City of Hamilton

Mohawk Road Class Environmental Assessment

Lime Kiln Road/McNiven Road to Highway 403

Environmental Study Report

December 2019

B000941

SUBMITTED BY CIMA CANADA INC.
400–3027 Harvester Road
Burlington, ON L7N 3G7
cima.ca

CONTACT
Phil Weber, P.Eng.
Phil.Weber@cima.ca
T: 905-695-1005, 6732
Table of Contents

1. **Introduction and Study Background**... 1
 1.1. **Introduction**.. 1
 1.2. **Study Area**.. 1
 1.3. **Municipal Class Environmental Assessment Process**.. 2
 1.3.1. **Part II Order**.. 3
 1.4. **Study Approach and Organization**... 3

2. **Review of Phases 1 and 2**.. 5
 2.1. **Planning and Policy Context**... 5
 2.1.1. **Ancaster Transportation Master Plan**... 5
 2.2. **Transportation and Traffic Assessment**.. 6
 2.2.1. **Existing Geometry**.. 6
 2.2.2. **Existing Traffic Volumes**.. 7
 2.2.3. **Existing Intersection Operations**.. 10
 2.2.4. **Future Do-Nothing Traffic Volume Projections**...................................... 12
 2.2.5. **Future Do-Nothing Intersection Operations**... 13
 2.3. **Review of Problem and Opportunity**... 16
 2.4. **Natural Heritage**... 16
 2.5. **Tree Inventory**... 17
 2.6. **Drainage and Stormwater Management**.. 17
 2.6.1. **Soils**... 17
 2.6.2. **Existing Minor Drainage System**.. 18
 2.6.3. **Existing Major Drainage System**.. 21
 2.6.4. **Existing Stormwater Infrastructure**.. 21
 2.7. **Utilities**.. 21
 2.8. **Phase 1 and 2 Consultation**.. 21
 2.8.1. **Notice of Study Commencement and Public Information Centre #1**.... 21
 2.8.2. **Public Information Centre #1**.. 22
 2.9. **Confirmation of Preferred Solution**.. 23
3. Alternative Design Concepts .. 24
 3.1. Development of Alternative Design Concepts 24
 3.3. Technically Preferred Alternative Design 44
 3.4. Phase 3 Consultation ... 44
 3.4.1. Notice of Public Information Centre #2 44
 3.4.2. Public Information Centre #2 44
 3.5. Preferred Design Concept .. 46

4. Description of the Recommended Plan 48
 4.1. Roadway Geometry ... 48
 4.1.1. Design Criteria .. 48
 4.1.2. Profile and Alignment .. 49
 4.1.3. Typical Cross Sections .. 56
 4.1.4. Active Transportation .. 58
 4.1.5. Intersections .. 59
 4.2. Drainage and Stormwater Management 59
 4.2.1. Proposed Stormwater Management System 60
 4.2.2. Proposed Minor Drainage System 60
 4.2.3. Proposed Major Drainage System 60
 4.3. Tree Management .. 62
 4.4. Utilities ... 62
 4.5. Property Requirements .. 62
 4.6. Construction Staging ... 63
 4.7. Preliminary Cost Estimate .. 65

5. Mitigation and Commitments to Further Work 68
List of Exhibits

Exhibit 1-1: Study Area .. 1
Exhibit 1-2: Municipal Class EA Flow Chart ... 4
Exhibit 2-1: Ancaster TMP Cross-Section .. 6
Exhibit 2-2: TMC Data Collection Dates and Peak Hours ... 7
Exhibit 2-3: Existing Intersection Volumes – Observed TMC Data ... 8
Exhibit 2-4: Existing Intersection Volumes – Balanced ... 9
Exhibit 2-5: LOS Criteria for Signalized and Unsignalized Intersections 10
Exhibit 2-6: Peak Hour Intersection Performance - Existing ... 11
Exhibit 2-7: Projected 2031 Intersection Volumes .. 14
Exhibit 2-8: Peak Hour Intersection Performance – Projected Do Nothing 15
Exhibit 2-9: Existing Soils Map .. 19
Exhibit 2-10: Existing Drainage Mosaic ... 20
Exhibit 3-1: Option 1, Three-Lane Section Plus Bicycle Lanes and Sidewalks Both Sides, Rendering ... 25
Exhibit 3-2: Option 1, Three-Lane Section Plus Bicycle Lanes and Sidewalks Both Sides, Cross-Section ... 26
Exhibit 3-3: Option 2, Three-Lane Section with Cycle Tracks and Sidewalks Both Sides, Rendering ... 27
Exhibit 3-4: Option 2, Three-Lane Section with Cycle Tracks and Sidewalks Both Sides, Cross-Section ... 28
Exhibit 3-5: Option 3A, Three-Lane Section with Multi-use Path on South Side Only, Rendering ... 29
Exhibit 3-6: Option 3A, Three-Lane Section with Multi-use Path on South Side Only, Cross-Section .. 30
Exhibit 3-7: Option 3B, Three-Lane Section with Multi-use Path on South Side and Sidewalk on North Side, Rendering ... 31
Exhibit 3-8: Option 3B, Three-Lane Section with Multi-use Path on South Side and Sidewalk on North Side, Cross-Section .. 32
Exhibit 3-9: Option 4A, Three-Lane Section with Multi-use Path on North Side Only, Rendering ... 33
Exhibit 3-10: Option 4A, Three-Lane Section with Multi-use Path on North Side Only, Cross-Section .. 34
Exhibit 3-11: Option 4B, Three-Lane Section with Multi-use Path on North Side and Sidewalk on South Side, Rendering

Exhibit 3-12: Option 4B, Three-Lane Section with Multi-use Path on North Side and Sidewalk on South Side, Cross-Section

Exhibit 3-13: Option 5, Three-Lane Section with Sidewalks on Both Sides, Rendering

Exhibit 3-14: Option 5, Three-Lane Section with Sidewalks on Both Sides, Cross-Section

Exhibit 3-15: Evaluation Scale

Exhibit 3-16: Analysis and Evaluation of Alternative Design Concepts

Exhibit 4-1: Design Criteria

Exhibit 4-2: Preliminary Design Plates – Plan Station 0+140 to 0+540

Exhibit 4-3: Preliminary Design Plates – Profile Station 0+140 to 0+540

Exhibit 4-4: Preliminary Design Plates - Plan Station 0+540 to 0+920

Exhibit 4-5: Preliminary Design Plates - Profile Station 0+540 to 0+920

Exhibit 4-6: Preliminary Design Plates Plan – Station 0+920 to 1+000

Exhibit 4-7: Preliminary Design Plates Profile – Station 0+920 to 1+000

Exhibit 4-8: Typical Cross Section Between Lime Kiln Road/McNiven Road and Cayuga Avenue with Multi-use Path on North Side and Sidewalk on South Side Adjacent to Property Line

Exhibit 4-9: Typical Cross Section Between Cayuga Avenue and Algonquin Avenue with Multi-use Path on North Side and Sidewalk on South Side Adjacent to Curb

Exhibit 4-10: Typical Cross Section Between Algonquin Avenue and Filman Road with Multi-use Path North Side Only (No Sidewalk)

Exhibit 4-11: Proposed Stormwater Management Conditions

Exhibit 4-12: Property Requirements

Exhibit 4-13: Construction Staging – Existing, Pre-Stage 1 and Stage 1 (Not to Scale)

Exhibit 4-14: Construction Staging – Stage 2, Stage 3 and Stage 4 (Not to Scale)

Exhibit 4-15: Construction Cost Estimate

Exhibit 5-1: Mitigation and Commitments to Further Work
List of Appendices

Appendix A: Transportation and Traffic Assessment Report
Appendix B: Natural Heritage Report
Appendix C: Tree Management Plan Report
Appendix D: Drainage and Stormwater Management Report
Appendix E: Notice of Study Commencement and Public Information Centre #1
Appendix F: Alternative Design Concepts
Appendix G: Public Information Centre #2
Appendix H: Pedestrian Crossing Treatment Review
1. Introduction and Study Background

1.1. Introduction

Mohawk Road is a major arterial road in the City of Hamilton connecting to both the Lincoln M. Alexander Parkway (LINC) and the provincial Highway 403 in the east. It has a two-lane cross section and a posted speed limit of 50 km/h. West of the study area, Mohawk Road becomes Rousseaux Street providing access to downtown Ancaster.

The City of Hamilton is undertaking a Schedule C Municipal Class Environmental Assessment (EA) Study to review the transportation needs of Mohawk Road between Lime Kiln Road/McNiven Road and Filman Road. Phases 1 and 2 of the Class EA were completed during the development and approval of the Ancaster Transportation Master Plan (TMP) (2011). The Ancaster TMP recommended that Mohawk Road (and a number of other arterial roads within Ancaster) have a three-lane section including two-way centre left-turn lane where feasible, plus sidewalks and bike lanes.

The purpose of the wider road section is to accommodate increasing traffic volumes, facilitate safer driveway access for residential properties along Mohawk Road, improve conditions for service trucks, and address the need for active transportation facilities.

1.2. Study Area

The study area, as illustrated in Exhibit 1-1, includes Mohawk Road between Lime Kiln Road/McNiven Road and Highway 403/Filman Road, including intersections and approaches. The right-of-way varies throughout the corridor from 20 metres to 35 metres, with 23 metres being the typical right-of-way.

Exhibit 1-1: Study Area
Within the study limits Mohawk Road has a predominately two-lane rural cross-section with narrow gravel shoulders. Exceptions are along the north side, east of Lime Kiln Road, and at the east end of the study area near Filman Road. A sidewalk is provided on the south side from McNiven Road to approximately 40 metres west of Cayuga Avenue. There are no additional pedestrian and bicycle facilities within the study limits.

1.3. Municipal Class Environmental Assessment Process

This study follows the Municipal Engineers Association (MEA) Municipal Class Environmental Assessment process for a Schedule C project (October 2000, as amended in 2007, 2011 and 2015).

The Ontario Environmental Assessment Act (2010) guides the process for reviewing the environmental impact of proposed activities. The Act applies to government agencies, conservation authorities, and municipalities. The City of Hamilton is the proponent in this study and the Municipal Class Environmental Assessment for the Mohawk Road has been completed in accordance with the Ontario Environmental Assessment Act (2010).

Municipal projects that affect the purpose, capacity or function of a roadway, or propose new roadways are subject to the Municipal Engineers Association Municipal Class Environmental Assessment (October 2000, as amended in 2007, 2011 and 2015). The Municipal Class Environmental Assessment (Class EA) is a planning and design process for transportation/transit and water/wastewater infrastructure projects which have a predictable range of impacts that can be mitigated. The Municipal Class EA process is approved by the Ministry of Environment, Conservation and Parks to meet the requirements of the Environmental Assessment Act (2010).

Based on their potential range of impacts, projects are classified under the Municipal Class EA by Schedules:

- **Schedule A** Activities have minimal environmental effects. Projects are pre-approved.
- **Schedule A+** Activities have minimal environmental effects. Projects are pre-approved so long as the public is advised prior to implementation.
- **Schedule B** Activities have some adverse environmental effects. Projects typically involve improvements and minor expansions to existing facilities. These projects proceed through a screening process (Phases 1 and 2 of the Class EA), including consultation with the potentially-affected public.
- **Schedule C** Activities have some adverse environmental effects. Projects typically involve the construction of new facilities and major expansions to existing facilities. These projects proceed through the full Class EA planning and design process (Phases 1 through 5).

In particular, road widening or extensions with an estimated construction cost of $2.4M or more are classified as a Schedule C project under the Municipal Class EA. As noted above, Schedule C projects must follow Phases 1 through 5 of the Class EA process:
Phase 1 Identify the problem or opportunity.

Phase 2 Identify alternative solutions to address the problem or opportunity.

This Phase will identify and assess the positive and negative effects of alternative planning solutions for the identified problem and/or opportunity, taking into account the natural, social, cultural, and economic environment and input from all agencies and the public.

Phase 3 Examine alternative methods of implementing the preferred solution.

Phase 3 will identify and assess the positive and negative effects of alternative design concepts for the preferred solution, taking into account the natural, social, cultural, and economic environment and input from all agencies and the public.

Phase 4 Document the rationale for the preferred solution and design concept, and the planning, design and consultation process in an Environmental Study Report for public and agency review.

The Environmental Study Report is placed on the public record for at least 30 calendar days. If any outstanding issues raised by the public or agencies cannot be resolved during this review period, the public and agencies have the right to request the Minister of the Environment, Conservation and Parks to order an Individual Environmental Assessment as per Part II of the Ontario Environmental Assessment Act. If no requests for a Part II order are received during the review period, the project will proceed to Phase 5 for implementation.

Phase 5 Complete contract drawings and documents, and proceed to construction, operation and environmental monitoring.

1.3.1. Part II Order

The Municipal Class EA process includes an appeal provision to change the status of a project from being subject to the Municipal Class EA process to being subject to an Individual Environmental Assessment as per Part II of the Ontario EA Act. The latter requires the submission of an EA document to the Minister of the Environment, Conservation and Parks (MECP) for government review and approval.

1.4. Study Approach and Organization

Exhibit 1-2 illustrates the process for a Schedule C project under the Municipal Class EA. This study approach began with a thorough understanding of the problem being addressed, followed by assessing the alternative solutions. Phases 1 and 2 of this study were completed during the Ancaster Transportation Master Plan (2011).

This report documents the review and confirmation of Phases 1 and 2 followed by the completion of Phases 3 and 4 of the Class EA. The approach is organized around study phases, including Public Information Centres (PICs) and stakeholder engagement at study milestones. This study began in September 2018, with completion scheduled for late 2019.
Exhibit 1-2: Municipal Class EA Flow Chart
2. Review of Phases 1 and 2

Phases 1 and 2 of the Municipal Class EA were documented as part of the Ancaster Transportation Master Plan (TMP) (2011). The Ancaster TMP identified the preferred solution for Mohawk Road as a road widening with a two-way centre left-turn lane. The Class Environmental Assessment Master Plan Report approved the planning solution for this road section as a Schedule C project. Phases 1 and 2 of the EA study were reviewed and confirmed prior to commencing with Phases 3 and 4.

2.1. Planning and Policy Context

2.1.1. Ancaster Transportation Master Plan

The Ancaster TMP (2011) identified the future requirements to address short, medium and long-term transportation demands, and outline a plan providing the facilities in a phased manner consistent with the Hamilton Transportation Master Plan (HTMP), land use plans and policies as identified in provincial plans, official plans and secondary plans.

The Ancaster TMP also included a review of the development impacts on the road network within the Ancaster Urban Area, particularly the intersection of Wilson Street and Rousseaux Street.

As part of the long range plan to address transportation issues in Ancaster, the TMP identified the opportunity to widen Mohawk Road to three auto lanes with a two-way centre left-turn lane. Community members recommended sidewalks be included along both sides of the roadway and pedestrian crossings be considered. The recommended cross-section from the Ancaster TMP is illustrated in Exhibit 2-1. The Mohawk Road corridor was identified as a critical access point for mobility within Ancaster and continued monitoring for potential traffic operations issues were recommended.

The City of Hamilton Cycling Master Plan Review and Update (2018), recommended bike lanes on Mohawk Road within the study area. The preferred solution for Mohawk Road was therefore determined to be a three auto lane cross-section with a centre-two way left-turn lane and active transportation facilities, whether they be sidewalks, bike lanes or a combination that caters to both pedestrians and cyclists.
2.2. Transportation and Traffic Assessment

A Transportation and Traffic Assessment was conducted to review background data provided in the Ancaster TMP and incorporate updated information (i.e. population, employment, trip generation projections, link volumes) provided by the City. This information, in conjunction with turning movement counts (TMC), was used to forecast intersection volumes for the 2031 horizon year. A copy of the Transportation and Traffic Assessment is provided in Appendix A.

2.2.1. Existing Geometry

Within the study area, there are two existing signalized intersections and three intersections with stop control on the minor approaches only. The land use surrounding the study area, and along Mohawk Road, is predominantly low-density residential.

Mohawk Road is classified as a major arterial road within the study area. The posted speed limit is 50 km/h and there is a single travel lane in both the eastbound and westbound directions. At the signalized McNiven Road/Lime Kiln Road intersection, auxiliary left-turn lanes are provided for all directions and an auxiliary right-turn lane is provided for the eastbound right-turn movement. At the signalized Filman Road intersection, auxiliary turn lanes are provided for the eastbound left-turn and southbound right-turn movements. The unsignalized intersections in the study area are ‘T’ intersections with Mohawk Road and consist of a single-lane approach, with the exception of the Algonquin Avenue intersection where an auxiliary westbound left-turn lane is provided.
2.2.2. Existing Traffic Volumes

Recent vehicle turning movement count (TMC) data was provided by the City for each study area intersection. The dates when TMC data was collected is summarized in Exhibit 2-2 and the weekday peak hour volumes for each intersection are illustrated on Exhibit 2-3. Detailed TMC data is provided as Appendix A.

Exhibit 2-2: TMC Data Collection Dates and Peak Hours

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Count Date</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohawk Road & McNiven Road/Lime Kiln Road</td>
<td>Thursday, April 26, 2018</td>
<td>8:45 – 9:45</td>
<td>17:00 – 18:00</td>
</tr>
<tr>
<td>Mohawk Road & Green Ravine Drive</td>
<td>Thursday, June 21, 2018</td>
<td>7:45 – 9:45</td>
<td>16:45 – 17:45</td>
</tr>
<tr>
<td>Mohawk Road & Algonquin Avenue</td>
<td>Monday, June 4, 2018</td>
<td>8:00 – 9:00</td>
<td>16:00 – 17:00</td>
</tr>
<tr>
<td>Mohawk Road & Filman Road</td>
<td>Monday, April 25, 2018</td>
<td>8:00 – 9:00</td>
<td>16:45 – 17:45</td>
</tr>
</tbody>
</table>

As shown in Exhibit 2-2, AM and PM peak hours vary for different intersections within the study area. For analysis and volume balancing purposes, data that was collected between 8:00 and 9:00, and between 16:45 to 17:45 was selected to represent AM and PM peak hours, respectively. It should be noted that CIMA+ completed AM and PM peak hour counts at the intersection of Mohawk Road and Cayuga Avenue on Thursday, July 19, 2018, to confirm the assumed peak hours.

Exhibit 2-3 depicts the existing observed peak hour intersection volumes.

Despite using a common peak hour when extracting TMC data, notable imbalances were revealed between study area intersections. Traffic volumes were conservatively balanced by proportionally increasing approach volumes at select study area intersections, such that total network volumes are consistent with higher observed volumes.

Exhibit 2-4 depicts the resultant balanced existing intersection volumes used for analysis purposes.
Exhibit 2-3: Existing Intersection Volumes – Observed TMC Data
Exhibit 2-4: Existing Intersection Volumes – Balanced
2.2.3. Existing Intersection Operations

Intersection capacity analysis was conducted using the traffic analysis software Synchro (v9) and the following procedures described in the Highway Capacity Manual (HCM). The subsequent analysis primarily focuses on performance measures for motorists such as Level-of-Service (LOS), volume-to-capacity (v/c) ratio, and 95th percentile queues.

LOS is a qualitative measure of operational performance and is based on control delay. Exhibit 2-5 summarizes the LOS criteria for signalized intersections.

Exhibit 2-5: LOS Criteria for Signalized and Unsignalized Intersections

<table>
<thead>
<tr>
<th>LOS</th>
<th>Control Delay (seconds/vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 – 10</td>
</tr>
<tr>
<td>B</td>
<td>> 10 – 20</td>
</tr>
<tr>
<td>C</td>
<td>> 20 – 35</td>
</tr>
<tr>
<td>D</td>
<td>> 35 – 55</td>
</tr>
<tr>
<td>E</td>
<td>> 55 – 80</td>
</tr>
<tr>
<td>F</td>
<td>> 80</td>
</tr>
</tbody>
</table>

The v/c ratio is the ratio between traffic volume (in terms of vehicles per hour) and the theoretical capacity of an intersection movement. A v/c ratio greater than 1.0 indicates that a movement is processing more vehicles in an hour than theoretically possible.

The 95th Percentile Queue is the queue length that has only a 5 percent probability of being exceeded during the analysis period. It is industry practice and accepted methodology to use the 95th percentile queue length for design and operational analysis purposes.

Existing intersection operations were reviewed, using Synchro/SimTraffic software and the balanced volumes described in the previous section as well as considering existing signal timing plans provided by the City. Exhibit 2-6 summarizes existing peak hour operations at the study area intersections. Detailed Synchro/Sim Traffic data output is provided as Appendix A.
Exhibit 2-6: Peak Hour Intersection Performance - Existing

<table>
<thead>
<tr>
<th>Direction</th>
<th>Mov.</th>
<th>Storage Length (m)</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>v/c</td>
<td>Delay (s)</td>
</tr>
<tr>
<td>Mohawk Road at McNiven Road/Lime Kiln Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>L</td>
<td>31</td>
<td>0.04</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>0.67</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>36</td>
<td>0.06</td>
<td>8</td>
</tr>
<tr>
<td>WB</td>
<td>L</td>
<td>48</td>
<td>0.23</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>0.63</td>
<td>11</td>
</tr>
<tr>
<td>NB</td>
<td>L</td>
<td>29</td>
<td>0.73</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>0.22</td>
<td>32</td>
</tr>
<tr>
<td>SB</td>
<td>L</td>
<td>20</td>
<td>0.33</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>0.05</td>
<td>31</td>
</tr>
<tr>
<td>Overall</td>
<td>-</td>
<td>0.69</td>
<td>19</td>
<td>B</td>
</tr>
<tr>
<td>Mohawk Road at Cayuga Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>T/R</td>
<td>0.61</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>WB</td>
<td>L/T</td>
<td>0.01</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>NB</td>
<td>L/R</td>
<td>-</td>
<td>0.11</td>
<td>53</td>
</tr>
<tr>
<td>Overall</td>
<td>-</td>
<td>0.63</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Mohawk Road at Green Ravine Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>L/T</td>
<td>0.02</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>WB</td>
<td>T/R</td>
<td>0.48</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>SB</td>
<td>L/R</td>
<td>-</td>
<td>0.08</td>
<td>18</td>
</tr>
<tr>
<td>Overall</td>
<td>-</td>
<td>0.71</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>Mohawk Road at Algonquin Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>T/R</td>
<td>0.64</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>WB</td>
<td>L</td>
<td>-</td>
<td>0.04</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>0.49</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>NB</td>
<td>L/R</td>
<td>-</td>
<td>0.36</td>
<td>31</td>
</tr>
<tr>
<td>Overall</td>
<td>-</td>
<td>0.64</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>Mohawk Road at Filman Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>L</td>
<td>28</td>
<td>0.02</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>0.78</td>
<td>9</td>
</tr>
<tr>
<td>WB</td>
<td>T</td>
<td>-</td>
<td>0.33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB</td>
<td>L</td>
<td>-</td>
<td>0.44</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>20</td>
<td>0.00</td>
<td>32</td>
</tr>
<tr>
<td>Overall</td>
<td>-</td>
<td>0.76</td>
<td>7</td>
<td>A</td>
</tr>
</tbody>
</table>

*Given the error, this assessment was calculated manually resulting in a v/c of 0.33
As shown in Exhibit 2-6, the majority of movements at the study area intersections are currently operating with delays equivalent to LOS C or lower during both AM and PM peak hours. Individual movements noted to be currently operating with long delays and/or high v/c ratios, exceeding the City’s thresholds include:

Mohawk Road at McNiven Road/Lime Kin Road (Signalized Intersection)
- The westbound left-turn operating with a v/c of 1.02 and delays of 78 seconds during the PM peak hour

This is due to a high volume of westbound left-turning traffic. Given this movement currently has a protected green phase, dual auxiliary left-turn lanes will be required to achieve a more reasonable LOS.

Mohawk Road at Cayuga Avenue (Unsignalized Intersection)
- The northbound approach is operating with a v/c of 0.11 and delays of 53 seconds during the AM peak hour
- The northbound approach is operating with a v/c of 0.09 and delays of 64 seconds during the PM peak hour

The low v/c and high delay is attributed to the lack of adequate gaps for drivers on Cayuga Avenue attempting to turn onto Mohawk Road. Delays to the northbound approach can be mitigated with intersection signal control; however, given that turning movements at this location are low, intersection signal control warrants will not be triggered based on volume.

Mohawk Road at Algonquin Avenue (Unsignalized Intersection)
- The northbound approach operating with a v/c of 0.36 and delays of 31 seconds during the AM peak hour
- The northbound approach operating with a v/c of 14.0 and incalculable delay during the PM peak hour

The low v/c and high delay is attributed to the lack of sufficiently-long gaps for drivers on Algonquin Avenue attempting to turn onto Mohawk Road. Delays to the northbound approach can be mitigated with intersection signal control; however, given that turning movements at this location are low, intersection signal control warrants will not be triggered based on volume. The high v/c ratio of 14.0 and incalculable delays are a result of the capacity analysis software’s limitation. When the Algonquin Avenue intersection is coded in isolation, or with a greater distance from Filman Road, the resulting v/c ratio is 0.33; however, delays are still notably high for reasons mentioned above.

2.2.4. Future Do-Nothing Traffic Volume Projections

For the purpose of this assessment, a 1% annual growth rate (as provided by the City) was applied to existing 2018 volumes to obtain projected future volumes for the 2031 planning horizon year. Since the area surrounding the study area is built out, only the east and westbound volumes along Mohawk Road and the northbound right-turn movement at the
McNiven Road/Lime Kiln Road intersection were increased based on the annual growth rate. The resulting projected 2031 future traffic volumes are shown on Exhibit 2-7.

2.2.5. Future Do-Nothing Intersection Operations

Based on the projected 2031 volumes shown on Exhibit 2-7, and considering optimized signal timing plans (120-second cycle) and existing intersection geometry, Exhibit 2-8 summarizes projected peak hour operations at intersections in the study area, as a 'Do Nothing' scenario. Detailed Synchro/Sim Traffic data output is provided as Appendix A.

As shown in Exhibit 2-8, with an increase in background traffic volumes, the westbound left-turn and eastbound through movements at the McNiven Road/Lime Kiln Road intersection are projected to approach capacity, and with some 95th percentile queues exceeding available storage by approximately 2 to 3 car lengths.

The northbound approach at the Cayuga Avenue intersection is projected to operate with long delays and LOS F. Similar to existing conditions, the high v/c ratio at the northbound approach at the Algonquin Avenue intersection results of the capacity analysis software’s limitation. When coded in isolation, or with a greater distance from Filman Road, the resulting v/c ratio is 0.37. With an increase in background traffic volumes along Mohawk Road, drivers attempting to turn onto Mohawk Road from Cayuga Avenue and Algonquin Avenue will experience significantly more delay, resulting in high delays for the northbound approach.
Exhibit 2.7: Projected 2031 Intersection Volumes

Legend:
- Solid line: All Existing Traffic
- Unpaved for Pedestrian and Bicycle Use
- Unpaved Option

Nup

CAYUGA AVENUE

McNIVEN ROAD

GREEN RAVINE DRIVE

ALGOQUIN AVENUE

FILMAN ROAD
Exhibit 2-8: Peak Hour Intersection Performance – Projected Do Nothing

<table>
<thead>
<tr>
<th>Direction</th>
<th>Mov.</th>
<th>Storage Length (m)</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>v/c</td>
<td>Delay (s)</td>
<td>LOS</td>
</tr>
<tr>
<td>Mohawk Road at McNiven Road/Lime Kiln Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>L</td>
<td>31</td>
<td>0.04</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>0.74</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>36</td>
<td>0.06</td>
<td>8</td>
</tr>
<tr>
<td>WB</td>
<td>L</td>
<td>48</td>
<td>0.32</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>0.69</td>
<td>12</td>
</tr>
<tr>
<td>NB</td>
<td>L</td>
<td>29</td>
<td>0.66</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>0.36</td>
<td>31</td>
</tr>
<tr>
<td>SB</td>
<td>L</td>
<td>20</td>
<td>0.44</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>0.05</td>
<td>29</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>-</td>
<td>0.73</td>
<td>19</td>
</tr>
<tr>
<td>Mohawk Road at Cayuga Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>T/R</td>
<td>-</td>
<td>0.70</td>
<td>0</td>
</tr>
<tr>
<td>WB</td>
<td>L/T</td>
<td>-</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>NB</td>
<td>L/R</td>
<td>-</td>
<td>0.22</td>
<td>117</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>-</td>
<td>0.70</td>
<td>1</td>
</tr>
<tr>
<td>Mohawk Road at Green Ravine Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>L/T</td>
<td>-</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>WB</td>
<td>T/R</td>
<td>-</td>
<td>0.54</td>
<td>-</td>
</tr>
<tr>
<td>SB</td>
<td>L/R</td>
<td>-</td>
<td>0.05</td>
<td>22</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>-</td>
<td>0.71</td>
<td>1</td>
</tr>
<tr>
<td>Mohawk Road at Algonquin Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>T/R</td>
<td>-</td>
<td>0.73</td>
<td>0</td>
</tr>
<tr>
<td>WB</td>
<td>L</td>
<td>-</td>
<td>0.04</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>0.55</td>
<td>0</td>
</tr>
<tr>
<td>NB</td>
<td>L/R</td>
<td>-</td>
<td>0.49</td>
<td>48</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>-</td>
<td>0.71</td>
<td>2</td>
</tr>
<tr>
<td>Mohawk Road at Filman Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>L</td>
<td>28</td>
<td>0.02</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>-</td>
<td>0.85</td>
<td>10</td>
</tr>
<tr>
<td>WB</td>
<td>T</td>
<td>-</td>
<td>0.36</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>T/R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB</td>
<td>L</td>
<td>-</td>
<td>0.28</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>20</td>
<td>0.00</td>
<td>30</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>-</td>
<td>0.80</td>
<td>7</td>
</tr>
</tbody>
</table>

Given the error, this assessment was calculated manually
2.3. Review of Problem and Opportunity

With an increase in background traffic volumes in the future, the westbound left-turn and eastbound through movements at the McNiven Road/Lime Kiln Road intersection are projected to approach capacity during peak periods, with some 95th percentile queues exceeding available storage. Lengthy peak hour delays for motorists are also predicted northbound at Cayuga Avenue and Algonquin Avenue.

There is an opportunity to convert Mohawk Road from a two-lane cross-section to a three-lane cross-section with the introduction of a two-way centre left-turn lane and the provision of active transportation facilities. The two-way centre left-turn lane has the potential to reduce delays for motorists on the minor roads at the unsignalized intersections by allowing left turns to occur in two stages. The three-lane cross-section also presents a safety benefit because it removes left-turning traffic at the minor intersections and driveways from the main stream of traffic, and would allow drivers to go around service trucks at the curb without encroaching on the opposing traffic lane.

2.4. Natural Heritage

A Natural Heritage Assessment was completed to document existing conditions, assess potential impacts to any natural heritage features present within the study area, and provide recommendations and supporting documentation for the study. The Natural Heritage Report is provided in Appendix B.

The study area is located within the administrative jurisdiction of the Hamilton Conservation Authority (HCA). There are no watercourses or regulated areas present within the study area.

Based on the results of the background review, no designated natural heritage features are present within or directly adjacent to the study area that trigger policy and legislation protection for this Project.

Species at Risk (SAR) screening was completed to evaluate potential for the presence of SAR in the study area. As per the results of the SAR Screening only one species as a Low to Moderate likelihood of occurrence, the Red-headed Woodpecker (Melanerpes erythrocephalus). This species’ legal protection status is identified as “Special Concern” under the Endangered Species Act and “Threatened” under the federal Species at Risk Act. This species can use roadsides as a habitat and is known to use decadent deciduous trees that are 18 cm diameter at breast height or more, or have dead or dying limb(s) with a diameter of 13 cm or more, as potential nesting/roosting structures. While the Red-headed Woodpecker was not observed during the field investigations, a few trees corresponding to these criteria were noted within the study area.

The MNRF’s Significant Wildlife Habitat Technical Guide (2000), and Criteria for Identifying Significant Wildlife Habitat (SWH) in Ecoregion 7E (2015), were used to evaluate the potential for SWH to be present. Where potential for SWH existed, a field assessment was conducted to determine if the criteria for confirmation of SWH was met. Based on the results of the assessment, Significant Wildlife Habitat is not present within the study area.
2.5. **Tree Inventory**

A Tree Inventory was conducted to identify and assess the existing trees in the study area. A site visit was conducted on August 28, 2018 by an ISA Certified Arborist.

Trees and tree groups located within and adjacent to the existing right-of-way (ROW) were identified, uniquely numbered, measured, and assessed for condition. The tree inventory table containing this information is included in the Tree Management Plan Report in Appendix C along with drawings that show the locations of the numbered trees and tree groups surveyed.

A total of 162 trees and tree groups were surveyed. Of these, five (5) trees were located on public property that are potential hazards to the public: Trees 29, 31, 32, 33, and 35. Each of these trees are ash, and all are severely affected by Emerald Ash Borer (EAB). They suffer from at least 80% crown dieback, with mostly bare crowns and large scaffold branches overhanging the sidewalk to the north, and in some cases overhanging parked cars on private property to the south. Their caliper or diameter at breast height (DBHs) range from 28 to 52 cm, and their spreads from 9 to 12 metres. Regardless of the impacts of the proposed project on these trees, their removal is prudent because Ash trees affected by EAB tend to break more easily than other dead trees. See Appendix C for further information about the locations and descriptions of these trees. No other ash trees were observed on site.

The most typical construction damage to trees is root damage from compaction and severance. Some of the trees inventoried will be close to the construction zone and may be at risk of contact with, and damage from, heavy equipment. A tree protection plan will be developed prior to construction to indicate the City’s Tree Protection Zone and locations for Preservation Fencing. Mitigation measures to protect trees to the extent possible are disused in Section 5.

2.6. **Drainage and Stormwater Management**

A Drainage and Stormwater Management Assessment was conducted to assess the existing drainage conditions and stormwater management (SWM) within the study area that will be impacted by the proposed project. The drainage characteristics of the study area depend on many factors, including the topography, local land use and the type of native soil. A copy of the Drainage and Stormwater Management Report is available in Appendix D.

2.6.1. **Soils**

Soil groups in the area were taken from the Ontario Soil Survey Complex which was obtained from the Land Information Ontario database. The soil group that covers the entire study area and most of the drainage area is Grimsby Sandy Loam. This soil is categorized under hydraulic soil group A, characterized by well drained soils with low runoff potential and high infiltration rates even when wetted.

The remaining soil in the drainage area is Alberton Silt Loam, within hydraulic soil group B, characterized by soils with moderate runoff potential and moderate infiltration. A soils map is provided in Exhibit 2-9.
2.6.2. Existing Minor Drainage System

Topography of the study area generally flows in a northerly direction. The study area has been delineated into 3 distinct areas. The catchment areas and outlets are described below and depicted in Exhibit 2-10. Both internal and external drainage areas have been discussed. External drainage areas are areas that are outside of the boundary of project work and whose stormwater quantity and quality will not be affected by the proposed works. Internal drainage areas are areas in which proposed work will directly impact the stormwater quality and quantity.

Catchment 1.0: The western portion of Mohawk Road, labelled Outlet 1, drains to the low point at the intersection of Mohawk Road and Lime Kiln Road. From there it enters the storm sewer through a 600 mm pipe @ 0.8% which drains north to the residential area on Longfield Crescent which outlets into Ancaster Creek.

Catchment 101 & 102 (External): The external areas drainage to Outlet 1 primarily consist of a park, forest area, school and high-density residential housing. The mixed use generally drains to the low point at the intersection of Mohawk Road and Lime Kiln Road through a combination of storm sewers and ditch’s outletting to the same location as catchment 1.0 as described above.

Catchment 2.0: The central portion of Mohawk Road between Cayuga Avenue and Filman Road, labelled Outlet 2, drains to the center of the study area and into a residential storm sewer, flowing north into a 975 mm pipe, through a residential neighborhood and outletting into Tiffany Creek.

Catchment 201, 202 & 203 (External): The external areas draining to Outlet 2 are detached estate residential development areas with rural roadway and ditching. Specifically, catchment 201 is a 24 ha external catchment that drains to a 450 mm pipe on Hiawatha Boulevard flowing north through an easement into the same outlet as catchment 2.0 described above.

Catchment 3.0: A small portion of the intersection of Filman Road and Mohawk Road, as well as some roadway to the east of Filman Road, labelled Outlet 3, drain north and enter the same storm sewer as Catchment 2 through a 300 mm diameter pipe, through a residential neighbourhood and outletting into Tiffany Creek.

Catchment 301 (External): This external area is a small residential property draining to the same outlet as catchment 3.0, as described above.
Exhibit 2-9: Existing Soils Map
Exhibit 2-10: Existing Drainage Mosaic
2.6.3. Existing Major Drainage System

Mohawk Road has poorly defined major drainage systems. Fundamentally, these systems convey flows to three (3) different outlets.

Catchment 1.0: The western portion of the study area, labelled Outlet 1, has an overland flow path which is conveyed by Lime Kiln Road north to Longfield Crescent and then west along Longfield Crescent to Ancaster Creek. The overland flow route has no defined flow route between homes from Longfield Crescent to Ancaster Creek, the receiving watercourse. This lack of a defined overland flow path poses potential flooding risks.

Catchment 101 & 102 (External): The external areas drainage has the same overland flow route as catchment 1.0, as described above.

Catchment 2.0: The central portion of the study area between Cayuga Avenue and Filman Road, labelled Outlet 2, has no clear overland flow route to Tiffany Creek, the receiving watercourse. This lack of a defined overland flow path poses potential flooding risks.

Catchment 201, 202 & 203 (External): The external areas drainage has the same overland flow route as catchment 2.0, as described above.

Catchment 3.0: The eastern portion of the study area, labelled Outlet 3, has an overland flow path that will convey water in a north easterly direction along Filman Road, spilling to Tiffany Creek at Highvalley Road.

Catchment 301 (External): The external areas drainage has the same overland flow route as catchment 3.0, as described above.

2.6.4. Existing Stormwater Infrastructure

There is no existing stormwater quantity or quality infrastructure (SWM Ponds, OGS, etc.) on Mohawk Road, however, the existing storm ditches provide a measure of quality and quantity control. The Falling Brook Estates storm drainage area plan identifies an oil grit separator (OGS) prior to outletting to the Banting’s Pond, at Tiffany Creek. No record information was available to confirm the level of quality and quantity controls provided.

2.7. Utilities

Hydro poles are located on the south side of Mohawk Road from Filman Road to Cayuga Avenue. The poles are set back approximately 3.5 metres from the curb and illumination is provided on the poles. Hydro poles are also intermittently located on the north side of Mohawk Road within this section. West of Cayuga Avenue, the hydro poles are located on the north side of Mohawk Road.

2.8. Phase 1 and 2 Consultation

2.8.1. Notice of Study Commencement and Public Information Centre #1

A combined Notice of Study Commencement and Notice of Public Information Centre (PIC) No. 1 was prepared to inform the public and agencies of the study and to invite recipients to attend
the PIC to review the project information on display and provide input. The Notice was advertised in the Ancaster News on September 14 and 21, 2018. The Notice was emailed or mailed to 40 agency representatives (including City staff) and 76 property owners within the study limits on September 10, 2018. A copy of the Notice is included in Appendix E.

The Notice of Study Commencement and PIC No. 1 outlined the purpose of the study and identified the time, date, and location for the PIC. The Notice invited public comments on the study by either attending the PIC or contacting the project team.

2.8.2. Public Information Centre #1

The PIC was held on September 24, 2018 at Ancaster Town Hall, at 310 Wilson Street East from 6:00 p.m. to 8:00 p.m. The PIC was held in an open-house format where the public was invited to review display boards, ask questions, and discuss comments and concerns with the project team. The display boards described the following:

- Purpose of Public Information Centre #1
- Study Area Overview
- Municipal Class EA Process
- Ancaster Transportation Master Plan (Ancaster TMP)
- Roadway Section from the Ancaster TMP
- Photos of Existing Conditions
- Natural Heritage Features
- Motor Vehicle Transportation – Existing and Future Conditions
- Active Transportation – Existing
- Cross Section Alternatives
 - On-Road Bike Lanes and Sidewalks (Both Sides)
 - Boulevard Cycle Tracks and Sidewalks (Both Sides)
 - Boulevard Multi-use trail (One Side Only)
- Active Transportation – Proposed
- Next Steps

A sign-in sheet and comment sheets were provided to record attendance and obtain written comments. A copy of the PIC material is included in Appendix E. Twenty-two (22) people signed into the PIC and nine (9) comments were received in response to the PIC.

The following general comments were submitted and noted by the project team during the PIC:

Vehicle Traffic and Infrastructure

- Concerns regarding safety and high traffic speeds in the study area
- Suggestion for a traffic signal at Mohawk Road & Green Ravine Drive to reduce vehicle speeds
- General support for a 3-lane cross-section
- Concern that the centre left-turn lane may become dangerous if some drivers use it as fast/passing lane to bypass traffic
- Suggestion to add curbs to turning areas to keep speeding/passing in turning areas
- Request for traffic calming
- Suggestion for raised medians mid-block for pedestrian refuge
- Suggestion to narrow the westbound approach at Filman Road to a single lane to eliminate vehicles attempting to pass on the right side

Active Transportation
- Suggestion for a controlled crossing at Mohawk Road & Green Ravine Drive for pedestrians and cyclists
- Support for a sidewalk on one side only and note that this is not an area with high pedestrian traffic
- Support for sidewalks on both sides or a multi-use trail on one side and sidewalk on the other
- General preference for separation of cyclists from cars (i.e. boulevard cycle tracks or multi-use trail)
- Concern regarding safety of cyclists with on-road bicycle lanes without a physical barrier
- Suggestion that bicycle lanes are redundant as Hiawatha Boulevard provides a safe option with access to cross Mohawk Road and Filman Road

Social Impacts
- Comments that residents feel isolated due to the lack of pedestrian facilities and high vehicle speeds along Mohawk Road making it difficult for residents to leave their properties without a vehicle
- Concern regarding property impacts (reduction in driveway length and impacts to mature trees)
- Suggestions to reduce boulevard widths to minimize property impacts

Other
- Suggestion for a gateway feature at Mohawk Road & Filman Road to calm aggressive/high speed drivers

2.9. Confirmation of Preferred Solution

Based on the feedback received from the public and stakeholders, the preferred solution was reconfirmed to be the widening of Mohawk Road to three lanes with a two-way centre left turn lane and introduction of active transportation facilities. This solution serves to reduce the queuing along Mohawk Road for drivers making turning movements, and better accommodate pedestrians and cyclists along the corridor.
3. Alternative Design Concepts

3.1. Development of Alternative Design Concepts

In this phase of the EA process, alternative design concepts for the preferred solution were developed, analyzed and evaluated. Nine (9) alternative design concepts were examined as part of this Class EA study (Appendix F).

Given that the three-lane cross-section with a two-way centre left-turn lane was identified as part of the preferred solution, the differences amongst alternative design concepts was the type of active transportation facilities provided. The alternative design concepts include:

- **Do Nothing** – Mohawk Road remain in a “as-is” state
- **Option 0** – Three-lane section with two-way left-turn lane only
- **Option 1** – Three-lane section with bicycle lanes and sidewalks both sides
- **Option 2** – Three-lane section with cycle tracks and sidewalks both sides
- **Option 3A** – Three-lane section with boulevard multi-use path on south side only
- **Option 3B** – Three-lane section with boulevard multi-use path on south side and sidewalk on north side
- **Option 4A** – Three-lane section with boulevard multi-use path on north side only
- **Option 4B** – Three-lane section with boulevard multi-use path on north side and sidewalk on south side
- **Option 5** – Three-lane section with sidewalks both sides

The ‘Do Nothing’ alternative was included in the set of alternatives as a baseline measure of the effects of the other alternatives on the environment.

Options 1 though 5 are illustrated in Exhibit 3-1 through Exhibit 3-14.
Exhibit 3-1: Option 1, Three-Lane Section Plus Bicycle Lanes and Sidewalks Both Sides, Rendering
Exhibit 3-2: Option 1, Three-Lane Section Plus Bicycle Lanes and Sidewalks Both Sides, Cross-Section
Exhibit 3-3: Option 2, Three-Lane Section with Cycle Tracks and Sidewalks Both Sides, Rendering
Exhibit 3-4: Option 2, Three-Lane Section with Cycle Tracks and Sidewalks Both Sides, Cross-Section
Exhibit 3-5: Option 3A, Three-Lane Section with Multi-use Path on South Side Only, Rendering
Exhibit 3-6: Option 3A, Three-Lane Section with Multi-use Path on South Side Only, Cross-Section
Exhibit 3-7: Option 3B, Three-Lane Section with Multi-use Path on South Side and Sidewalk on North Side, Rendering
Exhibit 3-8: Option 3B, Three-Lane Section with Multi-use Path on South Side and Sidewalk on North Side, Cross-Section
Exhibit 3-9: Option 4A, Three-Lane Section with Multi-use Path on North Side Only, Rendering
Exhibit 3-10: Option 4A, Three-Lane Section with Multi-use Path on North Side Only, Cross-Section
Exhibit 3-11: Option 4B, Three-Lane Section with Multi-use Path on North Side and Sidewalk on South Side, Rendering
Exhibit 3-12: Option 4B, Three-Lane Section with Multi-use Path on North Side and Sidewalk on South Side, Cross-Section
Exhibit 3-13: Option 5, Three-Lane Section with Sidewalks on Both Sides, Rendering
Exhibit 3-14: Option 5, Three-Lane Section with Sidewalks on Both Sides, Cross-Section
3.2. Analysis and Evaluation of Alternative Design Concepts

The alternative design concepts were assessed and evaluated based on the following factors:

- **Traffic Operations and Safety**
 - Future Traffic Operations
 - Motorist Safety
 - Pedestrian Safety
 - Cyclist Safety
 - Pedestrian and Cyclist Comfort
 - Potential Conflict for Cyclists at Driveways

- **Transportation Planning**
 - Compliance with Planning Policy

- **Natural Environment**
 - Stormwater Management
 - Tree Impacts

- **Socio-Economic**
 - Property Impacts
 - Cultural Heritage Impacts
 - Accessibility
 - Active Transportation Network Connectivity

- **Implementation**
 - Utility Relocations
 - Operations and Maintenance
 - Construction Staging and Constructability

As shown in the analysis and evaluation table, each alternative was analyzed against the various criteria listed above (i.e. future traffic operations, compliance with planning policies, etc.). The alternatives were then evaluated against one another and assigned a score based on the scoring system in Exhibit 3-15 and their respective benefits to the surrounding environments.

Exhibit 3-15: Evaluation Scale

<table>
<thead>
<tr>
<th>☀️</th>
<th>🌞</th>
<th>🌞</th>
<th>☀️</th>
<th>☀️</th>
<th>☀️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Benefit</td>
<td>Fairly High Benefit</td>
<td>Moderate Benefit</td>
<td>Fairly Low Benefit</td>
<td>Least Benefit</td>
<td></td>
</tr>
</tbody>
</table>

A summary score is provided for each criteria category (i.e. Transportation, Natural Environment, etc.). The summary score for each category was established by averaging the scores across the sub-categories. In situations where the average score was between two of the scoring levels, a greater weight was placed on the more critical sub-categories.

The overall recommendation from the table was determined using the same methodology. The average of the summary scores was taken to determine the overall score for each alternative. In this situation, the Transportation and Natural Environment categories were assigned a greater weight as the safety of road users and potential impacts to trees were identified as critical factors by the project team and the public.

The analysis and evaluation of alternative design concepts is provided in Exhibit 3-16.
Exhibit 3-16: Analysis of alternative design concepts.

<table>
<thead>
<tr>
<th>TECHNICAL CRITERIA</th>
<th>Do Nothing</th>
<th>Option 1: Three Lane Cross-Section with Two-Way Left Turn Lane Only</th>
<th>Option 2: Three Lane Cross-Section with Bicycle Lanes and Sidewalks on Both Sides</th>
<th>Option 3A: Three Lane Cross-Section with Cycle Tracks and Sidewalks on Both Sides</th>
<th>Option 3B: Three Lane Cross-Section with Multi-Use Trail on South Side Only</th>
<th>Option 3C: Three Lane Cross-Section with Multi-Use Trail on North Side Only</th>
<th>Option 4A: Three Lane Cross-Section with Multi-Use Trail on North Side and Sidewalk on North Side Only</th>
<th>Option 4B: Three Lane Cross-Section with Multi-Use Trail on North Side and Sidewalk on South Side Only</th>
<th>Option 5: Three Lane Cross-Section with Sidewalks on Both Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Traffic Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td>Movements at the Mohawk Road and McNiven Rd/Lime Kiln Rd intersections operate at an acceptable level (LOS D or better).</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Safety</td>
<td>No pedestrian facilities provided on Mohawk Road as they study limits.</td>
<td>No pedestrian facilities provided on Mohawk Road as they study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
<td>Opportunity to add a pedestrian crossing within the study limits.</td>
</tr>
<tr>
<td>Cyclist Safety</td>
<td>No dedicated cycling facilities provided on Mohawk Road as they study limits.</td>
<td>Dedicated cycling facilities are provided.</td>
</tr>
</tbody>
</table>

Some potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections. Minimal conflict potential for conflicts between cyclists and vehicles turning at intersections.
<table>
<thead>
<tr>
<th>TECHNICAL CRITERIA</th>
<th>OPTION 1</th>
<th>OPTION 2</th>
<th>OPTION 3</th>
<th>OPTION 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian and Cyclist Comfort</td>
<td>Low level of comfort for pedestrians and cyclists.</td>
<td>Medium level of comfort for pedestrians and cyclists.</td>
<td>High level of comfort for pedestrians and cyclists.</td>
<td>No dedicated space provided for cyclists. Access to sidewalk is provided adjacent to roadway that may be travelled at high speed from the higher roadway.</td>
</tr>
<tr>
<td>Potential Conflict for Cyclists at Shoeways</td>
<td>No conflicts.</td>
<td>No conflicts.</td>
<td>No conflicts.</td>
<td>No conflicts.</td>
</tr>
<tr>
<td>Summary of Traffic Operations and Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporocities/Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance with Planning Policy</td>
<td>Does not conform to the Anacostia Transportation Master Plan (2011) recommendations. 3 lanes with a minor arterial left turn lane.</td>
<td>Does not conform to the Anacostia Transportation Master Plan (2011) recommendations. 3 lanes with a minor arterial left turn lane.</td>
<td>Does not conform to the Anacostia Transportation Master Plan (2011) recommendations. 3 lanes with a minor arterial left turn lane.</td>
<td>Conforms to the Anacostia Transportation Master Plan (2011) recommendations.</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>No impact.</td>
<td>TR2</td>
<td>TR2</td>
<td>TR2</td>
</tr>
<tr>
<td>Stormwater Management</td>
<td>No impact.</td>
<td>TR2</td>
<td>TR2</td>
<td>TR2</td>
</tr>
<tr>
<td>Tree Impacts</td>
<td>No impact.</td>
<td>45 trees impacted.</td>
<td>45 trees impacted.</td>
<td>45 trees impacted.</td>
</tr>
<tr>
<td>Summary of Natural Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Summary of Socio-Economic</td>
<td>Implementation</td>
<td>Accessibility</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Option 1</td>
<td>Three Lane Cross-Section with Pedestrian and Bicycle Lane Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 2</td>
<td>Three Lane Cross-Section with Bicycle Lanes Only on Both Sides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 3</td>
<td>Three Lane Cross-Section with Bicycle Lanes Only on North Side Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 4</td>
<td>Three Lane Cross-Section with Multi-Lane Traffic on South Side Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 5</td>
<td>Three Lane Cross-Section with Multi-Lane Traffic on North Side Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 6</td>
<td>Three Lane Cross-Section with Additional Traffic on South Side Only and Bikelane on North Side Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 7</td>
<td>Three Lane Cross-Section with Additional Traffic on North Side Only and Bikelanes on South Side Only</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Socio-Economic

Implementation

<table>
<thead>
<tr>
<th>Description</th>
<th>Summary of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No impact.</td>
<td></td>
</tr>
</tbody>
</table>

City of Hamilton
Mohawk Road Class Environmental Assessment
December 2019
| TECHNICAL CRITERIA | Situation 1 | Situation 2 | Situation 3 | Situation 4 | Situation 5 | Situation 6 | Situation 7 | Situation 8 | Situation 9 | Situation 10 | Situation 11 | Situation 12 | Situation 13 | Situation 14 | Situation 15 | Situation 16 | Situation 17 | Situation 18 | Situation 19 | Situation 20 | Situation 21 | Situation 22 | Situation 23 | Situation 24 | Situation 25 | Situation 26 | Situation 27 | Situation 28 | Situation 29 | Situation 30 |
|------------------|
| **Recommendation** | Not recommended | Recommended | Recommended | Not recommended |

Summary

No impact to trees.

No impact to trees.
3.3. Technically Preferred Alternative Design

Based on the analysis and evaluation of alternative design concepts, Option 4A, Three-Lane Section with Boulevard Multi-use path North Side Only, was selected as the preliminary preferred alternative design subject to agency and public review. Primary reasons this option was selected as preferred:

- All options have a centre two-way left-turn lane which will improve traffic operations yet not result in excessive vehicle speeds and passing like a four-lane section
- All options will feature centre medians to calm traffic and create pedestrian crossing areas
- All options except Options 1 and 5 provide a dedicated space for pedestrians and cyclists physically separated from motor vehicles
- Options 3A and 4A don’t have pedestrian and cyclist facilities on both sides of Mohawk Road but will impact fewer trees than Options 2, 3B and 4B
- Option 4A will not require (expensive) relocation of an overhead utility line

3.4. Phase 3 Consultation

3.4.1. Notice of Public Information Centre #2

A Notice of Public Information Centre (PIC) No. 2 was prepared to invite recipients to attend the PIC to review the project information on display and provide comments on the preliminary recommended plan. The Notice was advertised in the Ancaster News on March 28 and April 4, 2019. The Notice was emailed or mailed to 39 agency representatives (including City staff) and 76 property owners within the study limits on March 18, 2019. A copy of the Notice is included in Appendix G.

The Notice of PIC No. 2 outlined the purpose of the meeting and identified the time, date, and location for the PIC. The Notice invited public comments on the study by either attending the PIC or contacting the project team.

3.4.2. Public Information Centre #2

The PIC was held on April 11th, 2019 at Ancaster Town Hall, at 310 Wilson Street East from 6:00 p.m. to 8:00 p.m. The PIC was held in an open-house format where the public was invited to review display boards, ask questions, and discuss comments with the project team. The display boards described the following:

- Purpose of Public Information Centre #2
- Study Area Overview
- Municipal Class EA Process and Schedule
- Summary of PIC No. 1
- Natural Heritage Features
- Stormwater Management
• Cross Section Alternatives
• Analysis and Evaluation of Alternative Design Concepts
• Preliminary Preferred Alternative Design
• Tree Protection and Mitigation
• Next Steps

A sign-in sheet and comment sheets were provided to record attendance and obtain written comments. A copy of the PIC material is included in Appendix G. Eighteen (18) people signed into the PIC and eight (8) comments were received in response to the PIC.

The following general comments were submitted and noted by the project team during the PIC:

Vehicle Traffic and Infrastructure

• Concerns regarding safety and high traffic speeds in the study area
• Suggestion for a traffic signal at Mohawk Road & Green Ravine Drive to reduce vehicle speeds
• General support for a 3-lane cross-section
• Concern that the centre left-turn lane may become dangerous for drivers if some drivers use it as fast/passing lane to bypass traffic
• Suggestion to add curbs to turning areas to keep speeding/passing in turning areas
• Request for traffic calming
• Suggestion to narrow traffic lanes to reduce speeds
• Support for raised medians mid-block for pedestrian refuge
• Concerns regarding noise due to high traffic volumes and high speeds
• Suggestions to add flashing crosswalk lights

Active Transportation

• Suggestion for a controlled crossing at Mohawk Road & Green Ravine Drive for pedestrians and cyclists
• Support for a sidewalk on one side only and note that this is not an area with high pedestrian traffic
• Support for sidewalks on both sides or a multi-use trail on one side and sidewalk on the other
• General preference for separation of cyclists from cars (i.e. boulevard cycle tracks or multi-use trail)
• Concern regarding safety of cyclists with on-road bicycle lanes without a physical barrier
• Suggestion that bicycle lanes are redundant as Hiawatha Boulevard provides a safe option with access to cross Mohawk Road and Filman Road
• Support for mixed-use cycle track design

Social Impacts

• Comments that residents feel isolated due to the lack of pedestrian facilities and high vehicle speeds along Mohawk Road making it difficult for residents to leave their properties without a vehicle
• Concern regarding property impacts (reduction in driveway length and impacts to mature trees)
• Suggestions to reduce boulevard widths to minimize property impacts
• Concerns regarding local businesses that will be impacted by the construction and access to the main road and property taken away from the business location

Other
• Suggestion for a gateway feature at Mohawk Road & Filman Road to calm aggressive/high speed drivers

3.5. Preferred Design Concept
Based on feedback received from the public and stakeholders, Option 4A, Three-Lane Section with Boulevard Multi-use path North Side Only was selected as the preferred design concept.

Several comments were received in response to PIC #2 requesting pedestrian facilities on the south side of Mohawk Road. In response to these comments, a sidewalk along the south side of Mohawk Road has been added between Lime Kiln Road/McNiven Road and Algonquin Avenue to improve pedestrian safety along the corridor. The sidewalk can be implemented along this section without significant impact to trees or impact to the hydro poles on the south side of the corridor. A sidewalk was not provided between Algonquin Avenue and Filman Road, as this would result in significant impact to trees.

It is expected that pedestrians travelling from the north side of Mohawk Road can cross at the controlled crossings at Lime Kiln Road/McNiven Road or Filman Road to continue to the south or vice-versa.

The justification for providing two pedestrian crossings (PXOs) on Mohawk Road was reviewed (Section 4.1.4). Based on the low volumes of pedestrians crossing Mohawk Road within the study limits, a controlled pedestrian crossing is not warranted.

However, the implementation of raised median islands as a traffic calming measure, with no accompanying formal pedestrian crossing treatments, is recommended. Raised median islands will aid in reducing vehicle speeds, provide informal pedestrian refuge mid-block, and deter drivers from using the centre left-turn lane as a through lane. The medians will aid in addressing concerns of high vehicle speeds and passing noted by the public at PIC #2. Given the length of this section of Mohawk Road, two raised median islands are recommended: one approximately 22 metres west of Cayuga Avenue, and one approximately 8 metres west of Algonquin Avenue.

Elements of the Preferred Alternative include:
• Two 3.5 metre travel lanes (one in each direction)
• A 3.5 metre two-way centre left-turn lane
• A 3.0 metre multi-use path on the north side along the full length of the corridor
• A sidewalk on the south side from Lime Kiln Road/McNiven Road to Algonquin Avenue
 o The sidewalk is typically 1.8 to 2.0 metres wide when adjacent to curbs and 1.5 metres wide otherwise.
- The sidewalk width adjacent to curbs has been reduced to 1.5 metres in constrained locations (i.e. adjacent to trees identified as being high value in order to mitigate impacts)

- Raised median islands approximately 22 metres west of Cayuga Avenue, and approximately 8 metres west of Algonquin Avenue. The roadway width adjacent to the islands is 4.5 metres to facilitate winter maintenance activities.
4. **Description of the Recommended Plan**

The main features of the recommended plan for the Mohawk Road improvements are discussed in Section 4. While refinements to the recommended plan may occur during detailed design, any modifications should not alter the function of the recommended undertaking.

Preliminary design plates for the preferred design concept are provided in Exhibit 4-2 through Exhibit 4-7.

4.1. **Roadway Geometry**

4.1.1. **Design Criteria**

The design criteria for the recommended plan is provided in Exhibit 4-1.

<table>
<thead>
<tr>
<th>Exhibit 4-1: Design Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Classification</td>
</tr>
<tr>
<td>Design Speed</td>
</tr>
<tr>
<td>Number of Through Lanes</td>
</tr>
<tr>
<td>Design Vehicle</td>
</tr>
<tr>
<td>Stopping Sight Distance</td>
</tr>
</tbody>
</table>

Horizontal Alignment	**Unit**	**Min. Radius/ Min. Reverse Crown Radius**	m	130/185	250
		Min. Radius with Normal Crown	m	1290	1290
		Min. Spiral Parameter A	m	N/A	N/A
Vertical Alignment		**Grade**	%	6	3.77
		Minimum%	%	0.5	0.505
		K Value	-	11	11
		Crest Curve	-	9	9
		Sag Curve	-		
Cross Section		**Max. Superelevation**	m/m	0.04	0.04
		Through Lane	m	3.5	3.5
		TWLTL	m	3.5	3.5
		Bicycle Lane	m	N/A	N/A
		Min. Curb Face to Curb Face Width (at Pedestrian Refuge Islands)	m	4.5	4.5
		Min. Pedestrian Refuge Island Width	m	2.0	2.5
		Min. Median Width	m	1.5	1.5
4.1.2. Profile and Alignment

The horizontal alignment matches the existing alignment of Mohawk Road, and the proposed profile generally matches the existing profile. The proposed plan and profile are shown in Exhibit 4-2 through Exhibit 4-7.
Exhibit 4-2: Preliminary Design Plates – Plan Station 0+140 to 0+540
Exhibit 4-3: Preliminary Design Plates – Profile Station 0+140 to 0+540
Exhibit 4-4: Preliminary Design Plates - Plan Station 0+540 to 0+920
Exhibit 4-5: Preliminary Design Plates - Profile Station 0+540 to 0+920
Exhibit 4-6: Preliminary Design Plates Plan – Station 0+920 to 1+000
Exhibit 4-7: Preliminary Design Plates Profile – Station 0+920 to 1+000
4.1.3. Typical Cross Sections

The recommended typical cross section for Mohawk Road varies along the corridor as different constraints are present within different segments of the corridor. The Mohawk Road corridor has been divided into three sections based on the varying cross-sections:

- **Section 1** – Mohawk Road between Lime Kiln Road/McNiven Road and Cayuga Avenue
- **Section 2** – Mohawk Road between Cayuga Avenue and Algonquin Avenue
- **Section 3** – Mohawk Road between Algonquin Avenue and Filman Road

The typical cross sections have been amended to reduce the boulevard widths and where possible to avoid impact to private property, trees and utilities.

The typical cross section between Lime Kiln Road/McNiven Road and Cayuga Avenue is illustrated in Exhibit 4-8. This section includes a 3.0 metre multi-use path on north side and a 1.5 metre sidewalk on south side adjacent to the property line. The sidewalk between Lime Kiln Road/McNiven Road and Cayuga Avenue is present under existing conditions and a relocation of the sidewalk is not proposed. A new segment of sidewalk approximately 35 metres in length is recommended to connect the existing sidewalk to the Mohawk Road and Cayuga Avenue intersection.

Exhibit 4-8: Typical Cross Section Between Lime Kiln Road/McNiven Road and Cayuga Avenue with Multi-use Path on North Side and Sidewalk on South Side Adjacent to Property Line
The typical cross section between Cayuga Avenue and Algonquin Avenue is illustrated in Exhibit 4-9. This section includes a 3.0 metre multi-use path on the north side and a 1.8 metre sidewalk on south side adjacent to the curb. The sidewalk has been provided adjacent to the curb in order to avoid impact to high value trees located along this section. To the west of the intersection of Mohawk Road and Algonquin Avenue, the sidewalk “jogs” in alignment in order to avoid further impact to trees.

Exhibit 4-9: Typical Cross Section Between Cayuga Avenue and Algonquin Avenue with Multi-use Path on North Side and Sidewalk on South Side Adjacent to Curb

The typical cross section between Algonquin Avenue and Filman Road is illustrated in Exhibit 4-10. This section includes a 3.0 metre multi-use path on the north side. A sidewalk on the south side is not provided within this section because of the location of high value trees and utility poles. If a sidewalk were to be provided in this section it would require removal of trees, the relocation of utility poles and additional property. A 1.0 metre asphalt strip is provided adjacent to the curb on the south side.
4.1.4. Active Transportation

As discussed in Section 4.1.3, the recommended plan includes a 3.0 metre multi-use path on the north side and a 1.8 metre sidewalk on the south side of Mohawk Road between Lime Kiln Road/McNiven Road and Algonquin Avenue. The multi-use path provides dedicated pedestrian and cycling facilities along the full length of the corridor. The sidewalk reduces to 1.5 metres in constrained locations to avoid impact to private property, high value trees and utilities. A sidewalk is not provided between Algonquin Avenue and Filman Road due to the location of high value trees and utilities poles.

The feasibility of implementing pedestrian crossing treatments within the study area were reviewed. The assessment can be found in Appendix H. Based on the guidance provided in Ontario Traffic Manual (OTM) Book 15, a pedestrian crossing is not warranted within the study limits due to the low pedestrian volumes crossing Mohawk Road. Given that Mohawk Road is a major arterial road, an uncontrolled crossing is also unsuitable.

However, the implementation of raised median islands as a traffic calming measure, with no accompanying formal pedestrian crossing treatments, is recommended. Raised median islands
will aid in reducing vehicle speeds, provide informal pedestrian refuge mid-block, and deter drivers from using the centre left-turn lane as a through lane.

Given the length of this section of Mohawk Road, two raised median islands are recommended: one approximately 22 metres west of Cayuga Avenue, and one approximately 8 metres west of Algonquin Avenue. These locations separate the Mohawk Road corridor into three roughly equal-length segments, and do not impact residential driveway access or left-turn movements from Cayuga Avenue and Algonquin Avenue using a WB-17 design vehicle.

4.1.5. Intersections

With the implementation of the centre two-way left-turn lane, additional left-turn storage at the intersections of Mohawk Road and Lime Kiln Road/McNiven Road and Filman Road intersections will be provided. Motorists will also be able to use the centre two-way left-turn lane to complete westbound left-turn movements at Cayuga Avenue and Algonquin Avenue, and eastbound left-turn movements at Green Ravine Drive, and it will allow motorists on the minor roads to compete left turns onto Mohawk Road in two stages.

4.2. Drainage and Stormwater Management

As discussed in Section 2.6, a Drainage and Stormwater Management Assessment was conducted for the study area. A copy of the Drainage and Stormwater Management Report is available in Appendix D.

An evaluation of alternative stormwater solutions including source controls, conveyance controls and end of pipe solutions was completed. The following best management practices were evaluated considering relative cost, construction feasibility and stormwater objectives:

- Permeable Pavement
- Curb Extension Bioretention
- Traditional SWM Facilities
- Oil Grit Separators
- Bioretention Swale or Planters
- Underground Storage

It was concluded that the combination of Oil Grit Separators (OGS) and underground storage would be the most feasible and effective SWM practice that could be applied to provide the required levels of retention, quality and quantity controls for the roadway widening. The following is a summary of the recommended SWM plan for each outlet.

Catchment 1.0: The western portion of Mohawk Road is proposed to enter the existing storm sewers at Lime Kiln Road and Mohawk Road. Underground storage will be implemented to provide flow storage to reduce the runoff from the proposed roadway back to existing conditions. An Oil-Grit Separator (OGS) unit will be implemented before the entrance of the storage system to provide level 1 enhanced quality control for the roadway runoff.

Catchment 2.0: The central portion of Mohawk Road is proposed to enter the existing storm sewers as they cross Mohawk Road approximately 120 m to the east of green Ravine Drive. Underground storage will be implemented to provide flow storage to reduce the runoff from the
proposed roadway back to existing conditions. An OGS unit will be implemented before the entrance of the storage system to provide level 1 enhanced quality control for the roadway runoff.

Catchment 3.0: No SWM is required as no increase to the amount of impervious area within catchment 3.0 are proposed.

The proposed layout for the proposed SWM facilities is illustrated in Exhibit 4-11.

4.2.1. Proposed Stormwater Management System

The following section provides preliminary sizing details for the proposed stormwater management system.

Catchment 1.0: Roadway runoff will need to outlet into a Hydroworks HydroStorm 8 or equivalent in order to provide level 1 enhanced quality control for the proposed roadway expansion as per ETV certification. The OGS will outlet into underground storage with a volume of 43 m3 to control the 100-year flow back to pre widening levels. The storage unit will then outlet into the existing storm sewer.

Catchment 2.0: Roadway runoff will need to outlet into a Hydroworks HydroStorm 10 or equivalent in order to provide level 1 enhanced quality control for the proposed roadway expansion as per ETV certification. The OGS will outlet into underground storage with a volume of 113 m3 to control the 100-year flow back to existing conditions. The storage unit will then outlet into the existing storm sewer.

Catchment 3.0: No SWM is required as no increase to the amount of impervious area of catchment 3.0 are proposed.

As the soils in the study area are well draining, it is recommended that the underground storage units be open bottomed to provide a treatment train approach to quality control, as well as providing water retention. The increase in impervious area between existing and proposed conditions is 0.44 ha. Aiming for an infiltration amount of 5 mm, a total volume of 22 m3 be retained within the underground storage to infiltrate into the ground.

4.2.2. Proposed Minor Drainage System

The study area will be urbanized with curb & gutters and stormwater will be captured with the implementation of storm sewers and catch basin infrastructure for the minor drainage system.

4.2.3. Proposed Major Drainage System

The proposed urban roadway will act as a major drainage path and will maintain the existing major drainage patterns as part of the proposed roadway widening to existing sag locations. The roadway was analyzed using the minimum road grade of 0.50% and maximum 100-year flow of 400 L/s. The roadway has capacity for 480 L/s of flow, and at the maximum flow the depth of flow shall be 0.11 m.
4.3. Tree Management

A total of 58 trees are expected to be injured as a result of the proposed hardscape and/or grading though the Tree Protections Zones (TPZs) as required for the road reconstruction. A total of 25 trees are expected to require removal due to conflict with construction zones along the roadway. The details regarding the trees expected to be injured and/or removed during construction are provided in Appendix C.

As discussed in Section 2.4, the most typical construction damage to trees is root damage from compaction and severance. Some of the trees inventoried will be close to the construction zone and may be at risk of contact with, and damage from, heavy equipment. A tree protection plan will be developed prior to construction to indicate the City’s Tree Protection Zone and locations for Preservation Fencing. Compensation in the form of re-planting on site and/or planting trees elsewhere is required for the loss of 25 individual public trees. This compensation requirement shall be completed during the project detailed design and construction phases. Additional mitigation measures to protect trees to the extent possible are disused in Section 5.

4.4. Utilities

No impacts to the existing utilities along the corridor are anticipated as a result of implementing the recommended plan for Mohawk Road. This will also be confirmed during detailed design.

4.5. Property Requirements

The property requirements associated with the recommended plan for Mohawk Road are provided in Exhibit 4-12. Property requirements are shown for encroachment outside of the existing right-of-way to the edge of the proposed shoulder as well as property requirements for grading. Only a temporary easement is required during construction for some properties. Property and easements requirements will be confirmed during detailed design.

The Urban Hamilton Official Plan provides requirements for future right-of-way dedications. Under the Official Plan, Mohawk Road has a 30.480 metre right-of-way dedication requirement. Although the preferred design identified through this project has a right-of-way that is less than this amount, the requirements in the Official Plan should be maintained to accommodate for future growth or road changes. Development along Mohawk Road will remain subject to the requirements set out in the Official Plan.

<table>
<thead>
<tr>
<th>Property ID</th>
<th>Areas from Shoulder Line (m²)</th>
<th>Areas from Grading Line (m²)</th>
<th>Temporary Easement Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>743 Hiawatha Blvd</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>583 Mohawk Rd</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>617 Mohawk Rd</td>
<td>8</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
Property ID

<table>
<thead>
<tr>
<th>Property ID</th>
<th>Areas from Shoulder Line (m²)</th>
<th>Areas from Grading Line (m²)</th>
<th>Temporary Easement Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>621 Mohawk Rd</td>
<td>23</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>627 Mohawk Rd</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>657 Mohawk Rd</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>675 Mohawk Rd</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>678 Mohawk Rd</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>687 Mohawk Rd</td>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>694 Mohawk Rd</td>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>717 Mohawk Rd</td>
<td></td>
<td>72</td>
<td>121</td>
</tr>
</tbody>
</table>

4.6. **Construction Staging**

The construction work for widening Mohawk Road is planned to be completed in four stages. The proposed construction staging cross-sections Mohawk Road are illustrated in Exhibit 4-13 and Exhibit 4-14. Two lanes of traffic (one per direction) will be maintained during construction in all stages.

Prior to stage 1, the existing north shoulder of Mohawk Road will be paved to increase the work zone in stage 1 and provide an adequate road surface for the temporary westbound lane. Then traffic is shifted to the north side of Mohawk Road allowing for the south section to be constructed. Temporary eastbound and westbound lanes are provided on the north side of Mohawk Road. In stage 2, the temporary eastbound lane is shifted to the newly-constructed south section of Mohawk Road in order to facilitate the construction of the centre section. In stage 3, both lanes are shifted to the south in order to construct the north section. In stage 4, the medians are constructed and top course paving is completed.

The construction staging plan will be reviewed during detailed design and a detailed staging plan will be developed at that time.
Exhibit 4-13: Construction Staging – Existing, Pre-Stage 1 and Stage 1 (Not to Scale)
4.7. Preliminary Cost Estimate

The preliminary cost estimate for the preferred design is provided in Exhibit 4-15. The cost estimate for the widening of Mohawk Road to three lanes, and implementation of a multi-use path on the north side and sidewalk on the south side, is $4.3 million. This estimate is exclusive of property costs.
Exhibit 4-15: Construction Cost Estimate

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Unit</th>
<th>Estimated Quantity</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clearing and Grubbing</td>
<td>m²</td>
<td>8900</td>
<td>$10</td>
<td>$89,000</td>
</tr>
<tr>
<td>2</td>
<td>Stripping (100mm)</td>
<td>m³</td>
<td>890</td>
<td>$20</td>
<td>$17,800</td>
</tr>
<tr>
<td>3</td>
<td>Tree Removal</td>
<td>each</td>
<td>62</td>
<td>$1,000</td>
<td>$62,000</td>
</tr>
<tr>
<td>4</td>
<td>Earth Borrow</td>
<td>m³</td>
<td>600</td>
<td>$25.00</td>
<td>$15,000</td>
</tr>
<tr>
<td>5</td>
<td>Earth Excavation</td>
<td>m³</td>
<td>400</td>
<td>$20.00</td>
<td>$8,000</td>
</tr>
<tr>
<td>6</td>
<td>Tree Replacement</td>
<td>each</td>
<td>62</td>
<td>$1,000</td>
<td>$62,000</td>
</tr>
<tr>
<td>7</td>
<td>Full Depth Pavement Removal</td>
<td>m²</td>
<td>7750</td>
<td>$25.00</td>
<td>$193,750</td>
</tr>
<tr>
<td>8</td>
<td>Curb Removal</td>
<td>m</td>
<td>450</td>
<td>$24.00</td>
<td>$10,800</td>
</tr>
<tr>
<td>9</td>
<td>Sidewalk Removal</td>
<td>m²</td>
<td>250</td>
<td>$20.00</td>
<td>$5,000</td>
</tr>
<tr>
<td>10</td>
<td>Surface Course Hot Mix (40 mm)</td>
<td>t</td>
<td>911.4</td>
<td>$120.00</td>
<td>$109,368</td>
</tr>
<tr>
<td>11</td>
<td>Base Course Hot Mix (120 mm)</td>
<td>t</td>
<td>2734.2</td>
<td>$100.00</td>
<td>$273,420</td>
</tr>
<tr>
<td>12</td>
<td>Granular A (150 mm)</td>
<td>t</td>
<td>3600</td>
<td>$25.00</td>
<td>$90,000</td>
</tr>
<tr>
<td>13</td>
<td>Granular B (450 mm)</td>
<td>t</td>
<td>9900</td>
<td>$22.00</td>
<td>$217,800</td>
</tr>
<tr>
<td>14</td>
<td>Asphalt Multi-Trail</td>
<td>m</td>
<td>740</td>
<td>$300.00</td>
<td>$222,000</td>
</tr>
<tr>
<td>15</td>
<td>Concrete Sidewalk</td>
<td>m²</td>
<td>660</td>
<td>$165.00</td>
<td>$108,900</td>
</tr>
<tr>
<td>15</td>
<td>Concrete Island</td>
<td>m²</td>
<td>150</td>
<td>$165.00</td>
<td>$24,750</td>
</tr>
<tr>
<td>16</td>
<td>Asphalt Splash Pad</td>
<td>m²</td>
<td>880</td>
<td>$100.00</td>
<td>$88,000</td>
</tr>
<tr>
<td>17</td>
<td>Concrete Curb & Gutter</td>
<td>m</td>
<td>1600</td>
<td>$75.00</td>
<td>$120,000</td>
</tr>
<tr>
<td>18</td>
<td>Subdrain</td>
<td>m</td>
<td>1600</td>
<td>$25.00</td>
<td>$40,000</td>
</tr>
<tr>
<td>19</td>
<td>Catch Basin</td>
<td>each</td>
<td>38</td>
<td>$4,500.00</td>
<td>$171,000</td>
</tr>
<tr>
<td>20</td>
<td>Storm Manhole</td>
<td>each</td>
<td>9</td>
<td>$8,000.00</td>
<td>$72,000</td>
</tr>
<tr>
<td>21</td>
<td>Storm Sewer</td>
<td>m</td>
<td>750</td>
<td>$700.00</td>
<td>$525,000</td>
</tr>
<tr>
<td>22</td>
<td>Lateral Pipe</td>
<td>m</td>
<td>456</td>
<td>$500.00</td>
<td>$228,000</td>
</tr>
<tr>
<td>23</td>
<td>Pavement Marking-Lines</td>
<td>m</td>
<td>3000</td>
<td>$5.00</td>
<td>$15,000</td>
</tr>
<tr>
<td>Item No.</td>
<td>Description</td>
<td>Unit</td>
<td>Estimated Quantity</td>
<td>Unit Cost</td>
<td>Total Cost</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
<td>--------------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>24</td>
<td>Pavement Marking-Crosswalks</td>
<td>m</td>
<td>140</td>
<td>$30.00</td>
<td>$4,200</td>
</tr>
<tr>
<td>25</td>
<td>Pavement Marking-Stop Bars</td>
<td>m</td>
<td>75</td>
<td>$25.00</td>
<td>$1,875</td>
</tr>
<tr>
<td>26</td>
<td>Pavement Marking-Symbols</td>
<td>each</td>
<td>20</td>
<td>$150.00</td>
<td>$3,000</td>
</tr>
<tr>
<td>27</td>
<td>Top Soil, sod, and seed</td>
<td>m²</td>
<td>3600</td>
<td>$11.50</td>
<td>$41,400</td>
</tr>
<tr>
<td>28</td>
<td>Entrances Modifications</td>
<td>m²</td>
<td>570</td>
<td>$65.00</td>
<td>$37,050</td>
</tr>
<tr>
<td>29</td>
<td>Hydro Relocation (Pole)</td>
<td>each</td>
<td>7</td>
<td>$7,000.00</td>
<td>$49,000</td>
</tr>
<tr>
<td>30</td>
<td>Traffic Signs (New & Relocations)</td>
<td>each</td>
<td>40</td>
<td>$175.00</td>
<td>$7,000</td>
</tr>
<tr>
<td>31</td>
<td>Traffic Signal Modifications</td>
<td>each</td>
<td>2</td>
<td>$100,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>32</td>
<td>Traffic Control</td>
<td>LS</td>
<td>1</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>33</td>
<td>Other Utility Relocation</td>
<td>LS</td>
<td>1</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
</tbody>
</table>

Sub-Total Construction Cost

$3,312,113

Minor Items (20% of Construction Cost)

$662,422.60

Estimated Engineering - Civil, Geo, etc. (10%)

$331,211.30

Total Construction Cost (Rounded)

$4,300,000
5. Mitigation and Commitments to Further Work

The preferred design for Mohawk Road has mitigated negative impacts to the environment where possible. Where impacts cannot be entirely avoided, mitigation measures and commitments for detailed design and construction have been developed to minimize impacts (Exhibit 5-1).

Exhibit 5-1: Mitigation and Commitments to Further Work

<table>
<thead>
<tr>
<th>Category</th>
<th>Interested Agency</th>
<th>Mitigation/Commitment to Further Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormwater Management</td>
<td>Hamilton Region Conservation Authority</td>
<td>Undertake a broader stormwater study to investigate opportunities to improve the existing storm sewer, stormwater and drainage infrastructure downstream of Outlet 2. A hydraulic capacity and grade line investigation of the existing storm sewers should be performed during detailed design to ensure adequate capacity of existing storm sewers. A CCTV inspection of existing storm sewers running through private property from Hiawatha Boulevard through to the parkland north of Deervalley Road should be undertaken during detailed design to verify the condition of the existing storm sewers.</td>
</tr>
<tr>
<td>Natural Heritage/ Tree Management</td>
<td>Ministry of Natural Resources and Forestry, Ministry of Environment, Conservation and Parks, Hamilton Region Conservation Authority</td>
<td>The Red-headed Woodpecker potential habitat has been identified within the study area. As this species and its residence are protected under the federal Species at Risk Act, additional bird surveys are recommended prior to construction to confirm the absence of this species from the work area. Compensation in the form of re-planting on site and/or planting trees elsewhere is required for the loss of 25 individual public trees. This compensation requirement shall be completed during the project detailed design and construction phases. To protect trees, grade changes and construction activities that could cause soil compaction shall be kept away from trees as much as possible.</td>
</tr>
<tr>
<td>Category</td>
<td>Interested Agency</td>
<td>Mitigation/Commitment to Further Work</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If roots will be damaged by excavation equipment, it is better to cut roots cleanly with sharp pruning tools rather than allow them to be torn by large equipment. Clean cuts will help to minimize decay and entry points for disease.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If branches are likely to hang in the way of passing equipment, the branches should be pruned by a qualified arborist to avoid tearing and undue injury to the tree.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipment and materials shall not be stored near trees, and equipment should not be left idling where exhaust could burn foliage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tree protection fencing shall be erected following the City’s Tree Protection Zone Detail around trees at risk of injury. The project design drawings must show the City’s Tree Protection Zone Detail as well as the Tree Preservation Fencing Detail and the Tree Preservation Techniques notes as per the City’s Tree Preservation & Protective Measures for Trees Affected by Construction Policy (attached in Appendix C).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tree clearing should avoid spring and summer periods when local and migrating wildlife are most active, and sensitive to disturbance or loss of habitat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tree removals should occur between September 1 and March 31 to protect the breeding bird period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit removal of trees to the minimum; i.e. preferred pruning of individual branch and root when less than 30% of the crown or root system is impacted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetation clearing should avoid spring and summer periods when local wildlife are most active and sensitive to disturbance and loss of habitat.</td>
</tr>
<tr>
<td>Category</td>
<td>Interested Agency</td>
<td>Mitigation/Commitment to Further Work</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction should be conducted during allowable periods according to the City’s noise by-law.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machinery should be maintained in good condition with appropriate exhaust controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machinery should be kept clean of excessive dirt and debris.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An erosion and sediment control plan (ESCP) should be developed to avoid runoff from entering the ditches.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stockpiles of erodible material are to be stabilized during inclement weather events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remove all construction materials from the site upon project completion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trees #29,31,32,33,35 all identified as Fraxinus sp. shall be removed by forestry through the City of Hamilton Emerald Ash Borer program prior to construction commencement.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Ministry of Environment, Conservation and Park</td>
<td>Environment Canada “Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities” practices shall be followed during construction of the roadway to reduce any air quality impacts that may occur.</td>
</tr>
<tr>
<td>Construction Monitoring</td>
<td>City of Hamilton</td>
<td>Mitigation measures shall be implemented and maintained through on-site inspections by the City of Hamilton staff who will ensure that the natural, social and economic environments are not impacted by the construction activities and/or that impacts are minimized. The inspection staff will also ensure that items such as sedimentation controls and appropriate signage are maintained throughout construction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appropriate signage shall be implemented to identify detour routes at the time of temporary roadway/sidewalk closure.</td>
</tr>
<tr>
<td>Category</td>
<td>Interested Agency</td>
<td>Mitigation/Commitment to Further Work</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Road Design</td>
<td>City of Hamilton</td>
<td>The median locations will be reviewed at detailed design to ensure driveway access is unobstructed for all residences along Mohawk Road.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The lane widths for the recommended design will be reviewed at detailed design to investigate if the lane widths can be reduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>During detailed design, include a design consideration to minimize conflict between turning motor traffic and cyclists at driveways/intersections with pavement markings and/or suitable setback (1 car length) of the multi-use path behind the curb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>During detailed design, consider opportunities to provide a buffer between the curb and the multi-use path.</td>
</tr>
<tr>
<td>Utilities</td>
<td>City of Hamilton</td>
<td>Potential impacts to the existing utilities along the corridor will be reviewed during detailed design.</td>
</tr>
<tr>
<td>Property Requirements</td>
<td>City of Hamilton</td>
<td>Property and easements requirements will be confirmed during detailed design.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Urban Hamilton Official Plan provides requirements for future right-of-way dedications. Under the Officiplan, Mohawk Road has a 30.480 metre right-of-way dedication requirement. Although the preferred design identified through this project has a right-of-way that is less than this amount, the requirements in the Official Plan should be maintained to accommodate for future growth or road changes. Development along Mohawk Road will remain subject to the requirements set out in the Official Plan.</td>
</tr>
</tbody>
</table>
Page intentionally left blank.