	55.94	12.39	0.46	136.34	398.43	5,245.36	29.94	28,796.84
Jul	1,874.30	954.88	72.00	16.75	1.96	214.48	512.95	5,852.35	47.37	38,775.18
Aug	834.59	622.67	46.06	16.51	0.93	146.53	376.10	4,442.52	29.38	23,537.69
Sep	1,462.02	641.28	44.41	11.06	0.66	122.42	343.72	4,809.46	26.23	20,343.59
Oct	1,448.36	694.68	47.86	11.33	1.53	247.30	495.89	4,750.16	29.07	25,842.43
Nov	1,329.00	639.44	47.98	11.09	0.72	264.07	476.33	4,864.82	38.92	25,583.82
Dec	1,507.70	746.57	59.43	13.58	1.25	236.58	596.21	5,779.11	41.60	30,104.96
Avg	1,653.66	867.35	63.15	16.46	0.73	158.46	436.34	5,626.54	43.99	31,226.29
Max	2,346.59	1,103.45	92.47	43.21	1.96	264.07	596.21	6,689.36	107.77	46,266.60
Min	834.59	622.67	44.41	11.06	0.11	55.73	334.21	4,442.52	26.23	20,343.59

* Indicates months impacted by planned Tertiary Bypass

Final Effluent Removals

Month	TSS (%)	cBOD (%)	TP (%)
Jan	98	98	96
Feb	99	98	96
Mar	99	98	96
Apr	99	99	97
May	99	98	97
Jun	99	98	98
Jul	99	98	97
Aug	99	99	97
Sep	99	99	97
Oct	99	99	98
Nov	99	99	98
Dec	99	99	97
Avg	99	99	97
Мах	99	99	98
Min	98	98	96

Raw Sludge

Month	Total RS to TSB (m ³)	TS (%)	VS (%)
Jan	40,692	3.70	69.68
Feb	39,797	3.70	66.26
Mar	41,907	4.10	68.39
Apr	40,688	4.29	66.05
May	39,383	3.76	67.41
Jun	39,968	3.81	61.73
Jul	37,526	4.08	61.33
Aug	33,938	3.28	68.76
Sep	35,834	3.28	67.51
Oct	39,730	3.24	67.88
Nov	36,419	3.33	72.24
Dec	36,655	2.94	72.92
Total	462,537	-	-
Avg	38,545	3.63	67.51
Max	41,907	4.29	72.92
Min	Min 33,938		61.33

Thickened Raw Sludge

Month	TRS Total (m ³)	Total TRS dry solids (t)	TRS TS (%)	TRS VS (%)
Jan	22,909	1,605	6.96	71.44
Feb	24,797	1,744	7.01	68.70
Mar	35,118	2,194	6.32	68.32
Apr	35,197	2,388	6.81	67.03
May	29,099	1,943	6.75	68.75
Jun	30,363	2,022	6.72	62.52
Jul	28,496	1,911	6.74	61.28
Aug	25,925	1,742	6.84	69.76
Sep	24,590	1,671	6.89	68.41
Oct	23,374	1,578	6.78	69.24
Nov	26,995	1,647	6.27	72.74
Dec	24,129	1,638	6.79	75.96
Total	330,990	22,083	-	-
Avg	27,583	1,840	6.74	68.68
Мах	35,197	2,388	7.01	75.96
Min	22,909	1,578	6.27	61.28

Thickened Waste Activated Sludge

Month	TWAS Total (m ³)	TWAS TS (%)	TWAS VS (%)	TWAS Dry Solids (t)
Jan	17,923	5.40	73.44	13,162
Feb	12,922	4.78	73.48	9,495
Mar	22,157	5.03	74.68	16,546
Apr	19,194	4.70	72.62	13,939
May	15,878	4.63	71.25	11,313
Jun	18,834	4.45	67.70	12,750
Jul	14,505	4.28	65.32	9,475
Aug	11,684	4.13	67.63	7,902
Sep	14,522	4.05	69.95	10,158
Oct	20,877	4.68	70.16	14,647
Nov	22,182	4.17	72.10	15,993
Dec	15,787	5.38	73.16	11,550
Total	206,465	-	-	146,930
Avg	17,205	4.64	70.96	12,244
Max	22,182	5.40	74.68	16,546
Min	11,684	4.05	65.32	7,902

Primary Digesters

Month	Total Feed (m ³)	Primary Retention Time (Avg. d)	TS (%)	VS (%)
Jan	40,832	12.44	3.28	56.86
Feb	37,719	12.16	3.89	55.45
Mar	57,275	8.44	3.59	58.13
Apr	54,391	8.56	3.44	57.66
May	44,977	10.76	3.44	56.76
Jun	49,197	9.61	3.68	52.70
Jul	43,001	11.35	3.83	49.70
Aug	37,609	12.92	3.30	49.36
Sep	39,112	12.40	3.18	54.96
Oct	44,251	10.93	3.42	56.00
Nov	49,176	9.64	2.96	57.43
Dec	39,916	13.22	2.91	58.88
Total	537,455	-	-	-
Avg	44,788	11.04	3.41	55.32
Max	57,275	13.22	3.89	58.88
Min	37,609	8.44	2.91	49.36

Secondary Digesters

Month	Secondary TS (%)	Secondary VS (%)	VS Reduction #3 SD (%)
Jan	3.02	55.32	54.34
Feb	3.78	55.15	51.72
Mar	3.58	58.15	43.44
Apr	3.70	57.74	42.41
May	3.40	56.70	44.78
Jun	3.63	53.23	35.74
Jul	3.52	49.74	46.20
Aug	2.93	49.13	53.89
Sep	3.13	55.10	44.55
Oct	3.22	56.44	45.02
Nov	2.98	57.70	50.08
Dec	2.84	58.86	48.55
Avg	3.31	55.27	46.73
Мах	3.78	58.86	54.34
Min	2.84	49.13	35.74

Biogas Production

Month	Biogas (m³/day)	Cogen Total (m³/day)	BPU Total (m ³ /day)	Waste Gas Total (m³/day)
Jan	629,016	245,862	102,589	280,565
Feb	601,191	294,166	134,009	173,016
Mar	573,494	296,237	203,769	73,488
Apr	589,261	266,260	128,567	194,435
May	658,856	304,408	6,042	348,406
Jun	497,493	207,949	12,025	277,518
Jul	565,519	336,986	5,154	223,379
Aug	546,982	318,481	17,692	210,810
Sep	511,718	300,818	2,584	208,316
Oct	551,873	292,578	1,816	257,479
Nov	586,264	290,215	136	295,913
Dec	669,214	327,201	11,312	330,701
Total	6,980,880	3,481,159	625,694	2,874,027
Avg	581,740	290,097	52,141	239,502
Max	669,214	336,986	203,769	348,406
Min	497,493	207,949	136	73,488

Biosolids to Synagro

Month	Sludge Cake (t)	Cake Solids (%)
Jan	4,611	26.18
Feb	4,778	26.10
Mar	5,694	25.48
Apr	4,750	27.18
May	4,520	27.36
Jun	5,228	26.64
Jul	5,093	29.70
Aug	4,322	29.72
Sep	4,161	26.65
Oct	5,642	24.29
Nov	4,510	25.80
Dec	4,109	25.38
Total	57,418	-
Avg	4,785	26.71
Max	5,694	29.72
Min	4,109	24.29

Chlorination/Dechlorination

		Dechlo	orination		
Month	Chlorine Used (kg)	Chlorine Dosage (mg/L)	Disinfection Total Chlorine Residual (mg/L)	SBS Used (L)	Total Residual Chlorine (mg/L)
Jan	-	-	-	0	-
Feb	-	-	-	20	-
Mar	-	-	_	6	-
Apr	-	-	-	186	-
May	8,435	1.31	0.46	32,620	0.02
Jun	11,453	1.29	0.44	31,081	0.01
Jul	21,472	1.80	0.44	74,204	0.01
Aug	11,905	1.50	0.50	34,815	0.01
Sep	12,538	1.60	0.50	46,663	0.01
Oct	5,436	1.36	0.47	21,045	0.01
Nov	-	-	-	0	-
Dec	-	-	-	1	-
Total	71,239	-	-	240,640	-
Avg	11,873	1.48	0.47	20,053	0.01
Max	21,472	1.80	0.50	74,204	0.02
Min	5,436	1.29	0.44	0	0.01

Ferric Sulphate

Month	Dosage as Iron (mg/L)	Total Consumption (L)
Jan	7.04	425,387
Feb	7.67	300,231
Mar	6.35	299,848
Apr	6.99	386,973
May	9.24	428,070
Jun	8.47	379,086
Jul	7.68	428,490
Aug	10.86	429,534
Sep	11.00	427,335
Oct	9.79	389,068
Nov	9.62	371,757
Dec	8.51	384,930
Total	-	4,650,708
Avg	8.60	387,559
Max	11.00	429,534
Min	6.35	299,848

Liquid Waste Hauler

Month	Dundas Sludge (m³)	Septic Haulers (m ³)
Jan	3,417	5,658
Feb	3,109	3,577
Mar	3,041	5,359
Apr	3,182	5,586
May	3,346	6,096
Jun	2,640	4,825
Jul	2,868	4,922
Aug	2,593	3,702
Sep	2,438	5,473
Oct	2,350	5,499
Nov	2,285	5,169
Dec	2,936	1,121
Total	34,207	56,988
Avg	2,851	4,749
Max	3,417	6,096
Min	2,285	1,121

Secondary Bypass Removal Efficiency

Event Bypass Date		Influent		Primary Effluent (North Channel)		Percent Removal	
#	Bypass Date	TBOD (mg/L)	TSS (mg/L)	TBOD (mg/L)	TSS (mg/L)	TBOD (mg/L)	TSS (mg/L)
2	2024-01-09	195	310	115	129	41.0%	58.4%
	2024-01-10	115	172	65	113	43.5%	34.3%
8	2024-01-13	127	285	51	92	59.8%	67.7%
10	2024-01-24	237	358	85	84	64.1%	76.5%
10	2024-01-25	196	165	66	103	66.2%	37.4%
15	2024-01-26	121	279	51	121	57.9%	56.6%
15	2024-01-27	161	294	40	73	75.2%	75.1%
26	2024-03-14	318	715	117	78	63.2%	89.1%
20	2024-03-15	175	369	55	102	68.6%	72.4%
	2024-04-11	268	776	73	113	72.7%	85.4%
32	2024-04-12	169	496	43	107	74.6%	78.4%
	2024-04-13	181	461	34	70	81.2%	84.8%
48	2024-05-27	202	666	64	127	68.2%	80.9%
F A	2024-05-28	219	615	67	114	69.4%	81.5%
51	2024-05-29	190	699	64	112	66.2%	84.0%
	2024-07-10	258	634	87	141	66.3%	77.7%
69	2024-07-11	131	344	51	111	61.1%	67.7%
70	2024-07-14	151	416	97	183	35.5%	56.0%
76	2024-07-15	114	295	45	89	60.5%	69.8%
00	2024-07-16	75	171	32	75	57.0%	56.3%
90	2024-07-17	107	228	34	66	68.2%	71.1%
95	2024-07-24	180	274	65	65	63.9%	76.3%
114	2024-09-23	182	426	86	99	52.6%	76.8%
116	2024-09-25	183	425	65	74	64.5%	82.6%
124	2024-10-29	195	455	94	118	51.8%	74.1%
	2024-12-29	176	365	65	97	63.0%	73.4%
136	2024-12-30	161	355	57	88	64.5%	75.2%
	2024-12-31	260	598	66	69	74.6%	88.5%
		Annual	Average			63%	72%
		Obje	ctive			>30%	>50%

Appendix B – Maintenance Activities

Historically, the City of Hamilton provides a table summarizing major maintenance activities with expenditures to the City's vertical infrastructure for a reporting year. However, on February 25, 2024, the City of Hamilton experienced a cybersecurity incident that led to the loss of all computerized maintenance management systems and the loss of the ability to provide these expenditures.

Significant Works

System-wide Vibration Analysis

Dundas Wastewater Treatment Plant

Dundas Plant Chlorination – Install New Hypo Pumps in "B" Plant Dundas Plant Chlorination – Install New Piping for "B" Plant hypo injection system

Hamilton Wastewater Pumping Stations

Install new level sensor and transmitter at Calvin Street Pumping Station Replace Pump Rails at Beach Strip Pumping Stations

Hamilton Wastewater Treatment Plant

Installed new Primary bypass flow meter at Woodward Primaries High voltage system Preventative Maintenance Transfer Switch battery chargers Seimens H.V. Maintenance (Switchgear) Schneider H.V. Maintenance (Switchgear) Eaton H.V. Maintenance (EPC Switchgear/Relays) Toromont Generator Preventative Maintenance (EPC) C-Can H.V. Loop Batteries (EPC) Headworks Bar Screen #1 overhaul Headworks Conveyor screw liners replacement Primary tanks #10, 11, 12 overhaul Cake pump #2 overhaul Centrifuge #2, 4 overhaul Blower #2, 3 overhaul

Appendix C – Calibration and Maintenance of Monitoring Equipment

Calibration and Maintenance of Monitoring Equipment

*Work Order	Description	Equipment	Equipment Description	Date Completed
-	I-6M-POD-VERIFICATION HCG14 LIT03 INTERCEPTOR LEVEL TRANSMITTER	107330	HCG14 LIT03 INTERCEPTOR LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 LIT02 INFLOW 2 LEVEL TRANSMITTER	107329	HCG14 LIT02 INFLOW 2 LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 LIT01 INFLOW 1 LEVEL TRANSMITTER	107328	HCG14 LIT01 INFLOW 1 LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 LAKE LEVEL TRANSMITTER	107331	HCG14 LIT04 LAKE LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 WSIN LEVEL TRANSMITTER	116112	HCG14, WSIN LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 UPSTREAM LEVEL TRANSMITTER	116110	HCG14, LEVEL TRANSMITTER, BURLINGTON/WELLING TON UPSTREAM LEVEL	2024-03-23
-	I-WW-1Y-MOE-FLOW METER- CALIBRATION	210989	HCS05, CSO OVERFLOW TRANSMITTER	2024-05-11
-	I-WW-1Y-POD-LEVEL TRANSMITTER-CALIBRATION	001583	HC018, WET WELL LEVEL TRANSMITTER	**Cancelled
-	I-Y1-MOE- ANNUAL CALIBRATION HCS01 CHAMBER OUTLET LEVEL TRANSMITTER	106165	HCS01, OUTLET CHAMBER LEVEL TRANSMITTER	2024-08-12
-	I-WW-1Y-MOE-FLOW METER- CALIBRATION	001664	HCS04, OVERFLOW CHANNEL LEVEL	2024-09-10
-	I-6M-POD-VERIFICATION HCG14 LIT01 INFLOW 1 LEVEL TRANSMITTER	107328	HCG14 LIT01 INFLOW 1 LEVEL TRANSMITTER	2024-03-23
-	I-WW-1Y-POD-LEVEL TRANSMITTER-CALIBRATION	107293	HC019, WET WELL #1 LEVEL TRANSMITTER	2024-07-30
-	I-WW-1Y-POD-LEVEL TRANSMITTER-CALIBRATION	107294	HC019, WET WELL #2 LEVEL TRANSMITTER	2024-07-30
-	I-WW-1Y-MOE-FLOW METER- CALIBRATION	004686	HCS01, OVERFLOW TO CREEK TRANSMITTER	2024-09-04
-	I-WW-1Y-MOE-FLOW METER- CALIBRATION	002839	HCS08, CHANNEL OVERFLOW FLOW TRANSMITTER	2024-09-10

* Work Order numbers were not available for the 2024 reporting year due to the cybersecurity incident ** Could not complete due to staffing resources

*Work Order	Description	Equipment	Equipment Description	Date Completed
-	I-Y1-POD- HCS06 TANK #2 LEVEL TRANSMITTER CALIBRATION	106156	HCS06, CELL #2 LEVEL TRANSMITTER	2024-09-06
-	I-Y1-POD- HCS06 TANK #1 LEVEL TRANSMITTER CALIBRATION	106155	HCS06, CELL #1 LEVEL TRANSMITTER	2024-09-06
-	I-Y1-POD- HCS01 CELL #2 LEVEL TRANSMITTER CALIBRATION	107067	HCS01, CELL 2 LEVEL TRANSMITTER	2024-10-02
-	I-Y1-POD- HCS01 CELL #1 LEVEL TRANSMITTER CALIBRATION	106174	HCS01, CELL #1 LEVEL TRANSMITTER	2024-10-02
-	I-WW-1Y-MOE-FLOW METER- CALIBRATION	107303	HCS03, OVERFLOW CHANNEL FLOW TRANSMITTER	2024-10-10
-	I-WW-1Y-MOE-FLOW METER- CALIBRATION	013158	HCS09, OVER FLOW LEVEL TRANSMITTER	2024-10-31
-	I-Y1-POD- ANNUAL CALIBRATION TANK CELL LEVEL TRANSMITTER	013157	HCS09, TANK #2 LEVEL TRANSMITTER	2024-12-09
-	I-Y1-POD- ANNUAL CALIBRATION TANK CELL LEVEL TRANSMITTER	-	HCS08, WET WELL LEVEL TRANSMITTER	2024-10-09
-	I-Y1-POD- ANNUAL CALIBRATION TANK CELL LEVEL TRANSMITTER	013891	HCS08, CSO TANK LEVEL TRANSMITTER	2024-10-09
-	I-Y1-POD- ANNUAL CALIBRATION WET WELL LEVEL TRANSMITTER	013156	HCS09, TANK #1 LEVEL TRANSMITTER	2024-12-09
-	I-6M-POD-VERIFICATION HCG14 WSIN LEVEL TRANSMITTER	116112	HCG14, WSIN LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 LAKE LEVEL TRANSMITTER	107331	HCG14 LIT04 LAKE LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 LIT03 INTERCEPTOR LEVEL TRANSMITTER	107330	HCG14 LIT03 INTERCEPTOR LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 LIT02 INFLOW 2 LEVEL TRANSMITTER	107329	HCG14 LIT02 INFLOW 2 LEVEL TRANSMITTER	2024-03-23
-	I-6M-POD-VERIFICATION HCG14 UPSTREAM LEVEL TRANSMITTER	116110	HCG14, LEVEL TRANSMITTER, BURLINGTON/WELLING TON UPSTREAM LEVEL	2024-03-23

* Work Order numbers were not available for the 2024 reporting year due to the cybersecurity incident ** Could not complete due to staffing resources

*Work Order	Description	Equipment	Equipment Description	Date Completed
-	I-WW-1Y-POD-LEVEL TRANSMITTER-CALIBRATION	118171	HC058, WET WELL LEVEL TRANSMITTER	2024-10-08
-	I-WW-1Y-POD-LEVEL TRANSMITTER-CALIBRATION	118171	HC058, WET WELL LEVEL TRANSMITTER	2024-10-08
-	I-Y1-POD- ANNUAL CALIBRATION WET WELL LEVEL TRANSMITTER	-	HCS05, wet well LEVEL TRANSMITTER	2024-10-01
-	I-Y1-POD- ANNUAL CALIBRATION WET WELL LEVEL TRANSMITTER	010722	HCS05, CSO TANK LEVEL TRANSMITTER	2024-09-25
-	I-Y1-POD- ANNUAL CALIBRATION WET WELL LEVEL TRANSMITTER	118107	HCS02, CELL #1 LEVEL TRANSMITTER (HYDROSTATIC)	**Cancelled
-	I-Y1-POD- ANNUAL CALIBRATION TANK CELL LEVEL TRANSMITTER	108560	HCS02, CELL #2 LEVEL TRANSMITTER (HYDROSTATIC)	**Cancelled
-	I-Y1-POD- ANNUAL VERIFICATION OVERFLOW LEVEL TRANSMITTER	108561	HCS02, OVERFLOW OUTLET CHANNEL LEVEL TRANSMITTER (HYDROSTATIC)	**Cancelled
-	I-Y1-POD- ANNUAL CALIBRATION TANK CELL LEVEL TRANSMITTER	108565	HCS04, TANK CELL #2 LEVEL TRANSMITTER (HYDROSTATIC)	2024-08-12
-	I-Y1-POD- ANNUAL CALIBRATION TANK CELL LEVEL TRANSMITTER	108564	HCS04, TANK CELL #1 LEVEL TRANSMITTER (HYDROSTATIC)	2024-08-12
-	I-Y1-POD- ANNUAL VERIFICATION CHAMBER LEVEL TRANSMITTER	115222	HCG03, UPSTREAM LEVEL TRANSMITTER	2024-11-05
-	I-Y1 ANNUAL CALIBRATION HCG08 WSIS LEVEL TRANSMITTER	108231	HCG08, WSIS LEVEL TRANSMITTER	**Cancelled
	Drder numbers were not available for the not complete due to staffing resources	2024 reporting	g year due to the cybersecurity	incident

Appendix D – Woodward Avenue WWTP Summary of Complaints

2024 Complaints at Woodward Avenue WWTP

Date	Time Call Received	Reason for Complaint	Odour Control System In Service	Investigator Observations and Actions Taken
2024-02-02	17:30	Odour	Yes	On February 2, 2024, at 5:30 p.m., a resident reported odours coming from the Woodward Avenue WWTP. Investigation revealed smoke and noise from the South screw building, traced to the belts on Archimedes screw #5. The load on the screw was reduced, and a millwright was called to repair the pump. By 6:21 p.m., the resident confirmed the odour was no longer detectable, and a final check at 6:55 p.m. found no odours at the plant's south perimeter
2024-05-13	1:00	Noise	NA	On May 13, 2024, a noise complaint from a resident on Glow Ave. was reported to the Process Supervisor. The noise, ongoing for two weeks, was traced to a smoke alarm in the Main Pump Station penthouse, first identified on May 5. The maintenance team successfully silenced the alarm at 1:52 p.m. on May 13. Further information was being sought from the project engineer and the smoke alarm vendor.
2024-06-12	20:30	Odour	Yes	On June 12, 2024, odour complaints were reported around Woodward Ave/Glow Ave at 6:35 a.m., 3:30 p.m., and 5:30 p.m. At 8:30 p.m., the area around the Main Pump House and Synagro was inspected, but no sewage-like smell was detected. The south odour control system was switched to continuous operation, and odour control misting systems on the east side of the Main Pump House and the south side of Synagro were activated. All doors at Synagro were closed to mitigate any potential odours.

Appendix E – Dundas WWTP Operating Data Summary

Month	Monthly Volume (m ³ /mth)	Percent of Flow (%)	Daily Average (m³/day)	Daily Maximum (m³/day)	Daily Minimum (m ³ /day)
Jan	151,071	36.1%	4,873	5,720	4,304
Feb	128,386	35.6%	4,585	5,300	4,124
Mar	134,284	34.9%	4,332	5,075	2,394
Apr	134,227	35.0%	4,474	5,071	3,834
May	141,625	36.7%	4,569	4,886	3,821
Jun	130,834	32.4%	4,361	4,979	3,932
Jul	144,419	35.0%	4,659	5,741	3,699
Aug	137,386	35.6%	4,432	5,106	3,732
Sep	126,852	38.1%	4,228	5,043	3,027
Oct	154,645	43.0%	4,989	5,686	4,673
Nov	129,530	39.5%	4,318	4,853	3,872
Dec	133,714	39.8%	4,313	5,941	3,923
Total	1,646,973	-	-	-	-
Avg	137,248	36.8%	4,511	-	-
Max	154,645	43.0%	4,989	5,941	-
Min	126,852	32.4%	4,228	-	2,394

Plant Flows – Plant A

Plant Flows – Plant B

Month	Monthly Volume (m ³ /mth)	Percent of Flow (%)	Daily Average (m³/day)	Daily Maximum (m ³ /day)	Daily Minimum (m ³ /day)
Jan	267,777	63.9%	8,638	11,114	7,018
Feb	219,381	60.9%	7,835	9,988	6,487
Mar	250,828	65.1%	8,091	10,444	4,447
Apr	249,280	65.0%	8,309	10,523	6,640
May	244,598	63.3%	7,890	10,896	6,288
Jun	273,488	67.6%	9,116	10,310	8,075
Jul	268,340	65.0%	8,656	12,952	5,397
Aug	248,359	64.4%	8,012	9,077	7,252
Sep	206,060	61.9%	6,869	9,039	5,813
Oct	205,345	57.0%	6,624	8,526	5,947
Nov	198,521	60.5%	6,617	8,286	5,688
Dec	208,989	62.2%	6,742	9,023	5,542
Total	2,840,964	-	-	-	-
Avg	236,747	63.1%	7,783	-	-
Max	273,488	67.6%	9,116	12,952	-
Min	198,521	57.0%	6,617	-	4,447

Combined Plant Flows

Month	Monthly Volume (m ³ /mth)	Daily Average (m ³ /day)	Daily Maximum (m ³ /day)	Daily Minimum (m³/day)
Jan	418,848	13,511	16,834	11,336
Feb	360,187	12,420	15,287	10,611
Mar	385,112	12,423	15,492	6,841
Apr	383,506	12,784	15,555	10,568
May	386,223	12,459	15,548	10,179
Jun	404,322	13,477	14,818	12,116
Jul	412,759	13,315	18,693	9,097
Aug	385,745	12,443	13,585	10,984
Sep	332,912	11,097	14,082	9,486
Oct	359,990	11,613	14,213	10,839
Nov	328,051	10,935	13,024	9,559
Dec	335,962	11,055	14,964	4,167
Total	4,493,616	-	-	-
Avg	374,468	12,294	15,175	9,649
Max	418,848	13,511	18,693	12,116
Min	328,051	10,935	13,024	4,167

Dundas Diversion Tank

Month	Monthly Volume (m ³ /mth)		
Jan	99,000		
Feb	1,415		
Mar	10,663		
Apr	79,756		
May	24,549		
Jun	7,333		
Jul	113,421		
Aug	3,914		
Sep	2,404		
Oct	5,245		
Nov	2,456		
Dec	18,637		
Total	368,793		
Avg	30,733		
Max	113,421		
Min	1,415		

Redland Brow Landfill Leachate

Month	Monthly Volume (m ³ /mth)	Proportion of Plant Flow (%)
Jan	4,084.00	0.98%
Feb	3,344.00	0.93%
Mar	3,664.00	0.95%
Apr	4,639.00	1.21%
May	5,982.00	1.55%
Jun	4,475.00	1.11%
Jul	7,509.00	1.82%
Aug	8,427.00	2.18%
Sep	6,765.00	2.03%
Oct	5,663.00	1.57%
Nov	3,145.00	0.96%
Dec	2,744.00	0.82%
Total	60,441	-
Avg	5,037	1.34%
Max	8,427	2.18%
Min	2,744	0.82%

Raw Influent - Concentrations

Month	pН	TSS (mg/L)	tBOD (mg/L)	cBOD (mg/L)	TP (mg/L)	SP (mg/L)	TKN (mg/L)	NH ₃ (mg/L)	COD (mg/L)	Temp °C
Jan	7.63	131.00	130.00	90.20	3.24	1.52	22.46	16.46	236.80	12.39
Feb	7.55	228.75	132.75	115.25	4.18	1.79	28.68	21.50	302.75	11.39
Mar	7.54	116.00	112.00	92.25	3.42	1.63	26.18	20.00	249.00	11.78
Apr	7.57	146.50	106.50	90.00	3.27	1.32	24.63	17.23	287.25	12.12
Мау	7.55	161.20	126.00	120.40	4.10	1.76	29.04	21.52	340.60	14.69
Jun	7.47	130.25	92.75	88.50	3.39	1.42	24.40	21.60	243.00	16.83
Jul	7.49	120.68	90.40	85.40	3.07	1.48	20.50	15.75	267.80	17.53
Aug	7.43	118.38	95.25	92.75	3.64	1.87	25.25	19.93	304.25	19.23
Sep	7.44	185.75	132.50	113.75	4.79	2.35	32.75	23.08	363.50	20.01
Oct	7.56	166.60	127.60	107.00	4.40	1.99	30.78	21.98	375.40	19.13
Nov	7.53	241.25	138.25	118.00	4.38	1.99	29.83	23.23	338.75	17.55
Dec	7.53	134.50	118.75	95.00	3.52	1.42	26.70	19.50	251.50	14.59
Avg	7.52	156.74	116.90	100.71	3.78	1.71	26.77	20.15	296.72	15.60
Max	7.63	241.25	138.25	120.40	4.79	2.35	32.75	23.23	375.40	20.01
Min	7.43	116.00	90.40	85.40	3.07	1.32	20.50	15.75	236.80	11.39

Raw Influent - Daily Loadings

Month	TSS (kg/day)	tBOD (kg/day)	cBOD (kg/day)	TP (kg/day)	SP (kg/day)	TKN (kg/day)	NH₃ (kg/day)
Jan	1,770	1,756	1,219	44	21	303	222
Feb	2,841	1,649	1,431	52	22	356	267
Mar	1,441	1,391	1,146	42	20	325	248
Apr	1,873	1,361	1,151	42	17	315	220
Мау	2,008	1,570	1,500	51	22	362	268
Jun	1,755	1,250	1,193	46	19	329	291
Jul	1,607	1,204	1,137	41	20	273	210
Aug	1,473	1,185	1,154	45	23	314	248
Sep	2,061	1,470	1,262	53	26	363	256
Oct	1,935	1,482	1,243	51	23	357	255
Nov	2,638	1,512	1,290	48	22	326	254
Dec	1,487	1,313	1,050	39	16	295	216
Avg	1,907	1,429	1,231	46	21	327	246
Мах	2,841	1,756	1,500	53	26	363	291
Min	1,441	1,185	1,050	39	16	273	210

Primary Effluent – Concentrations for Plant A

Month	TSS (mg/L)	cBOD (mg/L)	TKN (mg/L)	NH₃ (mg/L)
Jan	98.32	49.60	17.38	10.98
Feb	111.50	68.75	24.33	15.00
Mar	133.38	64.50	23.95	14.58
Apr	156.88	62.50	26.70	13.50
May	61.32	39.00	20.98	15.21
Jun	49.75	32.50	19.08	16.90
Jul	46.82	27.60	14.12	12.02
Aug	37.18	27.25	16.45	14.50
Sep	53.83	39.00	20.93	17.23
Oct	172.90	80.00	30.88	20.70
Nov	111.25	61.50	28.53	23.20
Dec	61.63	43.25	20.75	16.13
Avg	91.23	49.62	22.01	15.83
Max	172.9	80.0	30.88	23.2
Min	37.2	27.3	14.12	11.0

2024 Wastewater Facilities Annual Report | 71

Primary Effluent – Concentrations for Plant B

Month	TSS (mg/L)	cBOD (mg/L)	TKN (mg/L)	NH₃ (mg/L)
Jan	55.1	31.6	14.9	10.7
Feb	86.7	48.5	22.0	14.4
Mar	28.5	32.0	17.6	13.6
Apr	19.2	20.5	17.3	12.1
Мау	21.8	24.0	18.8	14.5
Jun	20.4	21.5	18.8	17.4
Jul	20.3	17.0	14.3	11.8
Aug	24.7	24.5	15.8	14.3
Sep	32.0	29.5	20.3	16.9
Oct	51.5	37.6	22.7	19.0
Nov	41.1	34.8	23.1	19.8
Dec	55.7	42.5	22.6	18.6
Avg	38.1	30.3	19.00	15.2
Max	86.7	48.5	23.10	19.8
Min	19.2	17.0	14.28	10.7

Primary Effluent – Daily Loadings for Plant A

MONTH	TSS (kg/day)	cBOD (kg/day)	TKN (kg/day)	NH₃ (kg/day)
Jan	479	242	85	54
Feb	511	315	112	69
Mar	578	279	104	63
Apr	702	280	119	60
May	280	178	96	69
Jun	217	142	83	74
Jul	218	129	66	56
Aug	165	121	73	64
Sep	228	165	89	73
Oct	863	399	154	103
Nov	480	266	123	100
Dec	266	187	90	70
Avg	416	225	99	71
Max	863	399	154	103
Min	165	121	66	54

Primary Effluent – Daily Loadings for Plant B

Month	TSS (kg/day)	cBOD (kg/day)	TKN (kg/day)	NH₃ (kg/day)
Jan	476	273	129	92
Feb	679	380	173	113
Mar	231	259	143	110
Apr	160	170	144	100
May	172	189	148	115
Jun	186	196	171	158
Jul	176	147	124	102
Aug	198	196	126	115
Sep	220	203	139	116
Oct	341	249	150	126
Nov	272	230	153	131
Dec	375	287	152	125
Avg	290	232	146	117
Max	679	380	173	158
Min	160	147	124	92

Raw Sludge Pumped*

Month	Plant A (m ³ /mth)	Plant B (m ³ /mth)	Total (m³/mth)
Jan	1,195	2,390	3,584
Feb	1,022	2,045	3,067
Mar	1,014	2,027	3,041
Apr	1,074	2,147	3,221
May	1,061	2,122	3,183
Jun	922	1,844	2,765
Jul	942	1,884	2,826
Aug	837	1,673	2,510
Sep	865	1,730	2,595
Oct	784	1,568	2,352
Nov	709	1,418	2,126
Dec	979	1,958	2,936
Total	11,402	22,805	34,207
Avg	950	1,900	2,851
Мах	1,195	2,390	3,584
Min	709	1,418	2,126

* Estimates based on pump runtime and capacity

Raw Sludge Solids Content

Month	Plant A Total Solids (%)	Plant A Volatile Solids (%)	Plant B Total Solids (%)	Plant B Volatile Solids (%)
Jan	2.10	72.64	1.66	71.12
Feb	2.60	73.23	1.90	72.65
Mar	1.35	69.30	1.33	72.98
Apr	2.35	68.50	1.88	70.23
May	1.88	69.34	2.12	71.84
Jun	1.78	68.95	2.70	73.60
Jul	3.00	69.58	1.54	64.98
Aug	2.60	67.85	2.53	70.18
Sep	2.73	73.38	2.83	76.08
Oct	2.38	74.04	2.58	75.98
Nov	2.70	75.23	2.53	77.25
Dec	3.50	75.05	2.75	75.93
Avg	2.41	71.42	2.20	72.74
Мах	3.50	75.23	2.83	77.25
Min	1.35	67.85	1.33	64.98

Sludge Hauled to Woodward

Month	Volume (Tonnes/mth)	Anticipated 2025 Volume (Tonnes/mth)
Jan	3,584	3,167
Feb	3,067	3,167
Mar	3,041	3,167
Apr	3,221	3,167
Мау	3,183	3,167
Jun	2,765	3,167
Jul	2,826	3,167
Aug	2,510	3,167
Sep	2,595	3,167
Oct	2,352	3,167
Nov	2,126	3,167
Dec	2,936	3,167
Total	34,207	38,004
Avg	2,851	3,167
Max	3,584	3,167
Min	2,126	3,167

Aeration – Plant A

Month	MLSS (mg/L)	MLVSS (mg/L)	SVI (mL/g)	F/M (Ratio)	SRT (Days)
Jan	1,640.00	1,193.00	123.72	0.12	7.37
Feb	1,705.00	1,255.00	118.94	0.15	6.06
Mar	1,640.00	1,227.50	79.27	0.14	7.68
Apr	2,182.50	1,552.50	79.73	0.11	6.25
May	1,620.00	1,172.40	97.16	0.09	10.50
Jun	1,537.50	1,077.00	115.97	0.08	11.64
Jul	1,075.60	736.40	89.35	0.10	28.30
Aug	1,795.00	1,264.00	88.97	0.06	8.43
Sep	1,622.50	1,125.75	91.65	0.09	10.61
Oct	1,616.00	1,159.40	100.43	0.21	6.36
Nov	1,552.50	1,122.00	102.42	0.14	6.08
Dec	1,705.00	1,265.00	73.43	0.09	7.40
Avg	1,640.97	1,179.16	96.75	0.11	9.72
Max	2,182.50	1,552.50	123.72	0.21	28.30
Min	1,075.60	736.40	73.43	0.06	6.06

Aeration – Plant A

Month	MLSS (mg/L)	MLVSS (mg/L)	SVI (mL/g)	F/M (Ratio)	SRT (Days)
Jan	1,852.00	1,426.00	336.50	0.06	29.34
Feb	1,897.50	1,492.50	439.05	0.08	24.86
Mar	1,875.00	1,475.00	482.40	0.05	27.23
Apr	1,772.50	1,402.50	514.92	0.04	24.53
May	1,702.00	1,342.00	523.09	0.04	29.50
Jun	1,687.50	1,305.00	532.74	0.05	24.24
Jul	1,596.00	1,202.00	547.12	0.04	50.61
Aug	2,052.50	1,442.50	450.43	0.04	31.92
Sep	2,085.00	1,530.00	430.36	0.04	32.35
Oct	1,824.00	1,434.00	397.75	0.05	29.81
Nov	1,930.00	1,452.50	404.66	0.05	25.41
Dec	1,717.50	1,340.00	510.86	0.07	22.99
Avg	1,832.63	1,403.67	464.16	0.05	29.40
Max	2,085.00	1,530.00	547.12	0.08	50.61
Min	1,596.00	1,202.00	336.50	0.04	22.99

Final Effluent Concentrations

Month	pН	Alkalinity (mg/L)	TSS (mg/L)	cBOD (mg/L)	TP (mg/L)	SP (mg/L)	TKN (mg/L)	NH₃ (mg/L)	NO₃ (mg/L)	NO2 (mg/L)	E Coli (CFU/100ml)	Chlorine Residual (mg/L)
Jan	7.33	118.60	0.84	1.00	0.050	0.040	0.30	0.03	15.16	0.22	-	-
Feb	7.16	93.25	0.88	1.00	0.060	0.050	0.53	0.02	17.65	0.10	-	-
Mar	7.17	105.00	0.80	1.25	0.070	0.050	0.45	0.13	16.53	0.10	-	-
Apr	7.27	109.75	0.78	1.00	0.070	0.050	0.55	0.03	15.85	0.10	-	-
Мау	7.10	93.80	1.08	1.40	0.080	0.050	0.46	0.05	15.38	0.10	2	0.02
Jun	7.09	87.75	1.43	2.75	0.070	0.040	0.58	0.05	15.58	0.10	1	0.01
Jul	7.42	132.00	1.06	2.40	0.090	0.060	1.30	0.92	11.47	0.26	1	0.01
Aug	7.35	105.50	0.95	1.50	0.130	0.090	0.53	0.05	14.40	0.11	1	0.01
Sep	7.25	78.75	1.40	1.00	0.140	0.120	0.33	0.04	15.83	0.14	1	0.02
Oct	7.15	73.60	0.92	1.40	0.120	0.090	0.74	0.11	16.34	0.13	24	0.01
Nov	7.22	79.25	0.75	1.25	0.120	0.100	0.68	0.03	18.88	0.14	-	-
Dec	7.23	90.25	0.75	1.00	0.110	0.100	0.70	0.14	17.98	0.13	-	-
Avg	7.23	97.29	0.97	1.41	0.093	0.070	0.60	0.13	15.92	0.14	5	0.01
Max	7.42	132.00	1.43	2.75	0.140	0.120	1.30	0.92	18.88	0.26	24	0.02
Min	7.09	73.60	0.75	1.00	0.050	0.040	0.30	0.02	11.47	0.10	1	0.01

Final Effluent Loadings

Month	TSS (kg/day)	cBOD (kg/day)	TP (kg/day)	SP (kg/day)	TKN (kg/day)	NH₃ (kg/day)	NO₃ (kg/day)	NO₂ (kg/day)
Jan	11.3	13.5	0.68	0.54	4.05	0.41	204.83	2.97
Feb	10.9	12.4	0.75	0.62	6.58	0.25	219.22	1.24
Mar	9.9	15.5	0.87	0.62	5.59	1.61	205.35	1.24
Apr	10.0	12.8	0.89	0.64	7.03	0.38	202.62	1.28
May	13.5	17.4	1.00	0.62	5.73	0.62	191.62	1.25
Jun	19.3	37.1	0.94	0.54	7.82	0.67	209.98	1.35
Jul	14.1	32.0	1.20	0.80	17.31	12.25	152.72	3.46
Aug	11.8	18.7	1.62	1.12	6.59	0.62	179.18	1.37
Sep	15.5	11.1	1.55	1.33	3.66	0.44	175.67	1.55
Oct	10.7	16.3	1.39	1.05	8.59	1.28	189.75	1.51
Nov	8.2	13.7	1.31	1.09	7.44	0.33	206.45	1.53
Dec	8.3	11.1	1.22	1.11	7.74	1.55	198.77	1.44
Avg	12.0	17.6	1.12	0.84	7.3	1.7	194.7	1.68
Max	19.3	37.1	1.62	1.33	17.3	12.2	219.2	3.46
Min	8.2	11.1	0.68	0.54	3.7	0.2	152.7	1.24

Removal Efficiency

Month	TSS (%)	cBOD (%)	TP (%)	SP (%)	TKN (%)	NH₃ (%)
Jan	99.4%	98.9%	98.5%	97.4%	98.7%	99.8%
Feb	99.6%	99.1%	98.6%	97.2%	98.2%	99.9%
Mar	99.3%	98.6%	98.0%	96.9%	98.3%	99.4%
Apr	99.5%	98.9%	97.9%	96.2%	97.8%	99.8%
May	99.3%	98.8%	98.0%	97.2%	98.4%	99.8%
Jun	98.9%	96.9%	97.9%	97.2%	97.6%	99.8%
Jul	99.1%	97.2%	97.1%	95.9%	93.7%	94.2%
Aug	99.2%	98.4%	96.4%	95.2%	97.9%	99.7%
Sep	99.2%	99.1%	97.1%	94.9%	99.0%	99.8%
Oct	99.4%	98.7%	97.3%	95.5%	97.6%	99.5%
Nov	99.7%	98.9%	97.3%	95.0%	97.7%	99.9%
Dec	99.4%	98.9%	96.9%	93.0%	97.4%	99.3%
Avg	99.3%	98.5%	97.6%	96.0%	97.7%	99.2%
Max	99.7%	99.1%	98.6%	97.4%	99.0%	99.9%
Min	98.9%	96.9%	96.4%	93.0%	93.7%	94.2%

Liquid Stream Contaminate Removal

Month	TSS (kg/mth)	cBOD (kg/mth)	TP (kg/mth)	SP (kg/mth)	TKN (kg/mth)	NH₃ (kg/mth)
Jan	54,517	37,361	1,336	620	9,282	6,882
Feb	79,246	39,732	1,433	605	9,790	7,470
Mar	44,365	35,045	1,290	608	9,909	7,652
Apr	55,885	34,132	1,227	487	9,235	6,596
May	61,842	45,961	1,553	660	11,038	8,292
Jun	52,085	34,671	1,342	558	9,631	8,713
Jul	49,374	34,259	1,230	586	7,925	6,121
Aug	45,298	35,199	1,354	687	9,536	7,669
Sep	61,372	37,536	1,548	742	10,793	7,670
Oct	59,643	38,015	1,541	684	10,814	7,873
Nov	78,896	38,300	1,397	620	9,563	7,611
Dec	45,837	32,214	1,169	452	8,910	6,635
Total	688,359	442,425	16,420	7,310	116,425	89,184
Avg	57,363	36,869	1,368	609	9,702	7,432
Max	79,246	45,961	1,553	742	11,038	8,713
Min	44,365	32,214	1,169	452	7,925	6,121

Chemical Addition – Disinfection

Month	Sodium Hypochlorite (kg/mth)	Dosage (mg/L)	Residual Level (mg/L)
Jan	-	-	-
Feb	-	-	-
Mar	-	-	-
Apr	-	-	-
May	21,046	3.5	7.21
Jun	14,323	3.5	4.96
Jul	13,512	3.5	4.69
Aug	13,816	3.5	5.03
Sep	11,545	3.5	4.89
Oct	13,728	3.8	5.35
Nov	-	-	-
Dec	-	-	-
Total	87,970	-	-
Avg	14,661.6	3.5	5.36
Max	21,046	3.8	7.21
Min	11,545	3.5	4.69

Sodium hypochlorite added from May 1 to October 31

Chemical Addition – Dechlorination

Month	Sodium Bisulfite (m³/mth)	Outfall Residual (mg/L)
Jan	-	-
Feb	-	-
Mar	-	-
Apr	-	-
Мау	1,699	0.02
Jun	4,351	0.01
Jul	4,332	0.01
Aug	4,128	0.01
Sep	3,043	0.02
Oct	6,008	0.01
Nov	-	-
Dec	-	-
Total	23,560.7	
Avg	3,926.8	0.01
Мах	6,007.8	0.02
Min	1,699.1	0.01

Chemical Addition – Ferric Sulphate

Month	Ferric Sulphate (L/mth)	Dosage (mg/L)
Jan	26,945	11.84
Feb	24,874	12.68
Mar	24,417	11.72
Apr	26,400	12.77
Мау	29,007	13.82
Jun	31,181	14.16
Jul	29,348	13.28
Aug	21,980	10.46
Sep	21,441	11.82
Oct	23,522	12.06
Nov	18,513	10.31
Dec	16,972	9.49
Total	294,602	-
Avg	24,550	12.03
Мах	31,181	14.16
Min	16,972	9.49

2024 Redland Brow Landfill Sampling Results

Parameter List (Dundas WWTP C of A)	RDL	Units	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
cBOD	2	mg/L	14	15	18	<20
COD	4	mg/L	100	94	140	370
Dissolved Organic Carbon	0.2	mg/L	34	28	46	89
Oil and Grease	0.5	mg/L	1.6	<0.5	1.6	1.0
Total Dissolved Solids	10	mg/L	1,120	915	1,410	1,680
Total Kjeldahl Nitrogen	0.5	mg/L	17	12	18	28
Phosphorus	0.004	mg/L	0.057	0.12	0.066	0.17
Total Suspended Solids	10	mg/L	140	300	38	68
Alkalinity (as CaCO ₃)	1	mg/L	270	200	460	620
Conductivity	1	µmho/cm	2,000	1,500	400	2,900
pH (20°C)	-	-	7.99	8.48	8.23	8.62
Aluminium	0.005	mg/L	0.011	0.032	0.0087	0.0011
Ammonia (as N)	0.25	mg/L	15	12	12	27
Unionized Ammonia	-	mg/L	0.172	1.757	0.248	2.426
Arsenic	0.001	mg/L	0.013	0.012	0.0097	0.0017
Beryllium	0.0005	mg/L	<0.0004	<0.0004	<0.0004	< 0.0004
Boron	0.01	mg/L	2.3	1.9	3	3.8
Cadmium	0.0001	mg/L	<0.00009	<0.00009	<0.00009	<0.00009
Calcium	0.2	mg/L	100	130	120	41
Chloride	2	mg/L	290	180	320	400
Chromium	0.005	mg/L	<0.0005	<0.0005	<0.0005	0.0067
Copper	0.001	mg/L	0.0014	0.0031	0.0033	0.0012
Sulphide	0.02	mg/L	0.27	0.14	0.075	0.25
Iron	0.1	mg/L	0.18	0.8	0.23	0.12
Lead	0.0005	mg/L	0.0016	0.027	0.00099	0.00061
Magnesium	0.05	mg/L	20	22	32	19
Nitrate (as N)	0.1	mg/L	<0.1	0.15	0.19	<0.1
Nitrite (as N)	0.01	mg/L	0.103	0.17	0.139	0.078
Phenols	0.002	mg/L	0.033	0.049	0.067	0.099
Potassium	0.2	mg/L	48	48	54	52
Selenium	0.002	mg/L	<0.002	<0.002	<0.002	<0.002
Silver	0.0001	mg/L	<0.00009	<0.00009	<0.00009	<0.00009
Sulphate (as SO ₄)	1	mg/L	260	240	250	210
Zinc	0.005	mg/L	0.0059	0.021	0.058	0.021

1. 1st Quarter sample collected on February 28, 2024.

2. 2nd Quarter sample collected on April 24, 2024
 3. 3rd Quarter sample collected on August 21, 2024

4. 4th Quarter sample collected on November 26, 2024

5. Unionized Ammonia calculated from field pH, Field Temperature and total ammonia results

Appendix F – CSO Tank Analytical Data

For statistical purposes, average, minimum and maximum results are reported with 2 decimal places for E. Coli & inorganics, and 4 decimal places for metals.

When the result is <MDL (Method Detection Limit), the MDL is used.

Eastwood Effluent*

Eastwood Effluent	Alumir (mg/		Barium (mg/L)		ryllium ng/L)	Bismuth (mg/L)	Cadmi (mg/		hromium (mg/L)		obalt ig/L)	Copp (mg/		Iron (mg/L)
2024-01-10 10:20:00	0.60	9 <0.020	0.019	<0	0.0001	<0.020	<0.00	05	0.004	<0.	0009	0.01	6	1.06
2024-07-17 08:31:00	0.34	7 <0.020	0.017	<0	0.0001	<0.020	<0.00	05	0.001	<0.	0009	0.01	2	0.635
2024-07-17 17:13:00	0.16	2 <0.020	0.016	<0	0.0001	<0.020	<0.00	05	<0.001	<0.	0009	0.00	9	0.316
Avg Max Min	0.372 0.609 0.162	0.0200	0.0173 0.0190 0.0160	0.	.0001 .0001 .0001	0.0200 0.0200 0.0200	0.000 0.000 0.000	05	0.0020 0.0040 0.0010	0.0	0009 0009 0009	0.012 0.016 0.009	60	0.6703 1.0600 0.3160
Eastwood Effluent	Lead (mg/L)	Manganese (mg/L)	Molybde (mg/l		Nickel (mg/L)	Phospho Total (mg/L		elenium (mg/L)	Silver (mg/L)		ntium g/L)	Thalli (mg/		Tin (mg/L)
2024-01-10 10:20:00	<0.020	0.076	<0.00)5	<0.005			<0.020	< 0.005	0.	153	<0.0	10	<0.020
2024-07-17 08:31:00	<0.020	0.106	<0.00)5	<0.005	0.600) <	<0.020	<0.005	0.	147	<0.0	10	<0.020
2024-07-17 17:13:00	<0.020	0.083	<0.00	5	<0.005	0.529) <	<0.020	<0.005	0.	178	<0.0	10	<0.020
Avg	0.0200	0.0883	0.005	0	0.0050	0.573	3 (0.0200	0.0050	0.1	593	0.01	00	0.0200
Max	0.0200	0.1060	0.005	0	0.0050	0.600	0 (0.0200	0.0050	0.1	780	0.01	00	0.0200
Min	0.0200	0.0760	0.005	0	0.0050	0.529	0 0	0.0200	0.0050	0.1	470	0.01	00	0.0200
Eastwood Effluent	Titanium	Vanadium		Ammo Ammo		cBiochemi Oxygen		Escheric coli		trate s N	Tot Kjelo Nitro	dahl		⁻ otal pended

Eastwood Effluent	Titanium (mg/L)	Vanadium (mg/L)	Zinc (mg/L)	Ammonia + Ammonium as N (mg/L)	CBiochemical Oxygen Demand (mg/L)	Escherichia coli (MPN/100mL)	Nitrate as N (mg/L)	Kjeldahl Nitrogen as N (mg/L)	Suspended Solids (mg/L)
2024-01-10 10:20:00	0.029	0.003	0.086	2.13	17	510,000	0.63	4.1	29.7
2024-07-17 08:31:00	0.010	0.002	0.053	2.43	10	326,000	<0.2	3.4	20.0
2024-07-17 17:13:00	0.004	<0.002	0.033	3.02	6	980,000	<0.2	4.3	11.0
Avg	0.0143	0.0023	0.0573	2.53	11.00	605,333.33	0.34	3.93	20.23
Max	0.0290	0.0030	0.0860	3.02	17.00	980,000.00	0.63	4.30	29.70
Min	0.0040	0.0020	0.0330	2.13	6.00	326,000.00	0.20	3.40	11.00

*Eastwood CSO Tank Raw Influent sampling could not be completed due to autosampler malfunction

Royal Effluent*

Royal Effluent*	Aluminum (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Beryllium (mg/L)	Bismuth (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Cobalt (mg/L)	Copper (mg/L)	Iron (mg/L)
2024-01-26 09:49:00	10.4	<0.020	0.072	0.0004	<0.020	<0.0005	0.013	0.0060	0.024	12.8
2024-05-29 03:07:00	8.84	<0.020	0.065	0.0002	<0.020	<0.0005	0.011	0.0034	0.016	7.36
2024-07-14 18:00:00	3.00	<0.020	0.030	<0.0001	<0.020	<0.0005	0.006	0.0016	0.015	4.19
2024-07-17 02:23:00	17.5	<0.020	0.113	0.0006	<0.020	<0.0005	0.022	0.0092	0.034	21.5
Avg	9.9350	0.0200	0.0700	0.0003	0.0200	0.0005	0.0130	0.0051	0.0223	11.4625
Max	17.5000	0.0200	0.1130	0.0006	0.0200	0.0005	0.0220	0.0092	0.0340	21.5000
Min	3.0000	0.0200	0.0300	0.0001	0.0200	0.0005	0.0060	0.0016	0.0150	4.1900

Royal Effluent	Lead (mg/L)	Manganese (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Phosphorus Total (mg/L)	Selenium (mg/L)	Silver (mg/L)	Strontium (mg/L)	Thallium (mg/L)	Tin (mg/L)
2024-01-26 09:49:00	<0.020	0.288	<0.005	0.014	0.497	<0.020	<0.005	0.286	<0.010	<0.020
2024-05-29 03:07:00	<0.020	0.194	<0.005	0.010	0.360	<0.020	<0.005	0.297	<0.010	<0.020
2024-07-14 18:00:00	<0.020	0.189	<0.005	0.007	0.493	<0.020	<0.005	0.127	<0.010	<0.020
2024-07-17 02:23:00	<0.020	0.511	<0.005	0.024	0.675	<0.020	<0.005	0.359	<0.010	<0.020
Avg	0.0200	0.2955	0.0050	0.0138	0.5063	0.0200	0.0050	0.2673	0.0100	0.0200
Мах	0.0200	0.5110	0.0050	0.0240	0.6750	0.0200	0.0050	0.3590	0.0100	0.0200
Min	0.0200	0.1890	0.0050	0.0070	0.3600	0.0200	0.0050	0.1270	0.0100	0.0200

Royal Effluent	Titanium (mg/L)	Vanadium (mg/L)	Zinc (mg/L)	Ammonia + Ammonium as N (mg/L)	cBiochemical Oxygen Demand mg/L	Escherichia coli (MPN/100mL)	Nitrate as N (mg/L)	Total Kjeldahl Nitrogen as N (mg/L)	Total Suspended Solids (mg/L)
2024-01-26 09:49:00	0.143	0.019	0.115	0.17	<6	3,5000	0.52	1.5	271
2024-05-29 03:07:00	0.359	0.015	0.114	0.39	<6	120,000	0.37	1.6	159
2024-07-14 18:00:00	0.054	0.006	0.110	0.77	9	220,000	0.34	2.0	104
2024-07-17 02:23:00	0.243	0.031	0.167	0.20	<6	127,000	0.64	1.7	480
Avg	0.1998	0.0178	0.1265	0.38	6.75	125,500.00	0.47	1.70	253.50
Max	0.3590	0.0310	0.1670	0.77	9.00	220,000.00	0.64	2.00	480.00
Min	0.0540	0.0060	0.1100	0.17	6.00	35,000.00	0.34	1.50	104.00

*Royal CSO Tank Raw Influent sampling could not be completed due to autosampler malfunction

Notes:

2024-01-26 09:49:00 - TKN QC recovery was high; actual result may be lower.

Strachan Influent 24 Hour	Aluminum (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Beryllium (mg/L)	Bismuth (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Cobalt (mg/L)	Copper (mg/L)
24 Hr 2024-10-30 04:12:00	0.166	<0.020	0.106	<0.0001	<0.020	<0.0005	0.001	<0.0009	0.003
Composite 2024-01-11 03:09:00	0.022	<0.020	0.102	<0.0001	<0.020	<0.0005	<0.001	<0.0009	0.004
Composite 2024-01-26 04:45:00	7.23	<0.020	0.092	0.0002	<0.020	<0.0005	0.032	0.0053	0.064
Composite 2024-05-28 08:41:00	0.260	<0.020	0.076	<0.0001	<0.020	<0.0005	0.002	<0.0009	0.004
Composite 2024-05-28 22:54:00	3.19	<0.020	0.048	<0.0001	<0.020	<0.0005	0.098	0.0020	0.031
Composite 2024-06-17 21:47:00	0.108	<0.020	0.049	<0.0001	<0.020	<0.0005	<0.001	<0.0009	<0.002
Composite 2024-06-20 09:45:00	0.230	<0.020	0.068	<0.0001	<0.020	<0.0005	0.002	<0.0009	0.005
Composite 2024-07-11 09:39:00	0.625	<0.020	0.026	<0.0001	<0.020	<0.0005	0.004	0.0010	0.010
Composite 2024-07-15 03:25:00	0.427	<0.020	0.092	<0.0001	<0.020	<0.0005	<0.001	<0.0009	0.004
Composite 2024-07-17 04:45:00	1.35	<0.020	0.038	<0.0001	<0.020	<0.0005	0.005	0.0010	0.012
Composite 2024-09-23 05:16:00	0.819	<0.020	0.016	<0.0001	<0.020	<0.0005	0.003	<0.0009	0.008
Composite 2024-09-25 10:45:00	0.986	<0.020	0.077	<0.0001	<0.020	<0.0005	0.004	<0.0009	0.006
Composite 2024-10-14 11:31:00	0.044	<0.020	0.084	<0.0001	<0.020	<0.0005	<0.001	<0.0009	<0.002
Composite 2024-11-21 06:59:00	0.116	<0.020	0.097	<0.0001	<0.020	<0.0005	<0.001	<0.0009	0.003
Composite 2024-12-29 19:15:00	1.05	<0.020	0.035	<0.0001	<0.020	<0.0005	0.004	<0.0009	0.013
Avg	1.1082	0.0200	0.0671	0.0001	0.0200	0.0005	0.0107	0.0013	0.0114
Мах	7.2300	0.0200	0.1060	0.0002	0.0200	0.0005	0.0980	0.0053	0.0640
Min	0.0220	0.0200	0.0160	0.0001	0.0200	0.0005	0.0010	0.0009	0.0020

Strachan Influent 24 Hour	Iron (mg/L)	Lead (mg/L)	Manganese (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Phosphorus Total (mg/L)	Selenium (mg/L)	Silver (mg/L)
24 Hr 2024-10-30 04:12:00	1.28	<0.020	0.384	0.009	<0.005	0.247	<0.020	<0.005
Composite 2024-01-11 03:09:00	0.804	<0.020	0.323	<0.005	<0.005	0.138	<0.020	<0.005
Composite 2024-01-26 04:45:00	12.7	0.079	0.698	<0.005	0.015	1.20	<0.020	<0.005
Composite 2024-05-28 08:41:00	1.15	<0.020	0.281	<0.005	<0.005	0.204	<0.020	<0.005
Composite 2024-05-28 22:54:00	7.08	0.034	0.320	<0.005	0.030	0.693	<0.020	<0.005
Composite 2024-06-17 21:47:00	0.787	<0.020	0.224	<0.005	<0.005	0.524	<0.020	<0.005
Composite 2024-06-20 09:45:00	1.34	<0.020	0.318	<0.005	<0.005	0.320	<0.020	<0.005
Composite 2024-07-11 09:39:00	1.26	<0.020	0.115	<0.005	<0.005	0.265	<0.020	<0.005
Composite 2024-07-15 03:25:00	1.43	<0.020	0.282	<0.005	<0.005	0.202	<0.020	<0.005
Composite 2024-07-17 04:45:00	2.40	<0.020	0.156	<0.005	<0.005	0.293	<0.020	<0.005
Composite 2024-09-23 05:16:00	1.15	<0.020	0.066	<0.005	<0.005	0.280	<0.020	<0.005
Composite 2024-09-25 10:45:00	1.81	<0.020	0.262	<0.005	<0.005	0.274	<0.020	<0.005
Composite 2024-10-14 11:31:00	0.980	<0.020	0.290	<0.005	<0.005	0.276	<0.020	<0.005
Composite 2024-11-21 06:59:00	1.28	<0.020	0.338	<0.005	<0.005	0.235	<0.020	<0.005
Composite 2024-12-29 19:15:00	2.21	<0.020	0.130	<0.005	<0.005	0.409	<0.020	<0.005
Avg	2.5107	0.0249	0.2791	0.0053	0.0073	0.3707	0.0200	0.0050
Мах	12.7000	0.0790	0.6980	0.0090	0.0300	1.2000	0.0200	0.0050
Min	0.7870	0.0200	0.0660	0.0050	0.0050	0.1380	0.0200	0.0050

Strachan Influent 24 Hour	Strontium (mg/L)	Thallium (mg/L)	Tin (mg/L)	Titanium (mg/L)	Vanadium (mg/L)	Zinc (mg/L)
24 Hr 2024-10-30 04:12:00	2.08	<0.010	<0.020	0.006	0.002	0.022
Composite 2024-01-11 03:09:00	1.88	<0.010	<0.020	<0.001	<0.002	0.022
Composite 2024-01-26 04:45:00	0.250	<0.010	<0.020	0.325	0.022	0.331
Composite 2024-05-28 08:41:00	1.29	<0.010	<0.020	0.010	<0.002	0.030
Composite 2024-05-28 22:54:00	0.183	<0.010	<0.020	0.132	0.009	0.141
Composite 2024-06-17 21:47:00	0.752	<0.010	<0.020	0.005	<0.002	0.025
Composite 2024-06-20 09:45:00	1.43	<0.010	<0.020	0.010	<0.002	0.040
Composite 2024-07-11 09:39:00	0.322	<0.010	<0.020	0.025	0.003	0.058
Composite 2024-07-15 03:25:00	1.91	<0.010	<0.020	0.014	<0.002	0.041
Composite 2024-07-17 04:45:00	0.550	<0.010	<0.020	0.037	0.004	0.074
Composite 2024-09-23 05:16:00	0.089	<0.010	<0.020	0.028	0.002	0.044
Composite 2024-09-25 10:45:00	1.77	<0.010	<0.020	0.040	0.003	0.060
Composite 2024-10-14 11:31:00	1.76	<0.010	<0.020	0.001	<0.002	0.043
Composite 2024-11-21 06:59:00	2.13	<0.010	<0.020	0.004	<0.002	0.015
Composite 2024-12-29 19:15:00	0.275	<0.010	<0.020	0.033	0.003	0.071
Avg	1.1114	0.0100	0.0200	0.0447	0.0041	0.0678
Мах	2.1300	0.0100	0.0200	0.3250	0.0220	0.3310
Min	0.0890	0.0100	0.0200	0.0010	0.0020	0.0150

Strachan Influent 24 Hour	Ammonia + Ammonium as N (mg/L)	cBiochemical Oxygen Demand (mg/L)	Escherichia coli (MPN/100mL)	Nitrate as N (mg/L)	Total Kjeldahl Nitrogen as N (mg/L)	Total Suspended Solids (mg/L)
24 Hr 2024-10-30 04:12:00	1.28	<5	13,000	1.17	2.0	13.9
Composite 2024-01-11 03:09:00	0.97	<6	57,900	1.15	1.1	2.4
Composite 2024-01-26 04:45:00	0.33	16	86,600	0.24	5.1	429
Composite 2024-05-28 08:41:00	0.92	<6	100,000	0.92	1.9	15.0
Composite 2024-05-28 22:54:00	0.08	11	40,000	0.23	2.1	173
Composite 2024-06-17 21:47:00	1.00	6	54,800	1.08	2.0	11.5
Composite 2024-06-20 09:45:00	1.25	6	70,000	1.16	1.8	16.0
Composite 2024-07-11 09:39:00	0.53	6	210,000	0.39	1.6	33.3
Composite 2024-07-15 03:25:00	0.50	<6	60,000	1.46	1.0	26.0
Composite 2024-07-17 04:45:00	0.32	<6	88,000	0.63	1.4	63.0
Composite 2024-09-23 05:16:00	0.37	<5	190,000	0.36	1.1	27.0
Composite 2024-09-25 10:45:00	1.06	<5	90,000	1.02	1.2	28.0
Composite 2024-10-14 11:31:00	0.99	<5	19,900	1.05	1.7	7.5
Composite 2024-11-21 06:59:00	1.10	<5	40,000	1.24	1.7	6.6
Composite 2024-12-29 19:15:00	0.46	7	24,200	0.33	2.0	55.6
Avg	0.74	6.73	76,293.33	0.83	1.85	60.52
Max	1.28	16.00	210,000.00	1.46	5.10	429.00
Min	0.08	5.00	13,000.00	0.23	1.00	2.40

Note: 2024-01-26 04:45:00 - TKN QC recovery was high; actual result may be lower.

Main and King Effluent

Main and King Effluent	Aluminum (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Beryllium (mg/L)	Bismuth (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Cobalt (mg/L)	Copper mg/L	Iron (mg/L)	Lead (mg/L)
2024-01-10 12:58:00	0.814	<0.020	0.047	<0.0001	<0.020	<0.0005	0.003	<0.0009	0.016	1.76	<0.020
2024-05-28 21:35:00	0.159	<0.020	0.087	<0.0001	<0.020	<0.0005	<0.001	<0.0009	0.007	1.59	<0.020
2024-05-29 05:51:00	1.05	<0.020	0.026	<0.0001	<0.020	<0.0005	0.004	<0.0009	0.026	1.56	<0.020
2024-07-11 08:07:00	0.669	<0.020	0.041	<0.0001	<0.020	<0.0005	0.002	<0.0009	0.016	1.78	<0.020
2024-07-15 17:51:00	0.505	<0.020	0.043	<0.0001	<0.020	<0.0005	0.001	<0.0009	0.011	0.823	<0.020
2024-07-16 16:33:00	0.228	<0.020	0.019	<0.0001	<0.020	<0.0005	<0.001	<0.0009	0.004	0.451	<0.020
2024-07-24 11:54:00	2.48	<0.020	0.169	<0.0001	<0.020	<0.0005	0.004	0.0014	0.014	8.41	<0.020
Avg	0.8436	0.0200	0.0617	0.0001	0.0200	0.0005	0.0023	0.0010	0.0134	2.3391	0.0200
Max	2.4800	0.0200	0.1690	0.0001	0.0200	0.0005	0.0040	0.0014	0.0260	8.4100	0.0200
Min	0.1590	0.0200	0.0190	0.0001	0.0200	0.0005	0.0010	0.0009	0.0040	0.4510	0.0200

Main and King Effluent	Manganese (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Phosphorus Total (mg/L)	Selenium (mg/L)	Silver (mg/L)	Strontium (mg/L)	Thallium (mg/L)	Tin (mg/L)	Titanium (mg/L)
2024-01-10 12:58:00	0.069	<0.005	<0.005	0.672	<0.020	<0.005	0.575	<0.010	<0.020	0.034
2024-05-28 21:35:00	0.018	<0.005	<0.005	0.350	<0.020	<0.005	0.772	<0.010	<0.020	0.005
2024-05-29 05:51:00	0.091	<0.005	<0.005	0.841	<0.020	<0.005	0.243	<0.010	<0.020	0.048
2024-07-11 08:07:00	0.059	<0.005	<0.005	0.887	<0.020	<0.005	0.383	<0.010	<0.020	0.036
2024-07-15 17:51:00	0.032	<0.005	<0.005	0.654	<0.020	<0.005	0.677	<0.010	<0.020	0.019
2024-07-16 16:33:00	0.077	<0.005	<0.005	0.454	<0.020	<0.005	0.248	0.010	<0.020	0.006
2024-07-24 11:54:00	0.154	<0.005	<0.005	0.751	<0.020	<0.005	1.98	<0.010	<0.020	0.092
Avg	0.0714	0.0050	0.0050	0.6584	0.0200	0.0050	0.6969	0.0100	0.0200	0.0343
Max	0.1540	0.0050	0.0050	0.8870	0.0200	0.0050	1.9800	0.0100	0.0200	0.0920
Min	0.0180	0.0050	0.0050	0.3500	0.0200	0.0050	0.2430	0.0100	0.0200	0.0050

Main and King Effluent	Vanadium (mg/L)	Zinc (mg/L)	Ammonia + Ammonium as N (mg/L)	cBiochemical Oxygen Demand (mg/L)	Escherichia coli (MPN/100mL)	Fecal Coliform (CFU/100mL)	Nitrate as N (mg/L)	Total Kjeldahl Nitrogen as N (mg/L)	Total Suspended Solids (mg/L)
2024-01-10 12:58:00	0.003	0.065	2.75	14	710,000	84,000	1.01	4.6	39.2
2024-05-28 21:35:00	<0.002	0.028	2.86	<6	100,000	17,600	1.11	4.8	9.0
2024-05-29 05:51:00	0.003	0.069	2.65	18	17,300	56,000	0.23	5.1	61.3
2024-07-11 08:07:00	0.002	0.068	2.78	16	1,480,000	20,800	0.45	5.3	42.0
2024-07-15 17:51:00	<0.002	0.058	0.50	<6	88,000	NDOGFC	0.53	3.7	27.0
2024-07-16 16:33:00	<0.002	0.026	2.28	<6	28,000	NDOGFC	<0.2	2.8	10.0
2024-07-24 11:54:00	0.005	0.109	0.19	8	30,000	NDOGFC	1.40	1.7	105
Avg	0.0027	0.0604	2.00	10.57	35,0471.43	25,485.71	0.70	4.00	41.93
Max	0.0050	0.1090	2.86	18.00	1,480,000.00	84,000.00	1.40	5.30	105.00
Min	0.0020	0.0260	0.19	6.00	17,300.00	0.00	0.20	1.70	9.00

Notes:

2024-05-28 21:35:00 - Sample was past the 48h holding time for fecal coliform analysis when received at the Subcontract lab; result may be unreliable.

2024-05-29 05:51:00 - Sample was past the 48h holding time for fecal coliform analysis when received at the Subcontract lab; result may be unreliable.

2024-07-15 17:51:00 - NDOGFC: No data, plate overgrown with target bacteria - Fecal coliforms. Sample was past the 48h holding time for fecal coliform analysis when received at the Subcontract lab; result may be unreliable.

2024-07-16 16:33:00 - NDOGFC: No data, plate overgrown with target bacteria - Fecal coliforms.

2024-07-24 11:54:00 - Sample was past the 48h holding time for fecal coliform analysis when received at the Subcontract lab; result may be unreliable. NDOGFC = No Data: Overgrown with Fecal Coliforms.